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Rational Analysis as a Link between 
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Rational analysis has been successful in explaining a variety of different aspects of
human cognition (Anderson, 1990; Chater & Oaksford, 1999; Marr, 1982; Oaksford &
Chater, 1998). The explanations provided by rational analysis have two properties:
they emphasize the connection between behavior and the structure of the environ-
ment, and they focus on the abstract computational problems being solved. These
properties provide the opportunity to recognize connections between human cogni-
tion and other systems that solve the same computational problems, with the poten-
tial both to provide new insights into human cognition and to allow us to develop
better systems for solving those problems. In particular, we should expect to find a
correspondence between human cognition and systems that are successful at solving
the same computational problems in a similar environment. In this chapter, we argue
that such a correspondence exists between human memory and internet search, and
show that this correspondence leads to both better models of human cognition, and
better methods for searching the web.

Anderson (1990) and Anderson and Schooler (1991, 2000) have shown that many
findings in the memory literature related to recognition and recall of lists of words
can be understood by considering the computational problem of assessing the rele-
vance of an item in memory to environmental cues. They showed a close correspon-
dence between memory retrieval for lists of words and statistical patterns of
occurrence of words in large databases of text. Similarly, other computational models
for memory (Shiffrin & Steyvers, 1997), association (Griffiths et al., 2007), reasoning
(Oaksford & Chater, 1994), prediction (Griffiths & Tenenbaum, 2006) and causal
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induction (Anderson, 1990; Griffiths & Tenenbaum, 2005; Steyvers et al., 2003) have
shown how our cognitive system is remarkably well adapted to our environment.

Anderson’s (1990) analysis of memory also showed for the first time that there are
fundamental connections between research on memory and information retrieval
systems. Because information retrieval systems and human memory often address
similar computational problems, insights gained from information retrieval systems
can be helpful in understanding human memory. For example, one component of
Anderson’s first rational memory model involved calculating the predictive probabil-
ity that items will re-occur given their historical pattern of occurrences. The solution
to this problem was based on information retrieval models developed for library and
file systems (Burrell, 1980; Salton & McGill, 1983). Just as it is useful to know the
probability that a book will be needed in order to make it available in short-term or
off-site storage, it is useful to know whether a fact is likely to be needed in the future
when storing it in memory.

Modern information retrieval research provides new tools for modeling the envi-
ronment in which human memory operates, and new systems to which human mem-
ory can be compared. An important innovation has been the introduction of statistical
language models to capture the statistics of the regularities that occur in natural lan-
guage (e.g., Croft & Lafferty, 2003; Ponte & Croft, 1998). The goal of language model-
ing is to exploit these regularities in developing effective systems to assess the
relevance of documents to queries. Probabilistic topic models (e.g., Blei et al., 2003;
Griffiths & Steyvers, 2004; Griffiths et al., 2007; Hoffman, 1999; Steyvers & Griffiths,
2006; Steyvers et al., 2006) are a class of statistical language models that automatically
infer a set of topics from a large collection of documents. These models allow each
document to be expressed as a mixture of topics, approximating the semantic themes
present in those documents. Such topic models can improve information retrieval by
matching queries to documents at a semantic level (Blei et al., 2003; Chemudugunta
et al., 2007; Hoffman, 1999). Another important problem in information retrieval is
dealing with the enormous volume of data available on the world wide web. For any
query, there might be a very large number of relevant web pages and the task of mod-
ern search engines is to design effective algorithms for ranking the importance of
webpages. A major innovation has been the PageRank algorithm, which is part of the
Google search engine (Brin & Page, 1998). This algorithm ranks web pages by com-
puting their relative importance from the links between pages.

In this chapter, we use these innovations in information retrieval as a way to explore
the connections between research on human memory and information retrieval sys-
tems. We show how PageRank can be used to predict performance in a fluency task,
where participants name the first word that comes to mind in response to a letter cue.
We also give an example of how cognitive research can help information retrieval
research by formalizing theories of knowledge and memory organization that have
been proposed by cognitive psychologists. We show how a memory model that distin-
guishes between the representation of gist and verbatim information can not only
explain some findings in the memory literature but also helps in formulating new lan-
guage models to support accurate information retrieval.
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A Probabilistic Approach to Information Retrieval
Search engines and human memory are both solutions to challenging retrieval prob-
lems. For a search engine, the retrieval problem is finding the set of documents that
are most relevant to a user query. In human memory, the retrieval problem can be
construed in terms of assessing the relevance of items stored in the mind to a memory
probe (either internally generated or based on environmental cues). The common
structure of these problems suggests a simple analogy between human memory and
computer-based information retrieval: items stored in memory are analogous to doc-
uments available in a database of text (such as the world-wide web) and the memory
probe is analogous to a user query. In this section, we explore how retrieval problems
of this kind can be solved using statistical inference, following Anderson (1990).

Using notation appropriate to information retrieval, the problem is to assess
P(di|q), the probability that a document di is relevant given a query q. The query can
be a (new) set of words produced by a user or it can be an existing document from the
collection. In the latter case, the task is to find documents similar to the given docu-
ment. In the context of memory retrieval, the term q corresponds to the memory
probe and P(di|q) is the conditional probability that item di in memory is relevant to
the memory probe. Let us assume that there are D documents in the database and the
goal is to retrieve some set of the most relevant documents as assessed by P(di|q). This
probability can be computed using Bayes’ rule, with

P(di|q) α P(q|di)P(di) (1)

where P(di) gives the prior probability that an item will be relevant (before any query
or cue is issued), and P(q|di) is the probability of observing the query if we assume
that item di was the item that was needed, also known as the ‘likelihood.’

The prior probability, P(di), can be used to capture the idea that not all items are
equally important, with some items being more likely to be the target of retrieval. In
search engines, this prior probability is often computed from the link structure
between documents. For example, the PageRank algorithm assumes that if a docu-
ment is linked to by many other important documents, then it is likely to be impor-
tant. The importance of a document, also known as its PageRank, can be
conceptualized as the prior probability of a document being relevant to any particular
query. We will return to this idea in the next section when discussing the PageRank
algorithm and its application to memory retrieval. In the rational memory model
(Anderson, 1990; Anderson & Schooler, 1991, 2000), the prior probability of an item
in memory being important was computed from its historical usage pattern, under
the assumption that if items were recently accessed, they are likely to be accessed
again. Anderson showed that this ‘history’ factor can explain the effects of spacing and
repetition of items on retention.

The likelihood, P(q|di), reflects how well a particular document matches a search query
or cue. In the context of information retrieval, this can be evaluated using a generative
model that specifies how the words in the query can be generated from a statistical
language model that is derived separately for each document di. For example, proba-
bilistic topic models (Blei et al. 2003; Griffiths & Steyvers, 2004; Griffiths et al., 2007;
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Hoffman, 1999; Steyvers & Griffiths, 2006; Steyvers et al., 2006) assume that each doc-
ument can be described by a mixture of topics where the topics are derived from an
analysis of word occurrences in a large database of text – relevant documents have
topic distributions that are likely to have generated the set of words associated with
the query. We will return to this idea in a later section. In the rational memory model
(Anderson, 1990; Anderson & Schooler, 1991, 2000), this likelihood term was referred
to as the ‘context’ factor, where the context represented the information available at
test to probe memory. This factor was evaluated using a simple generative model for
the properties of items stored in memory.

Equation (1) forms part of a simple schema for solving retrieval problems: com-
pute the posterior probability that each item is relevant, combining its prior probabil-
ity of being relevant with a likelihood reflecting its relationship to the query or cue,
and then return the items with highest posterior probability. This schema can be used
to solve the retrieval problems faced both by internet search engines and by human
memory, suggesting that it may be possible to find parallels between the two. We
explore this possibility in the next two sections, focusing on the role of the prior in the
first, and then turning to the likelihood in the second.

Google and the Mind: Predicting Fluency with PageRank
Many search engines produce a response to a query in two stages, first identifying the
set of webpages that contain the words in the query, and then ordering those pages
according to the pre-computed output of a ranking algorithm. These two stages can
be mapped onto the two parts of the right hand side of (1). The first stage corresponds
to an assumption that the likelihood, P(q|di), has some constant value for any page
containing the query and is zero otherwise. This guarantees that only pages contain-
ing the query will have non-zero posterior probabilities, and means that the posterior
probability of each page containing the query is directly proportional to its prior
probability. The second stage, ordering the pages, thus reveals the prior probability
assigned to each page: if the solution to the retrieval problem is to return the pages
with highest posterior probability, and the posterior probability of the candidate
pages is proportional to their prior probability, then a ranking algorithm implicitly
assigns a prior probability to each page.

The correspondence between ranking algorithms and priors means that the prior
probability that a webpage will be relevant to a user plays a central role in internet
search. This raises a simple question: how should such prior probabilities be com-
puted? While the details of the ranking algorithms used by commercial search engines
are proprietary, the basic principles behind the PageRank algorithm used in the
Google search engine have been published (Brin & Page, 1998). The algorithm makes
use of two key ideas: first, that links between webpages provide information about
their importance (and hence their probability of being the webpage that a user might
seek), and second, that the relationship between importance and linking is recursive.

In addition to carrying information about different topics, webpages contain sets of
links connecting them to other pages, as shown in Fig. 15.1(a). Given an ordered set of
n pages, we can summarize the links between them with a n × n matrix L, where Lij
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indicates that a link exists from webpage j to webpage i (the adjacency matrix of the
underlying graph). This matrix provides a way to define the importance of a webpage.
If we assume that links are chosen in such a way that higher importance pages receive
more links, then the number of links that a webpage receives (in graph-theoretic
terms, its ‘in-degree’) could be used as a simple index of its importance. Using the 
n-dimensional vector p to summarize the importance of our n webpages, this is the
assumption that .

PageRank goes beyond this simple measure of the importance of a webpage by
observing that a link from a highly important webpage should be a better indicator of
importance than a link from a webpage with little importance. Under such a view,
a highly important webpage is a webpage that receives many links from other highly
important webpages. We might thus imagine importance as flowing along the links 
of the graph shown in Fig. 15.1(a). If we assume that each webpage distributes its
importance uniformly over its outgoing links, then we can express the proportion of
the importance of each webpage traveling along each link using a matrix M, where

. The idea that highly important webpages receive links from
highly important webpages implies a 0recursive definition of importance, and the
notion of importance being divided uniformly over outgoing links gives the equation

p = Mp (2)

which identifies p as the eigenvector of the matrix M with the greatest eigenvalue. The
PageRank algorithm computes the importance of webpages by finding a vector p that
satisfies this equation (ignoring a slight modification to take into account the possi-
bility that a sequence of webpages forms a closed loop).

While the recursive definition of PageRank makes clear its assumptions about how
linking affects importance, some intuitions about the factors influencing the PageRank
of a page can be gained by considering an alternative route to the same formal result

M L Lij ij kjk n= ∑ =/ ..1

p Li ijj n= ∑ =1..
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Fig. 15.1. (a) A set of webpages form a directed graph, where the nodes are pages and
the edges are links. (b) Words in a semantic network also form a directed graph where
the edges represent associative connections between words.
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(Brin & Page, 1998). We can define a random walk on the world wide web by assum-
ing that a user starts at a randomly chosen web page, and then keeps clicking on links
chosen uniformly at random from the set of links on the page reached after every
click. This random walk is a Markov chain, and standard results in the mathematical
theory of Markov chains indicate that, in the long run, the probability that this user
lands on a particular webpage will be proportional to its PageRank.

Applying PageRank to Semantic Networks
The idea that that the pieces of information that are the targets of retrieval are 
connected to one another is not exclusive to web pages – it also appears in cognitive
psychology. In an associative semantic network, such as that shown in Fig. 15.1(b), a
set of words or concepts are represented as nodes connected by edges that indicate
pairwise associations (e.g., Collins & Loftus, 1975). If we take this to be the represen-
tation of the knowledge on which retrieval processes operate, human memory and
search engines thus address a similar computational problem: identifying the items
relevant to a query from a large network of interconnected pieces of information. The
empirical success of the Google search engine indicates that PageRank constitutes an
effective solution to this problem. This raises the tantalizing possibility that the link
structure of semantic networks might provide a guide to the relative importance of
pieces of information, or, equivalently, an estimate of the prior probability with which
a particular word or concept might be needed. In particular, it suggests that by com-
puting the PageRank of the nodes in a semantic network, we might be able to predict
the prominence of the corresponding words and concepts in memory.

In order to explore the possibility of a correspondence between PageRank and
human memory, we constructed a task that was designed to closely parallel the formal
structure of internet search (Griffiths et al. in press). Specifically, we wanted a task in
which people had to produce items from memory that matched some query, with the
hope that in doing so their responses would reflect the prior probability assigned to
each item being needed. To this end, we showed participants a letter of the alphabet
(the query) and asked them to say the first word that came into their head that begins
with that letter (the relevant items). In the literature on human memory, such a task is
used to measure fluency – the ease with which people retrieve different facts from
memory, which can useful to diagnose neuropsychological and psychiatric disorders
(e.g., Lezak, 1995). Each subject in the experiment gave fluency responses for 21 let-
ters of the alphabet (excluding low frequency letters). The results were pooled across
fifty subjects and responses that were given by only a single subject were excluded.
Table 1 shows a sample of responses given for the letter ‘d.’

Our goal was to determine whether people’s responses could be predicted by
PageRank computed from a semantic network constructed from word association
norms collected by Nelson et al. (1998). These norms were collected by asking partic-
ipants to name the first word that came into their head when presented with a cue in
the form of another word. The norms list the associates that people produced for
5,018 words, and were collected in such a way that each word named at least twice as
an associate also appears as a cue. From these norms, we constructed a directed graph
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in which each word was represented as a node, and an edge was introduced from each
word to its associates. We then applied the PageRank algorithm to this graph.

In order to evaluate the performance of PageRank, we used several alternative pre-
dictors as controls. In one control, we compared the performance of PageRank to
more conventional frequency-based measures, based on the Kucera–Francis (KF)
word frequency (Kucera & Francis, 1967). Word frequency is widely used as a proxy
for fluency in word recognition studies (e.g., Balota & Spieler, 1999; Plaut, et al., 1996;
Seidenberg & McClelland, 1989; see also Adelman et al., 2006) and to set the prior
probability of items in rational models of memory (Anderson, 1990). Another control
was a semantic network measure that was not based on a recursive definition of
importance: the in-degree of each node in the semantic network. This is the fre-
quency with which the word was named as a response in the word association norms.
The in-degree of nodes in an associative semantic network has previously been used
as a predictor in a number of episodic memory studies (McEvoy et al., 1999; Nelson 
et al., 2005). In-degree differs from PageRank only in the assumption that all incom-
ing links should be given equal weight when evaluating the importance of an item,
rather than being assigned weights based on the importance of the items from which
they originate.

For each letter of the alphabet, we identified all words contained in the norms that
began with that letter, and then ordered the words by each of the three predictors,
assigning a rank of 1 to the highest-scoring word and increasing rank as the predictor
decreased. A sample of the rankings for the letter ‘d’ produced by PageRank, KF fre-
quency and in-degree is shown in Table 15.1. To compare performance of these three
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Table 15.1. Most frequent responses in the fluency task for the letter ‘d’ and the rank-
ings given by PageRank, In-degree and KF frequency.

Human responses PageRank In-degree KF Frequency

DOG (19) DOG (19) DOG (19) DO (2)

DAD (16) DARK (3) DEATH (1) DOWN (4)

DOOR (5) DRINK (1) DRINK (1) DAY (2)

DOWN (4) DOWN (4) DIRTY (0) DEVELOPMENT (0)

DARK (3) DEATH (1) DARK (3) DONE (1)

DUMB (3) DOOR (5) DOWN (4) DIFFERENT (0)

DAY (2) DAY (2) DIRT (0) DOOR (5)

DEVIL (2) DIRTY (0) DEAD (0) DEATH (1)

DINOSAUR (2) DIRTY (0) DANCE (0) DEPARTMENT (0)

DO (2) DEAD (0) DANGER (1) DARK (3)

Note: The numbers between parentheses are frequencies in human responses. All responses are restricted
to the words in the word association norms by Nelson et al. (1998).
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predictors, we compared the median ranks. The median rank assigned by PageRank was
13, as compared to 17 for in-degree and 43 for word frequency, reflecting a statistically
significant improvement in predictive performance for PageRank over the controls.

The results of this experiment indicate that PageRank, computed from a semantic
network, is a good predictor of human responses in a fluency task. These results suggest
that the PageRank of a word could be used in the place of more conventional frequency-
based measures when designing or modeling memory experiments, and support our
argument that the shared problem faced by human memory and internet search
engines might result in similar solutions. One way to explain the advantage of PageRank
might be to return to the idea of random walks on a graph. As mentioned above, a ran-
dom internet surfer will select webpages with probabilities proportional to their
PageRank. For semantic networks, the PageRank of a word is proportional to the prob-
ability of selecting that word if participants started at a random word in the semantic
network and proceeded to search their memories by following associative links until
they found a word that matched the query (see Griffiths et al., in press, for details).

The fluency task focused on one important component in retrieval, the prominence
of different words in human memory, as should be reflected in the prior P(di). By
using a letter matching task, for which the word response can either be true or false,
we purposefully minimized the influence of the P(q|di) likelihood term in (1).
However, in more typical retrieval tasks, queries can relate in many ways to items
stored in memory. In addition to the form-based matching that was emphasized in the
letter-matching task, many retrieval tasks require content-based matching where the
query and items in memory are matched at a conceptual level. In the next section, we
consider the computational problem of assessing P(q|di) using both form-based and
content-based matching strategies.

Topic Models to extract Verbatim and Gist information
In both memory and information retrieval research, one of the main problems is to
specify how relevant information can be retrieved in the context of a user query or
environmental cues. Memory researchers have proposed that the memory system
assesses relevance at two levels of generality: verbatim and gist (Brainerd et al., 1999;
Brainerd et al., 2002; Mandler, 1980). The gist-level representation is based on a high-
level semantic abstraction of the item to be stored, whether it is a sentence, conversation
or document. This gist level information can be used to disambiguate words or
retrieve semantically relevant concepts during reading (Ericsson & Kintsch, 1995;
Kintsch, 1988; Potter, 1993). At the verbatim level, information is stored and retrieved
relatively closely to the raw physical form in which it was received and might include
the specific choice of words and physical characteristics related to font and voice
information. While it is probably an oversimplification to propose that the memory
system utilizes only two levels of abstraction to encode and retrieve information, the
distinction between gist and verbatim information has been useful to understand, at
least at a conceptual level, a variety of findings in memory and language research.
However, these models leave open the question of exactly how verbatim and gist level
information is encoded in memory.
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In information retrieval, the relevance of a query to documents can be assessed
using a variety of techniques that focus on different levels of abstraction of the infor-
mation contained in the document and query. The simplest keyword matching strate-
gies do not attempt any abstraction and focus on the exact word matches between
documents and queries. A widely used keyword-matching retrieval technique is based
is on the term-frequency, inverse-document-frequency (TF-IDF) method (Salton &
McGill, 1983). The relevance of a document is related to the number of exact word
matches and inversely weighted by the number of times the query terms appear in
documents across the database. One problem of this technique is that it can be overly
specific. It can give low relevance scores to documents that contain words semanti-
cally related to the query. To improve the generalization in retrieval, dimensionality-
reduction techniques have been developed to extract a lower-dimensional description
for documents that utilizes the statistical regularities of words in natural language.
This has led to techniques such as Latent Semantic Indexing (LSI; Deerwester et al.,
1990; Landauer & Dumais, 1997), and probabilistic analogues such as Probabilistic
Latent Semantic Indexing (PLSI; Hoffman, 1999) and Latent Dirichlet Allocation
(LDA; Blei et al., 2003; Griffiths & Steyvers, 2004). The idea is that queries and docu-
ments can be matched in the lower-dimensional space, which often leads to higher-
level semantic matches. However, in come cases these dimensionality-reduction
techniques lead to over-generalization. Because the matching of query and document
takes place entirely in the lower-dimensional ‘semantic’ space, all details about the
individual words in query and documents are lost in this comparison. It is possible,
however, that some of the individual words in the query or document were essential
to assess relevance.

The difficult issue of deciding on an appropriate level of generalization to assess 
relevance forms an important parallel between problems studied by memory and
information retrieval researchers. In the context of human memory, should informa-
tion in memory be relevant only when it exactly matches the environmental cues
(using verbatim information) or should the retrieval process allow some generaliza-
tion in the retrieval process (using gist)? Similarly, in information retrieval, should the
relevance of documents to queries be assessed more on the level of exact matches
(e.g., keyword matching strategies) or should there be some attempt to extract a more
general representation of documents and queries to allow for conceptual level
matches?

In this section, we consider the computational problem of balancing the trade-
off between specificity and generality. We will start with a description of probabilistic
topic models that focus on extracting only gist-based descriptions for each document
using low-dimensional semantic representations. We then introduce an extension 
of these models, the dual-route topic model that augments these gist-based represen-
tations with document specific representations based on specific keyword occur-
rences in documents. We illustrate how this model can be used to explain several
findings in the memory literature such as false memory and semantic isolation effects.
We will also show how this model leads to improved performance in information
retrieval.
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Topic Models
Topic models such as PLSI and LDA are based upon the idea that documents are mix-
tures of topics, where a topic is a probability distribution over words. A topic model is
a generative model for documents: it specifies a simple probabilistic procedure by
which documents can be generated. In a standard topic model, to make a new docu-
ment, one chooses a distribution over topics. Then, for each word in that document,
one chooses a topic at random according to this distribution, and draws a word from
that topic. To introduce notation, we will write P(z|d) for the multinomial distribu-
tion over topics given document d, and P(w|z = t) for the multinomial distribution
over words w given a specific topic t. In a standard topic model, the distribution of
words in document d can be decomposed as a finite mixture over T topics as follows:

(3)

In this model, the P(w|z = t) term indicates which words are important for topic t and
P(z = t|d) gives the importance of a particular topic in document d, which can be used
as a representation of the content or gist of that document. In the LDA model, these
multinomial distributions have associated priors, chosen to be Dirichlet distributions.
The hyperparameters of the Dirichlet distributions indicate which kinds of multino-
mial distributions are likely, and control the degree of smoothing of the word counts
in topics and topic counts in documents.

Given the observed words in a set of documents in a large corpus, we would like to
know what set of topics is most likely to have generated the data. This involves infer-
ring the probability distribution over words associated with each topic, P(w|z), and
the distribution over topics for each document, P(z|d). Several statistical inference
techniques have been developed to infer these distributions from large text corpora.
The simulations discussed in this chapter utilized an efficient Gibbs sampling tech-
nique based on Markov chain Monte Carlo (Griffiths & Steyvers, 2004). We will not
discuss the details of this procedure but we refer the interested reader to an introduc-
tory treatment by Steyvers and Griffiths (2006).

As an example of the topics that can be extracted with the topic model, we applied
the topic model with T = 1,500 topics to the TASA corpus, a collection of over 37,000
text passages from educational materials (e.g., language & arts, social studies, health,
sciences) collected by Touchstone Applied Science Associates (see Landauer et al.,
1998). Several topic-word distributions P(w|z = t) are illustrated in Fig. 15.2. The figure
shows the nine words that have the highest probability under each topic. The particu-
lar topics shown in the figure relate to various themes in agriculture and biology.

In the standard topic model, each document is described by a distribution over top-
ics which represent the gist of a document but information about particular words is
lost. For example, suppose we need to encode the following list (i.e., document) of words:
PEAS, CARROTS, BEANS, SPINACH, LETTUCE, TOMATOES, CORN, CABBAGE,
and SQUASH. If we encode this list as a distribution over 1,500 topics, only a few top-
ics would receive high probability. For example, one possible distribution for this list

P w d P w z t P z t d
t

T

| ( | ) ( | )( ) = = =
=
∑

1
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would be to give probability 0.77, 0.17, and 0.06 to topics 32, 543, and 1,253, respec-
tively, and zero probability to all other topics. This encoding would capture the idea
that the list of words contained semantic themes related to vegetables and farming.
However, this encoding would not allow accurate reconstruction of the specific words
that were presented. If we use (3) to reconstruct the list with these topic weights,
words that were not presented on the list, such as VEGETABLES and POTATO might
receive relatively higher probability. While it is a desirable feature of the model to gen-
eralize beyond the specific words on a list, what is needed is a model-based encoding
that tempers this generalization with a representation for the specific words present
on the list.

Dual Route Topic Models
We developed the dual-route topic model to capture both the specific and general
aspects of documents. This model is an extension of the LDA model that allows words
in documents to be modeled as either originating from general topics, or from a dis-
tribution over words that is specific for that document. We will refer to this distribu-
tion as the special word distribution. An important assumption in the model is that
each word originates from a single route only, but there can be uncertainty about the
route allocation. Each word token in a document has an associated random variable x,
taking value x = 0 if the word w is generated via the topic route, and value x = 1 if the
word is generated as a special-word route. The variable x acts as a switch. If x = 0,
the standard topic mechanism is used to generate the word: a topic is sampled from
the topic distribution associated with the document and a word is sampled from the
topic. On the other hand, if x = 1, words are sampled from the special-word distribu-
tion specific to the document. We model this as multinomial with a symmetric
Dirichlet prior. The switch variable x is sampled from a document-specific Bernoulli
variable λ with a symmetric Beta prior. The random variable λ determines the pro-
portion of words associated with the special word and topic route within a document.
The model specifies the following probability distribution over words in a document:
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Fig. 15.2. Example topic distributions extracted from the TASA corpus using a topic
model with 1,500 topics. For each topic, the nine most likely words are shown in order
of probability.
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where P′(w|d) is the special word distribution associated with document d. Note that
the model explains word occurrences as a mixture of two routes, the topic model
route weighted by P(x = 0|d) and the special word route weighted by P(x = 1|d). If
P(x = 1|d) = 0, the model is identical to the LDA model in (3). On the other hand, if
P(x = 1|d) =1, the model is identical to a unigram word model. By mixing these two
components, the model allows a flexible balance between modeling general and spe-
cific aspects of documents. The latent variables in the model include the terms P(z|d)
and P(w|z) associated with the topic model and new terms P(x|d) and P′(w|d). As
with standard topic models, Gibbs sampling can be used to infer these distributions
(see Chemudugunta et al., 2007, for details).

Explaining Semantic Isolation Effects
The distinction between verbatim and gist level information can be useful to under-
stand a number of findings in the memory literature, such as the semantic isolation
effect. This effect is related to the classic finding by Von Restorff (1933) that informa-
tion that stands out from the context is better remembered. Von Restorff effects can
be based on physical or semantic characteristics, by presenting a word on a list in a
unique color or font or drawing a word from a novel semantic category. Semantic iso-
lation effects occur when words that semantically stand out from the list are better
remembered.

Early explanations of the isolation effect focused on the role of attention (Jenkins,
1948) and surprise (Green, 1956). In this account, the unexpected isolated word leads
to an increase in attention which enhances the encoding of the item. However, studies
have shown that the isolate is not (always) rehearsed or attended more (e.g. Dunlosky
et al., 2000). Also, this account cannot explain the continued presence of isolate effects
even when the isolate is presented as the first word in the list. In this case, no expecta-
tions about the list contents can have been built up yet when processing the first item.
An alternative account focuses on the role of memory organization with the idea that
the isolate is encoded in qualitatively different ways compared to the background
items (Bruce & Gaines, 1976; Fabiani & Donchin, 1995). The dual route memory
model allows a computational account for the semantic isolation consistent with this
proposal. In the model, the memory system utilizes qualitatively different encoding
resources to encode isolate and background items. The topic route stores the gist of
the list and the special-words route stores specific words such as the isolate word.

To illustrate the dual-route topic approach, we applied the model to experimental
data gathered by Hunt and Lamb (2001). They compared recall performance for two
lists of words, illustrated in Fig. 15.3(a). The outlier lists consisted of nine words from
one category (e.g., vegetables) and one target word (e.g., HAMMER) from another
category, whereas the control list embedded the target word in a background context
that is semantically consistent. As shown in Fig. 15.3(b), Hunt and Lamb found that
recall for the target word is much higher in the isolate condition, illustrating the
semantic isolation effect. The finding that the target item is recalled about as well as
the background items in the control list shows that this isolation effect needs to be
explained by the difference in context, and not by particular item characteristics (e.g.,
orthography or word frequency).

RATIONAL ANALYSIS AS A LINK BETWEEN HUMAN MEMORY AND INFORMATION RETRIEVAL338

15-Charter&Oaksford-Chap15  11/3/07  5:27 PM  Page 338



TOPIC MODELS TO EXTRACT VERBATIM AND GIST INFORMATION 339

OUTLIER LIST
PEAS

CARROTS 
BEANS

SPINACH
LETTUCE 
HAMMER 

TOMATOES 
CORN

CABBAGE 
SQUASH 

CONTROL LIST
SAW

SCREW 
CHISEL
DRILL

SANDPAPER
HAMMER

NAILS
BENCH
RULER
ANVIL

P
ro

b.
 o

f R
ec

al
l

0.0

0.2

0.4

0.6

0.8

1.0
Target
Col 12 

DATA PREDICTED

outlier list pure listoutlier list pure list

R
et

rie
va

l P
ro

ba
bi

lit
y

0.00

0.01

0.02

0.03

0.04

0.05
Target
Background

(a)

(b) (c)

Fig. 15.3. (a) Two example lists used in semantic isolation experiments by Hunt and
Lamb (2001). The outlier list has one target word (HAMMER), which is semantically iso-
lated from the background. The control list uses the same target word in a semantically
congruous background. (b) Data from Experiment 1 of Hunt and Lamb (2001) showing
the semantic isolation effect (c). The predictions of the dual-route topic model.

We encoded the outlier and control lists with the dual-route topic model. To sim-
plify the simulations, we used the same 1,500 topics illustrated in Fig. 15.2 that were
derived by the standard topic model. We therefore inferred the special word distribu-
tion and topic and route weights for this list while holding fixed the 1,500 topics. We
also made one change to the model. Instead of using a Dirichlet prior for the multin-
omial of the special-word distribution that has a single hyperparameter for all words,
we used a prior with hyperparameter values that were higher for words that are pres-
ent on the list than for words that were absent (0.001 and 0.0001, respectively). This
change forces the model to put more a priori weight on the words that are part of the
study list.

Figure 15.4 shows the model encoding for the isolate list shown in Fig. 15.3(a). The
most likely topic is the vegetable topic, with smaller probability going toward the
farming and tools topics, reflecting the distribution of semantic themes in the list.
The special word distribution gives relatively high probability to the word HAMMER.
This happens because the model encodes words either through the topic or special
word route and the probability of assigning a word to a route depends on how well
each route can explain the occurrence of that word in the context of other list words.
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Because most of the vegetable-related words can be explained by the topic route, these
words will receive lower probability from the special-word route. On the other hand,
the word HAMMER, which is semantically isolated from the vegetable words cannot
be explained well by the topic route, which makes it more likely to be associated with
the special-word route. To simulate recall, (4) can be applied to calculate the posterior
predictive probability over the whole vocabulary (26,000+ words) using the model
encoding. We will refer to this as the retrieval distribution. The retrieval distribution
shown in Figure 4 shows an advantage for the isolate word. This occurs because the
special-word distribution concentrates probability on the isolate word, which is pre-
served in the reconstruction using both routes (the topic route distributes probability
over all words semantically related to the list, leading to a more diffuse distribution).
Figure 15.3(c) shows the model predictions for the experiment by Hunt and Lamb
(2001), which exhibits the same qualitative pattern as the experimental data. Note
that the retrieval probability can only be compared qualitatively to the observed recall
probability. In order to fully simulate recall, we would have to implement a sampling
process with a stopping rule to simulate how human participants typically produce
only a subset of words from the list. For reasons of simplicity, we chose not to imple-
ment such a sampling process.

Explaining False Memory effects
The dual-route topic model can also be used to explain false memory effects (Deese,
1959; McEvoy et al., 1999; Roediger et al., 2001). In a typical experiment that elicits
the false memory effect, participants study a list of words that are associatively related
to one word, the lure word, that is not presented on the list. At test, participants are
instructed to recall only the words from the study list, but falsely recall the lure word
with high probability (in some cases the lure word is recalled more often than list
words). Results of this kind have led to the development of dual-route memory mod-
els where the verbatim level information supports accurate recall whereas the gist
level information that is activated by the semantic organization of the list supports
the intrusion of the lure word (Brainerd et al., 1999; Brainerd et al., 2002). These
models were designed to measure the relative contribution of gist and verbatim infor-
mation in memory but do not provide a computational account for how the gist and
verbatim information is encoded in memory.

To explain how the dual-route topic model accounts for the false memory effect, we
applied the model to a recall experiment by Robinson and Roediger (1997). In this
experiment, each study list contains a number of words that are associatively related
to the lure word, which itself is not presented on the study list. The remaining words
were random filler words that did not have any obvious associative structure. In the
experiment, the number of associatively related words were varied while keeping the
total number of study words constant. Figure 15.5(a) shows some example lists that
contain 3, 6, and 9 associates of the word ANGER which itself is not present on the
list. Figure 15.5(b) shows the observed recall probabilities for the studied items and
the lure word as a function of the number of associates on the list. With an increase in
the number of associates, the results show an increase in false recall of the lure word
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and a decrease in veridical recall. We applied the dual-route topic model to this exper-
imental setup and simulated word lists similar to those used by Robinson and
Roediger (1997). Figure 15.5(c) shows that model predicts retrieval probabilities that
are qualitatively similar to the observed recall probabilities. As the number of associ-
ates increases, the model will put increasingly more weight on the topic route, because
the topic route can better explain the associative structure when more associates are
present. By putting more weight on the topic route, this leads to an increase in gener-
alization beyond the list words, which is associated with an increase in false recall.
Similarly, with an increasing weight on the topic route, there is a corresponding
decrease in weight for the special-word route. This route is needed to reconstruct the
specific words present on a list and as the weight on this route decreases, there is a
decrease in veridical recall. Therefore, the model explains these findings in a qualita-
tive fashion by underlying change in the balance between gist and verbatim level
information. One advantage of this model over other dual route memory models
(e.g., Brainerd et al., 1999; Brainerd et al., 2002) is that the model explains perform-
ance at the level of individual words and specifies a representation for gist and verba-
tim information.

Application to Information Retrieval
The dual-route topic model can be applied to documents to probabilistically decom-
pose words into contextually unique and gist related words. Such as decomposition
can be useful for information retrieval because it allows queries to be matched to doc-
uments at two levels of generality: specific information captured by the special-word
route and content related information captured by the topic model. To illustrate how
the model operates on documents, we applied the model with T = 100 topics to a set
of 1281 abstracts from Psychological Review, and separately to a set of 3,104 articles
from the New York Times. Figure 15.6 shows fragments of two example documents
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Fig. 15.5. (a) Example study lists varying the number of words associated to the lure
ANGER which is not presented on the list. (b) Data from Robinson and Roediger (1997),
Experiment 2, showing the observed recall probabilities for studied items and the 
lure item as a function of the number of associates on the list. (c) Predictions from 
the dual-route topic model.
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Psychological Review abstract New York Times article

alcove attention learning covering map is a 
connectionist model of category learning that 
incorporates an exemplar based represen-
tation d . l . medin and m . m . schaffer 1978 
r . m . nosofsky 1986 with error driven 
learning m . a . gluck and g . h . bower 1988 
d . e . rumelhart et al 1986 . alcove selectively 
attends to relevant stimulus dimensions is 
sensitive to correlated dimensions can 
account for a form of base rate neglect does 
not suffer catastrophic forgetting and can 
exhibit 3 stage u shaped learning of high 
frequency exceptions to rules whereas such 
effects are not easily accounted for by 
models using other combinations of repre-
sentation and learning method.

south korea took a big step today toward 
opening up its state run power generation 
industry to foreign investors the state owned 
korea electric power corporation or kepco 
the only company in the nation involved in 
power generation said it would spin off six 
independent companies in november the 
company s first concrete move toward 
privatization in its 38 year history later this 
month the government will offer the six 
companies for sale to both foreign and 
domestic buyers kepco will allot 42 power 
generation facilities either currently in oper-
ation or under construction to five hydro and 
thermoelectric power companies lee hyung 
chul director of restructuring at the utility said 
nuclear power plants will be separated into a

Fig. 15.6. Finding contextually unique words in two example documents. The back-
ground shading indicates the probability that a word is assigned to the special-word route.

that were encoded with the dual-route topic model. The background color of words
indicates the probability of assigning words to the special words topic – darker colors
are associated with higher probability that a word was assigned to the special topic.
The words with gray foreground colors were treated as stopwords and were not
included in the analysis. The model generally treats contextually unique words as special
words. This includes names of people (e.g., NOSOFSKY, SCHAFFER in the psych
review abstract) and low frequency words (e.g., THERMOELECTRIC in the New York
Times article).

Chemudugunta, Smyth and Steyvers (2007) reported some initial information
retrieval results of the dual-route topic model. They applied the model to a several
sets of articles from the TREC corpus, which was developed by the information
retrieval community to compare and test methods. For each candidate document,
they calculated how likely the query q was when ‘generated’ from the distributions
associated with topics and special words. Under the assumption that the query words
are generated independently, the query likelihood can be calculated by:

(5)
where the product is over all words that are part of the query. The retrieval performance
of the model can be assessed by comparing the query likelihoods to human relevance
judgments that are part of the TREC database. Chemudugunta et al. (2007) showed
that the dual-route topic model significantly outperforms a variety of information
retrieval methods such as LSI and LDA which focus on content-based matching and
TF-IDF which focuses on keyword matching.
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The results of this test indicate that the dual-route topic model does not suffer from
the weakness of techniques such as LSI and LDA, which are not able to match specific
words in queries and therefore might be prone to over-generalization. Similarly, the
model does not suffer from the limitations of the TF-IDF approach in terms of its
ability to generalize. The results thus suggest that the best information retrieval results
can be obtained by a combination of content-based and keyword-based matching
techniques, paralleling contemporary accounts of the structure of human memory.

Discussion
In a rational analysis of cognition, the cognitive system is analyzed in terms of the
computational demands that arise from the interaction with our environment
(Anderson, 1990; Chater & Oaksford, 1999; Marr, 1982; Oaksford & Chater, 1998). We
proposed that both human memory and internet search faces similar computational
demands. Both systems attempt to retrieve the most relevant items from a large infor-
mation repository in response to external cues or queries. This suggests not only that
there are many useful analogies between human memory and internet search but also
that computational approaches developed in one field potentially lead to novel
insights in the other.

For example, we have shown how the PageRank algorithm, developed for the
Google search engines to rank webpages, can be useful in understanding human
retrieval from semantic memory. We showed how PageRank can be used to measure
the prominence of words in a semantic network by analyzing the associative link
structure between words. The PageRank measure outperforms other measures for
prominence such as word frequency in predicting performance in a simple fluency
task. We also showed how research in memory that distinguishes between verbatim
and gist information can lead to new computational approaches for encoding and
retrieval that are not only useful to explain phenomena such as isolation and false
memory effects related to human memory, but can also lead to new information
retrieval methods. The central idea in these methods is striking the right balance
between content-based (i.e., gist) and form-based (i.e. verbatim) matching approaches
when comparing the query to candidate documents.

There are exciting new possibilities for cognitive research in language and memory
to influence the design of search engines. If the user formulates a query to a search
engine, this query is likely to be influenced by a complex combination of memory and
language processes. The user is unlikely to remember all the details of a particular
document that needs to be retrieved and therefore cognitive theories of memory
organization, encoding, retention and retrieval become relevant. Similarly, the con-
tent that is indexed by search engines is often produced by human activity that can be
described and explained from a cognitive perspective. While it should not be surpris-
ing that there are many cognitive aspects to information retrieval (e.g., Spink & Cole,
2005), often such cognitive aspects are stated quite informally based on intuitive
notions of user behavior. For example, in the original paper that motivated the
Google search engine, Brin and Page (1998, p. 108) mentioned that the Page-
Rank algorithm was specifically designed as a measure of importance because it 
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‘corresponds well with people’s subjective ideas of importance’. Cognitive research
can help to formalize and empirically validate intuitive notions of user behavior and
the representation and usage of information in memory. Therefore, the connection
between cognitive and information retrieval research can work in both directions.
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