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Abstract

Previous research has found that functional connectivity (FC) can accurately predict the identity of a subject per-
forming a task and the type of task being performed. These results are replicated using a large data set collected at
the Ohio State University Center for Cognitive and Behavioral Brain Imaging. This work introduces a novel per-
spective on task and subject identity prediction: blood-oxygen-level-dependent variability (BV). Conceptually,
BV is a region-specific measure based on the variance within each brain region. BV is simple to compute, inter-
pret, and visualize. This work shows that both FC and BV are predictive of task and subject, even across scanning
sessions separated by multiple years. Subject differences rather than task differences account for the majority of
changes in BV and FC. Similar to results in FC, BV is reduced during cognitive tasks relative to rest.
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task classification

Introduction

Recent studies have shown that functional connectiv-
ity (FC) is highly diagnostic of the task that a subject

is performing (Gonzalez-Castillo et al., 2015; Kaufmann
et al., 2016; Kucyi et al., 2016; Richiardi et al., 2011; Shirer
et al., 2012; Tagliazucchi et al., 2012), and the identity of the
subject performing a given task (Finn and Constable, 2016;
Finn et al., 2015). These two prediction problems are illus-
trated in Figure 1. For task prediction, a subject is scanned
performing an unknown task and the goal is to use imaging
data from that scan to predict what task that subject was per-
forming. For subject identity prediction, an unknown subject
is scanned performing a known task and the goal is to use im-
aging data from that scan to predict the five subject’s iden-
tity. The present work aims to replicate results showing
that FC is predictive of task and subject identity and to dem-
onstrate that a different metric, BOLD (blood-oxygen-level-
dependent) variability (BV), is also highly diagnostic of task
and subject identity. The present article has three goals: first,
to replicate results by showing that FC is predictive of both
task and subject identity; second, to demonstrate that BV is
also highly diagnostic (although less diagnostic than FC) of
both task and subject identity; and third, to demonstrate
that both FC and BV are robust across preprocessing varia-

tions and can be used for subject identity prediction over a
time span of several years.

Defining FC and BV

FC and BV are two metrics that focus on changes of the
BOLD signal around the mean. FC is the correlation or covari-
ance in BOLD activation across regions (Biswal et al., 1995;
Friston, 2011; Friston et al., 1993; Van Den Heuvel and Pol,
2010). A perhaps less familiar perspective to brain connectiv-
ity researchers, but one mathematically related to FC, is BV:
the region-specific variance in BOLD activation (Garrett
et al., 2010, 2011, 2012). Figure 2 illustrates how FC and
BV are connected. For a given set of regions-of-interest
(ROIs), one can compute the variability of the BOLD time se-
ries and the degree to which each BOLD time series is related
to other time series in the set of ROIs. Both of these calcula-
tions are contained in the variance/covariance matrix, where
the diagonal elements contain variance terms and the off-
diagonal elements contain covariance terms (i.e., Fig. 2B).
However, because covariance terms are often difficult to inter-
pret, FC is typically based on the Pearson correlation, which
normalizes the covariance terms by dividing the variances
of the corresponding ROIs, as shown in Figure 2C. As a result,
the elements of the correlation matrix are blend of variance
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and covariance elements, which could potentially obscure im-
portant details inherent to tasks, subjects, or ROIs.

FC predicts task and subject identity

In the task prediction setting, both whole-brain FC and
network-level FC have been studied. Whole-brain FC has
been shown to accurately predict whether subjects are en-
gaged in a task or at rest (Richiardi et al., 2011), to discrim-
inate between subject-driven cognitive states (Shirer et al.,
2012), and to robustly track ongoing cognition (Gonzalez-
Castillo et al., 2015). Furthermore, the ability to track states
with FC has been associated with measures of behavioral
performance (Gonzalez-Castillo et al., 2015). FC networks
have similarly been shown to predict subject-driven cogni-
tive states (Tagliazucchi et al., 2012), to be associated with
attention (Kucyi et al., 2016), and to accurately track task-
evoked states (Kaufmann et al., 2016).

Despite strong links between FC and task-evoked states,
recent research suggests that the majority of the variance in
FC is accounted for by ‘‘who you are and not what you are
doing’’ (Finn and Constable, 2016, p. 281). Subjects exhibit
individual resting-state network architectures that are detect-
able in task-based fMRI (Cole et al., 2014) and can be used
to accurately identify subjects within a group (Chen and
Hu, 2018; Finn et al., 2015; Horien et al., 2018; Kaufmann
et al., 2017; Vanderwal et al., 2017; Waller et al., 2017).

Individual resting-state FC has also been used to predict
changes in the BOLD signal across task conditions. For ex-
ample, Tavor et al. (2016) used resting-state FC and gross
brain morphology to accurately predict BOLD modulation
across a range of cognitive paradigms, suggesting that indi-
vidual differences in task-evoked activity are stable trait
markers of underlying individual differences in resting-
state FC.

There is no consensus about whether subject-specific FC
signatures are persistent across time. One long-term study
found that FC within a single individual changed over time
and was paralleled by ongoing fluctuations in behavior, al-
though many brain networks are largely stable (Poldrack
et al., 2015). Other studies suggest that functional signatures
are more stable. For example, Laumann et al. (2015) found
that areal parcellation of subject FC is stable over the span
of a year, and Choe et al. (2015) found that resting-state
FC in a single individual, and especially the executive
resting-state network, was stable over a 3-year period.

BV associations with task and individual differences

BV presents a different approach to study BOLD fluctua-
tions, also associated with task and individual differences. A
series of neurocognitive aging experiments (see Garrett et al.,
2013; Grady and Garrett, 2014, for reviews) showed age-
related effects on task BV that are separate from, and more

FIG. 2. Relationships between the calculation of FC and BV. Time series for three ROIs (A) are used to compute the co-
variance matrix (B) where r2

ij represents the covariation between ROIs i and j and the red diagonal entries represent BV.
The covariance (B) can be used to compute the Pearson correlation matrix (C), where the ijth entry of the matrix is r2

ij/
(rii rjj). FC can refer to either the covariance matrix, which explicitly includes BV, or the correlation, which indirectly
includes information about the variance. FC is traditionally computed as the correlation and the diagonal of ones is discarded.
BV, blood-oxygen-level-dependent variability; FC, functional connectivity; ROIs, regions-of-interests. Color images are
available online.

FIG. 1. There are two prediction problems addressed in the present article: the task prediction (left) and the subject identity
prediction (right). For both settings, an image is generated by a subject performing a task. For task prediction, the goal is to
use imaging data to infer which task was performed given the subject’s identity. For subject identity prediction, the goal is to
use imaging data to infer the unknown subject’s identity given the task that was performed. Color images are available online.
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predictive than, the mean (Garrett et al., 2010). A follow-up
study (Garrett et al., 2011) identified regions that were as-
sociated with age, the speed of response, and consistency
of behavioral performance. The difference in variability of
high-performance-associated regions versus low-performance-
associated regions was greater for younger, high-performing
subjects. In a latent variable study, BV was linked to age, re-
sponse time, and accuracy in a spatial working memory task
(Guitart-Masip et al., 2016). BV in the neocortex was also as-
sociated with task-related disengagement of the default mode
network (Guitart-Masip et al., 2016). BV has also been
shown to be related to suboptimal financial risk tasking
among older adults (Samanez-Larkin et al., 2010). In addi-
tion to age-related effects, individual differences in BV
have been associated with lower visual discrimination
thresholds (Wutte et al., 2011). BV has also been found to
vary across task conditions (fixation vs. during task) (Garrett
et al., 2012), and to be associated with task-evoked activity
(Mennes et al., 2011). A study of older adults showed that
greater BV was associated with better fluid abilities, better
memory, and greater white matter (WM) integrity in all
WM tracts (Burzynska et al., 2015). Mirroring their FC ana-
lyses, Finn et al. (2015) used BV to accurately predict subject
identity between different cognitive tasks.

Goals of the present study

In this study, we replicate results showing that FC is pre-
dictive of task and subject identity, test whether BV is also
diagnostic of task and subject identity, and compare the pre-
dictive ability of FC and BV. As FC has already been estab-
lished as highly predictive of both measures, we aim simply
to replicate these results here. However, as BV is studied less
frequently, comparing BV to FC provides an important as-
sessment of the relative merits of variance, covariance, and
Pearson correlation. We show that connectivity leads to su-
perior results, but that BV can also successfully predict
task and subject differences. We also show that the predic-
tive models are robust across time—FC and BV can be
used to predict subject identity across time periods on the
order of 3 years. In addition, we test the robustness of pre-
dictive performance across different preprocessing meth-
ods. We focus on the preprocessing methods based on the
recommended Human Connectome Project (HCP) denois-
ing options (Burgess et al., 2016). In the Supplementary
Data, we investigate the effect of varying changes in the
preprocessing pipeline, including the effect of indepen-
dent component analysis (ICA) denoising, choice of noise
regressors, and whether to regress out the experimental
design.

Materials and Methods

Data acquisition

MRI recording was performed using a standard 12-
channel head coil on a Siemens 3T Trio Magnetic Resonance
Imaging System with TIM, housed in the Center for Cogni-
tive and Behavioral Brain Imaging at the Ohio State Univer-
sity (OSU). BOLD functional activations for tasks were
measured with a T2*-weighted echo-planar image sequence
(repetition time = 2000 ms, echo time = 28 ms, flip angle = 72�,
field of view = 222 · 222, in-plane resolution = 74 · 74 pixels

or 3 · 3, 38 slices with thickness of 3 mm). The resting-state
acquisition had higher resolution (repetition time = 2500 ms,
echo time = 28 ms, flip angle = 75�, in-plane resolution =
2.5 · 2.5, 44 slices with thickness of 2.5 mm). T1-weighted
structural images were acquired for each subject with
the three-dimensional magnetization-prepared 180� radio-
frequency pulses and rapid gradient-echo (MPRAGE) se-
quence (1 · 1 · 1 mm3 resolution, inversion time = 950 ms,
repetition time = 1950 ms, echo time = 4.44 ms, flip an-
gle = 12�, matrix size = 256 · 224, 176 sagittal slices per
slab; scan time 7.5 min).

Stimuli were presented to subjects on a rear projection
screen through a mirror on top of the head coil. Visual stim-
uli were generated on a Windows computer running MAT-
LAB programs based on Psychtoolbox extensions. Subjects
were recruited from the OSU and the surrounding commu-
nity, and gave informed consent. The experimental protocol
was approved by the Institutional Review Board at OSU. A
total of 250 subjects participated in the study, but only 174
of them (age 18–39, mean 21.6; 63 males and 111 females)
were included in the data analysis. A subject was excluded
if, during any of the tasks, part of the cerebral cortex was
out of the field of view due to head motion.

During the 1.5-h MRI session, each subject performed
eight behavioral tasks designed to target basic cognitive
functions: emotional picture viewing (360 sec) (Cunningham
et al., 2010), emotional face viewing (360 sec) (Decety
et al., 2010), episodic memory encoding (304 sec), episodic
memory retrieval (252 sec) (Maril et al., 2003), Go/No-go
(360 sec) (Simmonds et al., 2008), monetary incentive
(456 sec) (Knutson et al., 2001), working memory (354 sec)
(Xue et al., 2004), and theory of mind stories/questions
(376 sec) (Dodell-Feder et al., 2011). Resting-state scans
were also recorded for each subject (360 sec). Task descrip-
tions are presented in Supplementary Table S1. For conve-
nience of description, resting state is treated as one of the
nine tasks.

Of the 174 subjects, 19 subjects returned and repeated the
experiment *2.8 years (SD = 0.4) later. We refer to this
group of subjects as the target group as all machine learning
evaluations focus on this group.

Data processing

For fMRI preprocessing, we used the parameters proposed
in the minimal preprocessing pipelines of the HCP (Glasser
et al., 2013) when applicable. Specifically, functional brain
images were realigned to compensate for head motion, spa-
tially smoothed (2-mm FWHM Gaussian kernel), normalized
with a global mean, and masked with the final brain mask.
The functional images were then coregistered to the T1-
weighted images, normalized to the standard brain, and further
refined using nonlinear registration in FSL (FMRIB software
library, version 5.0.8. Due to spatial resolution of our acquisi-
tion, images were not projected to surface space, so the min-
imal spatial smoothing was performed in volume space.

To denoise the functional data, we followed the HCP FIX-
denoising procedures (Burgess et al., 2016), including first
lenient high-pass temporal filtering (2000-sec cutoff), motion
regression, ICA-based denoising, and mean global time series
(MGT) regression. Additional high-pass filtering (200-sec
cutoff) was conducted after regression of the confounding
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time series. Finally, for the BV measures, we partialled out the
mean framewise displacement.

Images were parceled into 299 ROIs using a functional
atlas derived by functional clustering of an outside data set
at the University of Western Ontario (Craddock et al.,
2012). A mask was used to remove edge voxels to prevent
the machine learning classifiers from classifying subjects
on the basis of edge-cortex misalignment artifacts created
during brain coregistration. To create the mask, we removed
any voxels that had low mean intensity in any scan. We re-
moved all ROIs with any voxels that were removed (which
is the most conservative approach for removing edge affects,
e.g., as opposed to removing ROIs based on a threshold of
percentage of voxels removed). The procedure results in
269 ROIs for the subsequent analyses (see Supplementary
Figure S1).

Feature generation

We use the term FC to refer generally to any set of features
requiring computing the covariance, and BV to refer to any
set of features requiring computing only the variance. For
the time series from each task and subject, we compute FC
using three different approaches that all depend on entries
of the covariance matrix: (i) the Pearson correlation (FCP),
(ii) the off-diagonal entries of the covariance matrix
(FCC), and (iii) the full covariance matrix (FCCV). FCP
and FCC exclude direct information about the variance.
However, FCP uses the variance as a normalizing term
(Fig. 2). We compute BV using three different approaches:
the variance (BVV), the standard deviation (BVSD), and
the mean absolute deviation (BVMAD).

Machine learning approach

Our analysis consists of two prediction tasks: task predic-
tion and subject identity prediction. The goal of task predic-
tion is to predict which task a test subject was performing,
given features computed from the scan (random performance
amounts to 1/9 = 11% accuracy). The goal of subject identity
prediction is to predict which subject generated a test scan,
given features computed from the scan (random performance
amounts to 1/174 = 0.57% accuracy). Task prediction and
subject identity prediction are evaluated in two settings:
within-session and between-session. For within-session pre-
diction, all training and test data are taken from session 1. For
between-session prediction, training data are taken from ses-
sion 1 and test data are taken from session 2. For task predic-
tion, we exclude session 1 scans of the target group from
training so that the classifier learns from only task-related
(i.e., not subject-related) information. Because fewer sub-
jects participated in session 2, we restrict test sets to only
the target group (i.e., 19 subjects who were scanned in
both sessions 1 and 2), allowing us to directly compare
within-session and between-session performance. However,
note that for the subject identification task, the models
were not informed of this restriction and have to discriminate
between all 174 subjects who participated in the experiment.

We used multinomial logistic regression (LR) for task pre-
diction. To be consistent with previous analyses (Finn et al.,
2015), we used single nearest neighbor (1-NN) models for
subject identity prediction. Both classes of models are eval-
uated using accuracy and we test for significant differences

in model performance by computing 95% highest posterior
density credible intervals and assessing whether intervals
for models overlap. Details of model evaluation for each
class of models are specified in the next section.

Multinomial LR. Regularized multinomial LR models
(Hoerl and Kennard, 1970; Tibshirani, 1996; Zou and Hastie,
2005) learn to discriminate between multiple class labels for
a given data point. Feature weights are regularized using a
choice of norm (L1, L2, elastic) and a parameter k that con-
trols the strength of regularization. We use an L2 penalty and
a nested cross-validation routine to optimize k over the set
{1x, x 2 {�10, �9, ., 3}}. Regularization usually results
in improved generalization performance and is important
in our analysis because it allows us to fit models using FC
feature sets where the number of features is larger than the
number of data points. We used LIBLINEAR (Fan et al.,
2008) to fit all LR models. For each prediction task (task
and subject identity prediction), we trained independent
models.

We used stratified nested cross-validation with five outer
folds and two inner folds to evaluate and select models.
The cross-validation procedure was stratified to guarantee
that for subject prediction, a particular test subject always
had some data used for training. We select models in the
inner loop using out-of-sample accuracy and report accuracy
on outer loop test data (not used for the inner loop). We per-
formed an additional analysis using L1 LR to quantify the
predictive performance of BV versus FC for the most infor-
mative features. We sweep through values of the regulariza-
tion parameter to create models that vary in the number of
nonzero (functional) features and analyze model accuracy
as a function of the number of nonzero features.

Nearest neighbor model. In contrast to LR models that
learn from information across tasks, our 1-NN models
were restricted to information from pairs of tasks where
one was used for test and the other could be thought of as
a training set. In principle, the 1-NN model could be set up
analogously to the LR model, but we replicated analyses
used in previous work (Finn et al., 2015) that were used to
investigate whether functional signatures indicative of sub-
ject identity are preserved across pairs of tasks.

Each 1-NN model took as input a test instance from task A
and a set of labeled training instances from all subjects in
task B, where each instance comprised features computed
from a scan from a particular subject in a particular task.
The predicted identity was the identity of the subject corre-
sponding to the nearest training instance, where we defined
similarity using the Pearson correlation. For between-session
prediction, we iterated through all pairs of tasks A and B. For
within-session prediction, we excluded pairs consisting of
the same tasks (e.g., A-A) because each task was performed
only once per session. To give a comparable setup to LR task
prediction, the test instances were always chosen from the
target group and training instances were always chosen
from session 1.

Results

Data and analyses reported in this article are publicly
available on the Open Science Framework. First, we examine
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patterns in BV organized by subjects and tasks. Next, we
show the performance of the machine learning classifiers.
We contrast the relative diagnosticity of BV and FC in the
three prediction tasks. Finally, we overview the impact of
different preprocessing options on prediction results.

Visualizing BV

Figure 3 shows BVSD for the target group of subjects in
session 1 (panel A) and session 2 (panel B). Rows are first
grouped by subject and then by task. Columns are first
grouped by brain lobe and then by ROI. The results show
subject-specific patterns in BV that are preserved between
sessions. For example, subjects 2, 7, and 9 have relatively
high BV in both sessions regardless of task, and subject 18
seems to have relatively low BV in both sessions regardless
of task. None of these subjects with outlying BV was outly-
ing in demographic categories (weight, age, height, race).
Subject 5 has relatively low frontal BV, but average occipital
and parietal BV. In addition, the results show lobe-specific
effects that are also preserved between sessions. For exam-
ple, limbic BV is on average lower than parietal BV. The var-
iance in BV between regions in the occipital lobe is higher
than in other lobes.

Figure 4 shows BV (computed by BVSD) for the target
group subjects in session 1 (panel A) and session 2 (panel
B). Rows are first grouped by task and then by subject. Col-
umns are first grouped by brain lobe then by ROI. When or-
dered by task, BV shows patterns that are preserved across
sessions (e.g., lobe-specific or task-specific effects). For ex-
ample, occipital activation is higher for the working memory
task, and temporal activation is higher during resting state.
Aside from these two effects, based on visual inspection of
Figure 4, the BV patterns do not seem to be task specific.
However, the machine learning models (discussed in the

next section) demonstrate that the patterns contain diagnostic
information that distinguishes the tasks.

Finally, we can re-examine known effects of FC through
the lens of BV. For example, research has shown a reduction
of covariance in the default mode network during task com-
pared with rest (Greicius et al., 2003). We examine whether a
similar result can be extended to BV. Figure 5 shows resting-
state BV versus nonresting-state BV in each ROI averaged
over all subjects and tasks. Analogous to the effect in FC,
for almost all ROIs, resting-state BV is higher than task
BV ( p < 1e-38, t = 18.6, df = 267).

Task prediction

Task out-of-sample LR prediction accuracy and associated
95% credible intervals are reported in Table 1 (see Supple-
mentary Data for details of credible interval computation).
Overall, BV and FC accurately predict task. All models
show performance well above chance (1/9 = 11%) for all fea-
ture sets. However, nonoverlapping credible intervals show a
significant performance benefit when using FC versus BV. In
addition, within-session performance is consistently better
than between-session performance across all feature sets.
The difference between within-session and between-session
accuracy is lower on average for BV (8%) versus FC (10%),
suggesting that FC contains more session-specific information
than BV. The particular method of computing FC does not
strongly affect predictive performance, but there is some sug-
gestive evidence that BVSD leads to more accurate predic-
tions than BVV, which might be due to a stabilizing effect
on the within- and between-subject BV distributions.

To understand the relative performance differences be-
tween BV and FC, we compare the confusion matrices for
within-session classification in Figure 6. Some cognitive
tasks are more difficult to discriminate on the basis of BV.

FIG. 3. BV for 19 subjects from session 1 (A) and session 2 (B). The y-axis organizes scans first by subject and then by task.
The x-axis organizes ROIs first by lobe and then ROI. Note that BV is computed by standard deviation (BVSD). Color images
are available online.
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For example, the emotional faces and emotional pictures
tasks (both involving emotional processing despite different
visual inputs) and encoding and retrieval tasks (both involv-
ing episodic memory) are occasionally confused on the basis
of BV but less so for FC, suggesting that FC contains unique
information that discriminates between these tasks. For rest-
ing state and Go/No-go, discrimination using BV is compa-
rable with FC. The FC model makes more errors than the BV
model for only two cells in the confusion matrix (Go/No-go-
emotional faces and emotional faces-encoding). In addition,
the structure of errors is similar between BV and FC (i.e., the
two models tend to make errors on similar pairs of tasks). The
nondiagonal elements of the confusion matrices have a Pear-

son correlation of 0.45, suggesting that BV and FC make sim-
ilar types of errors, but that BV makes those errors more often.

Model performance for varying number of fea-
tures. Although we used regularization to reduce the free-
dom of the models to use all available features, it is possible
that the advantage for FC over BV could simply be due to
the number of features available to the classifier. Figure 7
shows the results of task classification when we vary the
regularization parameter in L1 models (each point repre-
sents a model that corresponds to a specific regularization
parameter), leading to variation in the number of nonzero
features, allowing a comparison between FC and BV for
the same number of features. We report the test accuracy
and number of nonzero features for each model and esti-
mate an LOWESS curve for the relationship between
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FIG. 5. BV in a resting-state task versus nonresting cogni-
tive tasks. Each point represents an individual ROI (averaged
over subjects) and the reference line indicates equal BV
in resting- and nonresting-state tasks. Color images are
available online.

FIG. 4. BV for 19 subjects from session 1 (A) and session 2 (B). On the y-axis are scans ordered by task. Within each task,
scans are ordered by subject. On the x-axis are ROIs ordered by lobe of the brain. Color images are available online.

Table 1. Task Classification Predictive Accuracy

Type Feature No. of features Within Between

BV BVSD 269 75 (68–80) 68 (60–74)
BV BVV 269 75 (67–80) 67 (59–73)
BV BVMAD 269 67 (59–73) 59 (51–66)
FC FCP 269*268/2 95 (90–97) 83 (76–87)
FC FCC 269*268/2 92 (86–95) 81 (74–86)
FC FCCV 269*269/2 94 (88–96) 85 (78–89)

Predictive accuracy (percentage correct) of the logistic regression
model for task classification for different methods of computing FC
and BV and method for assessing generalization (within or between
scanning sessions). The 95% credible interval is reported in paren-
theses.

BV, blood-oxygen-level-dependent variability; BVV, BV is com-
puted using the variance; BVMAD, BV is computed using the mean
absolute deviation; BVSD, BV is computed using the standard devi-
ation; FC, functional connectivity; FCC, FC is computed using the
covariance matrix minus diagonal; FCCV, FC is computed using
the full covariance matrix; FCP, FC is computed using the Pearson
correlation.
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accuracy and nonzero features. BVSD and FCP perform
similarly for between 1 and *600 nonzero features, after
which there emerges a clear advantage to using FC. There-
fore, the advantage for FC over BV can be attributed to a
difference in the diagnosticity of the features and not sim-
ply the number of features.

Subject identity prediction

Out-of-sample subject prediction accuracy and 95% cred-
ible intervals for the 1-NN models are reported in Table 2.
Subject identity performance is high regardless of fea-
tures used (chance performance is 1/174 = 0.57%). There is

FIG. 6. Confusion matrices for task prediction using BV (A) and FC (B). The y-axis corresponds to true task and the x-axis
to predicted task. BV and FC were computed using standard deviation (BVSD) and Pearson correlation (FCP), respectively.
Color images are available online.
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FIG. 7. Scatter plot of task classification accuracy versus the number of nonzero features in L1 models. Each point repre-
sents a model that corresponds to a specific regularization parameter. The solid curves are the estimated LOWESS curves for
the relationship between accuracy and nonzero features for BVSD (red) and FCP (blue). The dotted lines are the accuracies
for the best performing models for BVSD (red) and FCP (blue). Note that as each of the 9 behavioral tasks is associated with
269 features, the maximum number of nonzero features is 9*269 = 2421. Color images are available online.
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overlap in credible intervals for within-session overall accu-
racy for all feature types except for BVV and FCC, which
perform significantly worse than the other methods exam-
ined. There is no significant overall within-session perfor-
mance advantage for the other methods used. BVSD and
FCCV significantly outperform the other methods at overall
between-session prediction.

There are between-session performance differences based
on whether the training and test images were recorded from
the same task, from different tasks, or from rest. For all meth-
ods used to compute BV and FC, same task-to-same task ac-
curacy is significantly higher than different task-to-different
task accuracy (95% credible intervals do not overlap). For all
methods, accuracy is significantly higher for same task-to-
same task prediction compared with rest-to-rest prediction.
Accuracy for different task-to-different task prediction is
not significantly different than rest-to-rest accuracy. We sus-
pect that given more rest-to-rest observations, this difference
would become significant; the relatively low number of rest-
to-rest outcomes (one per subject) compared with different
task-to-different task outcomes (72 per subject) or same
task-to-same task outcomes (8 per subject) leads to larger
rest-to-rest credible intervals.

Pairwise subject identification accuracy. The primary
purpose of using nearest neighbor models is to build on
past results by Finn et al. (2015), who investigated how
subject-specific FC is preserved across tasks. Figure 8
shows subject identity prediction accuracy as a function of
training and test task. The x-axes show the training task
and the y-axes show the test task. Prediction accuracy is av-
eraged over subjects. The top panels and the lower panels
correspond to BV and FC, respectively. The left panels and
right panels correspond to between-session and within-
session, respectively. Within-session accuracy is higher
than between-session accuracy for both FC and BV, which
is consistent with classifier results in Table 2. For between-
session prediction, performance is best when generalizing
between the same tasks.

In the previous framework, Finn et al. (2015) compared
nearest neighbor subject identity prediction performance
across sessions using FCP. They used three types of train/
test pairings: FCP from resting state, FCP from rest and an-
other task, and FCP from two different tasks. They found that
rest-to-rest prediction is most accurate (92.9%) and that ac-
curacy rates ranged from 54.0% to 87.3% for other database

and target pairs, including rest-to-task and task-to-different
task comparisons. Our analysis includes the additional set-
ting where the training and test sets are from data recorded
from the same task. We find that FCP prediction performance
is highest for the task-to-same task setting (83%), followed
by task-to-different task (60%), and rest-to-rest (42%). Over-
all, our average accuracy is lower (62% vs. 82.1%), but the
performance difference could be attributed to longer time be-
tween scanning sessions (2.8 years vs. 2 days), incorporating
nondiscriminative data (data from 155 nontarget group sub-
jects) into our framework, or scan length discrepancies (our
scans were between 4 and 6 min, while HCP scans were be-
tween 4 and 30 min).

Robustness to preprocessing variations

To explore the effects of preprocessing options on the re-
sults, we created four different preprocessing variations from
the HCP pipeline (details are presented in Supplementary
Data, and Supplementary Table S2). The pipeline differed
on (i) whether or not to perform ICA denoising, (ii) whether
or not to regress out the experimental design, and (iii) to re-
gress out cerebrospinal fluid (CSF) and WM or to perform
MGT signal regression (Burgess et al., 2016).

We found that high predictive performance is largely ro-
bust to the choice of preprocessing pipeline (see Supplemen-
tary Tables S3–S6 and Supplementary Figures S2–S4). Two
notable exceptions were that (i) regressing out the experi-
mental design decreased overall task prediction performance
and improved overall subject classification performance and
(ii) regressing out CSF and WM led to increased subject clas-
sification performance compared with regressing out MGT
for BV, but not FC.

Brain areas predictive of task and subject identity

To better understand what brain regions are predictive of
task or subject identity, Figure 9 visualizes the diagnosticity
of different brain areas for BV (using BVV). Figure 9A
shows for each brain region the absolute values of the
BVV features from the LR model, summed across tasks.
With this summary statistics, we capture not just which
brain regions are predictive of a specific task, but what
brain regions generally discriminate across all nine tasks.
Other summary statistics such as the maximum of the abso-
lute value or the mean produced similar results. The results
show that the visual cortex, dorsal attention network, and

Table 2. Subject Classification Predictive Accuracy

Method No. of features Within

Between

All Same task Different task Rest

BVSD 269 84 (82–86) 68 (65–70) 89 (84–93) 65 (63–68) 63 (41–81)
BVV 269 72 (70–74) 52 (49–54) 78 (70–84) 49 (46–52) 42 (23–64)
BVMAD 269 77 (75–79) 56 (54–58) 81 (74–86) 54 (51–56) 32 (15–54)
FCP 269*268/2 84 (72–86) 62 (60–64) 83 (76–88) 60 (57–63) 42 (23–64)
FCC 269*268/2 82 (80–84) 63 (61–65) 86 (79–90) 61 (58–63) 53 (32–73)
FCCV 269*269/2 84 (82–86) 71 (68–73) 89 (83–93) 69 (66–71) 63 (41–81)

Subject classification predictive accuracy (percentage correct) and 95% credible intervals for the nearest neighbor models using different
methods of computing FC and BV. For each model, accuracy is tested within-session and between-session. For between-session accuracy, we
report whether the training and test image were selected from the same task, different tasks (including rest/task pairs), or from rest/rest pairs.

458 GAUT ET AL.

D
ow

nl
oa

de
d 

by
 U

c 
Ir

vi
ne

 L
ib

ra
ri

es
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

Ir
vi

ne
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
05

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



part of the default mode network, among other regions, are
predictive of task differences. Figure 9B show the corre-
sponding visualization for subject identity prediction. To
produce this visualization, we ran an LR model on the sub-
ject identity problem and averaged the absolute values of
each region across all subjects. The results show that the
cingulo-opercular network, thalamus, and dorsal attention
network regions, among others, are diagnostic for discrimi-
nating between different subjects.

Discussion

Using two supervised machine learning approaches, we
showed that both BV and FC significantly predict task and
subject differences above chance levels. We also showed
that the predictive models are robust across time periods on
the order of 3 years, suggesting that subject- and task-specific
FC and BV signatures are persistent across time. While FC
leads to better predictive performance, there are two features
of the BV approach worth highlighting. First, BV has a
straightforward interpretation: BV is computed from each sin-
gle brain region, and task- or subject-related BV changes can

be attributed to specific brain regions. Second, BV is low di-
mensional, which leads to simpler computation, easier data vi-
sualization, and application of advanced modeling techniques
(e.g., fully Bayesian inference) that can be challenging for
more complex brain imaging measures such as FC.

Our results add to a growing body of results that look at
statistics other than FC/synchronization. Another such statis-
tics that looks at regional fluctuations is the amplitude of
low-frequency fluctuations (aLFF), which is diagnostic of
schizophrenia (Hoptman et al., 2010), Alzheimer’s disease
(Wang et al., 2011), and major depressive disorder (Wang
et al., 2012). BV is similar to aLFF in that it looks at regional
fluctuations, but is not frequency specific.

It is possible that our machine learning models could not
adequately capture the valuable information present in FC,
given the relatively small amount of training data. While a
larger training set and more advanced models would improve
the performance of both FC and BV, we expect that these
changes would better leverage the high dimensionality of
FC and lead to better performance gains than BV. Chen
and Hu (2018) used a recurrent neural network to improve
subject identification performance using short scans and we

FIG. 8. Heatmaps of between- and within-session average subject identification accuracy ordered by task. The x-axis
shows the task from which test scans were taken and the y-axis shows the task used to predict subject identity. Color images
are available online.
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think that similar methods could be used to improve our
modeling results. However, because the goals of this work
were to compare the information contained in BV and FC,
and not prediction in itself, we focused on simple machine
learning models.

Our nearest neighbor prediction framework mirrors past
analyses (Finn et al., 2015; Horien et al., 2018; Waller
et al., 2017) that investigated the persistence of subject-
specific FC signatures across pairs of tasks, but extends the
framework by examining task-to-same task prediction. Our
analysis found that, for both FC and BV, task-to-same task
prediction performed best, and that rest-to-rest prediction
performed worst. These results suggest that task engagement
modulates the uniqueness of subject-specific BOLD re-
sponses in a way that increases subject discriminability.
Finn et al. (2015) found that rest-to-rest prediction per-
formed best, but showed in a follow-up study that scan
length, known to affect FC computation (Birn et al., 2013;
Noble et al., 2017), was the predominant driver of high
rest-to-rest performance (Finn et al., 2017). As in Waller
et al. (2017), our data set leads to reduced accuracy compared
with subject identification for the original 126 subjects’ HCP
analysis (Finn et al., 2015). However, we perform better than
a follow-up analysis with more subjects (716) who con-
trolled for scan length (Finn et al., 2017). Taken together,
these studies suggest than many factors (e.g., time between
scanning sessions, number of subjects, number of tasks,
scan length) impact predictive performance and will need
to be further examined.

When we directly contrasted performance in subject iden-
tity prediction and task prediction, we found that out-of-
sample subject identity prediction was more accurate than
task prediction, even though a priori the subject identity
task is a more challenging task (i.e., identifying 1/174 vs.
1/9). In addition, statistical tests of BV showed that all sub-
jects had significantly different BV signatures, whereas the
tasks did not. This provides further evidence that ‘‘the major-
ity of the variance in [functional signature] is accounted for
by who you are and not what you are doing’’ (Finn and Con-
stable, 2016, p. 281). A recent study of task and subject FC
expanded on this idea by showing not only was FC individ-
uality a predominant factor in group-level FC variability but
that task sensitivity could be improved by removing subject
connectivity as well (Xie et al., 2017).

One potential concern is that past research showed that
vascular effects are present in motor tasks and to a much
lesser extent, cognitive tasks (Kannurpatti et al., 2010).
This research suggests a potential confound for our results:
vascular effects, rather than neural effects, lead to high pre-
dictive performance. We believe that this is not the case for
the following two reasons. First, there were only moderate
motor components to the cognitive tasks used in our experi-
ment; the only motor components involved reporting an-
swers using button presses. We can expect the vascular
effects due to motor control to be less for these tasks com-
pared with the finger tapping task used in the study by Kan-
nurpatti et al. (2010). Second, the similarity between motor
components of each task (i.e., infrequent button pressing)

FIG. 9. BV-based classification results for tasks (A) and subject (B) prediction. The results are based on the sum of absolute
weight values summed across tasks or subjects using the LR classifier based on the BVV features. BVV, BOLD variability
computed as variance; LR, logistic regression. Color images are available online.
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suggests that even if large vascular effects were present,
these effects alone would not be sufficient to discriminate be-
tween nine separate tasks.

Another potential concern is that structural information
contributes to the predictive performance in a way that is
separable from functional information. It is possible that dif-
ferences in gross brain morphology create artifacts in func-
tional signatures during the registration process ( Jenkinson
and Smith, 2001) that affect both FC and BV measures.
For the goal of predicting what cognitive task a subject is en-
gaged in, only functional information can be used to distin-
guish between cognitive tasks. Therefore, the ability of the
model to identify tasks demonstrates that both BV and FC
contain diagnostic functional information, and that these
functional signatures persist over time. For the subject iden-
tity prediction task, however, care has to be taken in inter-
preting the results. The identification of a person based on
structural information is not an impressive outcome com-
pared with the identification of a person based on FC or func-
tional variability. For this reason, we did not use LR models
for subject identification because they could easily overfit to
a structural confound. The 1-NN classifier does not make use
of any free parameters that can be tuned to particular ROIs,
and therefore, the identification occurs on the basis of overall
similarity between functional signatures and not any particu-
lar ROI. During preprocessing, we carefully ensured that
high subject identification performance was not due to struc-
tural confounds: we removed edge voxels (i.e., those most
likely to be misaligned) from our analysis, used nonlinear
registration, and performed separate registration for each
scanning session. Furthermore, brain parcellation was per-
formed using a data set from a separate population, which re-
duces the probability that voxels were grouped into regions
that a priori differentiate subject identity (i.e., that ROIs re-
flect subject-specific rather than task-specific functional dif-
ferences). Therefore, even if structural information affects
particular ROIs, it is unlikely that the classification results
in the subject identification task are driven entirely by struc-
tural information. However, future research will investigate
how structural information might contribute to classification
performance.

Conclusions

Our results replicate the general findings that FC is predic-
tive of both task and subject. We have shown that simple sta-
tistics such as BV also can capture information that is
diagnostic of both task and subject. By establishing BV and
FC patterns invariant to subject, we are better prepared to un-
derstand the impact of disease on these signatures. Future
work will involve finding changes to these signatures that
are related to individual health or behavior.
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berger U, Bäckman L. 2016. Bold variability is related to do-
paminergic neuro-transmission and cognitive aging. Cereb
Cortex 26:2074–2083.

Hoerl AE, Kennard RW. 1970. Ridge regression: biased estima-
tion for nonorthogonal problems. Technometrics 12:55–67.

Hoptman MJ, Zuo XN, Butler PD, Javitt DC, D’Angelo D,
Mauro CJ, Milham MP. 2010. Amplitude of low-frequency
oscillations in schizophrenia: a resting state fMRI study.
Schizophr Res 117:13–20.

Horien C, Noble S, Finn ES, Shen X, Scheinost D, Constable
RT. 2018. Considering factors affecting the connectome-
based identification process: comment on Waller et al. Neu-
roimage 169:172–175.

Jenkinson M, Smith S. 2001. A global optimisation method for
robust affine registration of brain images. Med Image Anal
5:143–156.

Kannurpatti SS, Motes MA, Rypma B, Biswal BB, 2010. Neural
and vascular variability and the fmri-bold response in normal
aging. Magn Reson Imaging 28:466–476.

Kaufmann T, Alnæs D, Brandt CL, Doan NT, Kauppi K, Bettella
F, et al. 2016. Task modulations and clinical manifestations
in the brain functional connectome in 1615 fMRI datasets.
Neuroimage 147:243–252.

Kaufmann T, Alnaes D, Doan NT, Brandt CL, Andreassen OA,
Westlye LT. 2017. Delayed stabilization and individualiza-

tion in connectome development are related to psychiatric
disorders. Nat Neurosci 20:513–515.

Knutson B, Adams CM, Fong GW, Hommer D. 2001. Anticipa-
tion of increasing monetary reward selectively recruits nu-
cleus accumbens. J Neurosci 21:RC159.

Kucyi A, Hove MJ, Esterman M, Hutchison RM, Valera EM.
2016. Dynamic brain network correlates of spontaneous fluc-
tuations in attention. Cereb Cortex 27:1831–1840.

Laumann TO, Gordon EM, Adeyemo B, Snyder AZ, Joo SJ,
Chen MY, Schlaggar BL. 2015. Functional system and
areal organization of a highly sampled individual human
brain. Neuron 87:657–670.

Maril A, Simons JS, Mitchell JP, Schwartz BL, Schacter DL.
2003. Feeling-of-knowing in episodic memory: an event-
related fMRI study. Neuroimage 18:827–836.

Mennes M, Zuo X-N, Kelly C, Di Martino A, Zang Y-F, Biswal
B, et al. 2011. Linking inter-individual dif- ferences in neural
activation and behavior to intrinsic brain dynamics. Neuro-
image 54:2950–2959.

Noble S, Spann MN, Tokoglu F, Shen X, Constable RT, Schei-
nost D. 2017. Influences on the test–retest reliability of func-
tional connectivity mri and its relationship with behavioral
utility. Cereb Cortex 27:5415–5429.

Poldrack RA, Laumann TO, Koyejo O, Gregory B, Hover A,
Chen M-Y, et al. 2015. Long-term neural and physiological
phenotyping of a single human. Nat Commun 6:8885.

Richiardi J, Eryilmaz H, Schwartz S, Vuilleumier P, Van De
Ville D. 2011. Decoding brain states from fmri connectivity
graphs. Neuroimage 56:616–626.

Samanez-Larkin G, Kuhnen CM, Yoo DJ, Knutson B. 2010.
Variability in nucleus accumbens activity mediates age-
related suboptimal financial risk taking. J Neurosci 30:
1426–1434.

Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius
MD. 2012. Decoding subject-driven cognitive states with
whole-brain connectivity patterns. Cereb Cortex 22:158–
165.

Simmonds DJ, Pekar JJ, Mostofsky SH. 2008. Meta-analysis of
go/no- go tasks demonstrating that fMRI activation associated
with response inhibition is task-dependent. Neuropsychologia
46:224–232.

Tagliazucchi E, von Wegner F, Morzelewski A, Borisov S,
Jahnke K, Laufs H. 2012. Automatic sleep staging us-
ing fMRI functional connectivity data. Neuroimage 63:
63–72.

Tavor I, Jones OP, Mars RB, Smith SM, Behrens TE, Jbabdi S.
2016. Task-free MRI predicts individual differences in
brain activity during task performance. Science 352:216–
220.

Tibshirani R. 1996. Regression shrinkage and selection via the
lasso. J R Stat Soc Series B Methodol 58:267–288.

Van Den Heuvel MP, Pol HEH. 2010. Exploring the brain net-
work: a review on resting-state fMRI functional connectivity.
Eur Neuropsychopharmacol 20:519–534.

Vanderwal T, Eilbott J, Finn ES, Craddock RC, Turnbull A, Cas-
tellanos FX. 2017. Individual differences in functional connec-
tivity during naturalistic viewing conditions. Neuroimage 157:
521–530.

Waller L, Walter H, Kruschwitz JD, Reuter L, Müller S, Erk S,
Veer IM. 2017. Evaluating the replicability, specificity, and
generalizability of connectome fingerprints. Neuroimage
158:371–377.

Wang L, Dai W, Su Y, Wang G, Tan Y, Jin Z, et al. 2012. Ampli-
tude of low-frequency oscillations in first-episode, treatment-

462 GAUT ET AL.

D
ow

nl
oa

de
d 

by
 U

c 
Ir

vi
ne

 L
ib

ra
ri

es
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

Ir
vi

ne
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
05

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



naive patients with major depressive disorder: a resting-state
functional MRI study. PLoS One 7:e48658.

Wang Z, Yan C, Zhao C, Qi Z, Zhou W, Lu J, et al. 2011. Spatial
patterns of intrinsic brain activity in mild cognitive impair-
ment and Alzheimer’s disease: a resting--state functional
MRI study. Hum Brain Mapp 32:1720–1740.

Wutte MG, Smith MT, Flanagin VL, Wolbers T. 2011. Physio-
logical signal variability in hmt+ reflects performance on a
direction discrimination task. Front Psychol 2:185.

Xie H, Calhoun V, Gonzalez-Castillo J, Damaraju E, Miller R,
Bandettini P, Mitra S. 2017. Whole-brain connectivity dy-
namics reflect both task-specific and individual-specific
modulation: a multitask study. Neuroimage 180(Pt B):
495–504.

Xue G, Dong Q, Jin Z, Chen C. 2004. Mapping of verbal work-
ing memory in nonfluent Chinese–English bilinguals with
functional MRI. Neuroimage 22:1–10.

Zou H, Hastie T. 2005. Regularization and variable selection via
the elastic net. J R Stat Soc B Stat Methodol 67:301–320.

Address correspondence to:
Mark Steyvers

Department of Cognitive Science
University of California Irvine

2316 Social & Behavioral Sciences Gateway Building
Irvine, CA 92697-5100

E-mail: mark.steyvers@uci.edu

PREDICTING TASK AND SUBJECT DIFFERENCES 463

D
ow

nl
oa

de
d 

by
 U

c 
Ir

vi
ne

 L
ib

ra
ri

es
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

Ir
vi

ne
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
05

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 


