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Abstract

Understanding individual differences in cognitive performance is an important part of under-

standing how variations in underlying cognitive processes can result in variations in task perfor-

mance. However, the exploration of individual differences in the components of the decision

process—such as cognitive processing speed, response caution, and motor execution speed—in

previous research has been limited. Here, we assess the heritability of the components of the deci-

sion process, with heritability having been a common aspect of individual differences research

within other areas of cognition. Importantly, a limitation of previous work on cognitive heritability

is the underlying assumption that variability in response times solely reflects variability in the

speed of cognitive processing. This assumption has been problematic in other domains, due to the

confounding effects of caution and motor execution speed on observed response times. We extend

a cognitive model of decision-making to account for relatedness structure in a twin study para-

digm. This approach can separately quantify different contributions to the heritability of response

time. Using data from the Human Connectome Project, we find strong evidence for the heritability

of response caution, and more ambiguous evidence for the heritability of cognitive processing

speed and motor execution speed. Our study suggests that the assumption made in previous stud-

ies—that the heritability of cognitive ability is based on cognitive processing speed—may be

incorrect. More generally, our methodology provides a useful avenue for future research in com-

plex data that aims to analyze cognitive traits across different sources of related data, whether the

relation is between people, tasks, experimental phases, or methods of measurement.
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1. Introduction

Understanding why individuals differ from one another has been a common question

across many areas of psychology, including learning (Reber, Walkenfeld, & Hernstadt,

1991), age-related decline (Ratcliff, Thapar, & McKoon, 2010), personality (Humphreys

& Revelle, 1984), and memory (Just & Carpenter, 1992). The investigation of the latent

cognitive attributes that underlie task performance, and how individual differences in

those attributes can lead to differences in observed performance, allows for a better

understanding of what specific variations in the cognitive process can cause specific vari-

ations in the observed task performance.

For decision-making in particular, it is well known that multiple components of the deci-

sion-making process contribute to the response times measured in simple choice tasks, and

that people differ substantially in their mental processing speed, response caution, and motor

processing speed. The few studies that have focused on individual differences in these attri-

butes have linked white matter tract strength (Forstmann et al., 2010) and personality traits

(Evans, Rae, Bushmakin, Rubin, & Brown, 2017) with the level of response caution that

people display, and aging with processing speed—independent of IQ (Ratcliff et al., 2010).

The study of genetic inheritance has expanded over recent decades to include investi-

gations of the heritability of psychological traits. Some of this interdisciplinary work has

focused particularly on the heritability of cognitive abilities, such as intelligence and

memory (Bouchard, 2004; Bouchard & McGue, 1981; DeFries & Fulker, 1985; Erlen-

meyer-Kimling & Jarvik, 1963). General intellectual abilities appear to have strong heri-

tability, with some evidence suggesting that more than 50% of the variability in

intelligence is explained by genetic variations (Vernon, 1989). Twin studies are the most

commonly used paradigm for investigating cognitive heritability. These studies compare

identical twins, who share identical genetic material at birth with non-identical twins,

who have the same amount of genetic overlap as regular siblings. Heritability in some

measure (such as IQ) is assessed by comparing the strength of association in that measure

between identical (monozygotic, or MZ) and non-identical (dizygotic, or DZ) twins.

Higher association for MZ than DZ twins indicates genetic heritability of the measure.

Analysis of data from twins has supported the notion that there are heritable compo-

nents to both general cognitive processes (e.g., intelligence) and the cognitive processes

that underpin them (e.g., processing speed: Beaujean, 2005; Finkel & Pedersen, 2004;

Kochunov et al., 2016; Luciano et al., 2001; Ogata, Kato, Honda, & Hayakawa, 2014;

Posthuma, Mulder, Boomsma, & De Geus, 2002; Vernon, 1989). However, a limitation

of the work so far is an untested assumption that response time is a pure reflection of

underlying cognitive processing speed. This assumption has proven problematic in other

research domains, because the observed response times for cognitive tests can be heavily

influenced by factors other than cognitive processing speed. For example, the observed

response time with which people complete a standard memory task is undoubtedly influ-

enced by how efficiently they can retrieve memories, but it is also influenced by how

quickly they execute motor responses, and by how cautiously they respond. Previous
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cognitive heritability research has also suggested a strong genetic component of response

caution, with Engelhardt et al. (2016) suggesting that the entire heritable component seen

in general intelligence might be explained through the heritability in executive functions.

Our study investigates whether the heritability of response time in a simple cognitive

test is really attributable to inherited cognitive processing speed, or to some other inher-

ited factor, such as caution or motor speed. This necessitates addressing both response

speed and accuracy simultaneously, to disentangle the sometimes-complex relationships

between them. Studies of inheritance using the twins paradigm have most frequently

focused on response time and response accuracy, separately. When they have considered

both measures, the statistical approach has been to use an “off the shelf” model, such as

structural equation modeling (SEM). Such approaches do not take into account the

detailed knowledge about the micro-structure of the relationship between response speed

and accuracy which has been gathered over the past 50 years (Luce, 1986). Instead, our

approach is based on a cognitive model which allows the analysis to leverage that knowl-

edge. We replace the statistical model of SEM with a well-validated and statistically

tractable cognitive model. This approach has proven successful in a wide range of psy-

chological paradigms, investigating the underlying cognitive effects of fatigue, alcohol

consumption, depression, and many others (for a review, see Donkin & Brown, 2017).

The most commonly applied cognitive models for disentangling the effects of caution,

processing speed, and motor speed are evidence accumulation models of simple decision-

making (Evans & Brown, 2017b; Evans, Hawkins, Boehm, Wagenmakers, & Brown,

2017; Evans et al., 2017; Ratcliff, Thapar, & McKoon, 2001, 2011). These models posit

that decision-making is the result of evidence accumulating in favor of each response

alternative until a threshold amount is reached for one of the alternatives, at which time a

response is triggered. In these models, “evidence” is defined very generally, as whatever

task-relevant information is used to discriminate the different choice options. In some

specific fields, detailed models have been developed of how this evidence is produced

and what defines it (e.g., in perceptual decision-making, by Lu & Dosher, 2008; in con-

sumer choice, by Trueblood, Brown, & Heathcote, 2014 and Busemeyer & Townsend,

1992; in confidence judgments by Ratcliff & Starns, 2013 and Pleskac & Busemeyer,

2010; and in absolute identification by Brown, Marley, Donkin, & Heathcote, 2008).

We extend the evidence accumulation framework to take into account genetic related-

ness, which allows direct assessment of the heritability of the different components of deci-

sion-making. We focus on three key components that contribute to overall performance

speed: the rate of evidence accumulation, which is a measure of processing speed; the

threshold amount of evidence required to trigger a decision, which is a measure of the bal-

ance between caution and urgency; and the amount of time taken by non-decision compo-

nents of processing, especially motor execution time. We apply our methods to data from

the Human Connectome Project (HCP: Van Essen et al., 2013). These data include behav-

ioral measures from a range of cognitive tasks, genetic information including twin status,

and a variety of other measures not analyzed here, such as brain structure and medical his-

tory. From the HCP, we focus on data from the 2-back task, which measures working mem-

ory, which is a good measure of an important cognitive function (working memory).
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2. Method

2.1. Participants

We analyzed data from the March 2017 release of the HCP (Van Essen et al., 2013).

Of the 1,200 participants in that release, 1,092 had data for the working memory 2-back

task. These consisted of 298 MZ twins (149 pairs), 168 DZ twins (84 pairs), and 434

non-twin siblings. In total, we analyzed 450 pairs of participants. Not every non-twin sib-

ling pair was unique, as the siblings of some twins were also members of other pairs.

2.2. Task

We analyzed decision-by-decision data from the 2-back task, which is a variant of a

commonly used and well-validated measure of working memory, known as the n-back
task. During the 2-back task (see Fig. 1), participants view a sequence of images, and

decide—for each image—whether the current image matches that presented two images

previously. A matching image is called a “target,” and a non-matching image is called a

Target 
Lure 

Non target 

2s 

500
ms 

2s 

2s 

2s 

2s 

500
ms 

500
ms 

500
ms 

Fig. 1. An example of the procedure for the 2-back task from the HCP. This figure shows five stimulus pre-

sentations, which results in three testing trials (because the first two trials have no stimulus to be matched to

in a 2-back task). The third stimulus is a “target” because it matches the stimulus presented two images ear-

lier (another blue power drill). The fourth stimulus does not match the image presented two images earlier,

and so it is a “non-target.” The fifth image is also a “non-target” (as it does not match the image presented

two images earlier), but it is also a “lure,” because it does match the image presented three images earlier.

[Color figure can be viewed at wileyonlinelibrary.com]
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“non-target.” In addition, some non-target images match images which were recent, but

not exactly two images previous (e.g., the last, or third-last image). These images are

known as “lures,” because they are non-targets which will nevertheless feel very familiar

to the participant, encouraging an incorrect response. There were 80 trials in the task,

split into four different types of stimuli (separated by blocks): faces, bodies, spaces, and

tools. We do not investigate differences between the stimulus types. Each image was pre-

sented for two seconds in which the participants were allowed to respond, or else a non-

response was recorded, followed by a 500 ms inter-trial-interval. Full details of this task,

and all tasks, can be found within the HCP documentation (https://www.humancon

nectome.org/study/hcp-young-adult/document/1200-subjects-data-release).

2.3. Standard analysis

We report two kinds of analysis based upon the data of the HCP. First, we use a

standard analysis method from the heritability literature and calculate h2 values using

linear Pearson correlations on surface-level manifest variables (mean RT, decision accu-

racy, the proportion of non-responses, the variance in RT, and the minimum RT). The

quantity h2 is a standard measure of heritability based on the difference between corre-

lations for MZ and DZ twins: h2 = (rMZ � rDZ) 9 2. The logic behind this measures is

based on the amount of genetic overlap between MZ and DZ twins (Bouchard, 2004;

DeFries & Fulker, 1985; Kochunov et al., 2016; Vernon, 1989; Visscher, Hill, & Wray,

2008). We also use another standard analysis method from the heritability literature,

ACE modeling (Zyphur, Zhang, Barsky, & Li, 2013), which extends upon h2 by break-

ing the overall variability into three components: additive genetic variance (a2), shared
environmental variance between twins (c2), and unshared environment variance (e2).
We performed ACE modeling using a least squares minimization routine between the

expected covariances and the actual covariances, with a differential evolution optimizer

that ran for 3,000 iterations with 50 particles. The estimated covariance were calculated

as follows:

COVMZ ¼ a2 þ c2

COVDZ ¼ ð0:5� a2Þ þ c2

2.4. Cognitive model analysis

The second analysis uses a cognitive model, the linear ballistic accumulator model

(LBA: Brown & Heathcote, 2008), to make inferences about the heritability of the latent

variables that underlie decision-making. The LBA is a well-validated and statistically

tractable evidence accumulation model (for a review of its use, and the general topic, see

Donkin & Brown, 2017), with Donkin, Brown, and Heathcote (2009) finding that it gen-

erally comes to the same conclusions as the diffusion model (Ratcliff, 1978). The LBA
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proposes that the decision process is made up of evidence being accumulated for each of

the different decision alternatives over the course of the decision. For example, in the

case of the 2-back task, these response alternatives would be to say that the current stim-

ulus matches the one presented 2 stimuli ago (i.e., responding “target”) or to say that the

current stimulus does not match the one presented 2 stimuli ago (i.e., responding “non-

target”). The alternatives continue to accumulate evidence until the amount of evidence

for one of these alternatives reaches some threshold, which triggers a decision for that

alternative (see Fig. 2 for an example).

The LBA makes quantitative predictions for response time and accuracy on the basis

of five key parameters, which can be interpreted as latent cognitive variables: the drift

rate (v), which determines how quickly evidence accumulates; the decision threshold (b),
which determines how much evidence is needed to trigger a decision; the non-decision

time (t0), which determines the amount of time dedicated to non-decision processes such

as perceptual and motor processes; and the start point, which determines the amount of

evidence in favor of each response before the decision process is started. The model also

allows for variability in drift rate between trials, governed by a normal distribution with

standard deviation s, and in starting points between trials, with A giving the height of the

uniform starting point distribution.

The following equations provide a precise mathematical specification of the model that

we used for these data, including of the prior distributions we assumed over all parame-

ters. In these equations, subscript i = [1, 2, . . .] indexes the pairs of participants, subscript

j = [1, 2] indexes the individuals in each pair, subscript k = [1, 2, 3] indexes the experi-

ment condition, being target (1), lure (2), and non-target (3), and l = [1, 2] indexes

whether the accumulator was for the correct (1) or incorrect (2) response. When a sub-

script is not included for a parameter, it indicates that this parameter was constrained to

take the same value across the values of this subscript. Beginning at the level of individ-

ual response times and choices:

Respond Respond 

Decision Time 

Start 
Point 

Response 
Threshold 

Drift Rate 

Fig. 2. The linear ballistic accumulator model (LBA). Evidence accumulates for each alternative, in this case

“target” vs. “non-target,” until one reaches a threshold level of evidence, which triggers a decision. Rather

than starting at zero, each alternative contains some starting amount of evidence, with this being randomly

drawn for each accumulator and each trial from a uniform distribution. The rate of accumulation also differs

from trial to trial, according to a normal distribution (truncated to positive values).
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ðRTi;j; responsei;jÞ� LBAðAi;j; bi;j; t0i;j; vi;j;k;l; si;j;lÞ

The drift rate distributions for the accumulator corresponding to the correct

response in each of the three conditions have their standard deviation (i.e., si,j,1) set

to 1, to constrain a scaling property of the model (Donkin et al., 2009), whereas the

standard deviations corresponding to the incorrect response (i.e., si,j,2) was estimated.

The means for the drift rate distributions where allowed to vary over both experimen-

tal condition and correct/incorrect responses, meaning that each condition-response

combination contained a different mean drift rate (6 in total). All other parameters

were constrained to take on the same values across all experimental conditions, and

correct/incorrect response accumulators. This model has a total of 10 free parameters

per participant: six v parameters, and a single A, b, t0, and s parameter. To model

missed responses in the HCP’s 2-back task, we evaluated the survivor function at the

cutoff point of 2 seconds, which is a standard approach for censored distributions

(Ulrich & Miller, 1993).

We fit the LBA using a hierarchical Bayesian approach. This allows for individual

differences in a constrained manner—each participant is allowed her own parameter

estimates, but these estimates are constrained to follow group-level distributions. This

approach allows an analysis of the entire group of participants, rather than just each

participant individually, without suffering from well-known issue associated with aver-

aging distributions over participants (Estes, 1956). The key in our hierarchical

approach is modeling the covariance structure, which we implemented by constraining

the logarithms of these individual-level parameters to follow bivariate normal distribu-

tions at the group level. The mean (denoted by l) and standard deviation (denoted by

r) of the group-level distributions were forced to be equal across the different related-

ness groups, meaning that our model contained 10 l parameters, and 10 r parameters

(i.e., equal to the number of free parameters per participant). Note that the l and r
parameters, although important for the hierarchical structure, were of little theoretical

interest to us for assessing our questions regarding the heritability of the components

of the decision-making process. Instead, we were interested in the parameters that

formed the key extension of our approach: the correlation parameters, which were

allowed to be different for MZ twins, DZ twins, and non-twin siblings to assess the

heritability. To simplify the model, we constrained the correlation between pairs to be

the same value for all drift rate parameters (i.e., the 6 mean drift rates across all

experimental conditions and correct/incorrect responses, and the single standard

deviation for the incorrect responses). We also constrained the correlation

between pairs to be the same value for the start-point and threshold parameters (b
and A), as these parameters are highly correlated. This means that we estimated nine

correlation parameters in total: the correlations for the three different parameter types

(drift rate, threshold, and non-decision time) for each of the three different related-

ness groups (MZ twins, DZ twins, and non-twin siblings). We denote these
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group-level correlation parameters by qp,g, where the subscript p = [1, 2, 3] indexes

which individual-level parameters the correlation applies (1 for thresholds, 2 for drift

rates, and 3 for non-decision time), and the subscript g(i) = [1, 2, 3] indexes the

genetic relatedness group (1 for MZ, 2 for DZ, and 3 for sibling pairs) for the ith
pair of participants.

logðAi;jÞ�N
lA
lA

� �
;r2

A

1 q1;gðiÞ
q1;gðiÞ 1

" # !
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Finally, the priors we specified were relatively uninformative. Most important, the prior

distributions were identical for parameters pertaining to different experimental conditions

(lure, target, non-target) and different relatedness groups (MZ, DZ, and non-twin sib-

lings). This ensures that any observed differences in the posterior distributions were dri-

ven by the data:

log lA;lb;lvfk;lg; ls
� �

�Nð0; 2Þ
log lt0ð Þ�Nð�2; 2Þ

log r2
A;r

2
b;r

2
vfk;lg;r

2
s ;r

2
t0

� �
�Nð�3; 2Þ

qp;g�Nð0; 0:3Þ

We sampled from the posterior distribution over parameters using Markov chain Monte

Carlo with proposals generated by differential evolution method (DE-MCMC; Ter Braak,

2006; Turner, Sederberg, Brown, & Steyvers, 2013). Parameter updating was blocked by

subject, meaning that the highest dimension of the updating process was 10 parameters.

DE-MCMC has been found to be highly efficient at sampling from correlated dimensions

in dimensionality of this size (Ter Braak, 2006; Turner et al., 2013). We ran 30 parallel

chains for 4,000 iterations of burn-in, initiated with broad starting points, and then drew

2,000 samples from each chain for the posterior. The correlation posterior distributions
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were checked for convergence and mixing using the R̂ statistics, with all R̂ values being

below 1.2 (the value recommended by ter Braak & Vrugt, 2008; Ter Braak, 2006), and

all except one (t0 MZ) below 1.1.

In order to make inferences on whether the correlations for each parameter differed

between the groups (e.g., whether the correlation parameter for threshold differed

between MZ twins and DZ twins), we used the Savage-Dickey ratio (Wagenmakers,

Lodewyckx, Kuriyal, & Grasman, 2010; Wetzels, Grasman, & Wagenmakers, 2010).

The Savage-Dickey ratio provides an estimate of the Bayes factor (see Evans & Brown,

2017a for a discussion of different ways to estimate the Bayes factor) between a null

model (i.e., no difference between groups) and an alternative model (i.e., a difference

between groups) by taking the ratio of the density of the prior distribution and the pos-

terior distribution at the point of 0 (i.e., no difference). Specifically, if the posterior is

more likely than the prior at 0, then this shows evidence for the null model, and if the

prior is more likely than the posterior at 0, then this shows evidence for the alternate

model. Bayes factors of around 1 indicate approximately equal evidence for each

model, whereas Bayes factors of above 3 or below 1
3
indicate moderate evidence for the

alternative model or the null model, respectively. Bayes factors of above 10 or below
1
10

indicate strong evidence, with the data being 10 times more likely under one model

than the other. We obtained the “difference posterior” by taking the difference between

the estimated correlation distributions of the different relatedness groups for every pos-

terior sample taken, and we obtained the “difference prior” by randomly generating

1,000,000 samples from the prior of each relatedness group’s correlation distribution

and taking the difference between these samples. We then estimated the density at 0

for all difference distributions through a Gaussian density kernel.

For example, to make an inference on whether the correlation between MZ twins dif-

fered from the correlation between DZ twins for thresholds (top-left panel of Fig. 6), we

obtained the difference posterior by subtracting the joint posterior samples of the DZ twin

correlation from the MZ twin correlation. We then obtained the difference prior by sub-

tracting the 1,000,000 samples from the DZ twin correlation prior from the MZ twin cor-

relation prior. Lastly, we divided a density estimate of the difference posterior at 0 by an

estimate of the difference prior at 0, giving the Bayes factor in favour of there being a

difference between the distributions.

2.5. Parameter recovery analysis

To test the robustness of our inferences on the estimated group-level correlations

within our joint model of heritability, we performed a parameter recovery simulation.

Within this recovery, we specifically focus on the recovery of these group-level

correlations (shown in bold in the formal model definition below), as they (a) are the

only parameter values that we perform inferences on within our assessment of

heritability and (b) form the novel extension of our approach. Toward this goal, we

generated a single group of synthetic participant pairs from the following simplified

model:
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where vc refers to the correct drift rate, and ve refers to the incorrect drift rate.

For this simulation, we generated 150 pairs of synthetic participants, with 150 trials

per participant. Fig. 3 displays the recovered posterior distributions of the correlations

parameters, with a red line at the generating value. All estimated posteriors are centered

on approximately their true generating value, showing a good overall recovery perfor-

mance. Further, the parameters that were generated with high correlations (vc and ve)
seem to show near-perfect recovery, with the distributions centered on the generating

value, and the posteriors being very narrow. Thirdly, the parameters that were generated

with no correlation (A and b) were recovered without any systematic bias, though the pre-

cision was lower than when generated with a higher correlation, with the variance of the

posterior being much wider. Lastly, the t0 parameter seems to break the “rule” suggested

by the previous two trends, showing posteriors that are about as wide, if not wider, than

the parameters generated with 0 correlation, despite t0 being generated with a non-zero

correlation (0.2). Since the t0 parameter is not tightly constrained in the LBA, as opposed

to the diffusion model where t0 must take a value very close to the minimum time of the

response time distribution, this poorer recovery may make some sense (Tillman & Logan,

2017).

3. Results

3.1. Standard analysis results

We calculated the h2 index of heritability, as well as the parameters of the ACE

model, using five different dependent variables that might reasonably be extracted from

the data: response time mean, response time variance, response time minimum, decision

accuracy, and the proportion of non-responses. Of course, many other summary statis-

tics could be analyzed, which again highlights the strength of the model-based analysis,
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which entails all such choices, by considering the full structure of the response time

distribution.

The correlations for each relatedness group and the corresponding h2 values can be

seen in Table 1. For all five variables, the correlations were largest for MZ twins (ranging

from r = .05 to .62), though there was a split between DZ twins (�.1 < r < .41) and

non-twin siblings (�.05 < r < .37) for next largest across the five variables. These corre-

lations lead to heritability estimates ranging from just h2 = 0.3 (for minimum RT) to

h2 = 0.68 (for the proportion of missed responses). This raises the question of what infer-

ences should be drawn about the heritability of cognitive performance, given the different

results from the four different summary statistics. It might be argued that RT mean is

more important than the other variables, but it is difficult to imagine principled reasons

on which to prefer one of these measures over the others, or a coherent basis on which to

weight the different outcomes.

−1 −0.5 0 0.5 1
Correlation

A

−1 −0.5 0 0.5 1
Correlation

b

−1 −0.5 0 0.5 1
Correlation

vc

−1 −0.5 0 0.5 1
Correlation

ve

−1 −0.5 0 0.5 1
Correlation

t0

Fig. 3. Estimated posteriors for the group-level correlations between pairs for each of the five parameters.

The x-axis displays the correlation values, and the y-axis displays the frequency at which this correlation was

sampled. The red vertical line displays the true generating value for that parameter. [Color figure can be

viewed at wileyonlinelibrary.com]
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Table 1 shows the results of the ACE modeling for each of the five variables. For

mean RT and accuracy, the estimates for the additive genetic component, a2, were identi-

cal to that of the basic heritability measure, h2. The ACE model also provided a good fit

to the data for these variables, perfectly predicting the covariance in MZ and DZ twins,

as seen in Table 2. For the variance in RT, minimum RT, and the proportion of misses,

there were discrepancies between the a2 estimates and the h2 calculation, with the a2 esti-
mates being substantially lower for all three variables (going as low as 0 for minimum

RT). However, the ACE model also did a much poorer job predicting the covariances for

these variables, as can be seen in Table 2. This seems to be due to the inability of the

ACE model to predict covariance for the MZ twins that is more than double that for DZ

twins, or a negative covariance, resulting in smaller a2 estimates and poorer fits when this

is the case within the data. As the a2 estimates were identical to h2 when the ACE model

provided a good fit to the data, we limit discussion below to the simpler h2 values.

3.2. Model-based heritability results

Fig. 4 displays how our novel LBA model extension accounts for the data, through

group-averaged cumulative distribution function (CDF) plots. The green and red dots dis-

play the data, and the green and red lines display the predictions of the model, across the

Table 1

Correlations between the different relatedness groups (columns) for four summary statistics (rows). The four

right-most columns shows heritability (h2), additive genetic component (a2), shared environmental component

(c2), and unshared environmental component (e2)

MZ DZ Sib h2 a2 c2 e2

RT mean 0.44 0.26 0.17 0.37 0.37 0.08 0.56

Proportion correct 0.62 0.41 0.37 0.43 0.43 0.19 0.38

Proportion missed 0.43 0.09 0.15 0.68 0.38 0 0.62

RT variance 0.42 0.02 0.08 0.8 0.34 0 0.66

RT minimum 0.05 �0.1 �0.05 0.3 0 0 1

Table 2

The goodness-of-fit for the ACE models for each variable. Displays the actual covariances (Act Cov) and

estimated covariances (Est Cov) in the data for MZ and DZ twins, as well as the estimated covariances of

the models

Act Cov Est Cov

MZ DZ MZ DZ

RT mean 0.00758 0.00445 0.00758 0.00445

Proportion correct 0.00311 0.00203 0.00311 0.00203

Proportion missed 0.0012 0.00025 0.00106 0.00053

RT variance 0.0004 0.00002 0.00033 0.00016

RT minimum 0.0008 �0.00159 0 0
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Fig. 4. Joint cumulative distribution function plots, calculated through averaging percentiles over participants.

The three panels display the actual data and model predictions for the three conditions: lure, non-lure, and target.

The x-axis displays the RT, with the 19 points being the 5th,10th,. . .,95th percentiles of the data. The y-axis dis-
plays the proportion of responses observed faster than each percentile, in the appropriate response class (correct

vs. incorrect responses). The dots show the data and the lines show the model predictions, with green for correct

responses and red for error responses. The proportion of missed responses (non-responses) observed in each con-

dition is shown by the height of the black dot in the lower left corner, with the corresponding model prediction

given by the red cross. [Color figure can be viewed at wileyonlinelibrary.com]
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distribution of RTs. Green lines and dots indicate distributions for correct responses, and

red lines and dots indicate distributions for incorrect responses. The bottom-left corner of

each panel also includes the the proportion of missed trials (non-responses), using the y-

axis scale. The model accounts for the data quite well, closely matching the RT in accu-

racy in all conditions, apart from some minor misfit in the lure and target conditions,

where the model slightly over-estimates and under-estimates the variance in RT, respec-

tively. It is natural that the model fits less well in the target and lure conditions, as those

two conditions have extremely small numbers of trials (16 in each, per participant), as

conditions with larger number of trials will have a greater impact on the likelihood, and

the exact empirical trends for each individual are likely quite noisy.

Next, we move on to the assessment of the correlations of the latent parameters of each

of the different groups. Firstly, it is interesting to assess the estimated posterior distributions

for each of the correlation parameters, separately for each relatedness group and for the

three correlation parameters (drift rates, thresholds, and non-decision times). Fig. 5 displays

these posterior distributions, with different colors for the different relatedness groups, and

different panels for the different parameters. As with the h2 estimates, the correlations for

MZ twins are the highest for all parameters, though DZ twins and non-twin siblings are dif-

ficult to distinguish from one another. In terms of the widths of the correlation distributions,

the drift rate distributions appear to have the lowest variance (SD: MZ = 0.058,

DZ = 0.076, SIB = 0.048), with thresholds being slightly more variable (SD: MZ = 0.075,

DZ = 0.111, SIB = 0.064), and the non-decision time distributions being highly variable

(SD: MZ = 0.195, DZ = 0.223, SIB = 0.166). These results make sense given the parame-

ter recovery analysis above, which found the drift rate distributions to be estimated with low

variance, and the non-decision time distribution to be estimated with much higher variance.

However, despite the differences in posterior width, there appears to be a great deal of over-

lap between every group’s distribution for each parameter, apart from the MZ twins for

threshold, which barely overlap with DZ twins or non-twin siblings.

Fig. 6 displays the distributions of the differences between the correlations of the relat-

edness groups for the different latent parameters. These allow the assessment of the heri-

tability and environmental influences on the different latent parameters, and they include

both the posterior distributions estimated and the prior distributions required for the Sav-

age-Dickey ratio, as well as the Savage–Dickey ratio estimate of the Bayes factor. The

left column displays the difference distribution for the MZ twins and DZ twins correla-

tions, which indicate the influence of heritability on the parameters. Only threshold dis-

plays decisive evidence on whether or not an effect is present, showing strong evidence

for the MZ correlation being higher than the DZ correlation, and therefore, suggesting

genetic heritability in threshold (95% HDI = [0.11, 0.63]). Both drift rate (95%

HDI = [�0.02, 0.37]) and non-decision time (95% HDI = [�0.35, 0.79]) yielded Bayes

factors very close to 1, suggesting that the evidence is ambiguous for whether or not the

MZ correlation is higher than the DZ correlation. The right column displays the differ-

ence distribution for the DZ twins and non-twins siblings correlations, which indicate the

influence of environment on the parameters. Both threshold and drift rate display moder-

ate evidence in favor of no difference between the DZ and non-twin sibling correlations,
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suggesting that there is little evidence that there are systematic environmental influences

that are shared between family members on threshold or drift rate. Non-decision time

again showed a Bayes factors very close to 1, suggesting that the evidence is quite

ambiguous for whether or not the DZ correlation is higher than the sibling correlation.

4. Discussion

We aimed to investigate different components of the heritability of cognitive perfor-

mance in a standard working memory task, using the twin study paradigm. Using data

−1.0 −0.6 −0.2 0.2 0.6 1.0

Thresholds

MZ DZ SIB

−1.0 −0.6 −0.2 0.2 0.6 1.0

Drifts

−1.0 −0.6 −0.2 0.2 0.6 1.0

t0

Posteriors over Twin−Twin Correlation

Fig. 5. Marginal posterior distributions over correlation parameters (i.e., the q parameters in the model defi-

nition) of the joint model. Each row gives a different parameter of the model: thresholds (response caution),

drift rates (processing speed), and non-decision time (physical processing speed). The different colored distri-

butions give the different levels of relatedness, with monozygotic twins in red, dizygotic twins in green, and

siblings in blue. [Color figure can be viewed at wileyonlinelibrary.com]
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Thresholds MZ−DZ BF = 16.77
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−2 −1 0 1 2

Thresholds DZ−Sib BF = 0.31
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−2 −1 0 1 2

Drifts MZ−DZ BF = 1.22

−2 −1 0 1 2

Drifts DZ−Sib BF = 0.3

−2 −1 0 1 2

t0 MZ−DZ BF = 0.94

−2 −1 0 1 2

t0 DZ−Sib BF = 0.63

Difference Distributions over Twin−Twin Correlation

Fig. 6. Displays the posterior (purple) and prior (light blue) difference distributions for each type of parame-

ter (threshold, drift rate, non-decision time) for the correlation differences that are meaningful to interpreting

heritability and environmental influences. The first of these difference distributions, MZ twin correlation

minus DZ twin correlation, is displayed in the left column. These difference distributions give an indication

of the heritability in each of the parameters. The second of these difference distributions, DZ twin correlation

minus non-twin sibling correlation, is displayed in the right column. These difference distributions give an

indication of the shared family environmental influences in each of the parameters. Each panel displayed a

red vertical line at 0, the point whether the Savage–Dickey ratio between the posterior and prior densities is

applied, with the Savage-Dickey ratio estimate of the Bayes factor being displayed as “BF,” which is

expressed in favor of the alternative. There is only strong evidence for heritable influences in thresholds, with

drift rate and non-decision time showing no strong evidence either for or against an effect. For environmental

influences, there is moderate evidence in favor of no effect for threshold and drift rate, though non-decision

time is again ambiguous. [Color figure can be viewed at wileyonlinelibrary.com]
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from the Human Connectome Project (Van Essen et al., 2013), we developed and tested

a new approach to jointly model response times, response accuracy, and twin-pair correla-

tions. Our method employed a Bayesian hierarchical statistical approach and used a cog-

nitive decision-making model to separate out different sources of variability in data.

While previous studies made the simple assumption that observed heritability in response

time is attributable solely to heritability in the speed of mental processing (Beaujean,

2005; Finkel & Pedersen, 2004; Kochunov et al., 2016; Luciano et al., 2001; Ogata et al.,

2014; Posthuma et al., 2002; Vernon, 1989), we found greater genetic contribution to

response caution than to underlying cognitive speed within the memory task assessed.

Our results fall in line with the previous findings of Engelhardt et al. (2016), who used

psychometric testing to show that a strong genetic component exists within executive

functions.

Previous twin-based studies have investigated the heritability of decision-related pro-

cesses, such as processing speed, through psychometric tests, linear correlations, and

structural equation models (Vernon, 1989). However, such approaches do not naturally

differentiate between the specific components of mental processing speed and physical

processing speed, or account for the well-known speed-accuracy tradeoff. This means that

previous conclusions about the heritability of processing speed might actually be better

interpreted as being about the heritability of caution, in much the same manner as age-

related slowing was originally mis-attributed to processing slowdown instead of increased

caution. Our approach differentiates between the heritability of these different latent vari-

ables by using a cognitive model.

Our analysis resolves another limitation of standard methods, involving the choice of

summary statistic. When assessing the heritability of cognitive speed, traditional methods

require the observed data to be reduced to summary statistics (nearly always the just the

mean). The decision as to which discrete variables should be taken, and how these vari-

ables should be combined, can be unclear. An unfortunate choice of summary statistic

could lead to either over-estimation of heritability (through a process of multiple compar-

isons, much like p-hacking) or to an under-estimation of heritability (e.g., if twins co-vary

more in the variance of their data than the mean). Analysis using a cognitive model of

decision-making coherently includes the entire data distributions, resolving this problem.

Our study is the first to assess the heritability in the latent components of the decision-

making process, and as such, the results should be interpreted with caution. Although

there was clear evidence that response caution can be heritable, and that it shows greater

evidence of heritability in this dataset than mental processing speed, it may be the case

that response caution in other datasets is less heritable than mental processing speed.

Therefore, we do not believe that our results are the basis for a strong claim that response

caution is generally more heritable than mental processing speed, but instead that

response caution can be heritable and needs to be considered in future research, and that

within working memory tasks it appears to be more heritable than mental processing

speed.

Our method provides an interesting avenue for future research with complex data, as a

method for using and interpreting the covariance structure of the dataset to provide better
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estimation and better understanding of the task. For example, some large datasets may

contain multiple sessions of experimental data from the same task for the same person,

but the person has completed these different sessions on different devices, such as a com-

puter and a mobile phone. As both sessions of data were collected from the same person

for the same task, one would expect them to be highly related. However, based on the

different device, which has a different viewing size, response mechanism, and so on, one

would expect that performances should differ in some unknown, but systematic, way. Our

method provides a sensible way of using this relationship to better constrain data estima-

tion. Not only does this provide a sensible way of informing parameter estimation based

on the relationship between different sources of data, but it also allows for a measurement

of how related the different parameters are between tasks. For example, one could poten-

tially learn that threshold is fairly consistent (i.e., high covariance) across devices, but

that drift rate is highly variable (i.e., low covariance). Therefore, we believe that in addi-

tion to our interesting results regarding the heritability of decision-making components,

our study provides a useful method for future research investigating complex data within

cognitive science.

Additionally, our method suggests two new avenues for future research in cognitive

heritability. Like the study of Ratcliff et al. (2011), not all tasks share the same differ-

ences and similarities of the underlying components (e.g., young and old people in asso-

ciative and item recognition), meaning that the heritability of other cognitive tasks might

be explored through cognitive models. Secondly, as genetic research moves towards a

focus on DNA sequences over twin studies, future research could focus on combining

cognitive models with detailed genetic sequences.

Lastly, although our study has found response caution to be a highly heritable trait, this

does not imply that response caution is not under cognitive control. Many previous stud-

ies have shown that people are able to change their level of response caution to better

account for task demands (Rae, Heathcote, Donkin, Averell, & Brown, 2014; Ratcliff &

Rouder, 1998; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008). Our findings instead

suggest that the manner in which people set their response caution by default have a large

genetic component. Future research could explore if the way in which people adapt their

response caution to different task demands, such as those in the papers cited above, also

has a large heritable component, or if only the default settings appear to show such a

finding.
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