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Bayesian estimation has played a pivotal role in the understanding of individual differences. However,
for many models in psychology, Bayesian estimation of model parameters can be difficult. One reason
for this difficulty is that conventional sampling algorithms, such as Markov chain Monte Carlo (MCMC),
can be inefficient and impractical when little is known about the target distribution—particularly the
target distribution’s covariance structure. In this article, we highlight some reasons for this inefficiency
and advocate the use of a population MCMC algorithm, called differential evolution Markov chain Monte
Carlo (DE-MCMC), as a means of efficient proposal generation. We demonstrate in a simulation study
that the performance of the DE-MCMC algorithm is unaffected by the correlation of the target
distribution, whereas conventional MCMC performs substantially worse as the correlation increases. We
then show that the DE-MCMC algorithm can be used to efficiently fit a hierarchical version of the linear
ballistic accumulator model to response time data, which has proven to be a difficult task when
conventional MCMC is used.
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Mathematical models often posit mechanisms designed to
mimic the underlying processes involved in a behavior of interest.
A model’s behavior is most often specified by parameters that
directly affect the mechanisms within the model. These parameters
play an essential role for understanding how a behavior of interest
might arise under the assumed model. To estimate the model
parameters, researchers first fit the assumed model to experimental
data. In psychology, parameter estimates can be used to better
understand (human) behavior. They can even be used to provide
evidence either for or against a research hypothesis of interest.
Thus, properly estimating the parameters of a cognitive model is
an important task.

Although there are many ways to estimate the parameters of
a model, in this article, we focus exclusively on Bayesian
estimation. Recently, Bayesian estimation has become a popu-

lar method of parameter inference in psychology (e.g., Klein
Entink, Kuhn, Hornke, & Fox, 2009; Klugkist, Landy, & Hoi-
jtink, 2010; McArdle, Grimm, Hamagami, Bowles, & Meredith,
2009; Muthén & Asparouhov, 2012; Prevost et al., 2007; Wirth
& Edwards, 2007; Yuan & MacKinnon, 2009). For Bayesians,
parameters are treated as random quantities along with the data.
Inferences about parameters are based on the probability dis-
tributions of the parameters after some data are observed. These
probability distributions are known as the posterior distribu-
tions, and they can provide remarkable insight into the archi-
tecture of a model.

The parameters of a model are generally specified to exclusively
influence one aspect or another of a particular process, but the
complexity of the models means that they can make similar pre-
dictions under very different selections of the parameter values.
This is especially true when a subset of the parameters “trade off”
with one another.

Take, for example, models of response time (RT). The most
successful RT models are based on the idea that evidence for each
choice accumulates throughout a trial. These models assume that
observers have some initial amount of evidence in favor of each
alternative. When this initial amount of evidence is equal across
alternatives, the observer is said to be unbiased. Once the trial
begins, the models assume that evidence accumulates for each
alternative with a rate governed by a “drift rate” parameter. Once
a threshold amount of evidence has accumulated for any alterna-
tive, the process stops and the observer issues the corresponding
response.
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The parameters of such models can trade off. For example,
when the drift rate parameter increases, evidence accumulates
more quickly, ultimately leading to a faster response. Similarly,
when the threshold parameter is decreased, less evidence is re-
quired to make a decision; this also leads to a faster response.
There are similar trade-offs between many other sets of parame-
ters, such as the initial amount of evidence and the “nondecision
time.”

Models with highly correlated parameters exist in many other
domains, such as structural equation modeling (e.g., Song & Lee,
2012), item factor analysis (e.g., Edwards, 2010; Patz & Junker,
1999a, 1999b), memory (e.g., Pooley, Lee, & Shankle, 2011;
Turner, Dennis, & Van Zandt, 2011), and categorization (e.g.,
Vanpaemel, 2009). Models whose parameters are highly correlated
make for a very challenging estimation problem for many current
algorithms, especially in the Bayesian framework. We first begin
by discussing a conventional method of estimating the posterior
distribution, called the Metropolis–Hastings algorithm, and discuss
why this method can be inefficient and impractical for estimating
the posterior distributions of parameters from psychological mod-
els. We then argue that a population-based genetic algorithm,
called differential evolution Markov chain Monte Carlo (DE-
MCMC; Storn & Price, 1997; Ter Braak, 2006), is better suited for
Bayesian estimation in many contexts. Although there are a num-
ber of alternative methods for obtaining samples from the posterior
distribution that are much more efficient than conventional
MCMC techniques (e.g., Andrieu & Thomas, 2008; Hoffman &
Gelman, 2011; Neal, 2011), we focus on the DE-MCMC algorithm
because of its high efficiency and ease of implementation. We
illustrate the effectiveness of the algorithm in a small simulation
study. We also show that the DE-MCMC algorithm’s efficiency
allows us to analyze a hierarchical (across subjects) version of the
linear ballistic accumulator (LBA) model, which has not previ-
ously been possible.

Conventional Markov Chain Monte Carlo

MCMC sampling is a general technique that has been instru-
mental in estimating posterior distributions in Bayesian statistics
(Gelman, Carlin, Stern, & Rubin, 2004; Robert & Casella, 2004).
MCMC sampling has enjoyed widespread success because it is
very simple to use and can be more efficient than other methods,
such as rejection sampling, when the prior distribution differs
substantially from the posterior distribution.

MCMC sampling is a random walk process that can be used to
estimate a “target distribution.” In the context of Bayesian estima-
tion, the target distribution is usually the posterior distribution �(�)
for the parameter �. MCMC is a general sampling technique with
many variants. One of the oldest and most widely used variant is
the Metropolis–Hastings algorithm, which we will refer to as
“conventional MCMC” because of its common usage in psychol-
ogy (see, e.g., Gershman, Blei, Pereira, & Norman, 2011; Lee,
Steyvers, de Young, & Miller, 2011; Rouder & Lu, 2005; Rouder,
Lu, Speckman, & Jiang, 2005; Rouder, Sun, Speckman, Lu, &
Zhou, 2003, for examples in psychology). To use the Metropolis–
Hastings algorithm to estimate the target distribution �(�), we
select an initial value �1 and then sample a candidate value �� from
a proposal or kernel distribution K(·) conditioned on the initial
value �1, so that

�� � K(�1).

For example, the kernel distribution could be Gaussian and cen-
tered at the initial value �1 with standard deviation �, so that

�� � N(�1, �2),

where N(a, b) is the Gaussian distribution with mean a and
variance b. The parameter � serves as a tuning parameter and can
have a major impact on the efficiency of the algorithm, as we
discuss below.

The new proposal �� will be “accepted” with Metropolis–
Hastings probability (see below) and �2 � ��. If the proposal is not
accepted, �2 � �1, and the chain will not move. This process
continues with the proposal based on the current value of � until a
desired number of samples N have been obtained. Under certain
assumptions, the sequence of proposals {�1, �2, . . ., �N} “con-
verges” to taking samples from the target distribution �(�), which
can then be used to estimate the parameter �.

The Metropolis–Hastings probability of accepting a new pro-
posal �� on the (t � 1)th iteration is given by

� � min�1,
�����q��t����
���t�q�����t��, (1)

where q(a|b) is the density of the kernel distribution K(·) evaluated
at a with parameters b. The proposal density function is a key
component in guaranteeing that the stationary distribution is the
intended target distribution. If we denote the probability of tran-
sitioning from �t to �� as

P��t ¡ ��) � q(����t)�,

then if the kernel function is selected appropriately, so that

P���
¡ �t)�(��) � P(�t ¡ ��)�(�t),

the stationary distribution is the target distribution �(�).
Although this algorithm is powerful in theory, in practice its

effectiveness depends heavily on the selection of the proposal
distribution. The specification of the proposal distribution depends
on (a) the selection of the tuning parameters and (b) the selection
of the kernel function. We now discuss each of these in turn.

Selecting the Tuning Parameters

The selection of the tuning parameters can have a large influ-
ence of the performance of the sampler. For example, suppose the
target distribution (i.e., the posterior) is the standard normal dis-
tribution centered at zero with a standard deviation of one. If we
select a large value, such as � � 20, we can expect many proposals
to be far outside the target distribution, which will result in many
of these proposals being rejected. However, we also should avoid
selecting � to be too small. For example, if we select � � 0.1,
nearly all proposals will be accepted but the chain will move
within the posterior very slowly. The resulting samples will not be
reflective of the target distribution.

To further illustrate this point, we performed a simple simula-
tion using three values for � � {0.1, 1, 20} to sample from the
standard normal target distribution. Each chain was first initialized
to �1 � 0, and 1,000 samples were taken using the Metropolis–
Hastings algorithm with a normal transition kernel with standard
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deviation equal to 0.1, 1, or 20. For this simple example, no
burn-in period was required, because each chain was initialized
within the true posterior. Figure 1 shows these results. The top
panels show the estimates obtained using � � 0.1 (left panel), � �
1 (middle panel), or � � 20 (right panel) along with the true target
distribution (black density). The bottom panels show the “trace
plots,” or the path taken by each chain. The trace plots can be used
to assess the “mixing” properties of the sampler. Ideally, the trace
plots should look like completely random draws from a distribu-
tion. That is, a single path of the sampler should not be detectable,
and the chain should bounce from one location in the distribution
to another regularly. When a chain stays in one place for several
consecutive iterations, it is said to be “stuck.” This is a definitive
sign of poor mixing.

The figure shows that when � � 0.1, the chain moves far too
slowly to accurately estimate the entire range of the target distri-
bution. The trace plot shows a clear path from one location to the
next, which indicates that the value for � was too small. The
middle panel shows the optimal transition kernel, which accurately
estimates the target distribution. This trace plot displays good
mixing properties—it covers the full target distribution, and the
chain rarely sticks. Finally, when � � 20 (right panel) the chain
covers the target density well, but the rejection rate is too high and
the chain gets stuck several times during the simulation.

The simplicity of this example illustrates a very practical prob-
lem with conventional MCMC. The setting of tuning parameters,
like �, can be difficult. In practice, one of the most practical
solutions is a sort of trial and error approach, in which initial
values of � are chosen and modified based on the inspection of the
mixing properties of the chains (see Gelman et al., 2004, for a
detailed discussion of this procedure). The problem of tuning
becomes much worse in realistic situations, such as when the target
distribution contains multiple parameters; in that case, one must
choose a separate value for � for each dimension of the parameter
space. Another problem surfaces when the parameters of a model
are correlated. In the next section, we discuss how correlation can
be combated with an appropriate selection of the transition kernel.

Correlation and the Selection of the Transition Kernel

Although the selection of the transition kernel can affect the
performance of the sampler (see Gelman et al., 2004), the choice
of the kernel is less important than the tuning parameters. When a
model has highly correlated parameters, the least arduous solution
is to ignore the correlation and select a separate � for each
dimension in the parameter space. In psychology, this is often done
when the sampling is divided into “blocks” of the parameter space
(see, e.g., Gelman et al., 2004; Rouder & Lu, 2005; Rouder et al.,

σ = 0.1 σ = 1 σ = 20
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Figure 1. Estimates of the standard normal distribution obtained with different transition kernels: � � 0.1 (left
panel), � � 1 (middle panel), and � � 20 (right panel). The top panel shows the estimates obtained along with
the target density (black lines), and the bottom panel shows the trace plots of the chains.
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2003, 2005, for a more thorough discussion of the blocking pro-
cedure and examples in psychology).

Depending on how highly correlated the parameters in our
model are, ignoring their correlation can lead to very poor sam-
pling behavior. For example, suppose our target distribution con-
tains two parameters that are moderately correlated. If we do not
know how correlated these parameters are, we might naively
choose a multivariate normal proposal distribution such that

�� � N2��t, � � ��11
2 0

0 �22
2 ��, (2)

where Np(a, b) represents the multivariate normal distribution of
dimension p with mean vector a and covariance matrix b. These
assumptions ignore the true parameter correlations and can result
in substantial rejection rates. This is shown in Figure 2, which
gives an example of using an independent transition kernel (e.g.,
Equation 2) when estimating a target density, shown as the gray
cloud of points. The vector shows the current state of the chain �t

and the proposal region for ��, shown as a circle. Here, assuming
that the parameters are uncorrelated will result in many samples
being drawn that are not in the target density, a situation that is
illustrated by the proportion of white area inside the circle. Pro-
posals that are generated in this area will almost certainly be
rejected.

A second option is to specify a transition kernel that includes the
correlation between the parameters; for example, one could specify
a correlated multivariate normal distribution. This specification
adds a parameter � to the previous example, such that

�� � N2��t, � � � �11
2 ��11�22

��11�22 �22
2 ��.

Although specifying the joint transition kernel in this way can
improve the performance of the sampler, it can be very difficult to
select the right value for the tuning parameter �.

The two examples above illustrate that the selection of the
transition kernel can be both important and difficult, even in a very
simple problem. In general, the construction of good transition
kernels requires several runs of the algorithm in a type of trial and

error approach until one is satisfied with the mixing qualities of the
sampler. This process can be time consuming, and the choices
made for one problem are unlikely to generalize to other problems
even when the same model is used.

A practical consequence of these difficulties is that Bayesian
estimation of response time models has been limited in psychology
because our most sophisticated models of RT have highly corre-
lated parameters (e.g., Lee, Fuss, & Navarro, 2006; Oravecz,
Tuerlinckx, & Vandekerckhove, 2009; Vandekerckhove, Tuer-
linckx, & Lee, 2011). Instead, Bayesian models of RT have mostly
been limited to descriptive distributions that are simple and that fit
well, such as the Weibull, ex-Gaussian, or lognormal (e.g., Craig-
mile, Peruggia, & Van Zandt, 2010;Farrell & Ludwig, 2008; Lee
& Wagenmakers, 2010; Peruggia, Van Zandt, & Chen, 2002;
Rouder et al., 2003, 2005). Even in these simplified cases, obtain-
ing the Bayesian posterior distribution presents a very challenging
modeling problem, the difficulty of which is evident in the tech-
nicality of the forementioned articles.

As a result of the implementation difficulties in estimation,
some researchers have turned to general-purpose MCMC pack-
ages, particularly WinBUGS (Lunn, Thomas, Best, & Spiegelhal-
ter, 2000). For example, Vandekerckhove, Tuerlinckx, and Lee
(2008) and Vandekerckhove et al. (2011) have used WinBUGS to
estimate the posterior distribution for the parameters of the diffu-
sion model, and Donkin, Brown, and Heathcote (2011) have de-
scribed a similar procedure for the LBA model (see also Dutilh,
Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009; Vandeker-
ckhove, Verheyen, & Tuerlinckx, 2010, for additional applica-
tions). Although these applications speak to the utility of
WinBUGS, WinBUGS can be slow and sometimes difficult to
manage. Vandekerckhove et al. (2011) pointed out several issues
with their program, such as long computation times (hours or days
for real-world analyses), high autocorrelations, poor mixing, and
computational instability.

We present an algorithm that can remedy the sampling problems
outlined above. The method is a type of population-based MCMC,
which uses a system of interacting Markov chains. This interaction
produces high-quality proposals that automatically match the op-

Figure 2. Graphical representation of the perturbation method assuming an independent bivariate normal
transition kernel (left panel) used in conventional Markov chain Monte Carlo (MCMC) and the crossover method
(right panel) used in differential evolution Markov chain Monte Carlo (DE-MCMC).
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timal transition kernel, even in high-dimensional and highly cor-
related problems.

Differential Evolution Markov Chain Monte Carlo

Differential evolution (DE) was originally developed for opti-
mization problems (Storn & Price, 1997) but was later combined
with Markov chain Monte Carlo (MCMC) for Bayesian estimation
by ter Braak (2006). Although there are a number of different
variants of the DE algorithm (see Appendix A for a brief discus-
sion), few are suitable for estimating posterior distributions. Be-
cause we seek a Bayesian solution, we focus on the DE-MCMC
algorithm. The key to the DE-MCMC algorithm is more efficient
generation of proposals; rather than simply adding random noise to
the current state, DE-MCMC uses multiple interacting chains. The
difference between some chains’ current states is used to generate
proposals for other chains. This means that the proposal for one
chain is based on some weighted combination of other chains,
which combines two steps that are usually distinct in population
MCMC (crossover and mutation) and gives rise to a self-
organizing system of chains.

Figure 2 (right panel) illustrates proposal generation in the
DE-MCMC algorithm (Figure 3 describes the algorithm in pseudo-
code). The current state of the kth chain is shown by �k. The new
proposal (��) is generated by taking the difference between the
current states of two other chains, chosen at random (�m and �n).
This difference vector, shown by the gray line, sets the direction
that the new proposal (��) should move relative to �k. The distance
to move along this direction is set by a tuning parameter �, which
can take any positive value. The parameter � controls the magni-
tude of the jumping distribution. For example, setting � � 1 results
in a jumping magnitude that is equal to difference vector. Finally,
a very small amount of random noise ε is added to the proposal (to
avoid degeneracy problems). Algebraically, this process can be
summarized as

�� � �k � 	(�m 
 �n) � �. (3)

As with conventional MCMC, the new proposal is accepted
over the existing state with the Metropolis–Hastings probability
given in Equation 1. The DE-MCMC algorithm has just one
tuning parameter, which is much simpler than other MCMC
methods. Typical settings for the tuning parameter include

using 	 � 2.38 ⁄ 	2d, where d is the number of dimensions of
the parameter space (ter Braak, 2006, have shown this is an
optimal setting under some conditions), or randomly sampling
independent values for each proposal (e.g., � � CU[0.5, 1],
where CU[a, b] denotes the continuous uniform distribution on
the interval [a, b]). The algorithm is also relatively insensitive
to the distribution of the random noise term, ε. This is because
the error term is designed to make the DE-MCMC algorithm
probabilistic and not deterministic, so that transition probabil-
ities can be calculated. Typically, uniformly distributed noise
with zero mean and small variance is used, ε � CU[	b, �b],
with b � 0.01 or similar. Larger values of b relative to the
variance of the target distribution will result in poor perfor-
mance of the algorithm, because the benefits of the DE proposal
mechanism will be masked by the uniform noise incurred by
adding ε.

Equation 3 shows that the probability of transitioning from the
current state �k to the proposal �� is given by

q���|�k� � �
i

�
j

MCUp(�k � 	(�i 
 �j), b),

where MCUp(a, b) is a p-variate continuous uniform distribution
centered at a with boundaries [a 	 b, a � b], and the probability
of the reverse move is given by

q��k|�
�� � �

i
�

j
MCU(�� 
 	(�i 
 �j), b)

� �
i

�
j

MCU(�� � 	 (�j 
 �i), b).

Here, q(��|�k) � q(�k|�
�), so the stationary distribution of this

chain will be the target distribution �(�). Furthermore, because
these transition probabilities are equal, there is no need to evaluate

Figure 3. The differential evolution Markov chain Monte Carlo (DE-MCMC) algorithm for obtaining N
samples with K chains of the target density �(�).
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them in Equation 1, and the Metropolis–Hastings probability1

reduces to

� � min�1,
�����
���k��.

Simulation Study

In this section, we compare the sampling efficiency of DE-
MCMC against conventional MCMC in a simulation. Suppose the
target distribution is a bivariate normal distribution with density
function

f (�|�, ) �
1

2�|  |1⁄2exp�

1

2
�� 
 ��T
1�� 
 ���, (4)

where

� � � �11
2 ��11�22

��11�22 �22
2 �,

and 
 is the mean vector containing two elements. Our claim is
that the DE-MCMC sampler is a more efficient approach to
estimating a target distribution with highly correlated dimensions,
so our simulations will focus on the correlation parameter � �
[	1, 1].

To examine the sampling behavior of both the conventional
MCMC and DE-MCMC approaches, we will draw samples from
the bivariate normal distribution and evaluate two measures of
efficiency. The first measure is the rejection rate and is calculated
by recording the number of times a proposal is generated that does
not result in a change of state (i.e., the proposal is rejected). The
second measure is the Kullback–Leibler distance. The Kullback–
Leibler distance is a popular statistic that measures the discrepancy
between two density functions (Kullback, Keegel, & Kullback,
1987). For our purposes, the two densities correspond to the true
posterior distribution, which is known for this simple example, and
the estimated posterior distribution, which is formed by construct-
ing a kernel density estimate of the distribution of all of the values
obtained from the sampling process (see Silverman, 1986).

For simplicity, we set � � 
0 0�T and �11 � �22 � 1. In our
simulation, we will vary the correlation parameter � across the
interval (0, 0.99). We explore only half of the support of �, because
the sampling behavior will be similar regardless of the sign of the
correlation parameter.

First, to implement the conventional MCMC sampler, we used
a bivariate normal proposal function (see Equation 4), where
�11 � �22 � 1 and � � 0. That is, the conventional MCMC
sampler was given the advantage of having the optimal (true)
settings for two of its three tuning parameters. For the third tuning
parameter, we naively assumed that �1 and �2 were uncorrelated
(� � 0). Implementing the DE-MCMC sampler requires effec-
tively only one tuning parameter to be set: We sampled � ran-
domly on each step from a uniform distribution between 0.5 and 1.
We set b � 0.001 for the small-variance random noise.

For both samplers, we ran 16 chains for 1,000 iterations with no
burn-in period, resulting in 16,000 samples from the target distri-
bution. For the conventional MCMC sampler, the 16 chains did not
interact, and so the structure of the sampler is said to be “embar-
rassingly parallel.” This is not true of the DE-MCMC sampler,

which uses all the current states of the chains to generate a new
proposal for each chain. In both samplers, each chain was initial-
ized with a random sample from the target density. The above
procedure was replicated for each sampler 10 times for each value
of � � {0, 0.01, 0.02, . . ., 0.99}, resulting in 2,000 simulations. At
the close of the each simulation, we recorded the rejection rate and
the Kullback–Leibler divergence statistic between the posterior
estimate and the true marginal distributions of both �1 and �2.

Figure 4 shows the results for both the conventional MCMC
sampler (gray lines) and the DE-MCMC sampler (black lines). The
left panel plots the rejection rate for each sampler as a function of
the correlation parameter. This shows that, though the rejection
rate of the DE-MCMC sampler stays roughly constant across all
values of the correlation parameter, the rejection rate of the con-
ventional MCMC sampler increases exponentially as � increases
from zero to one. The figure also shows that the conventional
MCMC sampler has a slightly better rejection rate than the DE-
MCMC sampler when � � 0.25, that their rejection rates are very
similar when 0.25 � � � 0.4, and that the DE-MCMC sampler
performs much better when � � 0.4. Although this is the case
when � � CU[0.5, 1], when we reduced the upper bound of the
continuous uniform distribution to 0.8 (results not shown), the
DE-MCMC sampler outperformed the conventional MCMC sam-
pler across all values of � with an average rejection rate of 42%.

The right panel of Figure 4 shows the mean Kullback–Leibler
distance for each sampler for the marginal distribution of �1

because the results were identical for �2. Although it is somewhat
difficult to interpret these results because the Kullback–Leibler
statistic does not follow any known distribution, we can see that
the DE-MCMC sampler recovers the target density more accu-
rately than the conventional MCMC sampler when � � 0.7.

Visual Assessment of Samples

We discussed earlier that one could assess the mixing properties
of the chains by visually examining the trace plots. Figure 5 shows
the trace plots (rows) for four randomly selected chains (for visual
clarity) at three selected values of �: 0.0, 0.5, and 0.9. The columns
represent three different methods of sampling. The first column
corresponds to DE-MCMC, and the second column corresponds to
conventional MCMC. The third column corresponds to a blocked
version of the conventional MCMC algorithm, in which we used
the same tuning parameters as in the unblocked version. Recall that
the unblocked MCMC algorithm (as well as the DE-MCMC al-
gorithm) proposes two parameters at once via the bivariate normal
distribution. On the other hand, the blocked MCMC algorithm
proposes one parameter value at a time, resulting in two samples
being drawn per iteration. In general, the blocking procedure can
dramatically improve the mixing properties of the sampler.

Figure 5 shows that the three methods compare favorably, with
each trace plot displaying excellent mixing qualities. However, at
� � 0.9 the conventional MCMC algorithm has some difficulty
mixing properly. This defective mixing is a result of the systematic
mismatch between proposal distribution and target distribution.
This observation is consistent with the increased rejection rates

1 When the kernel function is symmetric, the algorithm is often simply
called the Metropolis algorithm.
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and the increasing Kullback–Leibler distance measurement shown
in Figure 4.

Another way to assess the mixing properties of the chains is
through the autocorrelation functions (ACFs). For a given lag
value l, the ACFs calculate the correlation between the set of all
values in the chain and the set of all values in the chain l iterations
behind the first set. Thus, if the chain tends to stick frequently,
consecutive values in the chain will tend to be similar. This will
result in high values in the ACF.

Figure 6 shows the ACFs for three values of � � 0.0, 0.5, 0.9
(rows, respectively) and the three different methods of sampling:
DE-MCMC (left column), unblocked conventional MCMC (mid-
dle column), and the blocked conventional MCMC (right column).
The y-axes correspond to the values of the ACF, and the x-axes
correspond to the values for the lag. The first row shows that each
algorithm has a moderate but acceptable degree of autocorrelation
for lags less than 15. However, when the correlation is increased to
� � 0.5, the ACFs for the unblocked conventional MCMC sampler
increase for larger values of the lag, indicating poorer mixing. In
the last row, when � � 0.9, the values of the ACF rise sharply for
all values of the lag (i.e., 1 through 40). However, both the
DE-MCMC and blocked conventional MCMC algorithms remain
stable in their mixing abilities.

Our simulations demonstrate the benefits of DE-MCMC over
conventional MCMC. The results are especially promising, given
that the conventional MCMC sampler was nearly optimal for the
target under consideration. In a more applied setting, the re-
searcher would have to choose suitable values for the tuning
parameters �1, �2, and �, while possibly having very little infor-
mation about the target distribution. On the other hand, the DE-
MCMC sampler requires specification of just the parameters b and
�. Reasonably small values of b have very little effect on either the
accuracy or the rejection rate of the sampler. Although � may be
more difficult to specify, the above example has shown that
sampling � randomly from a continuous uniform distribution is a
simple and effective way of estimating this particular density.

Examining the trace plots and the ACFs has provided further
evidence that the DE-MCMC algorithm is performing favorably.
First, the DE-MCMC algorithm is unaffected by the increase in the
correlation of the target distribution, whereas the unblocked con-
ventional MCMC algorithm is. The blocked conventional MCMC
algorithm is also unaffected by the increase in the correlation;
however, it is considerably slower than both of the unblocked
algorithms, because the blocked version requires multiple evalua-
tions of the likelihood function. Furthermore, both conventional
MCMC algorithms were given the advantage of optimal tuning
parameters, whereas the DE-MCMC required almost no tuning.
Considering this, we argue that DE-MCMC is the most efficient of
the three algorithms because it was fast, unaffected by the increase
in �, and required almost no tuning.

Fitting Models of Choice Response Time to Real Data

We now examine the effectiveness of the DE-MCMC sampler
by using it to fit a cognitive model to experimental data. There are
many excellent models of choice RT that we could explore, but we
chose the LBA because of its analytic simplicity. Although the
LBA model has been fit in a Bayesian framework (Donkin, Aver-
ell, Brown, & Heathcote, 2009), current approaches suffer from
severe practical limitations, such as computational instability, and
the impracticality of examining hierarchical versions. Below, we
fit a hierarchical version of the LBA to data first presented by
Forstmann et al. (2011).

Experiment

The data were presented in Forstmann et al. (2011) and
consisted of responses from 20 young subjects and 14 older
subjects. The study was a moving dots task in which subjects
were asked to decide whether a cloud of semirandomly moving
dots appeared to move to the left or to the right. Subjects
indicated their response by pressing one of two spatially com-
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Figure 4. Performance results of the conventional MCMC sampler (gray lines) and the DE-MCMC sampler
(black lines). The left panel shows the rejection rate and the right panel shows the Kullback–Leibler divergence
statistic, both as functions of the correlation of the bivariate normal distribution. C.MCMC � conventional
Markov chain Monte Carlo; DE-MCMC � differential evolution Markov chain Monte Carlo.
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patible buttons with either the left or the right index finger.
Before each decision trial, subjects were instructed whether to
respond quickly (the speed condition), accurately (the accuracy
condition), or at their own pace (the neutral condition). Follow-
ing the trial, subjects were provided feedback about their per-
formance. In the speed and neutral conditions, subjects were
told that their responses were too slow whenever they exceeded
a RT of 400 and 750 ms, respectively, for the young subjects
and 470 and 820 ms for the older subjects, respectively. In the
accuracy condition, subjects were told when their responses
were incorrect. Each subject completed 840 trials, equally dis-
tributed over the three conditions.

The Linear Ballistic Accumulator Model

The LBA model provides a simple explanation of choice and
RT (Brown & Heathcote, 2008). It eliminates many complexi-
ties assumed by previous models, such as competition between
alternatives (e.g., Brown & Heathcote, 2005; Usher & McClel-

land, 2001), passive decay of evidence (“leakage”; e.g., Usher
& McClelland, 2001), and even within-trial variability (e.g.,
Ratcliff, 1978; Stone, 1960). The model’s simplicity allows
closed-form expressions for the first-passage-time distributions
for each accumulator. With these equations, one can specify the
likelihood function for the model parameters. This has been
instrumental in the LBA model’s success (e.g., Donkin, Aver-
ell, et al., 2009; Donkin et al., 2011; Donkin, Heathcote, &
Brown, 2009; Forstmann et al., 2008, 2010, 2011).

Donkin, Averell, et al. (2009) provided a detailed technical
account of how to fit the LBA model to data. Among other things,
Donkin, Averell, et al. showed how to use the program WinBUGS
(Lunn et al., 2000) to fit the LBA model in a Bayesian framework.
Although the WinBUGS program is very user friendly, it relies on
general-purpose MCMC methods. As we have shown, standard
MCMC methods can suffer dramatically for models with highly
correlated parameters (e.g., the LBA). Although one could fit a
hierarchical version of the LBA using a modified version of the
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Figure 5. Trace plots for three values of � � {0.0, 0.5, 0.9} (rows) and three methods of sampling: DE-MCMC
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WinBUGS code provided by Donkin, Averell, et al., we have not
found published fits of such a model.

For ease of exposition, we first consider a special case
without individual differences, so that a single set of parameters
describes the behavior of all responses in the data. The ith
single observation for the jth subject in a typical choice exper-
iment will contain two pieces of information. The first piece is
the response choice, which we denote REi,j where REi,j � {1,
. . . , C}, where C is the number of response alternatives. The
second piece is the response time (RT), which we denote RTi,j

� (0, ). The LBA model assumes that evidence accumulates
for each of the C alternatives at the beginning of a decision trial.
Each accumulator begins with an independent amount of start-
ing evidence kc, which is sampled independently for each
accumulator from a continuous uniform distribution kc � [0, A].
The evidence for accumulator c then increases at a rate dc (the
drift rate for the cth response alternative), which is sampled
independently for each accumulator from a normal distribution
with mean vc and standard deviation s, so dc � N(vc, s). Each
accumulator gathers evidence until one accumulator reaches a
response threshold b. Finally, the LBA model assumes that the
observed RT is the sum of the decision time plus some extra
time � for the nondecision process, such as motor execution. For
simplicity, � is usually assumed to be constant across trials.
Thus, the final observed RT is given by

RT � min
c
�b 
 kc

dc
�� �.

It is common to set the variance of the sampled drift rates to one
(s � 1) to satisfy scaling conditions of the model, but other
constraints are possible.

In a Bayesian framework, the data are expressed as a function
of the model parameters, which is known as the likelihood
function. To derive the likelihood function, we begin by iden-
tifying the probability density function (PDF). To simultane-
ously explain both RT and choice, we require the “defective”
distribution for the cth accumulator, which is the probability of
the cth accumulator reaching the threshold and the other accu-
mulators not reaching the threshold. The density function for
this distribution is given by

LBA(c, t|b, A, v, s, �) � f(c, t) �
k�c

[1 
 F(k, t)], (5)

where v � {v1, . . ., vC}, f(c, t) and F(c, t) are the PDF and
cumulative density function (CDF) for the time taken for the cth
accumulator to reach the threshold, respectively (see Brown and
Heathcote, 2008, for details). To incorporate the nondecision
time parameter into the PDF, we substitute (t 	 �) for t in
Equation 5. Finally, for a vector of N responses RE with
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Figure 6. Autocorrelation functions (ACFs) for three values of � � {0.0, 0.5, 0.9} (rows) and three methods
of sampling: DE-MCMC (left column), conventional MCMC (middle column), and blocked (right column). The
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corresponding response times RT, the likelihood function is
given by

L(b, A, v, s, �|RT, RE) � �
i�1

N

LBA(REi, RTi|b, A, v, s, �).

The Model for the Experiment

Because there are three speed conditions in the experiment,
we use a vector of response threshold parameters b � {b(1), b(2),
b(3)}, so that b(1), b(2), and b(3) are used for the accuracy,
neutral, and speed conditions, respectively. In addition, we
include an index k to reflect the condition number k � {1, 2, 3},
so that REi,j,k and RTi,j,k denote the ith response from the jth
subject in the kth condition. We can also index the drift rates to
reflect each response alternative so that v � {v(1), v(2)}, where
v(1) is the drift rate for the accumulator corresponding to the
incorrect response choice and v(2) is the drift rate for the
accumulator corresponding to the correct response choice.

To extend the LBA model to a hierarchical version, we represent
each of the j � {1, 2, . . ., S} subjects using separate parameter vectors

(Aj, bj
(1), bj

(2), bj
(3), sj, v(1)

j, v(2)
j, �j).

We make the assumption that the data were independent and identi-
cally distributed and the likelihood functions for Subject j in Condi-
tion 1 (accuracy), Condition 2 (neutral), and Condition 3 (speed) are

L(bj
(1), Aj, sj, vj, �j|RT, RE)

� �
i�1

N

LBA(REi,j,1, RTi,j,1|bj
(1), Aj, vj, sj, �j),

L(bj
(2), Aj, sj, vj, �j|RT, RE)

� �
i�1

N

LBA(REi,j,2, RTi,j,2|bj
(2), Aj, vj, sj, �j), and

L(bj
(3), Aj, sj, vj, �j|RT, RE)

� �
i�1

N

LBA(REi,j,3, RTi,j,3|bj
(3), Aj, vj, sj, �j),

respectively, and the likelihood function for the entire data set is

L(b, A, s, v, �|RT, RE)

� �
k�1

3

�
j�1

S

�
i�1

N

LBA�REi,j,k, RTi,j,k|bj
(k), Aj, vj, sj, �j�.

To fit the model in a Bayesian framework, we must now specify
prior distributions for each of the lower level parameters. Each of
these lower level parameters is restricted to be positive, so we spec-
ified truncated normal distributions for each parameter, given by

bj
(k) � TN�b�

(k), b�
(k), 0, ��,

Aj � TN�A� A�, 0, ��,

vj
(c) � TN�v�

c , v�
c , 0, ��, and

�j � TN���, ��, 0, ��,

where TN (a, b, c, d) denotes a truncated normal distribution with
mean parameter a, standard deviation b, lower bound c, and upper
bound d. There are many other priors that one could choose to

facilitate the restriction that all model parameters must be positive.
We chose the truncated normal distribution because it provides a
convenient and interpretable way to specify the mean and disper-
sion of the lower level parameters. One could further constrain the
parameters by observing the restrictions A � b(k)

@ k � {1, 2, 3}
and �j � min(RTj), where RTj represents the response times for the
jth subject; however, we found the constraints applied above to
be sufficient. To identify the model, we fixed sj � 1 @ j � {1,
2, . . ., S}.

We specified mildly informative priors for each of the hyper-
mean parameters, so that

b�
(k) � TN(1, 0.5, 0, �),

A� � TN(1, 0.5, 0, �),

v�
(c) � TN(2, 1, 0, �), and

�� � TN(0.5, 0.5, 0, �),

and mildly informative priors for the hyperstandard deviations
parameters, so that

b�
(k) � � (1, 1),

A� � � (1, 1),

v�
(c) � � (1, 1), and

�� � � (1, 1).

Results

We fit the model to data from both the younger and the older
subjects separately by implementing a “blocked” version of the
DE-MCMC algorithm.2 To do so, we first paired the mean and
standard deviation hyperparameters governing each lower level
parameter together and cycled through each of the seven blocks.
Figure 7 shows pseudocode for the algorithm we used to fit the
hierarchical LBA model. Our first block (see Line 3 of Figure 7)
consisted of sampling from the joint conditional distribution of
(bu

(1), b�
(1)) by updating the K chains with the algorithm presented

in Figure 3. The conditional distribution here will depend on the
lower level parameters bj

(1). We then turned to the next block (see
Line 4 of Figure 7) consisting of the parameters (bu

(2), b�
(2)) and

so on, until the position of the chain had been updated for every
hyperparameter set. We then grouped all of the lower level pa-
rameters together by subject (see Line 11 of Figure 7) and updated
them by conditioning on the current state of the hyperparameters
constructed in the first set. Although its inclusion was not essen-
tial, to improve the mixing and convergence properties of the
chains, we included a migration step (see Appendix B) with
probability 0.05.

We used 24 chains and obtained 2,500 samples after a burn-in

period of 500 samples for each chain. We set 	 � 2.38 ⁄ 	2d,
where d is the dimensionality of the parameter space (which was
either d � 2 for the hyperparameters or d � 7 for the lower level
parameters), and set b � 0.001. For data sets for both the young
and older subjects, we excluded observations for which the RT was
less than 250 ms.

2 We initially attempted a blocked version of the conventional MCMC
algorithm but were unsuccessful. In fact, it was the difficulties we encoun-
tered in this attempt that provoked exploration of alternative solutions. See
the Discussion for more details.
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Figure 8 shows the estimated hypermean parameters for both the
younger (left, light gray densities) and the older (right, dark gray
densities) subject groups. The top left panel of Figure 8 shows the
estimated posterior distributions for the group mean threshold
parameter b
 for the accuracy (left density), neutral (middle den-
sity), and speed (right density) conditions. Across age, the esti-
mates for the speed condition are much lower than the other
conditions, whereas there is only a slight difference in these
estimates between the neutral and accuracy conditions. The top
right panel shows the estimates for the group mean of the upper
bound of the start point distribution A
. The relative estimates of
the ratio of the start point to the threshold parameter (i.e., A/b, not
separately plotted) do not differ appreciably across age. The bot-
tom left column shows the group mean drift rate parameters for the
incorrect (left curve) and the correct (right curve) accumulators.
The relative estimates of the drift rates suggest that correct re-
sponses were faster than incorrect responses. Finally, the right
column of Figure 8 shows the estimated mean nondecision time
parameters for the two data sets. Because the estimates are for the
mean parameter of a truncated normal distribution bounded by
zero, the estimates are difficult to compare when significant mass
is truncated, as with the nondecision parameter. To examine this
more carefully, we generated a posterior predictive distribution
with the obtained posterior estimates for both data sets. We found
that, on average, the best estimate for the nondecision time param-
eter at the individual level was 0.16 for the elderly subjects and
0.17 for the young subjects. Although the difference in means
suggests that the younger subjects had a larger nondecision time
parameter, the posteriors were variable enough to conclude that
there was not an appreciable difference in the parameter estimates
across the different age groups.

In all, 266 posterior estimates were obtained: 238 individual-
level posteriors and 28 hyper-level posteriors. Although for brevity
we do not present them here, plots of model predictions against the
data confirm that the average parameter values provide a good fit
to the data. Furthermore, the parameter estimates provide a rea-
sonable explanation of the data that is consistent with previous
findings (e.g., Forstmann et al., 2011; Ratcliff, Thapar, & McK-
oon, 2007; Starns & Ratcliff, 2010).

Discussion

In this article, we have advocated for using DE-MCMC as a
method to draw samples from joint posterior distributions. The
DE-MCMC algorithm is highly efficient, particularly when the
dimensions of a posterior distribution are highly correlated.
The problem of estimating the parameters of a model with highly
correlated parameters has been studied extensively, and there are
many alternatives to the DE-MCMC approach. Robert and Sahu
(1997) proposed blocked sampling as a Gibbs step with a multi-
variate normal draw over effect parameters. As we showed in the
simulated example, blocked sampling is an excellent approach that
reduces the dimensionality of the parameter space, which in turn
increases the acceptance rate of the sampler (see Gelman et al.,
2004, for further discussion). Another Gibbs-style approach is to
use decorrelating steps as proposed by Liu and Sabatti (2000),
which has been effectively used in psychology (Morey, Rouder, &
Speckman, 2008, 2009). Many other approaches, such as adaptive
rejection sampling (Gilks & Wild, 1992), adaptive rejection Me-
tropolis sampling (Gilks, Best, & Tan, 1995), Hamiltonian MCMC
(Hoffman & Gelman, 2011), and blocked Metropolis–Hastings
sampling (Patz & Junker, 1999a, 1999b), have been proposed as
alternative solutions to estimation of high-dimensional, highly
correlated parameter spaces.

However, many of these methods require significant additional
work for implementation (e.g., calculating the derivative of the log
likelihood function in adaptive rejection sampling) or can be
characterized as “multiple try” methods. Multiple try methods are
methods that require the evaluation of the likelihood function
multiple times per iteration in the algorithm. For many models, the
evaluation of the likelihood can be costly, resulting in poor per-
formance of the algorithm. Gibbs and, more generally, blocked
sampling have a related problem, because they sample from the
conditional distributions for a block of parameters. Such proce-
dures are generally slower than a single evaluation of the likeli-
hood per iteration.

One of the most compelling reasons to use the DE-MCMC
algorithm is that the information about the structure of the poste-
rior distribution is used to generate informative proposals. The

Figure 7. Pseudocode for fitting the hierarchical linear ballistic accumulator model to data.
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DE-MCMC algorithm uses the difference between two randomly
selected chains to approximate the derivative information used by
multiple try methods.

We also argued that some algorithms, such as conventional
MCMC, are difficult to tune properly. By contrast, the DE-MCMC
algorithm requires only one tuning parameter, �, regardless of the
dimensionality of the posterior. However, other specifications can
play an important role in the performance of the sampler. First,
though the selection of the distribution of the random error term ε
has little influence, the variance of ε is important. A good rule of
thumb is to select b so that the variance of the distribution of ε is
very small with respect to the target distribution of interest but
large enough so that the sampler is not deterministic. Second, one
must select enough chains to allow the sampler to mix properly. In
our studies, we have found that setting the number of chains to at
least one greater than twice the dimensionality of the posterior to
be adequate. When blocked sampling is used, the dimensionality
of the highest block becomes the critical number.

It is important to emphasize that poor mixing behavior is a direct
result of the complexity of the model. Mixing behavior of chains
can be greatly improved by reparameterizing or rethinking the

parameters of the model, so that each parameter operates indepen-
dently. Such a reparameterization would ameliorate the problem of
a highly correlated parameter space, which, in turn, would allow
for efficient use of conventional MCMC algorithms (see Figure 4).
However, reparameterization can be difficult, and solutions that
work well for one model may not be possible for other models.
Considering this, we instead focused on presenting a generalizable
method for fitting unrefined models to data.

Although the DE-MCMC algorithm worked very well for the
LBA example, one may wonder why conventional MCMC would
not work. We attempted a number of sampling schemes but were
largely unsuccessful as a result of the heavy correlations between
the individual-level parameters. To illustrate this, the top right
portion of Figure 9 shows the joint posterior distributions for each
pair of the seven parameters for Subject 13 of the older group, who
was randomly chosen. The bottom left portion of Figure 9 shows
the correlations of the corresponding joint posterior. Of the 21
correlations, only four of them have magnitudes below 0.40, and
nine of them are greater than or equal to 0.70. From our simulation
study (see Figure 4), we can see that under these extreme corre-
lations, conventional MCMC will suffer severely from high rejec-
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Figure 8. The estimated posterior distributions for each mean hyperparameter for the young subjects’ data (left,
light gray) and the older subjects’ data (right, dark gray). For mean threshold parameters b
 (top left panel), the
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tion rates. As a result, the quality of the estimated posteriors will
be poor.

The success of the DE-MCMC sampler on such a difficult
problem as the hierarchical LBA speaks to the advantages of the
approach. The high correlations exhibited by the LBA are typical
in models of response time. For example, Turner and Sederberg
(2012) have shown that the posterior distributions of the parame-
ters of the Wald model are similarly correlated, and the use of a DE
variant was central to the success of their application of a

likelihood-free sampler. In addition, by using WinBUGS (see
Vandekerckhove et al., 2011) or similar methods, one can show
that the joint posterior distributions of the diffusion model (Rat-
cliff, 1978) show patterns similar to those observed in Figure 9.

Conclusions

In this article, we have advocated the use of DE-MCMC as a
method for estimating a target density �(�). Although there are a
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number of different sampling methods that could outperform con-
ventional MCMC and perhaps even DE-MCMC, we have shown
that the DE-MCMC algorithm is a highly efficient sampler that
requires minimal tuning and is very simple to implement. We have
argued that the conventional approach is both difficult to success-
fully implement and unlikely to generalize to different models or
data sets. On the other hand, the DE-MCMC approach is easy to
set up. Even in its simplest form, it can easily handle difficult
problems, such as fitting a hierarchical LBA model. We have
shown in a simulation study that the DE-MCMC approach is as
good as or much better than the standard Metropolis–Hastings
algorithm, depending on the degree of correlation between the
parameters of a model. Given the success of the DE-MCMC
algorithm in the present article, we believe that the DE-MCMC
approach will make obtaining the Bayesian posterior a much more
practical endeavor in the field of mathematical psychology.
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Appendix A

Variants of DE-MCMC

Since its inception in 1995, DE has seen tremendous growth
both in its applications and in variants to improve the efficiency of
the algorithm (see Storn, 2008). For example, a number of variants
select a chain at random or use the best individual in the population
as the base for the crossover step instead of simply using the
current chain �k. Two of the most widely used of these variants are
the DE/best/1/bin and the DE/current-to-best/1/bin crossover and
mutation methods. The notation here is common in the DE liter-
ature, whereby the first value, DE, stands for differential evolution,
the second value in the name describes the base particle, the third
value describes how many differences between two random par-
ticles are taken (in this case just 1 difference), and the final value
in the name refers to the use of a binomial probability for deter-
mining whether each parameter of an individual changes from the
previous generation to the new proposed value. As an explicit
example, the proposal generation process in the current-to-best
algorithm follows:

�� � �k � 	1(�b 
 �k) � 	2(�m 
 �n).

where �k is the chain for which the proposal is being generated, �b

is the best performing chain from the previous iteration (e.g., the
chain with the highest probability density), �m and �n are other
chains sampled with uniform probability, and �1 and �2 scale the
mutation.

Guiding the proposals with the best performing chains can give
rise to much higher acceptance rates and faster convergence to the
maximum of the target distribution; however, these improvements
come with a cost. Very few of these variants produce symmetric
transition probabilities, which requires that we derive the proba-
bility distribution for the proposal and reverse moves. Deriving
this distribution can be complicated. Even when it has been de-
rived, it adds considerable computation for each proposal evalua-
tion, even for a small number of chains. Solving for �k in the
current-to-best algorithm above demonstrates that incorporating
the best chain renders the probability of transitioning to the pro-
posal �� much higher than the reverse transition from the proposal
back to �k. Consequently, although these improved algorithms are
perfectly suited for generating maximum a posteriori (MAP) esti-

mates, they are not appropriate for estimating the target distribu-
tion.

Many of the DE variants that guide proposals based on the best
chains can, however, be employed during a burn-in period. After
the burn-in period, one can use the symmetric DE algorithms to
estimate the full target distribution. As a result, the chains con-
verge very quickly to the high-density regions of the target distri-
bution; then, after the burn-in period, one can completely map out
the target distribution with the symmetric DE algorithm. Turner
and Sederberg (2012) employed such a method by focusing on the
current-to-best variant, because simply setting �1 � 0 shifts the
algorithm back to the original symmetric proposal scheme. This
makes it easy to incorporate in the simulation.

Not all the DE algorithmic advances pose such problems for
inclusion in a Bayesian framework. For example, another strategy
for optimizing the crossover move is to sample the full set of
chains and use the sum of the difference vectors to generate a
proposal of the form

�� � �k � 	 ��
i

Q

�m
(i) 
 �

j

Q

�n
(j)�� �,

where Q is the total number of pairs to generate, and �m
(i) and �n

(j)

� {1, 2, . . ., Q}. This type of generation stabilizes the variability
in the directional vector and can lead to better performance (Vrugt
et al., 2009). Algorithms of this form can also be used to generate
proposals that rely on previous states of the chains (ter Braak and
Vrugt, 2008).

Finally, more complex modifications to the basic DE algorithm,
such as the snooker updater algorithm proposed by ter Braak and
Vrugt (2008) and the distributed evolutionary Monte Carlo algo-
rithm proposed by Hu and Tsui (2005), have proved useful for
Bayesian estimation in high dimensional spaces. In the latter
algorithm, Hu and Tsui (2005) incorporated a migration step from
a distributed genetic algorithm framework that, when used at
random intervals in the basic DE algorithm, has been shown to
improve the behavior of the sampler (Tanese, 1989). Given that the
migration is deterministic and simply involves moving particles
between groups, it does not introduce a bias in the proposals and
can be included in the evolution algorithm to help diversify the
Markov chains. We now discuss the migration step in more detail.

(Appendices continue)
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Appendix B

The Migration Step

Although the crossover step is a very efficient means of pro-
posal generation, it can perform quite poorly when the individual
chains are initialized poorly, such as specifying the chains to
values that are very far from the target density. A similar problem
occurs when a single chain or a minority of the chains are far from
the target density (referred to as “outlier” chains). When this
occurs, the outlier chains are still selected with uniform probabil-
ity, but they will tend to generate proposals that are far from the
target density because the difference vector will be large. It is clear
that these outlier chains may have a significant impact on the
convergence and mixing properties of the sampler.

To remedy the problem of outlier chains, Hu and Tsui (2005)
proposed a migration step taken from the distributed genetic algo-
rithm framework (Tanese, 1989) to efficiently circulate the states
of the chains. The idea is to propose a jump from one chain’s
current state to another chain’s current state. This proposal often
includes multiple chain states being swapped in a cyclical fashion,
so that Chain 1 moves to Chain 2 and Chain 2 moves to Chain 3
and Chain 3 moves to Chain 1.

More formally, to perform the migration step, we must first
determine the number of chains that will be involved in the
swapping by sampling a number � uniformly from the set K � {1,
2, . . ., K}. Then, to determine which of the chains to use, we
sample � numbers without replacement from K, forming the group
set G � {G1, G2, . . ., G�}. Finally, we swap the states of the chains
from each of the sets in a cyclical fashion, so that

�G1
, �G2

, . . . , �G�
1
�G�� ¡ �G�

, �G1
, . . . , �G�
2

�G�
1�.

When the cost associated with evaluating the target density
function is high, it is most efficient if this swap is a deterministic

one and does not rely on the Metropolis–Hastings probability (e.g.,
Turner and Sederberg, 2012). Although a deterministic transition
rule works to diversify groups of particles, it does not solve the
problem of outlier chains. However, we can modify the migration
step by adding a small amount of noise to each proposal, so that

�G�

� � �G�
� �

�G1

� � �G1
� �

É

�G�
1

� � �G�
1
� �.

If ε is sampled from a symmetric distribution (e.g., a continuous
uniform distribution), then the forward and backward transition
probabilities may again be safely ignored and the probability of,
say �G1

jumping to �G�

� , reduces to

� � min �1,
� (�G�

� )

� (�G1
)�.

When the migration step is carried out in this way, outlier chains
will quickly be pulled into higher density regions of the posterior
and will not be replaced by other chains (as in the deterministic
rule). In our own studies, we have found the migration step to be
an extremely useful tool when good initial values are difficult to
determine.
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