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Supplemental Material for Section 4: Bayesian
Assessment

Bayesian Metrics
Bayesian Estimates of Reliability Diagrams One partic-
ular application of Bayesian groupwise accuracy estimation
is to reliability diagrams. Reliability diagrams are a widely
used tool for visually diagnosing model calibration (De-
Groot and Fienberg 1983; Niculescu-Mizil and Caruana
2005). These diagrams plot the empirical sample accuracy
AM (x) of a model M as a function of the model’s confi-
dence scores sM (x). If the model is perfectly calibrated, then
AM (x) = sM (x) and the diagram consists of the identity
function on the diagonal. Deviations from the diagonal reflect
miscalibration of the model. In particular if the curve lies
below the diagonal withAM (x) < sM (x) then the modelM
is overconfident (e.g., see Guo et al. (2017)). For a particular
value sM (x) = s ∈ [0, 1] along the x-axis, the corresponding
y value is defined as: Ex|sM (x)=s[AM (x)].

To address data sparsity, scores are often aggregated into
bins. We use equal-width bins here, denoting the b-th bin or
region asRb = {x|sM (x) ∈ [(b− 1)/B, b/B)}, where b =
1, . . . , B (B = 10 is often used in practice). The unknown
accuracy of the model per bin is θb, which can be viewed as
a marginal accuracy over the region Rb in the input space
corresponding to s(x) ∈ Rb, i.e.,

θb =

∫
Rb

p(y = ŷM |x)p(x|x ∈ Rb)dx.

As described in the main paper, we can put Beta priors on
each θb and define a binomial likelihood on outcomes within
each bin (i.e., whether a model’s predictions are correct or
not on each example in a bin), resulting in posterior Beta
densities for each θb.

In Figure 1 we show the Bayesian reliability diagrams for
the five datasets discussed in the main paper. The columns
indicate different datasets and the rows indicate how much
data (from the test set) was used to estimate the reliability
diagram. Based on the full set of test examples (row 3), the
posterior means and the posterior 95% credible intervals are
generally below the diagonal, i.e., we can infer with high con-
fidence that the models are miscalibrated (and overconfident,
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to varying degrees) across all five datasets. For some bins
where the scores are less than 0.5, the credible intervals are
wide due to little data, and there is not enough information to
determine with high confidence if the corresponding models
are calibrated or not in these regions. With N = 100 exam-
ples (row 1), the posterior uncertainty captured by the 95%
credible intervals indicates that there is not yet enough infor-
mation to determine whether the models are miscalibrated
given only N = 100 labeled examples. With N = 1000
examples (row 2) there is enough information to reliably in-
fer that the CIFAR-100 model is overconfident in all bins
for scores above 0.3. For the remaining datasets the credible
intervals are generally wide enough to include 0.5 for most
bins, meaning that we do not have enough data to make re-
liable inferences about calibration, i.e., the possibility that
the models are well-calibrated cannot be ruled out without
acquiring more data.

Bayesian Estimation of Calibration Performance (ECE)
As shown in Figure 1, “self-confident” estimates provided by
machine learning predictors can often be quite unreliable and
miscalibrated (Zadrozny and Elkan 2002; Kull, Silva Filho,
and Flach 2017; Ovadia et al. 2019). In particular, complex
models such as deep networks with high-dimensional inputs
(e.g., images and text) can be significantly overconfident
in practice (Gal and Ghahramani 2016; Guo et al. 2017;
Lakshminarayanan, Pritzel, and Blundell 2017).

We can assess calibration-related metrics for a classifier in
a Bayesian fashion using any of well-known various calibra-
tion metrics which are defined as discrepancy between model
score and accuracy (Kumar, Liang, and Ma 2019; Nixon et al.
2019). Here we focus on expected calibration error (ECE)
given that it is among the widely-used calibration metrics
in the machine learning literature (e.g., Guo et al. (2017);
Ovadia et al. (2019)).

As discussed in the previous subsection, we use the stan-
dard ECE binning procedure, then the marginal ECE is de-
fined as a weighted average of the absolute distance between
the binwise accuracy θb and the average score sb per bin:

ECE =

B∑
b=1

pb|θb − sb| (1)

where pb is the probability of a score lying in bin b and it can
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Figure 1: Bayesian reliability diagrams for five datasets (columns) estimated using varying amounts of test data (rows). The red
circles plot the posterior mean for θj under our Bayesian model. Red bars display 95% credible intervals. Shaded gray areas
indicate the estimated magnitudes of the calibration errors, relative to the Bayesian estimates. The blue histogram shows the
distribution of the scores for N randomly drawn samples.

be estimated with all unlabeled data available. As shown in
Figure 2, the weights of these bins tend to be quite skewed in
practice for deep neural networks models like ResNet-110.

While the posterior of ECE is not available in closed form,
its Monte Carlo samples are straightforward to obtain, by
drawing random samples from Beta distributions of θb and
deterministically computing ECE with Equation 1.

Figure 2 shows the results of Bayesian estimation of a
reliability diagram (top row) and the resulting posterior esti-
mate of ECE (bottom row) for the CIFAR-100 dataset with
three different values ofN . The third column forN = 10000
corresponds to using all of the data in the test set. The other
2 columns of plots correspond to particular random samples
of size N = 100 and N = 1000. The ECE value computed
using all the test data (N = 10000) is referred to as ground
truth in all plots, “Bayesian" refers to the methodology de-
scribed in the paragraphs above, and “frequentist" refers to
the standard frequentist estimate of ECE.

The bottom row of Figure 2 plots empirical samples (in
red) from the posterior density of ECE as the amount of data
increases. As N increases the posterior of ECE converges to
ground truth, and the uncertainty about ECE decreases. When
the number of samples is small (N = 100), the Bayesian pos-
terior for ECE puts non-negative probability mass on ground
truth marginal ECE, while the frequentist method signifi-
cantly overestimates ECE without any notion of uncertainty.

Figure 3 shows the percentage error in estimating ground
truth ECE, for Bayesian mean posterior estimates (MPE) and
frequentist estimates of ECE, as a function of the number of
labeled data points (“queries”) across the five datasets in the
paper. The percentage is computed relative to the ground truth
marginal ECE = ECE∗, computed with the whole test set

as before. The MPE is computed with Monte Carlo samples
from the posterior distribution (histograms of such samples
are shown in Figure 2). At each step, with we randomly
draw and label N queries from the pool of unlabeled data,
and compute both a Bayesian and frequentist estimate of
marginal calibration error with these labeled data. We run
the simulation 100 times, and report the average ECEN over
the N samples. Figure 3 plots (ECEN − ECE∗)/ECE∗ as
a percentage. The Bayesian method consistently has lower
ECE estimation error, especially when the number of queries
is small.

Bayesian Estimation of ECE per Class. Similar to accu-
racy, we can also model classwise ECE,

ECEk =

B∑
b=1

pb,k|θb,k − sb|

by modifying the model described above to use regions
Rb,k = {x|ŷ = k, s(x) ∈ Rb} that partition the input space
by predicted class in addition to partitioning by the model
score. This follows the same procedure as for “total ECE" in
the previous subsection except that the data is now partitioned
by predicted class k = 1, . . . ,K and a posterior density on
ECEk for each class is obtained.

In the main paper, we showed a scatter plot of classwise
accuracy and classwise ECE assessed with our proposed
Bayesian method for CIFAR-100. In Figure 4 we show scat-
ter plots for all five datasets used in the paper. The assess-
ment shows that model accuracy and calibration vary sub-
stantially across classes. For CIFAR-100, ImageNet and 20
Newsgroups, the variance of classwise accuracy and ECE



among all predicted class is considerably greater than the
variance of two other datasets. Figure 4 also illustrates that
there is significant negative correlation between classwise
accuracy and ECE across all 5 datasets, i.e. classes with low
classwise accuracy also tend to be less calibrated.

Bayesian Estimation of Confusion Matrices Condi-
tioned on a predicted class ŷ, the true class label y has a
categorical distribution θjk = p(y = j|ŷ = k). We will refer
to θjk as confusion probabilities. In a manner similar to using
a beta-binomial distribution to model accuracy, we can model
these confusion probabilities using a Dirichlet-multinomial
distribution:

θ·k ∼ Dirichlet(α·k) (2)

There are O(K2) parameters in total in K Dirichlet distribu-
tions, each of which is parameterized with a K dimensional
vector αj .

Bayesian Misclassification Costs Accuracy assessment
can be viewed as implicitly assigning a binary cost to model
mistakes, i.e. a cost of 1 to incorrect predictions and a cost
of 0 to correct predictions. In this sense, identifying the pre-
dicted class with lowest accuracy is equivalent to identifying
the class with greatest expected cost. However, in real world
applications, costs of different types of mistakes can vary
drastically. For example, in autonomous driving applications,
misclassifying a pedestrian as a crosswalk can have much
more severe consequences than other misclassifications.

To deal with such situations, we extend our approach to
incorporate an arbitrary cost matrix C = [cjk], where cjk is
the cost of predicting class ŷ = k for a data point whose true
class is y = j. The classwise expected cost for predicted
class k is given by:

CM
Rk

= Ep(x,y|x∈Rk)[cjk1(y = j)] =

K∑
j=1

cjkθjk. (3)

The posterior of CM
Rk

is not available in closed form but
Monte Carlo samples are straightforward to obtain, by ran-
domly sampling θ·k ∼ Dirichlet(α·k) and computing CM

Rk

deterministically with the sampled θ·k and the predefined
cost matrix C.

Bayesian Estimation of Accuracy Differences Bayesian
estimation of group differences allows us to compare the per-
formance between two groups with uncertainty. For example,
with prior Beta(1, 1) and the full test set of CIFAR-100, the
posterior distribution of groupwise accuracies of ResNet-110
on superclass “human” and “trees” are θg1 ∼ Beta(280, 203)
and θg2 ∼ Beta(351, 162) respectively. The total amount
of labeled data for the two superclasses are 481 and 511.
The difference in accuracy between superclass “human” and
superclass “trees” is defined as ∆ = θg1 − θg2 . With ran-
dom samples from the posterior distributions of θg1 and
θg2 , we can simulate the posterior distribution of ∆ and
compute its cumulative density in each of three regions
µ = (P (∆ < −ε), P (−ε ≤ ∆ ≤ ε),P (∆ > ε)). In Figure 5,

when ε = 0.05, ResNet-110 is less accurate on the predicted
superclass “human” than on “trees” with 96% probability.
Similarly with 82% probability, the accuracy of ResNet-110
on “woman” is lower than “man”. Although the point esti-
mates of two performance differences have values that are
both approximately 10%, the assessment of “human” v.s.
“tree” is more certain because more samples are labeled.

Bayesian Assessment: Inferring Statistics of
Interest via Monte Carlo Sampling
An additional benefit of the Bayesian framework is that we
can draw samples from the posterior to infer other statistics
of interest. Here we illustrate this method with two examples.

Bayesian Ranking via Monte Carlo Sampling We can
infer the Bayesian ranking of classes in terms of classwise
accuracy or expected calibration error (ECE), by drawing
samples from the posterior distributions (e.g., see Marshall
and Spiegelhalter (1998)). For instance, we can estimate the
ranking of classwise accuracy of a model for CIFAR-100, by
sampling θk’s (from their respective posterior Beta densities)
for each of the classes and then computing the rank of each
class using the sampled accuracy. We run this experiment
10,000 times and then for each class we can empirically
estimate the distribution of its ranking. The MPE and 95%
credible interval of ranking per predicted class for top 10 and
bottom 10 are provided in Figure 6a for CIFAR-100.

Posterior probabilities of the most and least accurate pre-
dictions We can estimate the probability that a particular
class such as lizard is the least accurate predicted class of
CIFAR-100 by sampling θk∗’s (from their respective poste-
rior Beta densities) for each of the classes and then measuring
whether θlizard is the minimum of the sampled values. Run-
ning this experiment 10,000 times and then averaging the
results, we determine that there is a 68% chance that lizard is
the least accurate class predicted by ResNet-110 on CIFAR-
100. The posterior probabilities for other classes are provided
in Figure 6b, along with results for estimating which class
has the highest classwise accuracy.
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Figure 2: Bayesian reliability diagrams (top) and posterior densities for ECE (bottom) for CIFAR-100 as the amount of data
used for estimation increases. Vertical lines in the right plots depict the ground truth ECE (black, evaluated with all available
assessment data) and frequentist estimates (red).
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Different Multi-Armed Bandit Algorithms for
Best-Arm(s) Identification
Below we provide brief descriptions for Thompson Sam-
pling(TS) and the different variants of multi-armed bandit
algorithms for best arm identification and top-m arms iden-
tification problems that we investigated in this paper, in-
cluding Top-Two Thompson Sampling(TTTS) (Russo 2016)
and multiple-play Thompson sampling(MP-TS)(Komiyama,
Honda, and Nakagawa 2015).

Best Arm Identification
• Thompson sampling (TS) is a widely used method for on-

line learning of multi-armed bandit problems (Thompson
1933; Russo et al. 2018). The algorithm samples actions
according to the posterior probability that they are optimal.
Algorithm 1 describes the sampling process for identifying
the least accurate predicted class with TS.

• Top-two Thompson sampling (TTTS) is a modified ver-
sion of TS that is tailored for best arm identification, and
has some theoretical advantages over TS. Compared to TS,
this algorithm adds a re-sampling process to encourage
more exploration.
Algorithm 2 describes the sampling process for identi-
fying the least accurate predicted class with TTTS. The
re-sampling process of TTTS is described in lines 10 to
24. At each step, with probability 1 − β the algorithm
selects the class I which has the lowest sampled accuracy;
in order to encourage more exploration, with probability
β the algorithm re-samples until a different class J 6= I
has the lowest sampled accuracy. β is a tuning parameter.
When β = 0, there is no re-sampling in TTTS and it is
reduced to TS.

Figure 8 compares TS and TTTS for identifying the least
accurate class for CIFAR-100. The results show that two
methods are equally efficient across 5 datasets. For TTTS,
we set the probability for re-sampling to β = 0.5 as recom-
mended in (Russo 2016).

Top-m Arms Identification
• Multiple-play Thompson sampling (MP-TS) is an ex-

tension of TS to multiple-play multi-armed bandit prob-
lems and it has a theoretical optimal regret guarantee with
binary rewards. Algorithm 3 is the sampling process to
identify the least accurate m arms with MP-TS, where m
is the number of the best arms to identify. At each step, m
classes with the lowest sampled accuracies are selected,
as describe in lines 10 to 20. When m = 1, MP-TS is
equivalent to TS.

In our experiments, we use TS for best arm identification and
MP-TS for top-m arms identification, and refer to both of the
methods as TS in the main paper for simplicity.

Algorithm 1 Thompson Sampling (TS) Strategy

1: Input: prior hyperparameters α, β
2: initialize nk,0 = nk,1 = 0 for k = 1 to K
3: repeat
4: # Sample accuracy for each predicted class
5: for k = 1 to K do
6: θ̃k ∼ Beta(α+ nk,0, β + nk,1)
7: end for
8: # Select a class k with the lowest sampled accuracy
9: k̂ = arg mink θ̃1:K

10: # Randomly select an input data point from the k̂-th
class and compute its predicted label

11: xi ∼ Rk̂
12: ŷi = arg maxk pM (y = k|xi)

13: # Update parameters of the k̂-th metric
14: if ŷi = k̂ then
15: nk̂,0 ← nk̂,0 + 1

16: else
17: nk̂,1 ← nk̂,1 + 1

18: end if
19: until all data labeled

Figure 7: Thompson Sampling (TS) for identifying the least
accurate class.
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Algorithm 2 Top Two Thompson Sampling (TTTS) Strategy

1: Input: prior hyperparameters α, β
2: initialize nk,0 = nk,1 = 0 for k = 1 to K
3: repeat
4: # Sample accuracy for each predicted class
5: for k = 1 to K do
6: θ̃k ∼ Beta(α+ nk,0, β + nk,1)
7: end for
8: # Select a class k with the lowest sampled accuracy
9: I = arg mink θ̃1:K

10: # Decide whether to re-sample
11: B ∼ Bernoulli(β)
12: if B = 1 then
13: # If not re-sample, select I
14: k̂ = I
15: else
16: # If re-sample, keep sampling until a different arm

J is selected
17: repeat
18: for k = 1 to K do
19: θ̃k ∼ Beta(α+ nk,0, β + nk,1)
20: end for
21: J = arg mink θ̃1:K
22: until J 6= I

23: k̂ = J
24: end if
25: # Randomly select an input data point from the k̂-th

class and compute its predicted label
26: xi ∼ Rk̂
27: ŷi = arg maxk pM (y = k|xi)

28: # Update parameters of the k̂-th metric
29: if ŷi = k̂ then
30: nk̂,0 ← nk̂,0 + 1

31: else
32: nk̂,1 ← nk̂,1 + 1

33: end if
34: until all data labeled

Figure 9: Top Two Thompson Sampling (TTTS) for identify-
ing the least accurate class.

Algorithm 3 Multiple-play Thompson sampling (MP-TS)
Strategy

1: Input: prior hyperparameters α, β
2: initialize nk,0 = nk,1 = 0 for k = 1 to K
3: repeat
4: # Sample accuracy for each predicted class
5: for k = 1 to K do
6: θ̃k ∼ Beta(α+ nk,0, β + nk,1)
7: end for
8: # Select a set of m classes with the lowest sampled

accuracies
9: I∗ = top-m arms ranked by θ̃k.

10: for k̂ ∈ I∗ do
11: # Randomly select an input data point from the k̂-th

class and compute its predicted label
12: xi ∼ Rk̂
13: ŷi = arg maxk pM (y = k|xi)

14: # Update parameters of the k̂-th metric
15: if ŷi = k̂ then
16: nk̂,0 ← nk̂,0 + 1

17: else
18: nk̂,1 ← nk̂,1 + 1

19: end if
20: end for
21: until all data labeled

Figure 10: Multiple-play Thompson Sampling (MP-TS) for
identifying the least accurate m classes.



Supplemental Material for Section 6:
Experiment Settings

Prediction models
For image classification we use ResNet (He et al. 2016)
architectures with either 110 layers (CIFAR-100) or 152
layers (SVHN and ImageNet). For ImageNet we use the pre-
trained model provided by PyTorch, and for CIFAR-100 and
SVHN we use the pretrained model checkpoints provided at:
https://github.com/bearpaw/pytorch-classification. For text
classification tasks we use fine-tuned BERTBASE (Devlin et al.
2019) models. Each model was trained on the standard train-
ing set used in the literature and assessment was performed
on the test sets. Ground truth values for the assessment met-
rics were computed using the full labeled test set of each
dataset.

Evaluation
• Estimation: we use RMSE of the estimated θ̂ relative to

the true θ∗ (as computed from the full test set) to mea-
sure the estimation error. For Bayesian methods, θ̂ is the
maximum posterior estimation(MPE) of θ’s posterior dis-
tribution. For frequentist methods, θ̂ is the corresponding
point estimation.
The estimation error of groupwise accuracy and confusion
matrix are defined as RMSE = (

∑
g pg(θ̂g − θ∗g)2)

1
2 and

RMSE = (
∑

k pk(
∑

j(θ̂jk − θ∗jk)2)
1
2 respectively.

• Identification: we compute the mean-reciprocal-rank
(MRR) relative to the true top-m ranked groups. The MRR
of the top-m classes is defined as MRR = 1

m

∑m
i=1

1
ranki

where ranki is the predicted rank of the ith best class. Fol-
lowing standard practice, other classes in the best-m are
ignored when computing rank so thatMRR = 1 if the pre-
dicted top-m classes match ground truth. We set m = 10
for CIFAR-100 and ImageNet, and m = 3 for the other
datasets.

• Comparison: we compare the results of rope assessment
(η, λ) with the ground truth values (η∗, λ∗). The assess-
ment is considered as a success if (1) the direction of
difference is correctly identified η = η∗ and (2) the es-
timation error of cumulative density is sufficiently small
|λ− λ∗|/λ∗ < 0.05.

In all experiments in our paper, unless stated otherwise, we
report the aggregated performance averaged over 1000 inde-
pendent runs.

Reproducibility
We provide code to reproduce our results reported in the
paper and in the Appendices. All our datasets and code will
be publicly available at: https://github.com/anonymized. The
random seeds we used to generate the reported results are
provided in the code.

The memory complexity of the non-optimized implemen-
tation of Algorithm 1 and 3 is O(N +K), where N is the
number of data points and K is the number of groups. Over-
all the sampling methods we developed are computationally
efficient. For example, for estimating groupwise accuracy of

ResNet-110 on CIFAR-100, one run takes less than 10 sec-
onds. All our experiments are conducted on Intel i9-7900X
(3.3Ghz, 10 cores) with 32 GB of RAM.

Settings for hyperparameter and priors are discussed in
Section “Experimental Settings” in the paper. We set the
prior strengths as αg + βg = N0 = 2 for Beta priors and∑
αg = N0 = 1 for Dirichlet priors in all experiments,

unless otherwise stated, demonstrating the robustness of the
settings across a wide variety of contexts. In “Experimental
Results: Sensitivity Analysis for Hyperparameters” of this
Appendix we provide additional sensitivity analysis.

Cost Matrices
To assess misclassification cost of the models, we experi-
mented with 2 different cost matrices on the CIFAR-100
dataset:
• Human: the cost of misclassifying a person (e.g., predict-

ing tree when the true class is a woman, boy etc.) is more
expensive than other mistakes.

• Superclass: the cost of confusing a class with another
superclass (e.g., a vehicle with a fish) is more expensive
than the cost of mistaking labels within the same superclass
(e.g., confusing shark with trout).

We set the cost of expensive mistakes to be 10x the cost of
other mistakes. In Figure 11, we plot the two cost matrices.
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Figure 11: Cost matrices used in our experiments. (left): hu-
man, (right): superclass.



Supplemental Material for Section 7:
Experimental Results

RMSE of Binwise Accuracy Estimates
In the main paper we report the estimation error results for
overall ECE—here we also report results for error per score-
bin. Table 1 provides the RMSE results for binwise accuracy
estimates. The results demonstrate that both informative pri-
ors and active sampling significantly reduce RMSE relative
to the baseline for all datasets and all N values.

Table 1: RMSE of binwise accuracy estimates obtained with
UPrior, IPrior and IPrior+TS across 5 datasets over 1000
independent runs. The strength of priors is 2.

N/K N UPrior IPrior IPrior+TS
(baseline) (our work) (our work)

CIFAR-100 2 20 23.2 12.8 11.9
5 50 15.7 11.3 10.0

10 100 11.0 9.3 8.1
DBpedia 2 20 7.6 2.3 1.4

5 50 3.6 2.5 1.2
10 100 2.4 2.1 0.9

20 Newsgroups 2 20 19.6 11.5 9.0
5 50 12.4 9.6 7.7

10 100 8.9 7.6 6.4
SVHN 2 20 12.5 4.9 2.8

5 50 6.2 4.5 2.3
10 100 4.4 3.7 1.9

ImageNet 2 20 23.0 11.5 10.6
5 50 16.0 10.6 9.0

10 100 11.1 8.8 7.1

Identifying the least calibrated class
For identifying the least calibrated classes, in Table 2 we
compare the percentage of labeled samples that IPrior and
IPrior+TS need to identify the least calibrated top-1 and top-
m predicted classes across 5 datasets. Table 2 shows that the
improvement in efficiency is particularly significant when the
classwise calibration performance has large variance across
the classes (as shown in Figure 4), e.g., CIFAR-100, Ima-
geNet and 20 Newsgroups.

Table 2: Percentage of labeled samples needed to identify the
least calibrated top-1 and top-m predicted classes.

ECE, Top 1 ECE, Top m

Dataset IPrior IPrior+TS IPrior IPrior+TS

CIFAR-100 88.0 43.0 90.0 59.0
ImageNet 89.6 31.0 90.0 41.2

SVHN 58.8 40.7 88.4 77.6
20 Newsgroups 69.0 27.9 90.3 50.5

DBpedia 27.9 8.1 89.1 55.6

Comparisons with Alternative Active Learning
Algorithms
There are a variety of other active learning approaches,
such as epsilon greedy and Bayesian upper-confidence

bound(UCB) methods, that could also be used as alterna-
tives to Thompson sampling.
• Epsilon-greedy: with probability 1− ε the arm currently

with the greatest expected reward is selected; with proba-
bility ε the arm is randomly selected. We set ε as 0.1 in our
experiments.

• Bayesian upper-confidence bound (UCB): the arm with the
greatest upper confidence bound is selected at each step.
In our experiments we use the 97.5% quantile, estimated
from 10,000 Monte Carlo samples, as the upper confidence
bound.

We compare epsilon greedy, Bayesian UCB and Thompson
sampling (TS) on the tasks to identify the least accurate
and the top-m least accurate predicted classes across five
datasets. Figure 12 plots the curves of MRR obtained with
three methods as the number of queries increase. We use the
uninformative prior with prior strength 2 for all three algo-
rithms. The results show that the MRR curves of Thompson
sampling always converge faster than the curves of epsilon
greedy and Bayesian UCB, indicating that Thompson sam-
pling is broadly more reliable and more consistent in terms
of efficiency for these tasks.

Comparisons Between IPrior+TS and UPrior+TS
In this main paper, we compared UPrior, IPrior and IPrior+TS
in experimental results, and left out the results of UPrior+TS
due to space limits. In this subsection, we use the comparison
between UPrior+TS and IPrior+TS to demonstrate the influ-
ence of informative priors when samples are actively labeled
for identifying the least accurate top-1 or top-m predicted
classes. We set the strength of both the informative prior and
the uninformative prior as 2.

The results in Figure 13 illustrate that the informative prior
can be helpful when the prior captures the relative ordering
of classwise accuracy well (e.g., ImageNet), but less helpful
when the difference in classwise accuracy across classes
is small and the classwise ordering reflected in the “self-
assessment prior" is more likely to be in error (e.g., SVHN,
as shown in Figure 4.).

In general, across the different estimation tasks, we found
that when using active assessment (TS) informative priors
(rather than uninformative priors) generally improved perfor-
mance and rarely hurt it.



Sensitivity Analysis for Hyperparameters
In Figure 14, we show Bayesian reliability diagrams for five
datasets as the strength of the prior increases from 10 to 100.
As the strength of the prior increases, it takes more labeled
data to overcome the prior belief that the model is calibrated.
In Figure 15, we show MRR of the m lowest accurate pre-
dicted classes as the strength of the prior increases from 2
to 10 to 100. And in Figure 16, we show MRR of the m
least calibrated predicted classes as the strength of the prior
increase from 2 to 5 and 10. From these plots, the proposed
approach appears to be relatively robust to the prior strength.

Sensitivity to Cost Matrix Values
We also investigated the sensitivity of varying the relative cost
of mistakes in our cost experiments. Results are provided in
Table 3 and 4. We consistently observe that active assessment
with an informative prior performs the best, followed by
non-active assessment with an informative prior and finally
random sampling.

Table 3: Number of queries required by different methods to
achieve a 0.99 mean reciprocal rank(MRR) identifying the
class with highest classwise expected cost. A pseudocount
of 1 is used in the Dirichlet priors for Bayesian models. The
cost type is “Human.”

Cost Top m UPrior IPrior IPrior+TS

1 1 9.6K 9.4K 5.0K
10 10.0K 10.0K 9.4K

2 1 9.3K 9.3K 4.4K
10 9.8K 10.0K 8.4K

5 1 9.5K 9.7K 4.5K
10 9.6K 10.0K 7.9K

10 1 9.3K 9.1K 2.2K
10 9.6K 9.7K 7.4K

Table 4: Same setup as Table 3. The cost type is “Superclass”.

Cost Top m UPrior IPrior IPrior+TS

1 1 9.9K 10.0K 2.2K
10 9.8K 9.9K 5.9K

2 1 10.0K 10.0K 2.2K
10 9.9K 9.9K 5.2K

5 1 9.9K 10.0K 1.8K
10 9.9K 9.9K 5.3K

10 1 10.0K 9.8K 1.4K
10 9.9K 9.9K 4.0K
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Figure 12: Mean reciprocal rank (MRR) of the classes with the estimated lowest classwise accuracy with the strength of the prior
set as 2, comparing Thompson sampling (TS) with epsilon greedy and Bayesian UCB, across five datasets. The y-axis is the
average MRR over 1000 runs for the percentage of queries, relative to the full test set, as indicated on the x-axis. In the upper
row m = 1, and in the lower row m = 10 for CIFAR-100 and ImageNet, and m = 3 for the other datasets.
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Figure 13: Comparison of the effect of informative (red) and uninformative (blue) priors on identifying the least accurate
predicted class with Thompson sampling across 5 datasets. The y-axis is the average MRR over 1000 runs for the percentage
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CIFAR-100 and ImageNet, and m = 3 for the other datasets.
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Figure 14: Bayesian reliability diagrams for five datasets (columns) estimated using varying amounts of test data (rows) with
prior strength (αj + βj for each bin) set to be (a) 10 and (b) 100 respectively. The red circles plot the posterior mean for θj under
our Bayesian approach. Red bars display 95% credible intervals. Shaded gray areas indicate the estimated magnitudes of the
calibration errors, relative to the Bayesian estimates. The blue histogram shows the distribution of the scores for N randomly
drawn samples.
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Figure 15: Mean reciprocal rank (MRR) of the m classes with the estimated lowest classwise accuracy as the strength of the
prior varies from (a) 2 to (b) 10 and (c) 100, comparing active learning (with Thompson sampling (IPrior+TS)) with no active
learning(Frequentist), across five datasets. The y-axis is the average MRR over 1000 runs for the percentage of queries, relative
to the full test set, as indicated on the x-axis. For each of (a), (b) and (c), in the upper row m = 1, and in the lower row m = 10
for CIFAR-100 and ImageNet, and m = 3 for the other datasets.
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Figure 16: Mean reciprocal rank (MRR) of the m classes with the estimated highest classwise ECE as the strength of the
prior varies from (a) 2 to (b) 5 and (c) 10, comparing active learning (with Thompson sampling (IPrior+TS)) with no active
learning(Frequentist), across five datasets. The y-axis is the average MRR over 1000 runs for the percentage of queries, relative
to the full test set, as indicated on the x-axis. For each of (a), (b) and (c), in the upper row m = 1, and in the lower row m = 10
for CIFAR-100 and ImageNet, and m = 3 for the other datasets.
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