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a b s t r a c t

Most decision-making research has focused on choices between two alternatives. For choices between
many alternatives, the primary result is Hick’s Law—that mean response time increases logarithmically
with the number of alternatives. Various models for this result exist within specific paradigms, and there
are some more general theoretical results, but none of those have been tested stringently against data.
We present an experimental paradigm that supports detailed examination of multi-choice data, and
analyze predictions from a Bayesian ideal observer model for this paradigm. Data from the experiment
deviate from the predictions of the Bayesian model in interesting ways. A simple heuristic model based
on evidence accumulation provides a good account for the data, and has attractive properties as a limit
case of the Bayesian model.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Models of human decision-making are both prolific and var-
ied. A common thread arises,however, when researchers con-
sider not just the choices that people make, but also the time it
takes people to make these choices. Almost without exception,
decision-making models that include predictions about choice la-
tency (i.e., response time, RT) employ the notion of ‘‘evidence accu-
mulation’’ (e.g. Brown & Heathcote, 2008; Diederich & Busemeyer,
2006; Luce, 1986; Ratcliff, 1978; Ratcliff & McKoon, 2008; Ratcliff
& Smith, 2004; Roe, Busemeyer, & Townsend, 2001; Townsend &
Ashby, 1983; Van Zandt, Colonius, & Proctor, 2000; Vickers & Lee,
1998;Wagenmakers, van der Maas, & Grasman, 2007). In evidence
accumulation models, a decision is made by repeatedly sampling
information from the environment and considering this as evi-
dence for or against the different choice alternatives. This stream
of information is accumulated until sufficient evidence is gathered
to trigger a decision. In experimental practice, the decisions being
made are typically very fast (often measured in milliseconds), and
the environmental stimulus is almost always held constant. This
means that the stream of information is internal to the decision-
maker, and cannot be directly observed or measured. Some efforts
have been made to inspect the stream of evidence more closely,
for example by querying the amount of accumulated evidence at
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various times (Meyer, Irwin, Osman, & Kounios, 1988). It is not
entirely clear, however, whether such methods actually allow the
inspection of internal evidence (Ratcliff, 1988). Other researchers
have investigated the theoretical consequences of moment-by-
moment changes in the way evidence is accumulated. Such the-
ories have provided successful accounts of choices in which many
different stimulus attributes must be considered, perhaps sequen-
tially (Diederich, 1997), and perceptual choices in which attention
is manipulated by masking (Smith & Ratcliff, 2009).
There have been several attempts to go further, and directly

manipulate the stream of evidence accumulated by the decision-
maker, using an ‘‘expanded judgment’’ paradigm developed
by Irwin, Smith, and Mayfield (1956). Brown and Heathcote
(2005), Pietsch and Vickers (1997) and Usher and McClelland
(2001) studied two-choice decision processes using expanded
judgments, in which the information provided to the observer was
manipulated moment by moment. In each case, the two response
choices corresponded to two different perceptual properties of
the stimulus: horizontal location, for Pietsch and Vickers; letter
identity for Usher and McClelland; and orientation for Brown and
Heathcote. Their experiments used stimuli that rapidly switched
between favoring one response choice or the other, and the
decision-maker’s task was to evaluate the overall weight of
evidence.
All three experiments were used for the same purpose—to

examine the role of memory in accumulating evidence. Mem-
ory plays an important part in this task because the observer is
presented with a constantly varying stream of information, and
evidence accumulation requires them to recall elements of that
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stream presented earlier. For example, Pietsch and Vickers found
that thismemory load imposed a severe limit on evidence accumu-
lation: information provided early in the decision process was for-
gotten later. In terms of the expanded judgment task, what Pietsch
and Vickers found was that decisions were more heavily influ-
enced by information provided later in the stimulus stream rather
than earlier. Brown and Heathcote found that this ‘‘leakiness’’ of
evidence accumulation was decreased by extensive practice, and
Usher and McClelland identified large individual differences in the
dynamics of evidence accumulation.
We extend these investigations of the evidence accumulation

process by proposing a newparadigm that retains the essential fea-
tures of the previous studies, but adds some key improvements.
In particular, our paradigm completely lifts the memory require-
ments imposed on the observer, transferring them to the stimu-
lus display instead: the entire history of the evidence stream is
always available on screen. This allows us to investigate elements
of the evidence accumulation process (such as the rules employed
for terminating the accumulation process) independent ofmemory
limitations. Our paradigm also naturally allows for participants to
continue collecting information samples as long as they please, and
make a decision only when they feel confident. This ‘‘information-
controlled’’ paradigm simultaneously generates data on both
response accuracy and decision time, providing greater const-
raint than prior investigations, which focused on either fixed de-
cision times, fixed (high) accuracy, or a fixed number of evidence
samples.
We also set out the ideal observer model corresponding to our

paradigm, and we provide an example application that involves
Hick’s Law (Hick, 1952). Finally, we discuss a sub-optimal heuristic
model that provides a good approximation to the empirical data,
andwhich also has an interesting relationship to the ideal observer
model.

2. The paradigm

At the start of every trial of the experiment, the participant
is shown a display that features K empty columns (see Fig. 1 for
an illustration). During the trial, time proceeds in discrete steps
of equal duration. Throughout, when we refer to ‘‘decision time’’,
the measurement unit is this step value (0.2 s in our experiment).
Small objects (henceforth ‘‘bricks’’) fall down from the top of the
screen and accumulate on the columns. During each time step,
each column may accumulate one extra brick, or none. One of
the columns has a higher accumulation rate than the others, and
the participant’s goal is to select that target column as quickly as
possible without making too many mistakes.1

Many properties of this paradigm can be manipulated to create
informative experiments.We focus here onmanipulating the num-
ber of choice alternatives (the number of columns, K ). We alsoma-
nipulate response urgency, by sometimes instructing participants
to be cautious, and sometimes to be fast (i.e., the speed–accuracy
tradeoff, e.g., Forstmann et al., 2008; Hick, 1952; Schouten &
Bekker, 1967).

2.1. Notation

One column accumulates bricks faster than the other columns;
we call this the target column and the others distractorcolumns. At

1 An online version of the experiment can be found at http://psiexp.ss.uci.edu/
∼yoshi/expW2.html.
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Fig. 1. Screenshot of the experimental paradigm after 10 time points have passed.
Panel (a) depicts an example four-choice situation and panel (b) depicts an example
two-choice situation. The goal for the participants is to identify the one column that
has a higher accumulation rate than the others. At each time point, participants can
either wait and observe more information, or they can make a choice by pressing
one of the buttons below the columns. See text for details.

each time step, a column might or might not accumulate a brick.
The probability of accumulating an extra brick at any time step is
independent across columns and time steps. For the target column,
the probability of accumulating a brick at any time step is denoted
by θ(t), and for all of the distractor columns it is denoted by θ(d).
Note that we assume an equal accumulation probability for all
distractor columns. When discussing decision models, we denote
the hypothesis that the ith column is the target by Hi. We use D
to denote the observed data. For a particular column i, si is the
number of ‘‘successes’’ (i.e., accumulated bricks) and fi = n − si
is the number of ‘‘failures’’ (i.e., missed bricks), at time step n.

3. Multi-alternative choices and Hick’s law

Our experimental paradigm is naturally suited to study the
decisions between any number of alternatives, from K = 2 up
to however many columns will neatly fit on the display screen
(we stopped at K = 12). In contrast, most other decision-making
research has focused on binary choices (K = 2); even in that
apparently simple paradigm, the richness of empirical results
is surprising. For choices between more than two alternatives,
the fundamental result is Hick’s Law (Hick, 1952; Hyman, 1953;
Merkel, 1885; for a review see Teichner & Krebs, 1974). In its
simplest form, Hick’s Law states that the mean RT is linear in the
logarithm of the number of choice alternatives K : mean RT = a +
b log(K), where a and b are constants.2
Hick motivated his results by recourse to information theory

(Shannon & Weaver, 1949), arguing that ‘‘the amount of informa-
tion extracted is proportional to the time taken to extract it, on
the average’’ (1952, p. 25); for alternative accounts and critique
see Christie and Luce (1956) and Laming (1966, 1968). Although
Hick discussed a binary search algorithm that would be consistent
with the data, he concluded that ‘‘At present... it is impossible to
venture beyond the general statement in terms of information the-
ory. This, indeed, may be adequate for practical applications; but it
inevitably leaves the details vague; and so they must remain, un-
til more evidence or better reasoning is brought to the problem.’’
(Hick, 1952, p. 25).
In recent years, the problem of choosing between multiple

alternatives has been considered from several different theoretical
perspectives. BrownandHeathcote (2008), Brown,Marley, Donkin,
and Heathcote (2008), Roe et al. (2001), Usher and McClelland

2 Some authors add a constant value to K , but we have not found that necessary
in our analyses.
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(2001), and Vickers and Lee (2000) have developed evidence
accumulation models for multi-alternative choice for particular
paradigms (i.e., consumer decisions, perceptual choice, or absolute
identification). Even though they are focused on paradigm-specific
outcomes, each of these models has been shown to be consistent
with Hick’s Law, as have data from the associated paradigms.
Usher, Olami, and McClelland (2002) (see also Bogacz, Usher,
Zhang, & McClelland, 2007 and McMillen & Holmes, 2006) took
a more general approach to evidence accumulation and Hick’s
Law. They showed that a standard accumulator model was able
to predict Hick’s Law if the decision threshold (i.e., the amount
of evidence required to initiate a decision) was allowed to
increase as the logarithm of the number of choice alternatives.
This assumption is reasonable if participants strive to maintain a
constant error rate in the face of increasing response alternatives
(Usher et al., did not discuss whether participants actually do so
strive).
Several authors have considered the problem ofmulti-alternat-

ive decision-making from a purely statistical point of view (e.g.,
Baum & Veeravalli, 1994; Dragalin, Tartakovsky, & Veeravalli,
1999, 2000). In particular, Baum and Veeravalli (1994) developed
the multi-hypothesis sequential probability ratio test (MSPRT),
a statistical procedure that generalizes the famous sequential
probability ratio test or SPRT (Wald & Wolfowitz, 1948) to more
than two-choice alternatives.3 This work was then extended by
Dragalin et al. (1999, 2000), who also demonstrated that a simple
heuristic approach performs just aswell as the statistically optimal
algorithm, at least when error rates are low. Below, we develop
particular versions of these ideal observer models, appropriate
to our decision paradigm. We then describe some empirical
results and later discuss the performance of a heuristic model in
describing the data.

4. Two optimal observer models

A truly optimal analysis of our paradigm would take into
account the relative costs of making errors (choosing the wrong
column) vs. the cost of waiting longer, and sampling more
information (Baum & Veeravalli, 1994; Berger, 1985; Berry &
Fristedt, 1985). To simplify matters, we instead content ourselves
with a restricted definition: a model is ‘‘optimal’’ if, for some
predetermined error rate, the expected decision time isminimized.
In this sense, an optimal decision-maker faces the following
question on each time step: ‘‘do I want to stop sampling and
select the highest column (i.e., Hh) or do I want to observe more
information?’’ The ideal observer, therefore, computes p(Mh|D),
and decides to choose column h when this probability exceeds a
criterion number. This is theMSPRT procedure that generalizes the
SPRT procedure to more than two-choice alternatives.
According to Bayes’ theorem,

p(Hh|D) =
p(D|Hh)p(Hh)∑
j
p(D|Hj)p(Hj)

. (1)

When the a priori probabilities for the columns are equal—an
assumption that we make from now on—this simplifies to

p(Hh|D) =
p(D|Hh)∑
j
p(D|Hj)

. (2)

3 Bogacz and Gurney (2007) showed how the MSPRT can be implemented in the
brain.

4.1. Model 1: Probabilities-known-exactly

In the first analysis, assume that θ(t) and θ(d) are known exactly.
(This might be close to true for participants after some practice.)
Consider firstHh. Under this hypothesis, the data sh from n samples
originated from a binomial process with parameter θ(t) ∈ [0, 1]:

p(sh, n|Hh) =
(
n
sh

)
θ
sh
(t)(1 − θ(t))

fh , where fh = n − sh. The data
for each of the remaining columns, sj with j 6= h, originated from
a binomial process with parameter θ(d). Together, this means that

p(D|Hh) =
(
n
sh

)
θ
sh
(t)(1 − θ(t))

fh
∏
j6=h

(
n
sj

)
θ
sj
(d)(1 − θ(d))

fj . Similar
calculations hold for the hypotheses that any other column is the
one with the highest rate, yielding

p(Hh|D) =

(
n
sh

)
θ
sh
(t)(1− θ(t))

fh
∏
j6=h

(
n
sj

)
θ
sj
(d)(1− θ(d))

fj

∑
k

{(
n
sk

)
θ
sk
(t)(1− θ(t))fk

∏
j6=k

(
n
sj

)
θ
sj
(d)(1− θ(d))

fj

}

=

θ
sh
(t)(1− θ(t))

fh
∏
j6=h
θ
sj
(d)(1− θ(d))

fj

∑
k

{
θ
sk
(t)(1− θ(t))fk

∏
j6=k
θ
sj
(d)(1− θ(d))

fj

}

=

θ
sh
(t)(1− θ(t))

fh

[∏
j
θ
sj
(d)(1− θ(d))

fj

]/
θ
sh
(d)(1− θ(d))

fh

∑
k

{
θ
sk
(t)(1− θ(t))fk

[∏
j
θ
sj
(d)(1− θ(d))

fj

]/
θ
sk
(d)(1− θ(d))fk

}

=

[
θ
sh
(t)(1− θ(t))

fh
]/[

θ
sh
(d)(1− θ(d))

fh
]

∑
k

{[
θ
sk
(t)(1− θ(t))fk

]/[
θ
sk
(d)(1− θ(d))fk

]}

=

(
θ(t)/θ(d)

)sh [(1− θ(t))/(
1− θ(d)

)]fh
∑
k

(θ(t)/θ(d))sk
[(
1− θ(t)

)/(
1− θ(d)

)]fk
, (3)

where k indexes the hypothesis entertained (i.e., the hypothesis
that column k is the target column), ranging from 1 to K , the total
number of columns.
The optimal observer would monitor p(Hh|D) and initiate a

response when a criterion level c is exceeded.

4.1.1. Example
As an example of the decisions made by the optimal observer,

consider the two experimental situations shown in Fig. 1. In both
cases, the first two columns have the same number of bricks. The
difference is that the second example has two additional columns.
The optimal observer makes different predictions for these two
cases—the additional columns add to the uncertainty of which
column corresponds to the target column. Suppose we use the
binomial rate parameters θ(t) = .50 and θ(d) = .35. As reported
later, these rates correspond to the rates used in the experiment
with human participants. Eq. (3) leads to p(Hh|D) = [0.078 0.923]
and p(Hh|D) = [0.073 0.867 0.021 0.039] for the two cases,
respectively. Therefore, if a criterion setting c = 0.9, is used (see
below), the first case would trigger a response (picking the second
column) but the second case would not.
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Fig. 2. Mean RT and accuracy simulated from the three models. The top row illustrates the ‘‘probabilities-known-exactly’’ model; the middle row illustrates the
‘‘probabilities-known-vaguely’’ model; and the bottom row illustrates the heuristic ‘‘max-minus-next’’ model, discussed later. The left panels show mean decision time
(measured in discrete time steps) as a function of the number of choice alternatives, for two different criterion settings (risky or cautious). The center panels show the same
data with a logarithmic abscissa. The right panels plot mean choice accuracy against the number of choice alternatives, K .

4.1.2. Simulations
To systematically explore the behavior of the model, we varied

the number of choice alternatives and criterion settings and simu-
lated the task a large number of times. The data in each trial were
generated probabilistically according to the binomial rate param-
eters θ(t) = .50and θ(d) = .35. The number of choice alternatives
K ranged from 2 to 12 (i.e., K ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}—
note that our participants experienced only K ∈ {2, 4, 8, 12}).
The criterion parameter, c , sets a response threshold on the

posterior probability p(Hh|D), and thus represents the accuracy
that the model aims to attain; to the extent that the statistical
structure of the environment is faithfully represented by the
equations above, the model will perform with overall accuracy c .
We suppose, initially, that c is set by the participant at a fixed
level (independent of K ), and that this level is influenced by
metacognition beyond the scope of the present article, such as
the desire to perform well, and the competing desire to finish
the experiment quickly, and also by the instructions given to
the participant. We studied the behavior of the model under
two criterion settings: risky (c = .6), and cautious (c = .8).
These criterion settings mirror the instructions that participants
received in our experiment, but the absolutemagnitude of a ‘‘risky’’
and a ‘‘cautious’’ criterion setting will change from situation to
situation, depending on the cost of an incorrect response. For
each combination of K and c , the optimal observer made one
million decisions (i.e., 11 × 2 = 22,000,000 in total). The two

dependent measures of interest were the proportion of correct
target identifications and the number of observations needed
before committing a decision.
Fig. 2 shows the results of these simulations, for the current

model (top row of Fig. 2) and for two models to be discussed later
(middle and lower rows). For each model (i.e., in each row) the left
panel shows how mean decision time changes with the number
of choices (K ), and the middle panel shows this same relationship
using a logarithmic abscissa. The right panel shows how accuracy
changes with the number of choices. The model is well calibrated
in that it predicts a response accuracy that is determined by the
threshold set on the posterior probability, either c = .6 or c = .8.
This illustrates the model’s optimality—choosing the maximum
column any sooner than this model must result in more errors
than the criterion amount set by the c parameter. There is a
small amount of overshoot error, however—the predicted response
accuracy rates are slightly above the calibrated values set by the
parameter c. This overshoot is a consequence of the non-zero size
of the discrete time step used in our paradigm. The model issues a
response at the first time step on which the threshold c is reached
or exceeded. The center panel on the top row of Fig. 2 shows that
Hick’s Law is predicted by this model, even though it was not
designed for that purpose. That is, the predictedmean RT increases
log-linearly with the number of decision alternatives. Note that,
due to the model’s calibrated nature, predicted response accuracy
does not change with the number of decision alternatives.
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Fig. 3. RT quantiles, means, and standard deviations simulated from the threemodels: top row shows the ‘‘probabilities-known-exactly’’ Bayesianmodel;middle row shows
the ‘‘probabilities-known-vaguely’’ Bayesian model; and the bottom row shows the heuristic ‘‘max-minus-next’’ model. In each row, the left panel shows five percentiles of
the decision time distribution (10th, 30th, 50th, 70th and 90th) as functions of the number of choice alternatives, for two different criterion settings (risky and cautious). The
50th percentile is the median, and is shown as a heavy black line; the others are grey. The center panels show the same data with a logarithmic abscissa. The right panels
plot the standard deviation of the RT distributions against their means.

Fig. 3 analyzes Hick’s Law in greater detail, by examining RT
distribution features, rather than just the mean. Once again, the
three rows correspond to three different models: the top row cor-
responds to the current Bayesian model, the middle and lower
rows correspond to models introduced below. Within each row,
the left and center panels illustrate the usual Hick’s Law depen-
dence of RT on the logarithm of the number of choice alterna-
tives, except that this time RT is measured by response quantiles.
These quantiles summarize the full RT distributions using five per-
centiles: 10th, 30th, 50th (i.e., the median, drawn in heavier face),
70th and 90th. Thus, the model generates Hick’s Law not just for
the RT mean, but also for the RT quantiles, although there may be
some non-linearity in the logarithmic plot for the smallest choice
set sizes (K = 2, 3). The right hand panel in each row shows the
predicted relationship between the standard deviation of the RT
distribution and its mean. The current model (top row) predicts a
linear relationship between these variables, as often observed em-
pirically (Wagenmakers & Brown, 2007). Interestingly, the linear
function relating standard deviation and mean appears to be al-
most identical for cautious vs. risky responses, under this model.

4.2. Model 2: Probabilities-known-vaguely

In the second analysis, we assume that the participant has
only a noisy representation of the underlying rates, described by

a beta distribution with parameters α and β . We also assume
that the distractors all have the same (vaguely known) rate. Thus,
the knowledge about a fixed θ(t) and a fixed θ(d) is now replaced
by beta distributions with parameters (α(t), β(t)) and (α(d), β(d)),
respectively (see Fig. 4). Dropping for the moment the subscripts
for t and f , this means that

p(θ) =
1

B(α, β)
θα−1(1− θ)β−1, (4)

where B is the beta function, defined as B(α, β) =
∫ 1
0 x

α−1(1 −
x)β−1dx, or as B(α, β) = Γ (α)Γ (β)/Γ (α + β), where Γ is
the gamma function, which for a positive integer n simplifies to
Γ (n) = (n− 1)!.
In order to compute p(D|Hh), say, we need to integrate out the

model parameter θ , weighting the probability of observing the data
given a particular value of θ with the prior probability of θ as given
in Eq. (4). Consider for instance the probability of observing data sh
from n samples. We then have

p(sh) =
∫ 1

0
p(θ(t))p(sh|θ(t))dθ(t)

=

(
n
sh

)
1

B(α, β)

∫ 1

0
θ
α+sh−1
(t) (1− θ(t))β+fh−1dθ(t)

=

(
n
sh

)
1

B(α, β)
B(α + sh, β + fh). (5)
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Fig. 4. Distributions that quantify uncertainty for the rate parameters. The
simulations reported in the text assume a Beta(α(t) = 50, β(t) = 50) distribution
for the target column (solid line) and a Beta(α(d) = 35, β(d) = 65) distribution for
the distractors (dotted line).

Thismeans that Eq. (3) can be adjusted to account for parameter
uncertainty as follows:

p(Hh|D)

=

B(α(t) + sh, β(t) + fh)B(α(d) +
∑
j6=h
sj, β(d) +

∑
j6=h
fj)

∑
k

{
B(α(t) + sk, β(t) + fk)B(α(d) +

∑
j6=k
sj, β(d) +

∑
j6=k
fj)

} . (6)

4.2.1. Example
Consider again the two experimental situations shown in Fig. 1.

We simulated the model for these two cases, but instead of using
a fixed probability of θ(t) = .50 and θ(d) = .35, we used two
beta distributions that quantify uncertainty with respect to these
rates. As shown in Fig. 4, we used Beta(α(t) = 50, β(t) = 50),
for the target column and Beta(α(d) = 35, β(d) = 65) for the
distractor columns. Eq. (6) leads to p(Hh|D) = [0.094 0.906]
and p(Hh|D) = [0.052 0.898 0.019 0.031] for the two cases,
respectively. This outcome is similar to the prediction made by
Model 1, but with somewhat decreased confidence about the
second column corresponding to the target column. This is due
to the uncertainty in the underlying rates used for the target and
distractors.

4.2.2. Simulations
We carried out the same simulations as before to explore the

effect of the number of choice alternatives and criterion settings.
The middle rows of Figs. 2 and 3 illustrate that, when com-

paredwith themodelwith exact knowledge, themodelwith vague
knowledge needs considerably more samples to attain a compara-
ble level of accuracy. Moreover, the model with vague knowledge
only approximates Hick’s Law, as the function that relatesmean RT
to log(K) is slightly convex instead of straight.
Note that this model fails to predict a calibrated error rate.

The right panel of the middle row of Fig. 2 shows that the vague-
knowledge Bayesian model predicts increasing accuracy with in-
creasing number of choice alternatives (at the expense of greatly
increased decision time). At first sight, this result is surprising,
since the model was developed to maintain a constant poste-
rior probability. The apparent problem arises because of model-
misspecification: the stimuli on which the simulations were based
mirrored those used in our experiment, not those assumed by the

vague-knowledge model—the simulations used fixed values of θ(t)
and θ(d), not beta-distributed values.
Finally, the right panel in the second row of Fig. 3 shows that,

just as the model with exact knowledge, the model with vague
knowledge predicts a linear relationship between RT mean and RT
standard deviation.

4.3. Conclusions from the optimal observer models

The ideal observer models present some interesting findings.
They demonstrate that Hick’s Law can be produced naturally
by a model using a fixed evidence threshold across different
numbers of response alternatives. The models also make some
interesting predictions for data, for example that Hick’s Law should
hold not just for mean RT, but also for each quantile of the RT
distribution. Themodels also predict a linear relationship between
the mean and the standard deviation of the RT distribution (as
observed by Wagenmakers & Brown, 2007, for other paradigms).
This prediction is at odds with prior work by both Hick (1952) and
Laming (1966), which tentatively suggests that RT mean increases
linearly with RT variance and not with RT standard deviation.

5. Experiment

5.1. Methods

Thirty-nine undergraduates from the University of California,
Irvine, completed an experiment using the paradigm described
above. There were 32 trials in each of eight blocks. Participants
were instructed tomake very careful (but slower) decisions during
the first four blocks, and faster (but less accurate) decisions
during the last four blocks (or vice versa, counterbalanced across
participants). On each trial, an array of columns was set out across
the bottom of the screen, representing the different response
alternatives. The number of response alternatives was chosen
randomly on each trial from K ∈ {2, 4, 8, 12}, subject to each
value ofK occurring equally often in every block. The columnswere
initially empty—of height zero. On each discrete time step (200ms)
a block fell on each distractor column with probability θ(d) = .35
and on the target column with probability θ(t) = .5 (the target
column was chosen randomly on each trial). The participant’s task
was to choose the target column, by clicking on a buttonbelow it, as
illustrated in Fig. 1. Feedbackwas given after each trial. Instructions
emphasized the random nature of the process, and that a column
which appeared to be the target column early in a trial may later
turn out to be a distractor. The instructions also suggested that all
distractor columns were statistically equal.
An ideal version of this paradigmwould allow infinite evidence

accumulation—participants could always make perfectly accurate
decisions by waiting long enough. A practical problem is that, after
some number of blocks have accumulated, column heights grow
near the top of the display. We solved this problem by having the
column display window smoothly re-size by reducing the scale
whenever a column grew too large. Other solutions are possible
for this problem, but we settled on this version because it kept
the critical feature that participants could always wait longer, and
collect more evidence, if they chose.

5.2. Results

Fig. 5 illustrates the data using the same format as used for
each model (i.e., each row) of Fig. 2. The error bars represent ±1
standard error, calculated using the methods of Loftus andMasson
(1994). Similarly, Fig. 6 illustrates the distribution details observed
in the data, using the same format as used for each row of Fig. 3.
By using the same graph format throughout, the various model
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Fig. 5. Mean RT and response accuracy from the experiment, using the same format as Fig. 2. The grey curve in the right panel shows chance performance level.

Fig. 6. Observed RT quantiles and the relationship between standard deviation and mean RT, using the same format as Fig. 3.

Table 1
Mean percentage (and SD) of times that participants chose the column with the
greatest instantaneous height, separately for each number of choice alternatives
(K ) and for speed-emphasis and accuracy-emphasis instructions.

K = 2 K = 4 K = 8 K = 12

Speed 96(3.4) 90(6.1) 85(9.8) 75(11)
Accuracy 97(4.0) 97(4.5) 92(9.1) 87(11)

predictions can easily be compared with the data by comparing
Fig. 5 against each row of Fig. 2 and comparing Fig. 6 against each
row of Fig. 3.
The left and center panels of Fig. 5 confirm that we observed

Hick’s Law in its usual format—mean RT increased linearly with
the logarithm of the number of choice alternatives. This rela-
tionship held both under speed-emphasis and accuracy-emphasis
instructions. The findings in the right panel of Fig. 5 are quite differ-
ent from classical investigations of Hick’s Law; they show that the
response accuracy decreased markedly as the number of alterna-
tives increased, although performance was always well above the
chance level (the grey line). In the earlier examinations of Hick’s
Law using information-controlled decisions (such as Experiment 1
of Hick, 1952), experimental measures were taken to ensure ac-
curacy remained perfect, at all set sizes. These measures allowed
researchers to consider only one dependent variable (RT), rather
than the joint effects of RT and accuracy. In more recent studies,
both accuracy and RT have been free to vary—as in our study—and
accuracy has been observed to decrease with larger numbers of
choice alternatives, at least with keypress responses (e.g., Kveraga,
Boucher, & Hughes, 2002; Lee, Keller, & Heinen, 2005). Our the-
oretical models unify these dependent variables, simultaneously
explaining changes in both.
The RT distributions, illustrated by quantile estimates in Fig. 6

suggest that the log-linear relationship of Hick’s Law also hold
for the entire RT distribution, not just its mean. This is consistent

with predictions from the optimal observer models, and also with
data from the saccadic-response choice task used by Lee et al.
(2005). The right panel of Fig. 6 shows also that there is at least
an approximately linear relationship between the mean of RT and
its standard deviation. The empirical data also include an element
missing from optimal models—participants did not always choose
the column with the largest height, see Table 1. This is, of course,
sub-optimal, because the largest column is the one most likely to
have the higher accumulation rate. It is possible that these errors
were caused either by perceptual limitations (it may be difficult to
notice which column is larger in a display of many columns) or by
a time lag between decision and response execution (a decision is
made, selecting the tallest column, but the second-tallest column
grows larger in the moments before the response button press is
executed). Our data tentatively support the time-lag hypothesis,
by considering the state of the display a few time steps before
each response. The chosen column was the tallest column at the
time of responding on only 89.8% of trials. However, the chosen
column was tallest on almost every trial (97.2%), if one looks back
to three time steps before the response. This suggests a delay
between choosing to respond, and actually making the response.
The proportion of trials for which the chosen column was tallest
prior to the response lag (i.e., 97.2%) was larger for the estimated
lag (three time steps, or 0.6 s) than for any other delay value.
We have also re-analyzed the data (not shown in the figures),
after removing all trials where participants did not pick the tallest
column. This analysis did not change any of the qualitative patterns
we observe for the accuracy results in Fig. 5. Therefore, whatever
causes participants to choose an apparently sub-optimal column
does not appear to change the important behavioral patterns.

6. A heuristic model: max-minus-next

Dragalin et al. (1999, 2000) showed that a very simple decision
heuristic was able to perform just as well as the optimal MSPRT
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Table 2
Mean max-minus-next threshold (and SD) at the time of response, separately for
each number of choice alternatives (K ) and for speed-emphasis and accuracy-
emphasis instructions.

K = 2 K = 4 K = 8 K = 12

Speed 2.4(0.76) 2.0(0.65) 1.9(0.58) 1.7(0.59)
Accuracy 4.2(1.4) 3.6(1.3) 3.4(1.2) 3.2(1.3)

procedure, at least in situations with very low error rates (a
similar heurisitic was considered as a limiting case by Bogacz &
Gurney, 2007). We translated this heuristic into a simple model,
by assuming that the observer first settles upon a single decision
threshold, say ∆ = 3 bricks. The observer then monitors the
columns, and makes a decision whenever the height of the largest
column exceeds the height of the next-largest column by the
threshold amount ∆. This algorithm is decidedly sub-optimal.
It does not take into consideration the heights of any but two
of the columns. For example, the algorithm would make no
distinction between the two cases shown in Fig. 1. For these
cases, the largest and next-largest columns have the same height
and the additional columns in the second case are considered
irrelevant for the decision. The algorithm also does not consider
the probabilities associated with these heights, or even how the
probability associated with max-minus-next differences changes
as the number of bricks increases. However, the model has an
admirable simplicity, and the bottom row of Fig. 2 shows that it
captures all of the gross patterns in the data.
Apparently, the heuristic max-minus-next model provides a

reasonable account of our data. However, the simplest version of
the model is perhaps too simple, as shown by a more detailed
analysis of participants’ responses. For each participant, and for
every trial, we calculated the difference between the height of
the largest and second-largest columns at the point of their
response (i.e., the observed max-minus-next criterion). The very
simplest max-minus-next model would predict that this value
is a constant across all experimental conditions, as it is just the
criterion threshold, ∆. Table 2 shows that this was not the case
in our data—the observed max-minus-next threshold decreased
systematically with increasing number of choice alternatives (K ).
It is possible that this represents a tendency for participants to
place a greater cost on waiting (for more evidence) as time passes.
That is, the subjective cost of each discrete time step may be
an increasing function—consistent with the general notion that
participants grow impatient over time.
A slightly different heuristic account is suggested by the statisti-

cal design of the stimulus displays. The evidence accumulation rate
in the target columnwas larger than that in the distractor columns,
but the same rate was used for all of the distractor columns (i.e.,
θ(d)). This suggests a strategy such as ‘‘max-minus-average’’, where
the height of the largest column is compared with the average
height of the remaining columns. Although intuitively appealing,
this heuristic does not translate into a reasonable model. With a
fixed threshold on the difference, the max-minus-average model
predicts that decision time should decreasewith increasing K . This
prediction arises because the average height of K − 1 columns be-
comes smaller as K grows, when there is some chance that the tar-
get column is included in that average.

7. Information transmission

The simplest form of Hick’s Law—that the time taken to
complete a decision between K alternatives is proportional to
log2 K—was interpreted by Hick (1952) in terms of information
theory (Shannon & Weaver, 1949). The information contained in
a choice between K equiprobable responses is just log2 K , leading
Hyman (1953) to suggest that Hick’s Law might be stated more

informatively: the time taken to complete a choice is proportional
to the amount of information to be processed from the stimulus.
In our experiment, participants were free to respond whenever
they were ready, and they were also free to set their error rates as
they chose. As there were some incorrect responses, the amount
of information processed by participants was less than the total
amount contained in the stimulus. The amount of information
extracted by the participant can be calculated as the amount in
the display (log2 K ) minus the amount of uncertainty remaining in
the responses. Suppose that pij is the probability (across all trials)
of responding with response j to stimulus i. Then the amount of
extracted information is given by:

I = log2 K −
K∑
i=1

K∑
j=1

pij log2

 pij∑
r
pir
∑
s
psj

 . (7)

In our experiment, all stimuli were presented equally often, so∑
r pir =

1
K . Further, for the models we consider, all incorrect

responses were equally probable, and the probability of a correct
response did not depend on which stimulus was presented.
Therefore, if a model predicts that the probability of a correct
response was pii = q, Eq. (7) reduces to (see also Eq. (11) of Usher
et al., 2002):

I = (1− q) log2(K − 1)− q log2(q)− (1− q) log2(1− q). (8)

According to Hick (1952) and Hyman (1953), the information
quantities defined by Eqs. (7) and (8) should be linear when
plotted against the logarithm of the number of alternatives (K )
and also when plotted against mean decision time (see also Usher
et al., 2002). Fig. 7 illustrates these relationships for the data (top
row) and for predictions from the three models (lower rows). For
the data, we calculated the conditional response probabilities pij
by summing across participants, to avoid known problems with
small-sample bias in calculating entropy (see, e.g., Norwich,Wong,
& Sagi, 1998). As expected, the data show a linear increase in
the extracted information with both decision time (right panel)
and with the logarithm of the number of choice alternatives (left
panel). Of the three models we have considered, only the heuristic
max-minus-nextmodel predicts this benchmark result. Thismodel
provides a close fit to the data. For example, participants extracted
information from the stimulus display at an average rate of 0.062
bits per time step in the speed-emphasis condition, and 0.019 bits
per time step in the accuracy-emphasis condition (calculated as
the slope of the best-fitting line in the top-right panel of Fig. 7).
The max-minus-next model, with criterion settings of ∆ = 2
for speed-emphasis and ∆ = 3 for accuracy-emphasis predicted
corresponding values of 0.054 and 0.018 bits per time step.

8. General conclusion

The experimental paradigmwehaveused offers someattractive
benefits. Like other expanded judgment tasks (following Irwin
et al., 1956) this procedure allows experimental control over the
stream of evidence samples accumulated by the decision-maker.
In the usual paradigm, this evidence stream is unobserved which
has led to difficult debates over its exact nature—see, for example,
Usher and McClelland (2001) or Ratcliff and Smith (2004). Our
particular instantiation of the expanded judgment task offers
some further improvements on previous attempts, mostly that
the memory load is transferred from the decision-maker to the
stimulus display, and that the decision-makers are free to vary
their decision time, response accuracy, and they can observe an
arbitrarily large amount of evidence. These benefits come with
some cost—the decisions made in this environment are much
slower than those typically studied in choice RT research. For
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Fig. 7. Information extracted from the stimulus display vs. the logarithm of the
number of choices (left column) and vs. mean decision time (right column). The top
row shows data from the experiment and the lower three rows show predictions
from the three models.

example, the mean decision time in our experiment was 21 time
steps, corresponding to 4.2 s. This is comparable to the decision
times used in earlier expanded judgment tasks (e.g. Irwin et al.,
1956; Pietsch & Vickers, 1997) but much slower than the decisions
in more recent expanded judgment tasks (e.g. Brown & Heathcote,
2005; Usher & McClelland, 2001), and decisions usually modeled
by evidence accumulation methods.
The Bayesian ideal observer model, with accurate knowledge

of the accumulation rates, was remarkable because it naturally
produced Hick’s Law. We say ‘‘naturally’’ because this prediction
did not rely on changes in the decision threshold or other
parameters, but instead arose from the nature of the decision
model. The Bayesian model was calibrated in the sense that it
predicted a constant level of decision accuracy across different
set sizes, however, this was not the pattern we observed in the
data. Typically, investigations of Hick’s Law have not examined
changes in both accuracy and decision time, because one or other

dependent variable is fixed by the design. In other paradigms
where both measures are allowed to vary and multiple choices
are studied, similar findings have been observed: for example,
in absolute identification, accuracy decreases and RT increases
(logarithmically) as the number of choice alternatives increases
(Kveraga et al., 2002; Lacouture & Marley, 1995; Lee et al., 2005).
Our paradigm also presents some interesting avenues for

further research. One of the difficulties in designing a statistically
optimal model is that participants naturally associate some cost
with each successive sample of evidence—reflecting their desire
to finish the experiment without taking too long. We do not
know this cost function, nor even its basic properties: does the
subjective cost of each sample increase as decision time increases?
Is the cost function the same across different numbers of choice
alternatives? These questions are amenable to further research
with our paradigm, and the fit of the max-minus-next heuristic
model may also shed light on these questions. For example, we
observed that the max-minus-next threshold (∆) required to
trigger a decision decreased as the number of decision alternatives
increased. This could indicate that the subjective cost of each new
time step increases in longer decisions.
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