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Abstract
The wisdom of the crowd refers to the finding that judgments aggregated over individuals are typically more accurate than
the average individual’s judgment. Here, we examine the potential for improving crowd judgments by allowing individuals
to choose which of a set of queries to respond to. If individuals’ metacognitive assessments of what they know is accurate,
allowing individuals to opt in to questions of interest or expertise has the potential to create a more informed knowledge base
over which to aggregate. This prediction was confirmed: crowds composed of volunteered judgments were more accurate
than crowds composed of forced judgments. Overall, allowing individuals to use private metacognitive knowledge holds
much promise in enhancing judgments, including those of the crowd.

Keywords Wisdom of the crowd · Self-direction · Metacognition

The earliest and most famous example demonstrating the
wisdom of the crowd comes from a report by Galton (1907).
In that example, nearly 800 visitors to an agricultural
exhibition in England entered a contest in which they
guessed the weight of an ox. The central finding, known
broadly throughout the social sciences today, is that the
average judgment of the group was impressively accurate—
in fact, the median judgment came within 1% of the correct
answer. The superior accuracy of such crowd judgments
is evident in a wide variety of tasks, including complex
combinatorial problems (Yi et al. 2012), recitation of lists in
an appropriate order (Steyvers et al. 2009), and in predicting
events with as-yet unknown outcomes (Lee and Danileiko
2014; Turner et al. 2014; Merkle et al. 2016; Mellers et al.
2014).

Despite a century of research on this important topic,
an aspect of the original example from Galton has gone
unappreciated. The fairgoers in his data set were a self-
selected bunch: they chose to provide a weight estimate.
Not only that, they paid (a sixpenny) for the privilege of
doing so (and to have the opportunity to win a prize). This
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may seem like a small matter, but there are reasons to
think it might not be. Research on metacognition reveals
that people are good judges of their knowledge and of the
accuracy of their judgments. Allowing individuals to opt in
to a particular judgment based on an assessment of their own
expertise may in fact have created a crowd of exceptional
wisdom in Galton’s case. This is the question we pursue
here: does allowing an individual the choice of when to
respond improve the accuracy of the resultant crowd? There
are both theoretical and practical reasons to care about this
problem.

On the practical side, there are now a large number
of crowd-sourcing platforms in which individuals choose
which tasks to participate in. For example, prediction
markets (e.g., Predictit, Tradesports), swarm intelligences
(e.g., UNU), and forecasting tournaments like the Good
Judgment Project (Mellers et al. 2014) all cede control to
the individuals as to what tasks to perform. Recent analyses
have shown that the choice of forecasting problems in
the Good Judgment Project is related to forecasting skill
(Merkle et al. 2017). These results suggest that the specific
problems selected by individuals can provide valuable
information about the person. However, it is not known
whether the self-selection procedure reduces or enhances
the wisdom of the crowd.

On the theoretical side, the results from the experiments
reported here have the potential to inform our theories about
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the origin of the benefit that arises from aggregating within
a crowd. The benefit of the crowd has two general classes
of explanations. The first is that knowledge for a particular
question is diffusely distributed across the population;
random perturbations from the truth that occur within a
group cancel out in a large enough sample (Surowiecki
2004). By this reasoning, individuals are exchangeable since
perturbations among individuals are random. In a second
class of explanation, knowledge for a particular question is
concentrated within a subset of individuals in the group, and
others contribute little more than random noise. Averaging
reduces the influence of random responders, leaving the
signal from knowledgeable responders to reveal itself
more clearly. By this explanation, individual differences in
knowledge are paramount, and the selection of responders to
contribute to a given query or task should depend heavily—
perhaps exclusively—on those individual differences.

One way of ensuring that contributions come from
knowledgeable sources is to seek out populations with
particular expertise. Techniques have been developed
that identify expertise or upweight expert judgments on
the basis of calibration questions (Bedford and Cooke
2001), performance weighting (Budescu and Chen 2014),
coherence and consistency weighting (Olson and Karvetsi
2013; Weiss et al. 2009), and consensus models (Lee et al.
2012). For an overview of these methods, see Steyvers and
Miller (2015). Though these techniques each have their
own advantages, there are also a number of challenges.
How do we identify individuals with particular expertise, or
domains of particular expertise within an individual? What
if those individuals are difficult to find or costly to obtain?
What if the domain under investigation is one that requires
wide-ranging expertise?

The alternative approach reviewed here allows individu-
als to make their own judgments about their ability to con-
tribute to the problem under investigation. There is ample
reason to believe that such judgments are likely to be highly
accurate. People successfully withhold responses in which
they have low confidence, increasing the accuracy of volun-
teered responses. They can also vary the grain size of their
answer, answering with great precision when they know
their knowledge to be accurate and with lesser precision
when they are unsure (Goldsmith and Koriat 2007). Control
over selection of items for restudy (Kornell and Metcalfe
2006) and over the allocation of study time (Tullis and Ben-
jamin 2011) benefits learners. All of these findings point to
the skill with which individuals exert metacognitive control
over their learning and remembering, and how that control
benefits performance (Fiechter et al. 2016; Benjamin 2008a;
Benjamin and Ross 2008b).

The specific choice about when and when not to respond
to a query is helpful in an impressive variety of situations.
In psychometrics, test-takers prefer the ability to choose
which questions they are graded on Rocklin (1994), Schraw
et al. (1998), and improve their performance by doing
so. Psychometric models of this type of choice have
demonstrated benefits in estimating subject characteristics
(Culpepper and Balamuta 2017). Even non-human animals
have the metacognitive ability to choose when to bet on
their success in a particular trial (Kepecs and Mainen 2012;
Middlebrooks and Sommer 2011). As noted above, the
freedom to choose the grain size of reported memories
substantially improves the accuracy of memories that are
reported (Goldsmith and Koriat 2007; Koriat and Goldsmith
1996). These strategies all reflect the positive contribution
of metacognitive processes and the benefits of permitting
participants to self-regulate responding, but no research has
yet examined the potential of self-regulation for improving
crowd accuracy.

The allowance of individual metacognitive control can
affect crowd cognition in complex and perhaps unantici-
pated ways. Responders’ choices about when to respond
based on their own knowledge impact both the quality and
distribution of responses. Even if responders make good
metacognitive choices that improve the quality of their
responses, giving people this freedom may result in a shift
in the distribution of responses wherein subsets of questions
go unanswered. The consequences of unanswered questions
may be high, and the net cost of this unanswered subset may
outweigh benefits gained on other questions. Taken together,
it is unclear how providing a group the ability to self-select
questions will impact crowd response over a large set of ques-
tions or predictions, and with different performance metrics.

We investigated the effect of allowing responders to opt
in to questions of their own choosing on the wisdom of
the crowd effect in two experiments. In each experiment,
one group of responders chose among a subset of binary-
choice trivia questions and a control group answered
randomly assigned questions. If responders use their
metacognitive knowledge judiciously in service of selecting
which questions to answer, we should see an advantage for
crowds composed of self-directed responders over a typical
(control) crowd. In Experiment 1, we matched participants
in the self-directed condition with participants in the
control condition in terms of total number of judgments
and assessed performance on a set of relatively easy
(Experiment 1a) and difficult (Experiment 1b) questions. In
Experiment 2, we ceded further control to participants by
allowing them to choose as many or as few questions as they
wished from among a relatively easy set of questions.
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Experiment 1

Method

Participants

166 participants were recruited through Amazon Mechani-
cal Turk (AMT). Each participant was compensated $1 for
the 30 min the experiment was expected to take. Each par-
ticipant was randomly assigned to Experiment 1a (N = 83;
easy questions) or 1b (N = 83; difficult questions). In both
experiments, each participant was randomly assigned to the
opt-in (or “self-directed”) condition, in which they had the
ability to choose which questions to answer (N = 39
for both experiments) or to the control condition, in which ques-
tions were randomly assigned to them (N = 44 for both exper-
iments). No participant completed more than one condition.

Stimuli

Stimuli consisted of 144 general knowledge binary-
choice questions. The questions were drawn from 12
general topics: World Facts, World History, Sports, Earth
Sciences, Physical Sciences, Life Sciences, Psychology,
Space & Universe, Math & Logic, Climate Change,
Physical Geography, and Vocabulary. In order to empirically
determine how difficult the questions were, we conducted
a pilot experiment in which 54 participants answered 48
questions each. Average accuracy across all 144 questions
was 55.2%.We formed two sets of 100 questions each based
on the easiest and most difficult questions, which resulted
in an overlap of 56 questions between the easy and difficult
question sets. The 100 easiest questions, which yielded 73%
accuracy, comprised the stimulus set for Experiment 1a.
The 100 hardest questions, which yielded 48% accuracy,
comprised the stimulus set for Experiment 1b. Four example
questions are shown in Table 1. No participants who
completed the pilot study were recruited for Experiment 1.

Design and Procedure

Participants could view the survey description on AMT. If
they selected the survey, they were redirected to another
website (hosted using the Qualtrics platform). They were
first directed to a study information sheet that provided
details of the survey and compensation. If they agreed to
continue, they answered demographic questions, and then
were randomly assigned to the experiment and condition.

Participants were not aware of the existence of other
conditions. Each participant viewed questions in five blocks
of 20 questions each. They were instructed to rate the
difficulty of each question from 1 (Very Easy) to 4
(Neither Easy nor Difficult) to 7 (Very Difficult). Then,
if they were assigned to the self-directed condition, they
were instructed to choose five questions to answer in
that block. The participants in the control condition were
randomly assigned five questions to answer. After rating
the difficulty of all 100 questions and answering 25 total
questions, participants were thanked for their time and given
instructions on how to receive payment.

Scoring Crowd Performance

We utilized three general methods for measuring crowd
performance. The first measure is based on the accuracy
of the majority answer, which we term crowd accuracy.
For each individual question, we score the crowd as correct
(1) if the majority of the participants in a crowd answered
correctly and incorrect (0) if the majority of the participants
in a crowd answered incorrectly. Questions that elicited
an equal number of correct and incorrect responses were
assigned a value of 0.5. Unanswered questions were also
assigned an accuracy value of 0.5, corresponding to the
chance value of answering the question accurately with no
knowledge. Crowd accuracy is then based on the average
score across questions. We report the accuracy measure
because it is easily interpretable and is widely used in this

Table 1 Example questions

Difficulty Example

Hard (1) The sun and the planets in our solar system all rotate in the same direction because: (a) they were all formed
from the same spinning nebular cloud, or (b) of the way the gravitational forces of the Sun and the planets interact

(2) The highest man-made temperature has been: (a) less than 1 million ◦C, or (b) greater than 1 million ◦C?
Easy (1) Greenhouse effect refers to: (a) gases in the atmosphere that trap heat, or (b) impact to the Earth’s ozone layer

(2) Which is Earths largest continent by surface size? (a) North America, or (b) Asia

Correct answers are italicized
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literature. However, it has low statistical power because the
underlying observations are (mostly) binary.

The second measure, proportion correct, is based on
a more fine-grained assessment of crowd performance.
For each individual question, we assessed the proportion
of respondents in the crowd that answered correctly. The
overall proportion correct measure is based on the mean
of these proportions. The third measure, proportion better,
assesses the proportion of questions for which the opt-
in condition outperformed the control condition (ignoring
questions with equal accuracy between conditions).

The last two measures can detect differences in crowd
performance even when the majority rule leads to the same
answer. For example, if the opt-in and control condition
reveal 80 and 70% correct response rates respectively (for
each individual question), the crowd accuracy measure
based on majority rule would not be able to distinguish
between the two conditions, whereas the proportion correct
and proportion better measures would reveal the advantage
of the opt-in condition.

Results

Data from all experiments reported in this article are
publicly available on the Open Science Framework (https://
osf.io/nhv3s). For all of our analyses, we utilize Bayes
factors (BFs) to determine the extent to which the observed
data adjust our belief in the alternative and null hypotheses.

There are numerous advantages of BFs over conventional
methods that rely on p values (Rouder et al. 2009; Jarosz
and Wiley 2014; Wagenmakers 2007), including the ability
to detect evidence in favor of a null hypothesis and a
straightforward interpretation. In order to compute the BFs,
we used the software package JASP (Love et al. 2018) and
a Bayes factor calculator available online (Rouder et al.
2009; Rouder 2018). In both cases, we maintained the
default priors that came with the software when performing
computations.

In our notation, BF > 1 indicates support of the
alternative hypothesis while BF < 1 indicates support of
the null hypothesis. For instance, BF = 5 means the data
are five times more likely under the alternative hypothesis
than the null hypothesis. Similarly, BF = 0.2 corresponds
to an equal amount of support of the null hypothesis. When
discussing BFs, we use the language suggested by Jeffreys
(1961). In order to improve readability, BFs larger than
100,000 are reported as BF > 100, 000.

Raw Data

Figure 1 shows the full pattern of chosen and assigned
questions across respondents in the self-directed and control
condition as well as the correctness of individual answers
(see Fig. 4 in the Appendix for the distribution of responses
in the hard condition). The distributions reveal that some
questions are chosen much more often than others. Note that

Fig. 1 Question responses for
the self-directed and control
participants in the easy
condition (Experiment 1a) with
questions sorted by the number
of participants who selected the
question in the self-directed
condition. Green squares
represent correct responses, red
squares represent incorrect
responses, and white squares
represent no response.
Self-directed participants tend to
cluster around the same
collection of questions when
compared to control participants

Experiment 1A
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Table 2 Average individual
performance across conditions Experiment Control (%) Opt-in (%) Full opt-in (%) BF

1a 67.27 86.05 > 100,000

1b 48.64 53.85 0.540

2 69.21 83.80 13,046

69.21 82.75 7,581

83.80 82.75 0.259

Each Bayes factor (BF) compares individual performance of the opt-in condition with the control condition
within that experiment

in the self-directed condition, there were seven questions
that no participant chose to answer in Experiment 1a
and one such question in Experiment 1b. For the control
condition, each question was randomly assigned to at least
four participants in the control condition and therefore no
question went unanswered.

Individual Accuracy Differences

First, we confirmed our assumption about the difficulty
of questions in each condition. Participants in Experiment
1a (with easy questions) averaged 76.10% accuracy and
those in Experiment 1b (with difficult questions) averaged
45.16%. In addition, Table 2 shows the average accuracy
of individuals across conditions. We used a Bayesian t test
to assess whether individual accuracy was higher or lower
in the opt-in condition. In Experiment 1a, there is evidence
that participants who opted in to questions exhibited higher
average accuracy than those who were randomly assigned
to questions. However, the data in Experiment 1b were
ambiguous, providing little evidence one way or the other
in terms of the relative accuracy of the opt-in and control
conditions.

Crowd Performance

Table 3 shows the crowd performance under the three
performance metrics introduced earlier, and summarizes
the results of our analyses. In general, we found that

crowds composed of self-selected judgments outperformed
those with judgments from participants randomly assigned
to questions. Analyses comparing crowd accuracy and
proportion correct used a two-tailed Bayesian paired sample
t test. To analyze proportion better, we used a Bayesian
binomial test to assess if the rate of proportion better
exceeded 50%.

For the easy questions (Experiment 1a), we found
consistent evidence for a benefit of self-directed crowds
over control crowds. While the evidence was only
anecdotal for crowd accuracy, the more fine-grained
measures of proportion correct and proportion better both
provide decisive evidence that opting in benefits aggregate
performance. For the hard questions (Experiment 1b), we
found the same effect but with less decisive evidence.
Specifically, we found moderate evidence from the crowd
accuracy and proportion correct metrics that self-direction
was beneficial to crowd performance. The weaker evidence
for the harder questions is likely related to the ambiguous
finding when comparing individual accuracy between the
opt-in and control conditions. Taken together, these analyses
demonstrate that crowds composed of responders who
voluntarily opt in to questions are indeed superior.

Difficulty Ratings

Why is it that participants were more accurate in the self-
directed condition? Presumably participants are choosing
questions that they find easy. In accordance with this

Table 3 Crowd performance across conditions and the performance metrics crowd accuracy, proportion correct and proportion better

Crowd accuracy Proportion correct

Experiment Control (%) Opt-in (%) Full BF Control (%) Opt-in (%) Full BF Prop. BF
opt-in (%) opt-in (%) better (%)

1a 73.0 82.5 1.904 67.36 79.10 4847 73.49 1665

1b 46.0 58.5 4.031 49.48 56.91 3.983 60.82 1.219

2 78.5 76.0 0.1326 68.58 73.82 0.61 64.77 6.248

78.5 82.0 0.1506 68.58 76.07 71.65 73.63 4504

Each Bayes factor (BF) compares performance of the opt-in condition with the control condition within that experiment
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hypothesis, we found a strong correlation between the
probability of opting in to a question and its average
difficulty rating in both Experiment 1a (N = 100, r =
−0.90, BF > 100, 000) and 1b (N = 100, r = −0.88, BF
> 100, 000).

We also investigated whether participants preferred
questions that they rated as easier than their peers. We first
identified the set of questions for each participant that were
judged to be easier than the average rating. For this set of
question-participant pairs, we computed the probability that
the participant opted in to that question. For Experiment 1a
and 1b, these probabilities were 38.43% (N = 1996) and
39.30% (N = 1901) respectively. Comparing these values
to chance (25%) gave decisive evidence that participants
chose questions that they rated as easier than their peers (BF
> 100, 000 for both Experiment 1a and b).

Overall, people are choosing those questions that are
easier for them. This finding implies that there is a
common metacognitive process by which people choose
which questions to answer, based in large part on their
metacognitive assessments of item difficulty and their
unique expertise.

Simulating Opt-in Crowds Based on Rated Difficulty

With the current data set, it is not possible to directly assess
how participants would perform on questions that they did
not choose. However, we can simulate an opt-in decision for
participants in the control condition based on their difficulty
ratings (participants rated all questions). Previously, it was
found that crowds composed of confident responses led
to higher accuracy than same-sized crowds composed at
random (Mannes et al. 2014).

We investigated the crowd performance for answers
that were perceived to be below some threshold level of
difficulty. For example, for a threshold of “4”, we identified
all participants, in the control condition only, who answered
that question and rated the difficulty at or below “4.” For

comparison, we also composed a control crowd of equal size
by randomly sampling any participant who answered that
question ignoring the rated difficulty. Figure 2 shows crowd
performance as assessed by the proportion correct metric
for the simulated opt-in and random comparison groups.
The results show that simulating opt-in in this way can
yield better performing crowds when compared to randomly
composed crowds of the same size. In addition, smaller
crowds that include only answers from people who rated the
question as easy outperformed the full crowd composed of
all answers (corresponding to a cutoff of 7).

Discussion

In Experiment 1, we found that crowds formed from
participants with the opportunity to self-select questions
outperformed crowds that were formed from participants
randomly assigned to questions. The evidence in support
of this claim was decisive for the easier set of questions in
Experiment 1a and substantial for the harder questions in
Experiment 1b. Additionally, we observed that there appears
to be a metacognitive process that governs the relationships
among all of the observed behaviors. People select questions
that are easy for them and then perform well on them
when given the opportunity to answer them selectively.
Simulating choice with these difficulty ratings improved
crowd performance relative to random samples of crowds of
similar size and the complete crowd.

Experiment 2: Full Choice

In Experiment 1, we demonstrated that a wiser crowd
can be created by allowing responders to decide when
they want to provide a response. In that experiment, we
allowed participants to choose which questions to answer,
and matched that group with a control group in terms of
how many questions they answered. This methodological

Fig. 2 Crowd performance for
subsets of judgments below a
difficulty rating (simulated
opt-in) and randomly chosen
judgments (random subsets)
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choice had the benefit of ensuring a reasonable crowd size
for most questions. However, since we observed a benefit to
crowd performance from permitting some self-direction, a
natural question is to ask whether or not more control over
responding is even better. The specific additional freedom
we grant participants in this experiment is to respond to as
many questions as they desire. If question choice is driven
by knowledge, then participants who have substantially
more knowledge than others will now have the opportunity
to contribute to a greater extent. Similarly, participants who
have a relatively shallow pool of knowledge will be able
to avoid answering questions for which they lack relevant
knowledge.

Method

The stimuli and design were the same as Experiment 1a,
with one additional condition. The new full opt-in condition
allowed participants to choose to answer as many or as few
questions as they wish. As in Experiment 1, participants chose
questions, provided difficulty ratings for each question, and
then answered the questions that they chose. To contrast with
full opt-in, we now term what had been the self-directed
condition in Experiment 1 the partial opt-in condition.

Participants A total of 118 participants were recruited
through Amazon Mechanical Turk (AMT). Each participant
was compensated $1 for the 30 min the experiment was

expected to take. No participant completed more than one
condition and no participants who completed the pilot
study or Experiment 1 were recruited for this experiment.
Participants were randomly assigned to the partial opt-in
(N = 39), full opt-in (N = 36), or control (N = 43)
condition.

Stimuli

The stimuli were the same as those used in Experiment 1a.

Design and Procedure

The procedure was the same as Experiment 1, with the
exception of the new, full opt-in condition in which
participants were instructed to respond to as many questions
as they “felt they could answer well.”

Analysis

We utilized the same three methods for measuring and
comparing crowd performance as in Experiment 1.

Results

Responses from the full opt-in condition are shown in
Fig. 3 and those from the partial opt-in condition can
be viewed in Fig. 5 in the Appendix. As in Experiment

Fig. 3 Question responses for
the self-directed participants in
the full-choice condition as well
as the control participants in
Experiment 2. Questions are
sorted by the number of
participants who selected the
question in the opt-in condition
and self-directed participants are
sorted by the number of
questions they chose to answer.
Green squares represent correct
responses, red squares represent
incorrect responses, and white
squares represent no response.
Self-directed participants tend to
cluster around the same
collection of questions when
compared to control participants
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1a, seven questions went unanswered in the partial opt-in
condition. No question went unanswered in the full opt-in or
control conditions. Participants in the full opt-in condition
selected 44.11 (SD=25.22) of 100 questions on average,
significantly more than the 25 questions per participant
required in the other conditions (t (35) = 4.546, BF =
381.3). Table 2 shows that there is evidence that partial
or full opt-in leads to higher individual accuracy than the
control condition. We also found evidence that individual
accuracy did not differ between the full and partial opt-in
conditions.

Self-Direction is Beneficial to Crowd Performance

Table 3 shows crowd performance under the three perfor-
mance metrics and summarizes the results of our analyses.
In general, we found that self-direction is beneficial to
crowd performance, with decisive evidence for the full opt-
in crowd but mixed evidence for the partial opt-in crowd.
We also found evidence that the full opt-in crowd and partial
opt-in crowd do not differ in performance at the crowd level.

The full opt-in crowd tended to outperform the control
crowd. Although there was evidence that crowd accuracy
was equivalent for the full opt-in and control conditions
in Experiment 2, the other more sensitive metrics provide
strong evidence to the contrary. There was decisive evidence
that the proportion better was greater than 50% in the full
opt-in condition and very strong evidence that the propor-
tion correct was higher than that of the control condition.
This higher degree of evidence in favor of the alternative
hypothesis should override the weaker evidence, based on an
inefficient statistic, in favor of the null hypothesis.

The evidence comparing the partial opt-in crowd to
the control crowd was mixed. Our three statistical tests
comparing crowd performance yielded one result favoring
the null hypothesis (Crowd Accuracy), one result favoring
the alternative hypothesis (Proportion Better), and one
result that does not favor either (Proportion Correct). These
analyses taken together are sufficiently ambiguous to not
adjust beliefs in either hypothesis.

Not shown in Table 3 is the comparison between full
opt-in and partial opt-in. We found consistent evidence
that the full opt-in and partial opt-in crowd performed
equivalently. In particular, we found anecdotal evidence
that crowd accuracy does not differ between the two
experimental conditions (82.0 vs 76.0%, t(99) = 1.713,
BF = 0.4527). When comparing the proportion better, we
found substantial evidence that the rate does not differ from
chance (53.33% of 75 BF = 0.1689). Similarly, we found
substantial evidence that proportion correct is equal in the
full and partial opt-in conditions (76.07 vs 73.82%, t(99) =
0.9969, BF = 0.1792).

Question Choice Correlates with Difficulty Ratings

Participants in Experiment 2 chose questions for similar
reasons as in Experiment 1. Difficulty ratings and choosing
behavior were highly correlated in both the partial opt-in
(r = −0.887, N = 100, BF > 100, 000) and full opt-in
(r = −0.884, N = 100, BF > 100, 000) conditions. This
corresponds to decisive evidence that participants tended to
select questions that received low average difficulty ratings.

Discussion

Self-determination improves the crowd by contributing
more knowledgeable members to queries requiring partic-
ular expertise. In Experiment 2, we found mixed evidence
in our replication of Experiment 1a that compared partial
opt-in crowds to control crowds on the easy question set.
However, we found that allowing participants complete con-
trol is beneficial to aggregate performance when comparing
the full opt-in and control conditions. Allowing for com-
plete self-direction did not impact aggregate performance
relative to partial self-direction. This null effect is note-
worthy because there any many situations in which the test
administrator may not have a sensible idea of how many
questions each respondent should provide answers to—the
results here suggest that this choice can be left up to the
respondents with no negative consequence. Second, forc-
ing an increase in the number of questions a respondent
must provide answers to is almost certain to decrease accu-
racy. This can be easily envisioned by imagining a case
in which respondents have to provide answers to all but
one question. Accuracy could not be much different from
the control condition, which was outperformed consider-
ably in both experiments. Yet respondents who choose to
answer additional questions detect that they are in a part
of the quantity-accuracy trade-off function that is relatively
flat—that is, they are increasing the quantity of their out-
put without decreasing the accuracy. Having more responses
is especially important in a pool of limited respondents or
with questions of highly variable difficulty. Taken together,
it would seem that allowing respondents to fully opt in,
as they see fit, has several advantages and no obvious
disadvantages.

Conclusions

Metacognitive choices about when to respond and what
level of detail to provide typically enhance accuracy, a
finding that implies that people have a good ability to assess
what they do and do not know (Goldsmith and Koriat 2007;
Koriat and Goldsmith 1996). Here, we explored whether
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individual metacognitive ability can be leveraged to enhance
crowd wisdom. In two experiments, allowing individuals
freedom as to which questions to answer led to a wiser
crowd than constraining that freedom. The origin of this
effect is in higher quality responses when people self-select
items for which they have expertise.

The impressive benefits of allowing participants to
opt in when aggregating likely depend on some factors
relating to the task given to the participants. Under
situations in which metacognitive monitoring is less
accurate, the crowd will not benefit as greatly. And
in cases where the items are constructed in such a
way that accuracy and confidence are negatively related
(Brewer and Sampaio 2012), then the self-determined
crowd may actually be less wise than the control crowd.
There are many domains in which metacognition has
lesser benefits for the performance of individuals (e.g.,
perception-based tasks, Kunimoto et al. 2001), and so there
would be no advantage for the crowd that allows self-
direction. However, such cases are notably rare—in general,
confidence is an exceptional predictor of accuracy in a
wide range of circumstances (Wixted et al. 2015). For
the ubiquitous domains where participants exhibit correct
metacognitive judgments, crowd performance is likely to
follow.

These findings imply that a design that aims to solve
a set of problems via crowdsourcing would benefit from
allowing users to select which tasks to solve. Design
choices of this nature may also impact user experience
and consequently influence how likely they are to use
the platform. As such, even when the goal of a platform
is to maximize performance over a set of questions, the
degree of self-direction granted to users should be that
which both benefits user experience and the quality of
the resultant product. These findings support the design
decisions behind online crowdsourcing platforms such as
prediction markets and other crowd-sourced forecasting
services where users have full control over the questions
they answer. Such platforms contrasts to other forecasting
approaches such as the “Delphi technique” (Hsu and
Sandford 2007) where individuals of (putative) expertise
in the domain of interest are assembled and decisions are
reached through a combination of individual deliberation
and consensus. Though the Delphi technique appears to be
at least somewhat successful (e.g., Sniezek 1989 & Rowe
and Wright, Rowe and Wright 1999), difficulties and costs
with implementing such a technique are readily apparent.
Here, we have shown that a simple manipulation imposed
upon a less selected sample of respondents can serve the
same purpose with little cost. Individuals are often the best
judges of what they do and do not know—it only makes
sense to leverage this metacognitive knowledge in search of
wiser crowds.

Appendix

Experiment 1b judgments
Experiment 1B
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Fig. 4 Question responses for the self-directed and control participants
in the hard condition with questions sorted by the number of
participants who selected the question in the self-directed condition.
Green squares represent correct responses, red squares represent
incorrect responses, and white squares represent no response. Self-
directed participants tend to cluster around the same collection of
questions when compared to control participants

Experiment 2a judgments

Experiment 2A
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Fig. 5 Question responses from the partial opt-in and control
conditions with questions sorted by the number of self-directed
participants who selected the question. Green squares represent correct
responses, red squares represent incorrect responses, and white squares
represent no response. Self-directed participants tend to cluster around
the same collection of questions when compared to control participants
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