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Abstract 

Much of the research in memory builds on an assumption that the experimenter 

knows which stimuli were presented at study. However, in many real-world situations, 

such as cases involving eyewitness testimony, this kind of ground truth might not be 

available. The only observable data might consist of the verbal reports in the form of 

recognition or recall judgments. We investigate the collective memory performance in a 

recognition memory task in which each individual in a group independently retrieves 

memories related to the same study items. For each test item in the recognition memory 

task, we calculate an aggregated memory judgment by simply averaging the confidence 

ratings across individuals. Using a Bayesian Signal Detection Theory (SDT) analysis of 

the confidence ratings, we show that the aggregated confidence rating is associated with a 

discrimination performance that substantially better than the best performing individual 

in the group.  
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The Collective Memory Performance in a Recognition Memory Task 

The aggregation of judgments across individuals in a group has been shown to 

lead to a group estimate that is better than most of the individual estimates. 

Demonstrations of this effect have focused on tasks where individuals produce subjective 

probability or magnitude estimates (e.g., Ariely et al., 2000; Budescu & Yu, 2007; 

Steyvers, Wallsten, Merkle, & Turner in press; Turner, Steyvers, Merkle, Budescu, & 

Wallsten, in press; Wallsten, Budescu, Erev, & Diederich, 1997). In a now classic study, 

Galton (1907) asked over eight hundred individuals to estimate the weight of an ox. The 

median weight estimate, which corresponds to a simple form of aggregation, came within 

a few pounds of the true answer. This group estimate was much closer to the truth than 

the vast majority of individual estimates, a phenomenon that has become known as the 

Wisdom of Crowds effect (WoC; reviewed in Surowiecki, 2004). The most basic 

explanation of this effect is that the averaging across individuals reduces the noise 

associated with each individual decision – some individuals overestimate and others 

underestimate the underlying quantity – and aggregating cancels out some of these errors 

in judgment. The benefits of aggregating across individuals have also been demonstrated 

in more complex tasks involving rank-ordering judgments (Steyvers, Miller, Lee, & 

Hemmer, 2009), and optimization problems (Yi, Steyvers, & Lee, 2012). Recently, it has 

been shown that the benefits of averaging also extend to judgments within an individual 

(Vul & Pashler, 2008). 

We will investigate the collective memory performance that can be obtained by 

pooling retrieved memories across a number of individuals. The main question is whether 
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aggregation can lead to a WoC effect where the aggregated memory judgment is better 

than the majority of individuals or better than even the best individual in the group. In 

addition, we use a Signal Detection Theory (SDT) approach to assess the performance of 

individuals and the aggregate and use the estimated model parameters to better 

understand where this advantage is coming from. 

Studying the collective memory performance of a group of individuals has some 

real-world applications. One specific example is eyewitness testimony cases in which 

there are a number of individuals who all have witnessed the same set of events. If a 

researcher now queries each individual eyewitness and collects a series of memory 

judgments, it is important to understand what performance might be expected by 

combining the individually retrieved memories into a single judgment. Much of the 

existing research on collective memory has focused on developing an understanding of 

the conditions in which social interaction between group members can help or hurt 

memory performance (e.g., Ditta & Steyvers, 2013; Gagnon & Dixon, 2008; Harris, 

Paterson, & Kemp, 2008; Hinsz, 1990; Roediger, Meade, and Bergman, 2001). In 

contrast, we will investigate situations where there is no social interaction or 

communication of any kind between individuals in the group. Each individual 

independently provides a series a memory judgments and the aggregation is performed by 

the researcher.  

Our investigation focuses on a standard recognition memory paradigm. Each 

subject is given the same study list of items and is tested on the same set of test items 

(presented in different order). For each test item, the subject produces a rating expressing 
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the confidence that the item was part of the study list. Because the set of study and test 

items are equivalent, we can aggregate the recognition confidence judgments across 

individuals. We propose a very simple method to combine the recognition memory 

confidence ratings across individuals by taking a simple average of the confidence ratings 

for the same item. We will show that averaging item level confidence rating leads to a 

level of performance that is better than any of the individuals in the group. In fact, we 

will show that the average confidence rating substantially outperforms the best 

performing subject. The SDT analysis shows that this increase in performance is 

associated with changes in the means as well as the variances of the signal and noise 

distributions. Therefore, these findings show that there can be multiple sources for the 

performance improvements.  

The plan for this paper is as follows. We will first describe the previously 

published data that will be used for our analysis. We will then describe the Bayesian 

analysis of the SDT model to estimate the underlying signal and noise distribution in the 

context of these data and measure the ability of individuals to discriminate between 

targets and lures. We will then apply this model on the recognition memory data and 

compare the performance of individual subjects to the aggregate. We further provide 

some explanations for the WoC effect and discuss the potential reasons for the 

improvement of the aggregate. 
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Recognition Memory Data from Mickes et al. (2007) 

We will analyze the WoC effect using previously published recognition memory 

data from Experiments 1 and 2 of the Mickes, Wixted, & Wais (2007) study. In these 

experiments, subjects studied a list of 150 words and were tested on all target words and 

150 lure words. Study and test order were randomized across participants. The study and 

lure words were randomly selected from a pool of three-to-seven letter words. Each target 

word was presented for 2 sec during the study phase. In Experiment 1, there were 14 

subjects who produced confidence ratings on a 20-point scale. In Experiment 2, there 

were 16 subjects who gave confidence ratings on a 99-point scale. Our analysis also 

included an unpublished study in which 12 subjects produced confidence ratings on a 6-

point scale. In this study, the same list of study and test words was used as in Experiment 

1 and 2 of the Mickes et al. (2007) study. In the rest of the paper, we will refer to these 

studies by the number of unique confidence ratings available to subjects: 20, 99, and 6.  

An important property of the experiment is that all subjects were given the same 

study list of items (although not necessarily in the same order) and each individual was 

tested on the same set of items (again, not necessarily in the same order). Because the set 

of study and test items are equivalent (within each data set), we can aggregate the 

confidence judgments across individuals, exploring the performance of the aggregate as 

well as the importance of the number of possible confidence ratings.  

For each experiment, we construct the aggregate by taking the average confidence 

rating for a particular item. For example, if three subjects give confidence ratings 2, 4, 

and 6 to a particular test item (e.g., the word "dog"), we record a 4 for the average rating 
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(the rating for "dog"). In case the averaging leads to fractional ratings, the rating is 

rounded, such that the aggregate confidence is based on the same response scale available 

to subjects. We proceed with this averaging for all test items in the list. It might be useful 

to think of this aggregate confidence rating as the response from another subject in the 

experiment, whose task it is to respond with the average of all confidence ratings across 

subjects. In our analysis, we will compare the performance of the aggregate against each 

individual subject. A WoC effect is achieved in cases where the aggregate performance is 

as good as or even better than the best subjects. 

Assessing Performance with a Bayesian Signal Detection Theory Analysis 

We will be using Signal Detection Theory to assess the ability of individuals and 

the aggregate to discriminate between targets and lures. We will use the unequal variance 

SDT model as the basis for our analysis (e.g., Wixted, 2007). The prototypical unequal 

variance model is illustrated in Figure 1. It is assumed that each item at test has a memory 

strength that can be represented by a uni-dimensional continuum. The strengths for 

targets and lures are sampled from two separate distributions. Typically, the target 

distribution is assumed to have a higher mean as well as a higher variance than the lure 

variance (leading to the unequal variance model). This unequal variance accommodates 

findings from a ROC analysis of recognition memory data (e.g., Glanzer, Kim, Hilford, & 

Adams, 1999; Mickes, et al., 2007; Ratcliff, McKoon, Tindall, 1994; Ratcliff, Sheu, & 

Gronlund, 1992).  

[INSERT FIGURE 1 HERE] 
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In our analysis, we assume that the lure or noise distribution has a zero mean and 

unit variance. The target distribution has mean µ and standard deviation σ. Confidence 

ratings are produced by sampling strengths from the distribution associated with the test 

items and comparing the signal strengths to a set of criteria, c = (c1,...,cK-1), where K is the 

number of unique confidence ratings produced by an individual. Each sampled signal 

strength falls in a region defined by the fixed set of criteria and each region is associated 

with a particular confidence rating. For example, a sampled strength that falls between c1 

and c2 leads to a rating of “2”, as illustrated in Figure 1. In the model, the ability of 

individuals to separate between lure and target items is not only dependent on µ but also 

on σ. Better discrimination performance can be expected when the mean of the target 

strength distribution increases, but also when the variance of the target strength 

distribution decreases. One standard measure of discrimination ability that combines the 

mean and variance of the target distribution is da (e.g., Macmillan & Creelman, 1991; 

Wickens, 2001) where 212 σµ +=ad .  

Parameter Estimation 

To assess the performance of the aggregate subject relative to the individual 

subjects, we apply the model to each subject separately. Therefore, for each individual 

(including the aggregate), we estimate the model parameters of μ and σ for the target 

distribution, as well as the criteria values c = (c1,...,cK-1). These model parameters can 

then be used to calculate discriminability da, at the level of individual subjects. A WoC 
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effect corresponds to a much larger value of da for the aggregate relative to the individual 

subjects.  

A common approach is to estimate these parameters through ROC analyses. The 

confidence ratings are converted to a hit and false alarm rate for a given criterion cutoff 

point. By varying the criteria cutoffs, the relationship between hit and false alarm rates 

can be plotted in an ROC plot. By z-transforming the hit and false alarm rates, a z-ROC 

plot is obtained which often reveals an approximate linear relationship. The slope of the 

regression line in the z-ROC plot can be used as an estimate for 1/σ. Similarly, the 

regression parameters can be used to estimate measures of discriminability such as da. 

One drawback of this estimation procedure is that it is difficult to obtain stable estimates 

of the z-ROC regression line when subject performance levels are unusually high (as we 

will show to be the case for the aggregate). Furthermore, in the case for many criteria 

cutoff points, the hit rates can reach ceiling and the false alarm rates can be so infrequent, 

complicating the construction of the z-ROC curve. 

To achieve accurate estimates of model parameters across a wide variety of 

experimental settings, we use a Bayesian approach to estimate a SDT model for 

confidence judgments. This model is closely related to other Bayesian SDT models (Lee, 

2008a, 2008b; Rouder & Lu, 2005; Rouder et al. 2007; Morey, Pratte, & Rouder, 2008) 

that have been applied to a number of tasks including recognition memory (Dennis, Lee 

& Kinnell, 2008). For example, Morey et al. (2008) developed a comprehensive 

hierarchical modeling framework that allows for the estimation of unequal variance 

models on the basis of confidence judgments. The hierarchical model is applied 
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simultaneously to the memory judgments of all subjects and all items, allowing for the 

estimation of item and subject differences. One general advantage of the Bayesian 

approach is that it can give good estimates of SDT parameters even when the error rates 

are very low (Lee, 2008a, 2008b). Another advantage is that Bayesian estimation 

procedures for SDT models can produce confidence intervals on parameter estimates at 

the level of individual subjects. This is useful because we will compare parameter 

estimates of da of the aggregate to individuals.  

For this paper, we pursue a simple Bayesian estimation approach that allows us to 

estimate the SDT model parameters separately for each individual subject, including the 

aggregate. Our estimation procedure results in estimates of the target strength mean μ and 

variability σ, as well as the criteria c = (c1,...,cK-1), at the level of individual subjects. We 

can use these estimates to calculate discriminability da. The estimation procedure allows 

for the presence of a large number of unique ratings used by an individual subject which 

necessitates the estimation of a large number of criteria values. For each model 

parameter, we not only have point estimates available but also samples from the full 

posterior, which allows us to calculate confidence intervals (and potentially other 

measures of interest, such as correlations between model parameters) on all parameters. 

The Appendix provides more detail on how the Bayesian SDT model is defined and how 

estimation is performed.   
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Results 

The Bayesian SDT model was fit separately to each subject (including the 

aggregate) in each of the three data sets. The model fits consist of the posterior 

distribution over the three variables in the model: the mean target-strength (μ), standard 

deviation (σ), and the set of criterion values c = (c1,...,cK-1). From this, we can calculate 

corresponding distributions over other variables such as discriminability (da). We will 

focus on two measures extracted from the posterior distributions, the mean of the 

distribution as well as the 5% and 95% percentile estimates of the distribution. The latter 

estimates give us a 90% Bayesian credible interval. 

 [INSERT FIGURE 2 HERE] 

Figure 2 illustrates the key finding of this paper. The Figure shows the estimated 

means and confidence intervals of the discriminability parameters (da) for each subject, 

including the aggregate, across the three data sets. For each data set, we ordered the 

subjects by their discriminability. As can be observed, the aggregate is associated with the 

highest level of discriminability in all three data sets. This pattern is consistent with  the 

stronger version of WoC effect  in which the aggregate outperforms the best  individual 

even though the individuals are used to construct the aggregate. Note also that the 

performance levels of the aggregate are substantially higher than the next best subject. 

For the three data sets, the difference in da between the aggregate subject and the best 

subject was 1.66, 1.02, and 1.97. To put this in perspective, many experimental 

manipulations in recognition memory that result in reliable differences in discriminability 

are often associated with differences in da that are much smaller than 1.  The fact that this 
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WoC effect occurs across three separate data sets suggests that this effect is reliable and 

can be replicated with other recognition memory data sets. 

 [INSERT FIGURE 3 HERE] 

To better understand the nature of the improved discriminability of the aggregate, 

we explored the relationship of µ and σ across individuals. Figure 3 shows the 

relationship between the two model parameters. It can be observed that the aggregate is 

different from the individual subjects in two respects: the mean (µ) of the target strength 

distribution is larger and the standard deviation (σ) of the target strength distribution is, in 

comparison to most subjects, smaller. Both of these effects contribute to the superior 

discriminability for the aggregate as shown in Figure 2. Note that for the individual 

subjects (excluding the aggregate), a range of standard deviations (σ) is observed, with 

most values above 1. The average value for individual subjects is 1.37, 1.35, and 1.67, 

values that are consistent with the literature. In contrast, the standard deviations for the 

aggregate are some of the lowest values observed relative to the individual subjects and 

are close to 1 (the values are 1.00, 1.11, and, 1.01 respectively). 

 [INSERT FIGURE 4 HERE] 

To explore this closer, Figure 4 illustrates the estimated SDT models for a subset 

of subjects, including the aggregate subject (top row), best individual subject according to 

the discriminability (da) (middle row), and a typical subject with a performance level that 

was closest to the median discriminability. The figure also shows the inferred set of 

criteria values. The displayed values are the posterior means for each individual criterion 

value. It can be observed that individual subjects are characterized by unequal variance 
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SDT models, a typical result in the literature. For the aggregate, the inferred SDT model 

is much closer to an equal variance model. 

   It should be noted that this illustration is produced on the basis of the mean 

parameter estimates (the mean of the posterior). Figure 2 shows that there is considerable 

uncertainty associated with the estimates for the standard deviations. For the aggregate 

subject, the 5% and 95% percentile estimates of the confidence interval range from much 

smaller as well as much higher values of σ than 1. Therefore, even though the mean 

parameter estimates of σ for the aggregate (used to produce Figure 3) suggest that the 

behavior of this subject is more consistent with an equal variance model, caution should 

be taken in interpreting the particular point estimate of σ found with our estimation 

procedure.  

Discussion and Conclusion 

Across three separate studies, we have demonstrated that an aggregate of memory 

judgments is associated with a performance level that is superior to all of the individual 

subjects. The aggregate is based on a simple average of the confidence ratings of a 

particular test item across subjects. Generally, the result of averaging across subjects is 

that factors that contribute to subject variability are averaged out. One source of 

variability might be encoding factors that add to the variability in the internal memory 

representations for studied items (e.g., Wixted, 2007; DeCarlo, 2002). Attentional 

fluctuations might be one component of encoding variability -- during the study phase, 

subjects' attention might wander such that some items are better encoded than others. If 
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attentional fluctuations are uncorrelated across subjects and therefore subjects pay 

differential amounts of attention to different study trials, this source of variability can be 

diminished by averaging the decisions (for the same test item) across subjects.  

It is important to note that although we used a particular SDT model to evaluate 

the effects of aggregation, the goal of this research is not to use the SDT model as a 

model that describes the underlying processes that give rise to a memory judgment. We 

merely explored the consequences of averaging confidence ratings across subjects and 

used the SDT model as a measurement tool. However, if we did expand the scope of the 

Signal Detection approach and considered it as a model for recognition memory 

judgments, there would be some challenges in explaining the experimental results. For 

example, the process of averaging out encoding noise would only affect target items in 

the SDT model. We did in fact observe a decrease in the variability of target strength (σ) 

of the aggregate. However, we also observed a change in target strength mean (µ). Note 

that because of particular parametrization of the SDT model, the variance of the noise 

distribution was fixed at 1. Therefore, a decrease in the noise variance translates into an 

increase in the target strength mean (µ). At present, it is not obvious in a Signal Detection 

framework how to explain the increase in mean (µ) or equivalent reduction in variance 

for the lures. It is possible that other sources of noise in recognition memory contributed 

as well. For example, note that in the particular recognition memory experiments we 

analyzed, both the test and study items were randomly ordered between individuals. 

Therefore, it is possible that some of our aggregation benefits are due to averaging out 
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recency and primacy effects as well as sequential effects among test items and overall 

drifts in attention due to fatigue.  

Many models of recognition memory might make similar predictions regarding 

the effects of aggregation. For example, one popular alternative account to SDT is 

provided by dual process models (Yonelinas, 1994). In this account, performance is a 

mixture of two processes: familiarity and recollection. The familiarity process is modeled 

as an equal variance SDT model and recollection is modeled as high-threshold decision 

process -- an item is recollected if it occurred on the study list with some probability. If in 

this model, the recollection process is uncorrelated across subjects such that for the same 

item, some subjects are able to recollect the item whereas other subjects fail, we can 

expect a similar effect of averaging–the fluctuations in recollection should average out 

and could emerge as a decrease in target strength variability. 

Further experiments and modeling will need to be done to better distinguish 

between the underlying causes of the WoC effect. One direction for research is to 

investigate the WoC effect with process models such as SAM (Raaijmakers & Shiffrin, 

1980, 1981) and REM (Shiffrin & Steyvers, 1997). Typically, these models do not 

distinguish between encoding and retrieval effects and are not specific about the nature of 

subject differences, but the models could be extended to incorporate such differences. 

The models could be designed to explain the size of the WoC effect as a function of 

experimental factors such as the variability of the study list, number of subjects, the 

distribution of memory performance across subjects, etc. Overall, an important direction 
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for future research is to use the WoC effect as an additional empirical finding to constrain 

memory models.  
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Appendix 

In this section, we provide a more detailed description of the SDT model for 

ratings data. The distribution of memory strengths are modeled by Normal (Gaussian) 

distributions with the lure distribution centered at 0 and unit (1) variance. The target 

strengths have mean µ and standard deviation σ. For each trial j=(1,...,N) in the 

experiment, let the variable xj encode whether the trial is a target (xj=1) or lure (xj =0). Let 

the variable yj represent the confidence rating produced by the subject on trial j. We 

assume that the subject produces K unique confidence ratings. It is convenient to map 

these confidence ratings to consecutive integer values 1 to K.  In the model, confidence 

ratings are generated by sampling strengths from the target or lure distribution and 

comparing the sampled value against a set of K-1 criterion values, c = (c1,...,cK-1). For 

convenience, we also assume two additional fixed criterion values c0 =-∞ and cK =+∞. 

The probability of a particular confidence rating is then given by: 

( ) ( ) ( )
( ) ( )
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Therefore, in this model, the variables yj and xj are observed outcomes and µ, σ, 

and c are latent variables. We assume a Normal prior on µ with precision τ, a uniform 

prior on σ with values between [0,..., σmax] and a Normal prior with precision τc on each 

criterion value: 

( )τµ 0,Norµal~ , ( )max0,Uniform~ σσ , ( )c0,Normal~ τkc  
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We set the hyperparameters of these priors to the following: τ=0.05, σmax=3, and 

τc=0.05. There are a number of alternative priors for the standard deviation that could be 

used such as the inverse gamma (e.g., see Jackman, 2009). Because it has been argued 

that one should be careful using the inverse gamma (e.g., Gelman, 2006), we opted for 

the uniform prior. We also found that the uniform prior gave good performance in 

parameter recovery studies. 

Note that because we used a Normal prior on each individual criterion, the criteria 

are not ordered in any particular way. However, we assume that the criterion values are 

ordered at the time a confidence rating is produced from the model—this greatly 

simplifies the inference procedure especially when a large number of criterion values 

need to be inferred. 

Parameter estimation was performed by an MCMC procedure written in Matlab. 

The procedure results in samples from the posterior distribution over µt, σt, and c. From 

these samples, we can calculate the posterior mean and use this as a point estimate. We 

can also calculate credible intervals on these variables to assess the uncertainty associated 

with the parameter estimate. 

In the MCMC procedure, each chain was initialized with µ =1, σ =1. The criteria 

were initialized by an equal spacing between -1 and +2, which spaces the criteria between 

one standard deviation below the lure mean and one standard deviation above the target 

mean. In a Metropolis-Hastings procedure, a combination of single-variable proposals as 

well as block proposals was used. In the simulations described in this research, each 
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chain was run for 2500 iterations and samples were taken after a burnin of 1500 

iterations. A total of 7 chains were used. 
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Figure Captions 

 

Figure 1. The signal detection theory model for ratings data. 

 

Figure 2. Estimated discrimination ability (da) of individuals and the aggregate. Error 

bars show the 90% confidence intervals for the parameter estimates and da values are 

ordered by magnitude. 

 

Figure 3. Estimated mean (µt) and standard deviations (σt) for the target distribution for 

each individual and the aggregate. Error bars show the 90% Bayesian credible interval of 

the parameter estimates. 

 

Figure 4. The SDT models estimated for the aggregate, best and median individuals. 

Dashed lines indicate the estimated criteria settings.  
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