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A B S T R A C T

Whenever someone in a team tries to help others, it is crucial that they have some understanding of other team
members’ goals. In modern teams, this applies equally to human and artificial (‘‘bot’’) assistants. Understanding
when one does not know something is crucial for stopping the execution of inappropriate behavior and, ideally,
attempting to learn more appropriate actions. From a statistical point of view, this can be translated to assessing
whether none of the hypotheses in a considered set is correct. Here we investigate a novel approach for
making this assessment based on monitoring the maximum a posteriori probability (MAP) of a set of candidate
hypotheses as new observations arrive. Simulation studies suggest that this is a promising approach, however,
we also caution that there may be cases where this is more challenging. The problem we study and the solution
we propose are general, with applications well beyond human–bot teaming, including for example the scientific
process of theory development.
1. Introduction

Being aware of another agent’s goals is a key developmental stage
for children as they grow up and develop a theory of mind. This aware-
ness is crucial for being able to successfully interact with others and
collaborate, not just as children, but at any age. For instance, being able
to help another requires the helping person to know about the goal of
the other person and the possible actions for achieving that goal (Kumar
& Steyvers, 2022; Puig et al., 2020). Suppose you see a person leaving
money on the table in a restaurant. Should you try to return the money,
because you believe the person left it unintentionally, or should you
leave it, because the person intentionally left the money as a tip? If
you misunderstand the other person’s goal in this scenario, you might
erroneously try to return the money.

Awareness of another agent’s goals is not only important in human
interactions, but also in human–bot settings. For instance, autonomous
driving requires the bot to accurately predict the trajectories of pedes-
trians, cyclists, and other cars, to avoid collisions (Fridovich-Keil et al.,
2020). However, what if a pedestrian moves in an unexpected way?
For instance, what if a pedestrian tries to avoid a spill on the ground
that is unaccounted for by the bot, leading to inaccurate predictions by
the bot and, possibly, collision? In this scenario, it is key for the bot to
realise in time that it does not understand the goal of the pedestrian so
that it can be more cautious or even stop driving.

✩ This work was partially supported by the Australian Research Council (DP210100313) and the Australian Defence Science and Technology Group
(AUSMURIIV000001).
∗ Correspondence to: School of Psychological Sciences, 2308 Callaghan Campus, New South Wales, Australia.
E-mail address: Quentin.F.Gronau@gmail.com (Q.F. Gronau).

As another example, suppose a bot tries to assist a human in
sorting objects into target and non-target categories (Fig. 1). The bot
is repeatedly presented with objects that vary in three features: color,
shape, and the number written on them. The bot’s task is to infer the
rule the human uses for selecting the objects so that it can successfully
help sorting the objects. The rule could be simple, such as ‘‘red objects’’,
but could also be more complex, such as ‘‘red triangular objects’’, or
‘‘objects which are not blue and are not square’’, or even something
complex such as ‘‘make sure there are more triangles in the target
category than the non-target category’’. Even with this simplified set-
up, the space of possible objectives that are consistent with the data is
very large. Suppose each feature type has three possible levels: ‘‘1’’,
‘‘2’’, and ‘‘3’’. For instance, for the feature type ‘‘color’’, ‘‘1’’ might
correspond to red, ‘‘2’’ to green, and ‘‘3’’ to blue. Suppose the bot only
has a sensor to detect the color of the presented objects, but it cannot
detect the shape or the number written on the objects. In this case,
there are only three possible hypotheses available to the bot: (1) red
objects, (2) green objects, (3) blue objects. But what if the true rule is
more complicated? For instance, even if the rule is just ‘‘red triangular
objects’’, none of the bot’s candidate hypotheses are correct, resulting
in the bot hindering rather than helping to sort the objects.

These examples highlight that it is important to find ways of know-
ing when one does not know. The problem can be framed very generally
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Fig. 1. A bot tries to assist a human in sorting objects into target and non-target categories. The bot is repeatedly presented with objects that vary in three features: color, shape,
and the number written on them. The bot’s task is to infer the rule the human uses for selecting the objects so that it can successfully help sorting the objects. In this example,
the human uses the rule ‘‘red triangular objects’’. However, the bot can only detect the color of the presented objects, but not the shape or number written on the objects.
Consequently, there are only three possible hypotheses available to the bot: (1) red objects, (2) green objects, (3) blue objects. Out of these available hypotheses, the bot believes
it is most likely that the rule is ‘‘red objects’’. However, the true rule used by the human is more complicated (i.e., ‘‘red triangular objects’’).
by building on the hypothesis testing language above. One agent (the
bot, in our case) considers a set of hypotheses about the goal of the
other agent (the human being assisted). Standard statistical approaches
allow the posterior probabilities of hypotheses in the set to be up-
dated as new information arrives, eventually resulting in one of the
hypotheses being chosen. Our interest is in how the bot could come to
realize that none of the hypotheses in the consideration appropriately
represent the human’s goal. Similar to theories of metamemory that as-
sume a separate metacognitive level that monitors lower-level memory
activity (Nelson, 1990), we propose a second, metacognitive, decision
process (Fig. 2). The lower-level decision process which evaluates the
considered hypotheses against incoming data is specific to the problem
at hand, but we are interested in exploring more general metacognitive
processes, which might apply to a wide range of situations. The role
of the metacognitive decision process is to infer, from observing only
the statistical properties of the considered hypotheses, whether none of
those hypotheses is correct.

Detecting a mismatch between data and all considered hypotheses
is relevant not only in the scenarios described above, but also in the
ubiquitous case of adjudicating between competing scientific theories
by means of quantitative model comparison metrics. In that case,
ideally one would like to assess not only which theory is best supported
by the data, but also if none of the theories – not even the best in the
considered set – is appropriate. Unfortunately, knowing that none of the
models or hypotheses in a considered set is correct is far from trivial.
The processes of expanding one’s hypothesis space in the face of mis-
specification has been studied in an effort to characterise creativity (e.g.
Boden, 2009; McGreggor, Kunda, & Goel, 2011), but the moment that
triggers this creative expansion has not.

2. Previous work

Coming to the realisation that one needs to expand their hypothesis
space in face of mis-specification bears resemblance to insight problems
that have been studied in psychological research (Chu & MacGregor,
2011). For instance, the task could be to use exactly six pencils (with-
2

out breaking or bending any) to construct four triangles. Faced with
such a problem, the problem solver typically starts with an incorrect
representation which does not allow for a solution. For instance, they
may search for a solution in the 2D plane. Similar to realising that no
hypothesis in the considered set is correct, the problem solver must
come to the insight that their initial representation is incorrect and
change their representation. In this particular example, the problem
solver must realise the solution may exist in 3D space to come up
with the correct solution, a tetrahedron. In contrast to insight problems
where the insight is a creative process that is difficult to plan ahead,
to be of practical use in a human–bot interaction where the bot needs
to decide whether none of its known hypotheses are correct, a more
systematic approach is needed.

Another link that can be drawn is with research on recognition
memory. Specifically, in a typical recognition memory experiment,
participants study a list of words in a study phase. Subsequently, in
the test phase, participants are presented with one word at a time and
they have to decide whether the presented word was part of the study
list (‘‘old’’ word) or not (‘‘new’’ word). This set-up has parallels with
the bot’s task to decide whether none of its considered hypotheses are
correct: As opposed to recognising whether a presented word has been
part of the study list or not, the bot’s task is to recognise whether the
observed data have originated from a known or unknown hypothesis.
In fact, as elaborated on below, the key quantity of our proposed
algorithm draws upon components of one of the most successful models
for recognition memory (Shiffrin & Steyvers, 1997).

Related problems have also been studied in the context of machine
learning rather than cognitive science, as out-of-distribution (OOD) de-
tection (Yang, Zhou, Li, & Liu, 2021). The goal of OOD detection is to
equip a bot with methods for detecting unknown observations. For in-
stance, a bot trained to classify food should be able to detect and reject
non-food images such as selfies uploaded by users instead of blindly
classifying them into existing food categories. However, our goal here
is more ambitious than detecting single unknown observations. Instead,
we investigate how a bot could detect that the overarching rule for
how observations come about, the data-generating hypothesis, is not
part of its considered set. To highlight this difference, consider the

example presented above where a bot assists a human in sorting objects
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Fig. 2. We investigate a metacognitive process which monitors inferential decision making to detect when none of the hypotheses being considered are appropriate.
Fig. 3. The upper row displays, for each scenario separately, the median of the MAP (dots), accompanied by the 25% and 75% quantiles (shaded area), as a function of the
number of presented examples (on a log scale), split by whether the true hypothesis was in the considered set (red symbols) or not (blue symbols). The bottom row displays the
same data but with a logit-transformed 𝑦-axis.
into target and non-target categories. The considered bot only has a
color sensor and believes that the three possible colors that a presented
object could have are red, green, and blue. An example of an out-of-
distribution observation would be an object that has none of these three
3

colors, but is, for instance, yellow. However, in many scenarios there
may not exist single observations that are such clear indicators of the
fact that the human uses a rule unknown to the bot. For instance, when
the human uses the rule ‘‘red triangular objects’’, none of the presented
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objects is a clear indication of the fact that the bot is wrong, but it
is still crucial for the bot to realise that it does not understand the
data-generating rule.

Decisions about one’s own ignorance have also been studied in
the context of human memory (Glucksberg & McCloskey, 1981), for
instance, deciding with high confidence that one does not know the
answer to a general knowledge question. However, to the best of our
knowledge, in the context of human–bot interactions, the question
of how a bot could know that they don’t know has so far not been
investigated in great depth. Nevertheless, recently there has been some
promising work on this subject.

Fridovich-Keil et al. (2020) considered the case of robot motion
planning and proposed that rather than trusting a model’s predictions
blindly, the robot should use the model’s current predictive accuracy to
inform the degree of confidence in its future predictions. This allows for
probabilistic motion predictions that exploit modeled structure when
the structure successfully explains human motion, and degrade grace-
fully whenever the human moves unexpectedly. Their implementation
focuses on Bayesian belief over a single parameter that governs the
variance of a human motion model.

Bobu, Bajcsy, Fisac, Deglurkar, and Dragan (2020) explicitly con-
sidered the case when a robot’s hypothesis space is mis-specified. They
proposed that the robot should reason about how well it can explain
human inputs given its hypothesis space and then use that situational
confidence to inform how it should incorporate human input. In their
implementation, this was achieved by the robot making inferences
about the human’s cost function.

In a purely statistical context, one approach to knowing whether
one does not know is to consider tests of absolute fit or model mis-
specification. Given a set of candidate hypotheses or models, one could
then test whether the best out of these is still mis-specified, suggesting
that none of the considered hypotheses or models is correct. A range
of tests for model mis-specification have been proposed in the statis-
tical literature, many based on the information matrix equality (e.g.,
Golden, Henley, White, & Kashner, 2016), but also based on cross-
entropy (Krauz & Tabrikian, 2019), and in-sample and out-of-sample
likelihoods (Presnell & Boos, 2004).

3. Proposed approach

Here we propose a novel approach for how the bot could come to
realize that none of the hypotheses in the consideration appropriately
represent the human’s goal. Our approach focuses on the maximum
posterior probability over hypotheses in the considered set as a function
of the number of observations.

Suppose a bot or human considers 𝐽 hypotheses: 1,2,… ,𝐽 .
Based on observed data 𝒚 featuring 𝑛 observations, they can then
update their prior beliefs about how likely each of these hypotheses
is to posterior beliefs using Bayes’ rule as follows:

𝑝(𝑗 ∣ 𝒚) =
𝑝(𝒚 ∣ 𝑗 ) 𝑝(𝑗 )

∑𝐽
𝑘=1 𝑝(𝒚 ∣ 𝑘) 𝑝(𝑘)

, (1)

where 𝑝(𝑗 ) denotes the prior probability of hypothesis 𝑗 , 𝑝(𝑗 ∣ 𝒚)
the corresponding posterior probability after having observed data 𝒚,
and 𝑝(𝒚 ∣ 𝑗 ) is the probability of the data given the hypothesis
(also referred to as marginal likelihood). In many applications, the prior
probability of each hypothesis 𝑗 is set equal (i.e., 𝑝(𝑗 ) = 1∕𝐽 ),
reflecting an a priori position of indifference. This is often referred to
as a state of maximum ignorance.

It is well-known that if the true data-generating hypothesis is in
the considered set, the posterior probability for this hypothesis will
go to 1 as the number of observations increases (Chatterjee, Maitra,
& Bhattacharya, 2020, Corollary 2). If the true hypothesis is not in the
considered set, eventually, the posterior probability for the hypothesis
that is closest to the true one (in a KL-divergence sense) will go to
1 (Chatterjee et al., 2020, Corollary 2). However, as demonstrated
4

Table 1
Hypotheses.

Hypothesis no. Feature 1 Feature 1 value Feature 2 Feature 2 value

1 1 1 – –
2 1 2 – –
3 1 3 – –
4 2 1 – –
5 2 2 – –
6 2 3 – –
7 3 1 – –
8 3 2 – –
9 3 3 – –

10 1 1 2 1
11 1 1 2 2
12 1 1 2 3
13 1 2 2 1
14 1 2 2 2
15 1 2 2 3
16 1 3 2 1
17 1 3 2 2
18 1 3 2 3
19 1 1 3 1
20 1 1 3 2
21 1 1 3 3
22 1 2 3 1
23 1 2 3 2
24 1 2 3 3
25 1 3 3 1
26 1 3 3 2
27 1 3 3 3
28 2 1 3 1
29 2 1 3 2
30 2 1 3 3
31 2 2 3 1
32 2 2 3 2
33 2 2 3 3
34 2 3 3 1
35 2 3 3 2
36 2 3 3 3

below, this convergence may often happen more slowly than when the
true hypothesis is in the considered set. Consequently, we propose that
one can obtain an assessment of whether the true hypothesis is in the
considered set by investigating how quickly the maximum a posteri-
ori probability (MAP) approaches 1 as the number of observations 𝑛
increases.

4. Inference about an unknown rule

Next we present results of a simulation study in which we as-
sume that a bot assists a human in sorting objects into targets and
non-targets, adopting a setup similar to the one described in Fig. 1.

4.1. Hypotheses

For concreteness, we consider the case where the bot entertains two
types of hypotheses: (1) one-feature hypotheses (specific color, specific
shape, or specific number) and (2) two-feature hypotheses (e.g., specific
color + specific shape, specific shape + specific number). An example
of a one-feature hypothesis would be ‘‘red objects’’ that could have any
shape or number. An example of a two-feature hypothesis would be
‘‘red triangular objects’’ with any number. We can represent the 36
possible hypotheses as shown in Table 1. There are nine one-feature
hypotheses (numbered 1–9 in the table) and 27 two-feature hypotheses
(10–36).

4.2. Data-generating process

The bot is presented with 𝑛 objects selected based on a rule un-

known to it. There is some noise in the process, such that it is possible
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that some objects will not perfectly correspond to the underlying rule.
Each of the 𝑛 objects that are presented can be represented by a vector
𝑖 = (𝑦1,𝑖, 𝑦2,𝑖, 𝑦3,𝑖), where 𝑦1,𝑖 denotes the value for feature 1, 𝑦2,𝑖 the

value for feature 2, and 𝑦3,𝑖 denotes the value for feature 3.

.2.1. One-feature hypotheses
If the true data-generating rule is a one-feature hypothesis, with

robability 𝑝𝑐 , the observed value for the feature of interest is set to
the correct value.1 For instance, for hypothesis no. 3 which states that
feature 1 has value 3, 𝑦1,𝑖 = 3 with probability 𝑝𝑐 . With probability 1−𝑝𝑐
the value for the feature of interest is chosen randomly (i.e., probability
1/3 for each of the three possible values). Consequently, the total
probability that a feature has its correct value is given by 𝑝𝑐 + (1 −
𝑝𝑐 )

1
3 . The values for the other features that are not specified by the

ata-generating hypothesis are chosen randomly (i.e., probability 1/3).

.2.2. Two-feature hypotheses
The two features of interest are jointly set to their correct value

ith probability 𝑝𝑐 . Otherwise the data-generating mechanism is a
traightforward extension of the one for one-feature hypotheses.2

.3. Scenarios

Next we investigate a number of scenarios where the bot con-
iders only a subset of all possible true data-generating hypotheses.
onsequently, sometimes it is possible for the bot to infer the correct
ata-generating hypothesis since it is part of the considered set, but
ometimes this is impossible since the true hypothesis is not part of
he set. We are interested in investigating whether it is possible for the
ot to know if the latter is the case based on considering the MAP as
escribed above.

.3.1. Scenario 1: One-feature hypotheses
In the first scenario, we assume the bot considers only one-feature

ypotheses. However, the true data-generating hypothesis could be any
ypothesis from Table 1. That is, the true data-generating hypothesis
ay also be a two-feature hypothesis.

.3.2. Scenario 2: Two-feature hypotheses
In the second scenario, we assume the bot considers only two-

eature hypotheses. However, the true data-generating hypothesis could
e any hypothesis from Table 1. That is, the true data-generating
ypothesis may also be a one-feature hypothesis.

.3.3. Scenario 3: Mixed hypotheses 1
In the first two scenarios, the considered hypotheses are all of equal

omplexity: either all of them are one-feature hypotheses (Scenario 1)
r two-feature hypotheses (Scenario 2). In contrast, the true data-
enerating hypotheses are of mixed complexity (i.e., both one-feature
nd two-feature hypotheses). In Scenario 3 we investigate whether
onsidering the convergence rate of the MAP is a useful indicator
or whether the true hypothesis is in the considered set for the case
here the considered set contains both one-feature and two-feature
ypotheses. We split the 36 hypotheses from Table 1 into three parts,
ach containing three one-feature and nine two-feature hypotheses. The
irst, part which we refer to as 1, contains hypotheses no. 1, 4, 7, 10,
3, 16, 19, 22, 25, 28, 31, 34. The second part, 2, contains hypotheses
o. 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35. Finally, the third part,
3, contains hypotheses no. 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36.
ere we do not consider 3. Instead, we focus on the case were the

rue data-generating hypothesis could be any hypothesis that is part of
ither 1 or 2. In this scenario, we assume that the bot considers only
1 hypotheses.

1 In this simulation study, we set 𝑝𝑐 = 0.7.
2 Note that the computation of the likelihoods assumes a strong sampling

process where objects are sampled randomly from all objects consistent with
the data generating rule (Tenenbaum & Griffiths, 2001).
5

4.4. Simulation details

For each of the three scenarios, we simulated data from each of
the possible generating hypotheses and monitored the MAP for the
considered set of hypotheses as a function of the number of presented
examples. We repeated this process 100 times for each scenario.

4.5. Results

Fig. 3 displays the results of the simulation study. Each panel in
the upper row shows the median of the MAP (dots), accompanied
by the 25% and 75% quantiles (shaded area), as a function of the
number of presented examples (on a log scale), split by whether the
true hypothesis was in the considered set (red symbols) or not (blue
symbols). The bottom row displays the logit transformed MAP as a
function of the number of presented examples in a similar manner
(i.e., median accompanied by the 25% and 75% quantiles).

For all three scenarios, it is apparent that when the true data-
generating hypothesis is in the considered set (red), the MAP (Fig. 3,
upper row) converges to 1 more quickly than when the true data-
generating hypothesis is not in the considered set (blue). This finding
is most pronounced for Scenario 1 and Scenario 2. For Scenario 3,
the MAP trajectory also differs when the true hypothesis is in the
considered set compared to when it is not, however, the difference is
smaller than in the other two scenarios. This suggests that there may
also exist cases where discerning whether or not the true hypothesis
is in the considered set based on the MAP trajectory may be more
challenging.

The trajectory of the logit transformed MAP (Fig. 3, bottom row)
highlights that, for all three scenarios, convergence is faster when the
true hypothesis is in the considered set. Importantly, plotting the logit
transformed MAP highlights that this difference in fact increases as the
number of presented examples increases. In the Appendix, we report
results for a similar simulation that only differed in that the probability
of setting the feature(s) of interest to their correct values, 𝑝𝑐 , was a free
parameter and not fixed. The results are very similar to the ones for the
case reported here where 𝑝𝑐 was fixed to 0.7.

5. Applying the approach in practice

After having demonstrated that the MAP trajectory can in certain
scenarios be a useful tool for assessing whether the true hypothesis is
in the set, we next propose an algorithm for how a bot could use this
finding in practice to inform decisions about whether they don’t know
and should therefore stop assisting, ask for help, etc.

5.1. Algorithm

The proposed algorithm (Algorithm 1) assumes that the bot consid-
ers a set of candidate hypotheses 𝒄 = {1,2,… ,𝐽 } and is able to
simulate data from each hypothesis in 𝒄 . In a training phase, the bot
repeatedly simulates the scenario that there is one unknown hypothesis
by repeatedly randomly choosing one hypothesis to be the ‘‘unknown’’
one in a leave-one-out (LOO) manner. The remaining hypotheses are
considered to be ‘‘known’’ and serve as the candidate set of hypotheses.
The bot then simulates data from all hypotheses (i.e., also the one that
as been chosen to be ‘‘unknown’’) and computes the MAP trajectory
ased on posterior probabilities for the 𝐽 − 1 hypotheses that are

considered to be ‘‘known’’. The bot saves the MAP trajectory either in
a ‘‘known’’ category, in case the data-generating hypothesis was in the
‘‘known’’ set, or in an ‘‘unknown’’ category, in case the data-generating
hypothesis was the ‘‘unknown’’ one. After having repeated this process
a number of times, the bot then fits a location-scale regression model
separately to the MAP trajectories saved in the ‘‘known’’ and ‘‘un-
known’’ categories. Specifically, the dependent variable corresponds
to the appropriately transformed MAP values and the independent
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Algorithm 1

1. Training phase:

(a) For 𝑖 = 1 to 𝑛reps:

i. Randomly select one hypothesis from the candi-
date set 𝒄 and assign it the label ‘‘unknown’’. The
set of the remaining 𝐽 −1 hypotheses is denoted by
(𝒊)

𝒄∗ .
ii. For 𝑗 = 1 to 𝑛sims:

A. Generate a data sequence of length 𝑛train
from each of the hypotheses in 𝒄 .

B. For each of these, compute the MAP tra-
jectory based on posterior probabilities
computed only for the hypotheses in (𝒊)

𝒄∗ .
C. Save the MAP trajectory for each of these

with the label ‘‘known’’ if the generat-
ing hypothesis was in (𝒊)

𝒄∗ and ‘‘unknown’’
otherwise.

(b) Fit a location-scale regression model separately to the
MAP trajectories with ‘‘known’’ and ‘‘unknown’’ label.
The predictor is the log of the number of observations, the
dependent variable the appropriately transformed MAP
trajectories.

2. Application phase:

(a) Observe 𝑛 data points.
(b) Compute the MAP trajectory based on posterior probabil-

ities computed for the hypotheses in 𝒄 .
(c) Compute LR𝑘𝑢 as described in Equation (2).
(d) If LR𝑘𝑢 < 𝐶, conclude don’t know.

variable is the log of the number of observations. One option for the
transformation function 𝑓 is the logit function which was used in the
revious section. However, for the following simulation, we used 𝑓 (𝑥) =
log(− log(𝑥)) which improved the numerical stability of the algorithm.

Using these two regression fits, the bot is now in the position to
bserve a MAP trajectory based on real data and conduct a likelihood
atio test to assess whether this MAP trajectory corresponds to a known
ypothesis or an unknown hypothesis that is not part of the set.
pecifically, in the application phase, the bot observes 𝑛 real data points
ith corresponding MAP values MAP1,MAP2,… ,MAP𝑛. The likelihood

atio of interest is then given by:

R𝑘𝑢 =
𝑛
∏

𝑖=1

𝑝(MAP𝑖 ∣ known)
𝑝(MAP𝑖 ∣ unknown)

=
𝑛
∏

𝑖=1

 (𝑓 (MAP𝑖);𝜇known
𝑖 , 𝜎known

𝑖 )

 (𝑓 (MAP𝑖);𝜇unknown
𝑖 , 𝜎unknown

𝑖 )
,

(2)

where 𝜇known
𝑖 , 𝜎known

𝑖 correspond to the predicted values for the loca-
tion and scale, respectively, for the ‘‘known’’ location-scale regression
fit and 𝜇unknown

𝑖 , 𝜎unknown
𝑖 to the ones for the ‘‘unknown’’ fit. Here,

 (𝑥;𝜇, 𝜎) denotes the density of a normal distribution with mean 𝜇
nd standard deviation 𝜎 evaluated at 𝑥. Values of LR𝑘𝑢 > 1 indicate

evidence in favor of the MAP trajectory originating from a known
hypothesis that is part of the considered set. In contrast, values of
LR𝑘𝑢 < 1 indicate evidence in favor of the MAP trajectory originating
from an unknown hypothesis. The smaller LR , the more evidence
6

𝑘𝑢 n
the data provide in favor of the data originating from an unknown
hypothesis. The bot may choose to set a criterion value 𝐶 such that
it concludes that it does not know the data-generating hypothesis and
stops assisting the human if LR𝑘𝑢 < 𝐶. The exact setting of 𝐶 may
depend on risk-benefit trade-offs. For instance, if the bot is a self-
driving car, it may err on the side of being overly cautious (i.e., 𝐶 may
be close to or exactly equal to 1) whereas in other scenarios it may be
more costly for the bot to stop assisting the human too early (i.e., 𝐶 may
be set lower such that assistance is stopped only when the evidence is
overwhelming that the data originate from an unknown hypothesis).

An attractive property of using the likelihood ratio LR𝑘𝑢 is that it
allows the bot to monitor the evidence in favor of the data originating
from a known vs. unknown hypothesis in real time. Specifically, the
likelihood ratio in Eq. (2) is itself given by the product of 𝑛 likelihood
ratios. Each of these individual likelihood ratios assesses, for a single
MAP value, how likely it is that it is based on a scenario where the true
hypothesis is known vs. unknown. Consequently, it is straightforward
and computationally efficient to update LR𝑘𝑢 when a new observation
arrives – hence, also a new MAP value, MAP𝑛+1 – by simply multiplying
the current value of LR𝑘𝑢 by the individual likelihood ratio for the new
observation:

LR(𝑛+1)
𝑘𝑢 = LR(𝑛)

𝑘𝑢 ×
𝑝(MAP𝑛+1 ∣ known)

𝑝(MAP𝑛+1 ∣ unknown)

= LR(𝑛)
𝑘𝑢 ×

 (𝑓 (MAP𝑛+1);𝜇known
𝑛+1 , 𝜎known

𝑛+1 )

 (𝑓 (MAP𝑛+1);𝜇unknown
𝑛+1 , 𝜎unknown

𝑛+1 )
,

(3)

here LR(𝑛)
𝑘𝑢 is given by Eq. (2).

Using the likelihood ratio LR𝑘𝑢 to decide whether the data have
riginated from a known or an unknown hypothesis can be motivated
ased on statistical considerations such as standard frequentist likeli-
ood ratio tests and importantly also Bayesian inference where LR𝑘𝑢
orresponds to a special case of a Bayes factor (Jeffreys, 1961; Wagen-
akers et al., 2018). Specifically, LR𝑘𝑢 corresponds to the prescriptive

actor by which a rational agent should update their beliefs about
hether the data originate from a known or unknown hypothesis after
aving observed the data at hand.

Our use of the likelihood ratio LR𝑘𝑢 can also be motivated based on
ts close resemblance to one of the most successful cognitive models for
ecognition memory from psychological research. A typical recognition
emory experiment features a study phase in which participants study
list of words. In a subsequent test phase, participants are presented
ith one word at a time and they have to decide whether the presented
ord was part of the study list (‘‘old’’ word) or not (‘‘new’’ word). To

nfer and measure the cognitive processes underlying performance in
uch a task, Shiffrin and Steyvers (1997) proposed the seminal retrieving
ffectively from memory (REM) model. This model aims to describe the
equence of cognitive steps that takes place when participants decide
hether a presented word is ‘‘old’’ or ‘‘new’’. The key quantity that

s used to decide whether a word is ‘‘old’’ or ‘‘new’’ is a likelihood
atio which contrasts the probability of the observed data given the
resented word is ‘‘old’’ against the probability of the observed data
iven the presented word is ‘‘new’’. When one replaces ‘‘old’’ and ‘‘new’’
ith ‘‘known’’ and ‘‘unknown’’, the intimate connection of LR𝑘𝑢 with

his cognitive model for recognition memory becomes apparent. In our
ase, the task is to recognise whether the observed data have origi-
ated from a known or unknown hypothesis as opposed to recognising
hether a presented word has been part of the study list or not.

.2. Simulation study

We tested the proposed algorithm on the three scenarios described
bove. Specifically, in Scenario 1, the bot’s candidate set of hypotheses
ncluded all one-feature hypotheses, in Scenario 2, the bot’s candidate
et of hypotheses included all two-feature hypotheses, and in Sce-

ario 3, the bot’s candidate set of hypotheses included all hypotheses
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Fig. 4. The first row displays in light colors as shaded areas the .25 and .75 quantiles of the ‘‘known’’ and ‘‘unknown’’ MAP trajectories for the training phase (‘‘known’’ in red,
‘‘unknown’’ in blue). The regression fit is displayed as a solid line, accompanied by the .25 and .75 quantiles as dotted lines. The first row also displays in darker colors as shaded
areas the .25 and .75 quantiles of the ‘‘known’’ and ‘‘unknown’’ MAP trajectories for the application phase. The second row displays the log likelihood ratio from Eq. (2) in favor
of ‘‘known’’ vs. ‘‘unknown’’ (median accompanied by .25 and .75 quantiles as shaded area).
in 1. We then applied the algorithm described above. The number
of observations was set to 52 both in the training phase and the
application phase and for the training phase, we repeated the process
of leaving one hypothesis out 30 times. For each of these 30 repetitions,
we generated 30 data sets for each of the hypotheses. Fig. 4 displays the
results. The first row displays in light colors as shaded areas the .25 and
.75 quantiles of the ‘‘known’’ and ‘‘unknown’’ MAP trajectories for the
training phase (‘‘known’’ in red, ‘‘unknown’’ in blue). The regression fit
is displayed as a solid line, accompanied by the .25 and .75 quantiles
as dotted lines. It is apparent that the location-scale regression models
provide a satisfactory fit in all scenarios. The first row also displays in
darker colors as shaded areas the .25 and .75 quantiles of the ‘‘known’’
and ‘‘unknown’’ MAP trajectories for the application phase. These look
similar to the training ones and the regression fit, except for Scenario 3.
The second row displays the log likelihood ratio from Eq. (2) in favor of
‘‘known’’ vs. ‘‘unknown’’ (median accompanied by .25 and .75 quantiles
as shaded area). As more observations arrive, this log likelihood ratio
accurately distinguishes between known and unknown hypotheses for
all three scenarios. In terms of absolute strength of evidence provided
by the computed likelihood ratio, inspecting the 𝑦-axis labels reveals
that there appears to be more evidence in favor of the true data-
generating hypothesis being either ‘‘known’’ or ‘‘unknown’’ in the first
two scenarios than in Scenario 3.

6. Discussion

Awareness of another agent’s goals is not only important in human
interactions, but also in human–bot settings. A bot being aware of the
fact that it does not understand the human’s goals is crucial not only in
terms of maximizing efficiency, but can be a matter of life and death
in scenarios such as self-driving vehicles that interact with humans
in traffic. In this article, we have proposed a metacognitive decision
process which allows the bot to stop lower-level decision processes
once sufficient evidence has accumulated that it does not understand
7

the human’s goals. The proposed approach is based on monitoring the
maximum a posteriori probability (MAP) of the considered hypothesis
set. We have also proposed a concrete algorithm that enables a bot to
apply this approach in practice.

6.1. Conceptual considerations

Overall, our simulation studies demonstrate that considering the
MAP as a function of the number of observations can be a useful
tool for assessing whether the true hypothesis is in the considered set.
Specifically, the MAP converged quicker to 1 when the true hypothesis
was in the set. Scenario 3 suggests that considering the MAP as a
function of the number of observations could potentially be challenging
in certain cases. This may be partially due to the specific example we
chose. For instance the observed data are discrete and some models
may be equally far away from the true model in a KL-divergence sense,
etc. However, this may also occur in other scenarios, for instance, when
the true hypothesis is not in the considered set, but one hypothesis
in the set is much closer to the true one compared to the other ones.
In this case, the MAP may quickly converge to 1 to select the closest
but incorrect model. This highlights that posterior probabilities are
a relative measure of evidence and their behavior depends on all
considered hypotheses. Consequently, our proposed approach is not
going to be a perfect solution in all scenarios. However, we believe
it can be a useful step towards enabling bots to realise that they don’t
know the goals of the human they are interacting with which is crucial
for improving bots’ performance. Endowing bots with a mechanism
for realising that they don’t know is also a timely topic due to the
advent of powerful AI chatbots such as ChatGPT created by OpenAI
(https://chat.openai.com/chat). Specifically, one commonly reported
issue with ChatGPT is that it can provide incorrect answers with high
confidence (Steyvers et al., 2024), that is, it does not seem to have an
appropriate mechanism in place for knowing when it does not know.

https://chat.openai.com/chat
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To apply our proposed algorithm in practice, the bot needs to have
available a set of hypotheses that can be used to simulate data and
that can be tested against observed data. In our simulation study,
we have demonstrated that our algorithm performs well in scenarios
where the bot’s hypothesis space is similar to the human’s hypothesis
space (e.g., the bot only misses one feature). However, in real life,
the bot might be missing many of the features that are relevant to
the human’s true data-generating hypothesis. To a degree, this may
simply be a function of the bot not being equipped with the relevant
sensors. For instance, suppose the human behaves differently when the
weather is hot compared to when it is cold. If the bot is not equipped
with a temperature sensor, it is impossible for the bot to include the
correct data-generating hypothesis in its considered set. This concern
can be addressed to a degree by the designers of the bot carefully
considering what sensors may be relevant to the bot’s tasks, and also
equipping the bot with a sensible set of hypotheses to work with. We
still hope that even in the scenario where the bot misses many relevant
features, our algorithm would simply indicate ‘‘don’t know’’, such that
the conclusion would be to ask for assistance. However, how well our
algorithm performs in these scenarios is an empirical question that is
beyond the scope of this article.

Another conceptual challenge is that the bot’s sensors may be noisy.
Specifically, suppose that in our example, the human presents a red
triangle with a ‘‘9’’ written on it, but the bot mistakenly registers the
object as a red triangle with a ‘‘6’’ on it. In our simulation study, we
have explicitly accounted for variability (noise) on the human’s side via
the likelihood function, to take into account that the human does not
always present an object in line with the rule. In a similar fashion, one
could augment the likelihood function to take into account noise on the
bot side. This may take the form of a free parameter that is estimated
from data, or, if the noise level of the sensors is known, for instance,
from extensive tests in the factory, one could simply incorporate this
known variability into the likelihood function.

6.2. Computational considerations

Our proposed algorithm assumes that the bot is able to conduct
computations based on all hypotheses in the considered set. This could
be practically challenging due to a number of reasons. First, the number
of hypotheses in the set could be very large. In this case, in the training
phase, it may not be feasible to repeatedly simulate data from all
hypotheses in the set. However, in this case one may approximate this
process by, in each iteration of the algorithm, randomly selecting a
subset of the hypotheses such that simulating data becomes feasible.
In the application phase, it is undesirable to reduce the computational
burden by randomly subsetting the hypothesis space since this could
result in disregarding relevant hypotheses. Instead, one may apply a
more principled approach for reducing the hypothesis space, such as
‘‘Occam’s window’’ (Madigan & Raftery, 1994). This approach reduces
the computational burden by conducting a sequence of pairwise com-
parisons of nested hypotheses. If the simpler hypothesis is preferred, the
more complex hypothesis is removed from the hypothesis space. If the
more complex hypothesis is preferred by a large margin, the simpler
hypothesis, and all hypotheses nested within this simpler hypothesis,
are removed from the hypothesis space. Only hypotheses between these
two extremes, the ones that fall in ‘‘Occam’s window’’, are retained for
inference.

Second, even when the number of hypotheses is manageable, sim-
ulating from a hypothesis could take time. However, one advantage
of the proposed algorithm is that the computationally intense training
phase need not happen while real data is observed, but can be con-
ducted and saved in advance or can be achieved during downtime. For
instance, consider the case of a social bot assisting a human in their
daily tasks such as setting the table, cleaning up, etc. If simulating
hypotheses in real time or a priori is challenging, this could be achieved
8

during times of inactivity, such as when the human sleeps or performs G
other activities. Furthermore, since there may be many social bots
assisting different humans, it may be possible to share experiences with
humans and hypothesis simulations across bots via online functionality.

Another computational consideration is that calculating the MAP
requires the bot to evaluate the marginal likelihood, the probability of
the data given a hypothesis, of all hypotheses in the set. Depending
on the complexity of the considered hypotheses, this may not be
possible analytically such that simulation-based approaches such as
bridge sampling (Gronau et al., 2017; Meng & Wong, 1996) or path
sampling (Gelman & Meng, 1998) are required. Depending on the
considered hypotheses and observed data, computing the marginal like-
lihood using these approaches may be too time-consuming to achieve
in real time as data arrive. However, in this case, fast approximations
to the marginal likelihood may be useful, such as variational Bayesian
inference (Galdo, Bahg, & Turner, 2020).

An avenue for future research is to apply the proposed algorithm
in practice. Specifically, a first step would be to design an experiment
in which a bot assists a human and then investigate whether, using
the proposed algorithm, the bot can correctly identify whether it does
not know the human’s goals. The ultimate goal would be to endow bots
that assist humans in real life with our proposed metacognitive decision
algorithm and investigate whether it increases their performance.

7. Conclusion

Knowing when one does not know something is crucial for both
humans and bots for stopping the execution of inappropriate behavior
and, ideally, attempting to learn more appropriate actions. From a sta-
tistical point of view, this can be translated to assessing whether none
of the hypotheses in a considered set is correct. Here we investigated
a novel approach for making this assessment based on monitoring the
maximum a posteriori probability (MAP) of a set of candidate hypothe-
ses as new observations arrive. In simulation studies, we demonstrated
that this can be a useful tool, but we also cautioned that there may be
cases where this is more challenging. In future work we plan to explore
how well this approach works in practice when bots assists humans to
achieve their goals.
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Fig. A.1. Simulation results for 𝑝𝑐 freely estimated. The upper row displays, for each scenario separately, the median of the MAP (dots), accompanied by the 25% and 75%
quantiles (shaded area), as a function of the number of presented examples (on a log scale), split by whether the true hypothesis was in the considered set (red symbols) or not
(blue symbols). The bottom row displays the logit transformed MAP as a function of the number of presented examples in a similar manner.
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Appendix. Simulation results for 𝒑𝒄 freely estimated

Fig. A.1 displays the results of a simulation study similar to the one
eported in the main text that only differed in that the probability of
etting the feature(s) of interest to their correct values, 𝑝𝑐 , was a free
arameter and not fixed. We assigned 𝑝𝑐 a uniform prior distribution
n the interval (0, 1). As is apparent from Fig. A.1, the results are very
imilar to the ones for the case where 𝑝𝑐 was fixed to 0.7 (i.e., Fig. 3).

small difference is that for the most challenging case, Scenario 3,
he separation in the MAP trajectories between unknown and known
ata-generating hypotheses is a little better.
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