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Abstract

Recent advances in machine learning have led to increased
deployment of black-box classifiers across a wide variety of
applications. In many such situations there is a crucial need
to both reliably assess the performance of these pre-trained
models and to perform this assessment in a label-efficient
manner (given that labels may be scarce and costly to collect).
In this paper, we introduce an active Bayesian approach for
assessment of classifier performance to satisfy the desiderata
of both reliability and label-efficiency. We begin by develop-
ing inference strategies to quantify uncertainty for common
assessment metrics such as accuracy, misclassification cost,
and calibration error. We then propose a general framework for
active Bayesian assessment using inferred uncertainty to guide
efficient selection of instances for labeling, enabling better
performance assessment with fewer labels. We demonstrate
significant gains from our proposed active Bayesian approach
via a series of systematic empirical experiments assessing
the performance of modern neural classifiers (e.g., ResNet
and BERT) on several standard image and text classification
datasets.

Introduction
Complex machine learning models, particularly deep learning
models, are now being applied to a variety of practical pre-
diction problems ranging from diagnosis of medical images
(Kermany et al. 2018) to autonomous driving (Du et al. 2017).
Many of these models are black boxes from the perspective
of downstream users, such as models developed remotely
by commercial entities and hosted as a service in the cloud
(Yao et al. 2017; Sanyal et al. 2018). For a variety of reasons
(legal, economic, competitive), users will often have no direct
access to the detailed workings of the model, how the model
was trained, or the training data. In this context, careful at-
tention needs to be paid to have accurate, detailed and robust
assessments of the quality of a model’s predictions, such that
the model can be held accountable by users. In real-world
deployment scenarios, acquiring labeled data for assessment
is likely to be scarce and costly to collect, e.g., for a model
being deployed in a diagnostic imaging context in a particu-
lar hospital. With this in mind we develop a framework for
active Bayesian assessment of black-box classifiers, using
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techniques from active learning to efficiently select instances
to label so that uncertainty of assessment can be reduced, and
deficiencies of models such as low accuracy, high calibration
error or high cost mistakes can be quickly identified. Our
primary contributions are:
• We propose a general Bayesian framework to assess black-

box classifiers with uncertainty for quantities such as class-
wise accuracy, expected calibration error (ECE), confusion
matrices, and performance comparison across groups.

• We propose a general framework for active Bayesian as-
sessment for an array of fundamental tasks including (1) es-
timation of model performance; (2) identification of model
deficiencies; (3) performance comparison between groups.

• We demonstrate that our proposed approaches need sig-
nificantly fewer labels than baselines, via a series of ex-
periments assessing the performance of modern neural
classifiers (e.g., ResNet and BERT) on several standard
image and text classification datasets.

Notation
We consider classification problems with a feature vector
x and a class label y ∈ {1, . . . ,K}, e.g., classifying im-
age pixels x into one of K classes. We are interested in as-
sessing the performance of a pretrained prediction model
M that makes predictions of y given a feature vector x,
where M produces K numerical scores per class in the
form of a set of estimates of class-conditional probabilities
pM (y = k|x), k = 1, . . . ,K. ŷ = arg maxk pM (y = k|x)
is the classifier’s label prediction for a particular input x.
s(x) = pM (y = ŷ|x) is the score of a model, as a function
of x, i.e., the class probability that the model produces for its
predicted class ŷ ∈ {1, . . . ,K} given input x. This is also
referred to as a model’s confidence in its prediction and can
be viewed as a model’s own estimate of its accuracy. The
model’s scores in general need not be perfectly calibrated,
i.e., they need not match the true probabilities p(y = ŷ|x).

We focus in this paper on assessing the performance of a
model that is a black box, where we can observe the inputs
x and the outputs pM (y = k|x), but don’t have any other
information about its inner workings. Rather than learning a
model itself we want to learn about the characteristics of a
fixed model that is making predictions in a particular environ-
ment characterized by some underlying unknown distribution
p(x, y).



Performance Assessment
Performance Metrics and Tasks: We will use θ to indi-
cate a performance metric of interest, such as classification
accuracy, true positive rate, expected cost, calibration error,
etc. Our approach to assessment of a metric θ relies on the
notion of disjoint groups (or partitions) g = 1, . . . , G of the
input space x ∈ Rg , e.g., grouping by predicted class ŷ. For
any particular instantiation of groups g and metric θ, there
are three particular assessment tasks we will focus on in this
paper: (1) estimation, (2) identification, and (3) comparison.

Estimation: Let θ1, . . . , θG be the set of true (unknown)
values for some metric θ and some grouping g. The goal
of estimation is to assess the quality of a set of estimates
θ̂1, . . . , θ̂G relative to the true values. In this paper we will
focus on RMSE loss

(∑
g pg(θg − θ̂g)2

)1/2
to measure es-

timation quality, where pg = p(x ∈ Rg) (e.g., as estimated
from unlabeled data).

Identification: Here the goal is to identify extreme groups,
e.g., g∗ = arg ming θg, such as the predicted class with the
lowest accuracy (or the highest cost, swapping max for min).
We will investigate methods for finding the m groups with
highest or lowest values of a metric θ. To compare the set
of identified groups to the true set of m-best/worst groups,
we can use (for example) ranking measures to evaluate and
compare the quality of different identification methods.

Comparison: The goal here is to determine if the differ-
ence between two groups g1 and g2 is statistically significant,
e.g., to assess if accuracy or calibration for one group is
significantly better than another group for some black-box
classifier. A measure of the quality of a particular assessment
method in this context is to compare how often, across mul-
tiple datasets of fixed size, a method correctly identifies if a
significant difference exists and, if so, its direction.

There are multiple definitions of groups that are of inter-
est in practice. One grouping of particular interest is where
groups correspond to a model’s predicted classes, i.e., g = k,
and the partition of the input space corresponds to the model’s
decision regions x ∈ Rk, i.e., ŷ(x) = k. If θ refers to classi-
fication accuracy, then θk is the accuracy per predicted class.
For prediction problems with costs, θk can be the expected
cost per predicted class, and so on.

Another grouping of interest for classification models are
groups g that correspond to bins b of a model’s score1, i.e.,
s(x) ∈ binb, b = 1 . . . , B, or equivalently x ∈ Rb where
Rb is the region of the input space where model scores lie
in score-bin b. θb can be defined as the accuracy per score-
bin, which in turn can be related to the well-known expected
calibration error (ECE, e.g., Guo et al. (2017)) as we will
discuss in more detail later in the paper2.

In an algorithmic fairness context, for group fairness
(Hardt, Price, and Srebro 2016) the groups g can correspond
to categorical values of a protected attribute such as gender

1The score-bins can be defined in any standard way, e.g., equal
width 1/B or equal weight p(s(x) ∈ binb) = 1/B

2We use ECE for illustration in our results since it is widely used
in the recent classifier calibration literature, but other calibration
metrics could also be used, e.g., see Kumar, Liang, and Ma (2019).

or race, and θ can be defined (for example) as accuracy or
true positive rate per group.

In the remainder of the paper we focus on developing and
evaluating the effectiveness of different methods for assess-
ing groupwise metrics θg . In the two sections below we first
describe a flexible Bayesian strategy for assessing perfor-
mance metrics θ in the context of the discussion above, and
then outline a general active assessment framework that
uses the Bayesian strategy to address the three assessment
tasks in a label-efficient manner.

Bayesian Assessment
We outline below a Bayesian approach to make posterior in-
ferences about performance metrics given labeled data, where
the posteriors on θ can be used to support the three assess-
ment tasks (estimation, identification, and comparison). For
simplicity we begin with the case where θ is assumed to be ac-
curacy and then extend to other metrics such as ECE. The ac-
curacy for a group g can be treated as an unknown Bernoulli
parameter θg. Labeled observations (xi, yi), i = 1, . . . , Ng
are sampled randomly per group conditioned on xi ∈ Rg,
leading to a binomial likelihood with binary accuracy out-
comes 1(yi, ŷi) ∈ {0, 1}. The standard frequency-based esti-
mate is θ̂g = 1

Ng

∑Ng
i=1 1(yi, ŷi).

It is natural to consider Bayesian inference in this con-
text, especially in situations where there is relatively little
labeled data available per group. With a conjugate prior
θg ∼ Beta(αg, βg) and a binomial likelihood on binary out-
comes 1(yi, ŷi), we can update the posterior distribution of
θg in closed-form to Beta(αg + rg, βg +Ng − rg) where rg
is the number of correct label predictions ŷ = y by the model
given Ng trials for group g.

For other metrics, we sketch the basic idea here for
Bayesian inference for ECE and provide additional discus-
sion in the Supplement. ECE is defined as

∑B
b=1 pb|θb − sb|

where B is the number of bins (corresponding to groups g),
pb is the probability of each bin b, and θb and sb are the
accuracy and average confidence per bin respectively. We
can put Beta priors on accuracies θb, model the likelihood
of outcomes for each bin b as binomial resulting again in
closed form Beta posteriors for accuracy per bin b. The pos-
terior density for the marginal ECE itself is not available in
closed form, but can easily be estimated by direct Monte
Carlo simulation from the B posteriors for the B bins. Being
Bayesian about ECE per group ECEg (e.g., per class, with
g = k) follows in a similar manner by defining two levels of
grouping, one at the class level and one at the bin level (see
Supplement for details).

Illustrative Example: To illustrate these ideas, we trained
a standard ResNet-110 classifier on the CIFAR-100 training
data set and performed Bayesian inference about accuracy
and ECE performance on the 10,000 labeled examples in the
test set. The groups g = k correspond to K predicted classes
by the model, ŷ = k ∈ {1, . . . ,K}. We used Beta priors
with αk = βk = 1, k = 1, . . . ,K for classwise accuracy,
and αb = 2sb, βb = 2(1 − sb), b = 1, . . . ,K for binwise
accuracy. Figure 1 shows the resulting mean posterior esti-
mates (MPEs) and 95% credible intervals (CIs) for accuracy
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Figure 1: Scatter plot of estimated accuracy and expected
calibration error (ECE) per class of a ResNet-110 image
classifier on the CIFAR-100 test set, using our Bayesian as-
sessment framework, with posterior means and 95% credible
intervals per class. Red and blue for the top-10 least and most
accurate classes, gray for the other classes.

and ECE values for each of the K = 100 classes. The accu-
racies and ECE values of the model vary substantially across
classes, and classes with low accuracy tend to be less cali-
brated. There is also considerable posterior uncertainty for
these metrics even using the whole test set of CIFAR-100.
For example, while there is confidence that the least accurate
class is “lizard" (top left point), there is much less certainty
about the most accurate class (bottom right).

It is straightforward to apply this type of Bayesian infer-
ence to other metrics and to other assessment tasks, such as
estimating a model’s confusion matrix, ranking group perfor-
mance with uncertainty (Marshall and Spiegelhalter 1998),
analyzing significance of differences in performance across
groups, and so on. For the CIFAR-100 dataset, based on the
test data we can, for example, say that with 96% probability
the ResNet-110 model is less accurate when predicting the
superclass “human” than it is on “trees”; and that with 82%
probability, the accuracy when the model predicts “woman”
is lower than when it predicts “man." Given constraints on
space, details and examples for these approaches are provided
in the Supplement.

Active Bayesian Assessment
Rather than relying on a random sample of labeled instances
for inference, we propose to improve data efficiency by ex-
tending our Bayesian framework to support active assess-
ment by actively selecting examples x for labeling in a data-
efficient manner. We develop below active assessment ap-
proaches for the following three tasks: estimation, identifica-
tion, and comparison. Efficient active selection of examples
for labeling is particularly relevant when we have a poten-
tially large pool of unlabeled examples x available, and have
limited resources for labeling (e.g., a human labeler).

The Bayesian framework described in the last section read-
ily lends itself to be used in Bayesian active learning al-
gorithms, by considering model assessment as multi-armed
bandit problems where each group g corresponds to an arm or
a bandit. In Bayesian assessment, there are two key building
blocks: (i) the assessment algorithm’s current beliefs (prior or

Algorithm 1 Thompson Sampling(p, q, r,M )

1: Initialize the priors on metrics {p0(θ1), . . . , p0(θg)}
2: for i = 1, 2, · · · do
3: # Sample parameters for the metrics θ
4: θ̃g ∼ pi−1(θg), g = 1, . . . , G
5: # Select a group g (or arm) by maximizing expected

reward
6: ĝ ← arg maxg Eq

θ̃
[r(z|g)]

7: # Randomly select an input data point from ĝ-th
group and compute its predicted label

8: xi ∼ Rĝ
9: ŷi(xi) = arg maxk pM (y = k|xi)

10: # Query to get a true label (pull arm ĝ)
11: zi ← f(yi, ŷi(xi))
12: # Update parameters of the ĝth metric
13: pi(θĝ) ∝ pi−1(θĝ)q(zi|θĝ)
14: end for

Figure 2: An outline of the algorithm for active Bayesian
assessment using multi-arm bandit Thompson sampling with
arms corresponding to groups g.

posterior distribution) for the metric of interest θg ∼ p(θg),
and (ii) a generative model (likelihood) of the labeling out-
come z ∼ qθ(z|g),∀g.

Instead of labeling randomly sampled data points from a
pool of unlabeled data, we propose instead to actively select
data points to be labeled by iterating between: (1) label-
ing: actively select a group ĝ based on the assessment algo-
rithms current beliefs about θg , randomly select a data point
xi ∼ Rĝ and then query its label; (2) assessment: update
the assessment model given the outcome zi. This active se-
lection approach requires defining a reward function r(z|g)
for the revealed outcome z for the g-th group. For example,
if the assessment task is to generate low variance estimates
of groupwise accuracy, r(z|g) can be formulated as the re-
duction in uncertainty about θg , given an outcome z, to guide
the labeling process. Our goal in this paper is to demonstrate
the utility of active assessment in general for performance
assessment rather than comparing different active selection
methods. With this in mind, we focus in particular on the
framework of Thompson sampling (Thompson 1933; Russo
et al. 2018) since we found it to be more reliable in terms of
reliability and efficiency compared to other active selection
methods such as epsilon-greedy and upper-confidence bound
(UCB) approaches (additional discussion in the Supplement).

Algorithm 1 describes a general active assessment algo-
rithm based on Thompson sampling. At each step i, a set
of metrics θg, 1 . . . , G are sampled from the algorithm’s cur-
rent beliefs, i.e., θ̃g ∼ pi−1(θg) (line 4). As an example,
when assessing groupwise accuracy, pi−1(θg) represents the
algorithm’s belief (e.g., in the form of a posterior Beta dis-
tribution) about the accuracy for group g given i− 1 labeled
examples observed so far. The sampling step is a key differ-
ence between Thompson sampling and alternatives that use
a point estimate to represent current beliefs (such as greedy



Table 1: Different (p, q, r) combinations for Thompson sampling for different assessment tasks.

Assessment Task p(θ) qθ(z|g) r(z|g)

Estimation Groupwise Accuracy θg ∼ Beta(αg, βg) z ∼ Bern(θg) pg · (Var(θ̂g|L)− Var(θ̂g|{L, z}))
Confusion Matrix(g = k) θ·k ∼ Dirichlet(α·k) z ∼ Multi(θk) pk · (Var(θ̂k|L)− Var(θ̂k|{L, z}))

Identification Least Accurate Group θg ∼ Beta(αg, βg) z ∼ Bern(θg) −θ̃g
Least Calibrated Group θgb ∼ Beta(αgb, βgb) z ∼ Bern(θgb)

∑B
b=1 pgb

∣∣∣θ̃gb − sgb∣∣∣
Most Costly Class(g = k) θ·k ∼ Dirichlet(α·k) z ∼ Multi(θk)

∑K
j=1 cjkθ̃jk

Comparison Accuracy Comparison θg ∼ Beta(αg, βg) z ∼ Bern(θg) λ|{L, (g, z)}

approaches). Conditioned on the sampled θ values, the algo-
rithm then selects the group ĝ that maximizes the expected
reward ĝ = arg maxg Eq

θ̃g
[r(z|g)] (line 6) where r(z|g) is

task-specific. The algorithm then draws an input datapoint
xi randomly fromRĝ, and uses the model M to generate a
predicted label ŷi. The Oracle is then queried (equivalent to
“pulling arm ĝ" in a bandit setting) to obtain a label outcome
zi and the algorithm’s belief is updated (line 13) to update
the posterior for θĝ, where z ∼ qθ̃ĝ (z|ĝ) is the likelihood
for outcome z. Note that this algorithm implicitly assumes
that the θg’s are independent (by modeling beliefs about θg’s
independently rather than jointly). In some situations there
may be additional information across groups g (e.g., hierar-
chical structure) that could be leveraged (e.g., via contextual
bandits) to improve inference but we leave this for future
work.

We next discuss how specific reward functions r can be
designed for different assessment tasks of interest, with a
summary provided in Table 1.

Estimation: The MSE for estimation accuracy for
G groups can be written in bias-variance form as∑G
g=1 pg

(
Bias2(θ̂g) + Var(θ̂g)

)
. Given a fixed labeling bud-

get the bias term can be assumed to be small relative to
the variance (e.g., see Sawade et al. (2010)), by using rela-
tively weak priors for example. It is straightforward to show
that to minimize

∑G
g=1 pgVar(θ̂g) the optimal number of

labels per group g is proportional to
√
pgθg(1− θg), i.e.,

sample more points from larger groups and from groups
where θg is furthest from 0 or 1. While the group sizes pg
can be easily estimated from unlabeled data, the θg’s are
unknown, so we can’t compute the optimal weights a pri-
ori. Active assessment in this context allows one to min-
imize MSE (or RMSE) in an adaptive sequential manner.
In particular we can do this by defining a reward function
r(z|g) = pg ·(Var(θ̂g|L)−Var(θ̂g|{L,z})), whereL is the set
of labeled data seen to date, with the goal of selecting exam-
ples for labeling to minimize the overall posterior variance at
each step. For confusion matrices, a similar argument applies
but with multinomial likelihoods and Dirichlet posteriors on
vector-valued θg’s per group (see Table 1).

Identification: To identify the best (or worst performing)
group, ĝ = arg maxg θg, we can define a reward function

using the sampled metrics θ̃g for each group. For example,
to identify the least accurate class, the expected reward of
the g-th group is Eq

θ̃
[r(zi)|g] = qθ̃(y = 1)(−θ̃g) + qθ̃(y =

0)(−θ̃g) = −θ̃g. Similarly, because the reward functions
of other identification tasks (Table 1) are independent of the
value of y, when the assessment tasks are to identify the group
with the highest ECE or misclassification cost, maximization
of the reward function corresponds to selecting the group
with the greatest sampled ECE or misclassification cost.

To extend this approach to identification of the best-m
arms, instead of selecting the arm with the greatest expected
reward, we pull the top-m-ranked arms at each step, i.e. we
query the true labels of m samples, one sample x randomly
drawn from each of the top m ranked groups.

This method can be seen as an application of the general
best-m arms identification method proposed by Komiyama,
Honda, and Nakagawa (2015) for the problem of extreme
arms identification. They proposed the multiple-play Thomp-
son sampling (MP-TS) algorithm as a multiple-play multi-
armed bandit problem, and proved that MP-TS has the opti-
mal regret upper bound when the reward is binary. We also
experimented with a modified version of Thompson sampling
(TS) called top-two Thompson sampling (TTTS) (Russo
2016) but found that that TTTS and TS gave very similar
results—so we just focus on TS in the results presented in
this paper.

Comparison: For the task of comparing differences in a
performance metric θ between two groups, an active assess-
ment algorithm can learn about the accuracy of each group
by sequentially allocating the labeling budget between them.
Consider two groups g1 and g2 with a true accuracy differ-
ence ∆ = θg1 − θg2 . Our approach uses the “rope” (region
of practical equivalence) method of Bayesian hypothesis test-
ing (e.g., Benavoli et al. (2017)) as follows. The cumulative
density in each of three regions µ = (P (∆ < −ε), P (−ε ≤
∆ ≤ ε),P (∆ > ε)) represents the posterior probability that
the accuracy of group g1 is more than ε lower than the accu-
racy of g2, that the two accuracies are “practically equivalent,”
or that g1’s accuracy is more than ε higher than that of g2,
where ε is user-specified3.

The assessment task is to identify the region η =

3In our experiments we use ε = 0.05 and the cumulative densi-
ties µ are estimated with 10,000 Monte Carlo samples.



Table 2: Datasets and models used in experiments.

Test Set Number of Prediction
Mode Size Classes Model M

CIFAR-100 Image 10K 100 ResNet-110
ImageNet Image 50K 1000 ResNet-152

SVHN Image 26K 10 ResNet-152
20 Newsgroups Text 7.5K 20 BERTBASE

DBpedia Text 70K 14 BERTBASE

arg max(µ) in which ∆ has the highest cumulative density,
where λ = max(µ) ∈ [0, 1] represents the confidence of
the assessment. Using Thompson sampling to actively select
labels from g1 and g2, at i-th step, when we get a zi for a data
point from the g-th group, we update the Beta posterior of θg .
The resulting decrease in uncertainty about θg depends on
the realization of the binary variable zi and the current dis-
tribution of θg . We use λ to measure the amount of evidence
we gathered from the labeled data from both of the groups.
Then we can select the group in a greedy manner that has
the greater expected increase Eq

θ̃
[λ|{L, (g, z)] − Eq

θ̃
[λ|L],

which is equivalent to selecting the arm with the largest
Eq

θ̃
[λ|{L, (g, z)]. This approach of maximal expected model

change strategy has also been used in prior work in active
learning for other applications (Freytag, Rodner, and Denzler
2014; Vezhnevets, Buhmann, and Ferrari 2012).

Experimental Settings
Datasets and Prediction Models: In our experiments we
used a number of well-known image and text classifica-
tion datasets, for both image classification (CIFAR-100
(Krizhevsky and Hinton 2009), SVHN (Netzer et al. 2011)
and ImageNet (Russakovsky et al. 2015)) and text classifi-
cation (20 Newsgroups (Lang 1995) and DBpedia (Zhang,
Zhao, and LeCun 2015)). For modelsM we used well-known
deep learning models such as ResNets(He et al. 2016) and
BERT(Devlin et al. 2019) (additional details in the Supple-
ment). Each model was trained on the standard training set
used in the literature and assessment was performed on ran-
dom samples from the test sets. Table 2 provides a summary
of datasets, models, and test sizes.

Unlabeled data points xi from the test set were assigned
to groups (such as predicted classes or score-bins) by each
prediction model. Values for pg (for use in active learning in
reward functions and in evaluation of assessment methods)
were estimated using the model-based assignments of test
datapoints to groups. Ground truth values for θg were defined
using the full labeled test set for each dataset.

Priors: We investigate both uninformative and informative
priors to specify prior distributions over groupwise metrics.
All of the priors we use are relatively weak in terms of prior
strength, but as we will see in the next section, the informative
priors can be very effective when there is little labeled data
available. We set the prior strengths as αg + βg = N0 = 2
for Beta priors and

∑
αg = N0 = 1 for Dirichlet priors in

all experiments, demonstrating the robustness of the settings
across a wide variety of contexts. For groupwise accuracy, the
informative Beta prior for each group is Beta(N0sg, N0(1−

Table 3: RMSE of classwise accuracy across 5 datasets. Each
RMSE number is the mean across 1000 independent runs.

N/K N UPrior IPrior IPrior+TS
(baseline) (our work) (our work)

CIFAR-100 2 200 30.7 15.0 15.3
5 500 20.5 13.6 13.8

10 1000 13.3 10.9 11.4
ImageNet 2 2000 29.4 13.2 13.2

5 5000 18.8 12.1 11.6
10 10000 11.8 9.5 9.4

SVHN 2 20 13.7 5.1 3.4
5 50 7.7 5.1 3.4

10 100 5.4 4.7 3.1
20 Newsgroups 2 40 23.9 12.3 11.7

5 100 15.3 10.8 10.3
10 200 10.4 8.7 8.8

DBpedia 2 28 14.9 2.0 1.5
5 70 3.5 2.3 1.2

10 140 2.6 2.1 1.1

Table 4: Mean relative RMSE for confusion matrix estimation.
Same setup as Table 3.

N/K N UPrior IPrior IPrior+TS
(baseline) (our work) (our work)

CIFAR-100 2 200 1.463 0.077 0.025
5 500 0.071 0.012 0.004

10 1000 0.001 0.002 0.001
SVHN 2 20 92.823 0.100 0.045

5 50 11.752 0.022 0.010
10 100 0.946 0.005 0.002

20 Newsgroups 2 40 3.405 0.018 0.005
5 100 0.188 0.004 0.001

10 200 0.011 0.001 0.000
DBpedia 2 28 1307.572 0.144 0.025

5 70 33.617 0.019 0.003
10 140 0.000 0.004 0.001

sg)), where sg is the average model confidence (score) of
all unlabeled test data points for group g. The uninformative
prior distribution is α = β = N0/2.

For confusion matrices, there are O(K2) prior parameters
in total for K Dirichlet distributions, each distribution param-
eterized by a K dimensional vector αj . As an informative
prior for a confusion matrix we use the model’s own predic-
tion scores on the unlabeled test data, αjk ∝ Σx∈RkpM (y =
j|x). The uninformative prior for a confusion matrix is set
as αjk = N0/K,∀j, k. In experiments, we show that even
though our models are not well-calibrated (as is well-known
for deep models, e.g., Guo et al. (2017)), the model’s own es-
timates of class-conditional probabilities nonetheless contain
valuable information about confusion probabilities.

Experimental Results
We conducted a series of experiments across datasets, mod-
els, metrics, and assessment tasks, to systematically compare
three different assessment methods: (1) non-active sampling
with uninformative priors (UPrior), (2) non-active sampling
with informative priors (IPrior), and (3) active Thompson
sampling (Figure 2) with informative priors (IPrior+TS). Es-
timates of metrics (as used for example in computing RMSE
or ECE) correspond to mean posterior estimates θ̂ for each
method. Note that the UPrior method is equivalent to standard
frequentist estimation with random sampling with weak addi-
tive smoothing. We use UPrior instead of a pure frequentist
method to avoid numerical issues in very low data regimes.



As we will show below, our results clearly demonstrate that
the Bayesian and active assessment frameworks are signifi-
cantly more label-efficient and accurate across a wide array
of assessment tasks. Best-performing values that are statisti-
cally significant, across the 3 methods, are indicated in bold
in our tables. Statistical significance between the best value
and next best was determined by a Wilcoxon signed-rank
test with p=0.05. Results are statistically significant in all
rows in all tables, except for SVHN results in Table 7. Code
and scripts for all of our experiments are provided in the
Supplemental Material.

Estimation of Accuracy, Calibration, and Confusion Ma-
trices: We compared the estimation efficacy of each
method as the labeling budget N increases, for classwise
accuracy (Table 3), confusion matrices (Table 4), and ECE
(Table 5). All reported numbers were obtained by averaging
across 1000 independent runs, where a run corresponds to a
sequence of sampled xi values (and sampled θg values for
the TS method).

Table 3 shows the mean RMSE accuracy for the 3 methods
on the 5 datasets. The results demonstrate that informative
priors and active sampling have significantly lower RMSE
than the baseline, e.g., reducing RMSE by a factor of 2 or
more in the low-data regime of N/K = 2. Active sampling
(IPrior+TS) improves on the IPrior method in 11 of the 15
results, but the gains are typically small. For other metrics
and tasks below we will see much greater gains from using
active sampling.

Table 4 reports the mean RMSE across runs of estimates
of confusion matrix entries for 4 datasets4. RMSE is defined
here as RMSE =

(∑
k pk

∑
j(θjk − θ̂jk)2

)1/2
where θjk is

the probability that class j is the true class when class k is
predicted. To help with interpretation, we scaled the errors
in the table by a constant θ0, defined as the RMSE of the
confusion matrix estimated with scores from only unlabeled
data , i.e. the estimate with IPrior when N = 0. Numbers
greater than 1 mean that the estimate is worse than using θ0
(with no labels). The results show that using informed priors
(IPrior and IPrior+TS) often produces RMSE values that are
orders of magnitude lower than using simple uniform prior
(UPrior). Thus, the model scores on the unlabeled test set
(used to construct the informative priors) are highly infor-
mative for confusion matrix entries, even though the models
themselves are (for the most part) miscalibrated. We see in
addition that active sampling (IPrior+TS) provides additional
significant reductions in RMSE over the IPrior method with
no active sampling.

In our ECE experiments samples are grouped into 10
equal-sized bins according to their model scores. Table 5
reports the average relative ECE estimation error5, defined
as (100/R)

∑R
r=1 |ECEN − ˆECEr|/ECEN where ECEN is

the ECE measured on the full test set, and ˆECEr is the esi-

4ImageNet is omitted because 50K labeled samples is not suffi-
cient to estimate a confusion matrix that contains 1M parameters.

5We report error for overall ECE rather than error per score-bin
since ECE is of more direct interest and more interpretable.

Table 5: Mean percentage estimation error of ECE with bins
as groups. Same setup as Table 3.

N/K N UPrior IPrior IPrior+TS
(baseline) (our work) (our work)

CIFAR-100 2 20 76.7 26.4 28.7
5 50 40.5 23.4 26.7

10 100 25.7 21.5 23.2
ImageNet 2 20 198.7 51.8 36.4

5 50 122.0 55.3 29.6
10 100 66.0 40.8 22.1

SVHN 2 20 383.6 86.2 49.7
5 50 155.8 93.1 44.2

10 100 108.2 80.6 36.6
20 Newsgroups 2 20 54.0 39.7 46.1

5 50 32.8 28.9 36.6
10 100 24.7 22.3 28.7

DBpedia 2 20 900.3 118.0 93.1
5 50 249.6 130.5 74.5

10 100 169.1 125.9 60.9

mated ECE (using MPE estimates of θb’s), for a particular
method on the rth run, r = 1, . . . , R = 1000. Both the
IPrior and IPrior+TS methods have significantly lower per-
centage error in general in their ECE estimates compared to
the naive UPrior baseline, particularly on the 3 image datasets
(CIFAR-100, ImageNet, and SVHN). The bin-wise RMSE of
the estimated θb’s are reported in the Supplement and show
similar gains for IPrior and IPrior+TS.

Identification of Extreme Classes: For our identification
experiments, for a particular metric and choice of groups, we
conducted 1000 different sequential runs. For each run, after
each labeled sample, we rank the estimates θ̂g obtained from
each of the 3 methods, and compute the mean-reciprocal-
rank (MRR) relative to the true top-m ranked groups (as
computed from the full test set). The MRR of the predicted
top-m classes is defined as MRR = 1

m

∑m
i=1

1
ranki

where
ranki is the predicted rank of the ith best class. Table 6 shows
the mean percentage of labeled test set examples needed to
correctly identify the target classes where “identify" means
the minimum number of labeled examples required so that
the MRR is greater than 0.99. For all 5 datasets the active
method (IPrior+TS) clearly outperforms the non-active meth-
ods, with large gains in particular for cases where the number
of classes K is large (CIFAR-100 and Imagenet). Similar
gains in identifying the least calibrated classes are reported
in the Supplement.

Figure 3 compares our 3 assessment methods for identify-
ing the predicted classes with highest expected cost, using
data from CIFAR-100, with two different (synthetic) cost
matrices. In this plot the x-axis is the number of labels Lx
(queries) and the y-value is the average (over all runs) of the
MRR conditioned on Lx labels. In the left column (Human)
the cost of misclassifying a person (e.g., predicting tree when
the true class is a woman, etc.) is 10 times more expensive
than other mistakes. In the right column, costs are 10 times
higher if a prediction error is in a different superclass than
the superclass of the true class (for the 20 superclasses in
CIFAR-100). The curves show the MRR as a function of the
number of labels (on average, over 100 runs) for each of the
3 assessment methods. The active assessment (IPrior+TS) is



Table 6: Percentage of labeled samples needed to identify
the least accurate top-1 and top-m predicted classes across 5
datasets across 1000 runs.

Dataset Top m UPrior IPrior IPrior+TS
(baseline) (our work) (our work)

CIFAR-100 1 81.1 83.4 24.9
10 99.8 99.8 55.1

ImageNet 1 96.9 94.7 9.3
10 99.6 98.5 17.1

SVHN 1 90.5 89.8 82.8
3 100.0 100.0 96.0

20 Newsgroups 1 53.9 55.4 16.9
3 92.0 92.5 42.5

DBpedia 1 8.0 7.6 11.6
3 91.9 90.2 57.1
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Figure 3: MRR of 3 assessment methods for identifying the
top 1 (top) and top 10 (bottom) highest-cost predicted classes,
with 2 different cost matrices (right and left), averaged over
100 trials. See text for details.

clearly much more efficient at identifying the highest cost
classes than the two non-active methods. The gains from ac-
tive assessment were also robust to different settings of the
relative costs of mistakes (details in the Supplement).

Comparison of Groupwise Accuracy: For comparison
experiments, Table 7 shows the results for the number of
labeled data points required by each method to reliably as-
sess the accuracy difference of two predicted classes, aver-
aged over independent runs for all pairwise combinations
of classes. The labeling process terminates when the most
probable region η is identified correctly and the estimation
error of the cumulative density λ is within 5% of its value on
the full test set. The results show that actively allocating a
labeling budget and informative priors always improves label
efficiency over uniform priors with no active assessment. In
addition, active sampling (IPrior+TS) shows a systematic re-
duction of 5% to 35% in the mean number of labels required
across datasets, over non-active sampling (IPrior).

Related Work
Bayesian and Frequentist Classifier Assessment: Prior
work on Bayesian assessment of prediction performance,
using Beta-Bernoulli models for example, has focused on

Table 7: Average number of labels across all pairs of classes
required to estimate λ for randomly selected pairs of groups.

UPrior IPrior IPrior+TS
CIFAR-100, Superclass 203.5 129.0 121.9

SVHN 391.1 205.2 172.0
20 Newsgroups 197.3 157.4 136.1

DBpedia 217.5 4.3 2.8

specific aspects of performance modeling, such as estimating
precision-recall performance (Goutte and Gaussier 2005),
comparing classifiers (Benavoli et al. 2017), or analyzing
performance of diagnostic tests (Johnson, Jones, and Gard-
ner 2019)). Welinder, Welling, and Perona (2013) used a
Bayesian approach to leverage a classifier’s scores on un-
labeled data for Bayesian evaluation of performance. Fre-
quentist methods for label-efficient evaluation of classifier
performance have included techniques such as importance
sampling (Sawade et al. 2010) and stratified sampling (Ku-
mar and Raj 2018), and low-variance sampling methods have
been developed for evaluation of information retrieval sys-
tems (Aslam, Pavlu, and Yilmaz 2006; Yilmaz and Aslam
2006; Moffat, Webber, and Zobel 2007). Our paper signifi-
cantly generalizes these earlier contributions, by addressing
a broader range of metrics and performance tasks within a
single coherent Bayesian assessment framework and by in-
troducing the notion of active assessment for label-efficiency.

Active Assessment: While there is a large literature on ac-
tive learning and multi-armed bandits (MAB) in general, e.g.,
(Settles 2012; Russo et al. 2018), our paper is the first that ap-
plies ideas from Bayesian active learning to general classifier
assessment, building on MAB-inspired, pool-based active
learning algorithms for data selection. Nguyen, Ramanan,
and Fowlkes (2018) develop non-Bayesian active learning
methods to select samples for estimating visual recognition
performance of an algorithm on a fixed test set and similar
ideas have been explored in the information retrieval litera-
ture (Sabharwal and Sedghi 2017; Li and Kanoulas 2017;
Rahman et al. 2018; Voorhees 2018; Rahman, Kutlu, and
Lease 2019). However, this prior work is significantly nar-
rower in scope in terms of performance metrics and tasks
compared to the more general approach we propose here.

Conclusions
In this paper we described a Bayesian framework for assess-
ing performance metrics of black-box classifiers, develop-
ing inference procedures for an array of assessment tasks.
In particular, we proposed a new framework called active
assessment for label-efficient assessment of classifier perfor-
mance, and demonstrated significant performance improve-
ments across five well-known datasets. There are a number
of interesting directions for future work, such as Bayesian
estimation of continuous functions related to accuracy and
calibration (rather than over regions). The framework can also
be extended to assess a particular model operating in multiple
environments using a Bayesian hierarchical approach, or to
comparatively assess multiple models operating in the same
environment.



Ethics and Societal Impact Statement
Machine learning classifiers are currently widely used to
make predictions and decisions across a wide range of appli-
cations in society: education admissions, health insurance,
medical diagnosis, court decisions, marketing, face recogni-
tion, and more—and this trend is likely to continue to grow.
When these systems are deployed in real-world environments
it will become increasingly important for users to have the
ability to perform reliable, accurate, and independent evalua-
tion of the performance characteristics of these systems and
to do this in a manner which is efficient in terms of the need
for labeled data.

Our paper addresses this problem directly, providing a
general-purpose and transparent framework for label-efficient
performance evaluations of black-box classifier systems. The
probabilistic (Bayesian) aspect of our approach provides
users with the ability to understand how much they can trust
performance numbers given a fixed data budget for evaluation.
For example, a hospital system or a university might wish
to evaluate multiple different performance characteristics of
pre-trained classification models in the specific context of
the population of patients or students in their institution. The
methods we are proposing have the potential to contribute
to an increase societal trust in AI systems based on machine
learning classification models.
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