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Abstract Decisions between multiple alternatives typically
conform to Hick’s Law: Mean response time increases log-
linearly with the number of choice alternatives. We recently
demonstrated context effects in Hick’s Law, showing that
patterns of response latency and choice accuracy were dif-
ferent for easy versus difficult blocks. The context effect
explained previously observed discrepancies in error rate
data and provided a new challenge for theoretical accounts
of multialternative choice. In the present article, we propose
a novel approach to modeling context effects that can be
applied to any account that models the speed–accuracy
trade-off. The core element of the approach is “optimality”
in the way an experimental participant might define it:
minimizing the total time spent in the experiment, without
making too many errors. We show how this approach can be
included in an existing Bayesian model of choice and high-
light its ability to fit previous data as well as to predict novel
empirical context effects. The model is shown to provide
better quantitative fits than a more flexible heuristic account.
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Most decision-making research has focused on binary deci-
sions. For decisions between more than two alternatives, the
typical result is Hick’s Law (also known as the Hick–
Hyman Law; Hick, 1952; Hyman, 1953), which states that
mean response time (RT) increases linearly with the loga-
rithm of the number of choice alternatives (K):

RT ¼ aþ blog2ðKÞ: ð1Þ

Hick’s Law is a robust phenomenon that has received
empirical support across many experimental paradigms, in-
cluding absolute identification (e.g., Lacouture & Marley,
1995; Pachella & Fisher, 1972), eye saccades (e.g., see
antisaccades in Kveraga, Boucher, & Hughes, 2002; Lee,
Keller, & Heinen, 2005), rapid perceptual choice (e.g., Leite
& Ratcliff, 2010), and expanded judgment (Brown,
Steyvers, & Wagenmakers, 2009). However, there have also
been counter examples to Hick’s Law. For instance, in tasks
with high stimulus-response compatibility RT does not in-
crease with set size (e.g., Dassonville, Lewis, Foster, &
Ashe, 1999; prosaccades in Kveraga et al. 2002; ten
Hoopen, Akerboom, & Raaymakers, 1982; Wright, Marino,
Belovsky, & Chubb, 2007), nor do RTs with extensively
practiced stimulus sets (e.g., vocal responses to visually
presented digits; Brainard, Irby, Fitts, & Alluisi, 1962; for
general overview of Hick’s Law, see Schweickert, 1993;
Teichner & Krebs, 1974; Welford, 1980). Another limitation
of the empirical support for Hick’s Law is that it has rarely
been tested for choices between more than eight alterna-
tives, because of methodological limitations. Nevertheless,
in the few existing examinations of Hick’s Law with large
set sizes, there is consistent evidence that the log-linearity in
RTs remains (e.g., Beh, Roberts, & Pritchard-Levy, 1994;
Brown et al., 2009; Hawkins, Brown, Steyvers, &
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Wagenmakers, in press; Lee, Heo, & Chang, 2006; as well
as the experiment described below).

Historically, Hick’s Law was interpreted in terms of
information theory (Hick, 1952; Shannon & Weaver,
1949), where mean RT is proportional to the amount of
information in the stimulus. To control the amount of infor-
mation processed, experimenters forced the observer to re-
spond with perfect accuracy. However, more recent
investigations that have allowed the observer to determine
his or her own speed–accuracy trade-off, and hence commit
errors, have still observed Hick’s Law (e.g., Brown et al.,
2009; Kveraga et al., 2002; Lacouture & Marley, 1995; Lee
et al., 2005; Leite & Ratcliff, 2010). That is, mean RT
increases linearly with the stimulus information actually
processed by the observer, and also with the logarithm of
choice set size (e.g., Hale, 1969; Pachella & Fisher, 1972).

In an experiment that allowed decision makers to deter-
mine their own speed–accuracy trade-offs, Hawkins et al.
(in press) demonstrated context effects in Hick’s Law that
had powerful effects on qualitative patterns in response
accuracy data. The context effect was due to the different
conditions the participant experiences—their “decision con-
text.” For example, manipulating the number of choice
alternatives on a within-subjects basis resulted in very dif-
ferent data than an otherwise-identical between-subjects
manipulation. When manipulated within subjects, partici-
pants made choices across many different set sizes over
trials, from two alternatives up to twenty (i.e., a variable
context). The corresponding between-subjects manipulation
required each participant to make decisions about only one
set size (i.e., a nonvariable context). In the variable context,
decision makers tended to “even out” their decision times by
making faster but less accurate decisions for difficult con-
ditions (many choice alternatives) and slower but more
accurate decisions for the easy conditions (few choice alter-
natives), as compared with the nonvariable context.

These trade-offs between speed and accuracy suggest the
accumulation of different amounts of evidence across set
sizes: As compared with the nonvariable context, decision
makers in the variable context waited for more evidence in
easy-choice conditions and less evidence in hard-choice
conditions. This account unified previously discrepant find-
ings that sometimes accuracy declined as the number of
choice alternatives increased (e.g., Brown et al., 2009;
Lacouture & Marley, 1995; Leite & Ratcliff, 2010), whereas
in other cases, accuracy remained constant (e.g., Hale, 1968;
Rabbitt, 1968).

Modeling context effects in multialternative decisions

Different models of multialternative choice make different
predictions about error rates, including: declining accuracy

as choice set size increases (e.g., the max-minus-next model
of Brown et al., 2009); constant, zero error rates (e.g., the
ACT-R memory retrieval model of Schneider & Anderson,
2011, which, with modification, can provide a limited ac-
count of nonzero error rates); or constant, nonzero error
rates (e.g., the Bayesian optimal observer of Brown et al.,
2009, and the race model of Usher, Olami, & McClelland,
2002). Context effects can be included in any of these
models in two different ways. First, models that naturally
predict constant accuracy rates can assume a speed–accura-
cy trade-off in variable decision contexts. This allows those
models to accommodate the declines in accuracy observed
when participants experience multiple conditions, while still
accommodating the constant accuracy observed in nonvari-
able contexts. Second, models that naturally predict decreas-
ing accuracy rates can assume an opposite speed–accuracy
trade-off across groups of participants in nonvariable deci-
sion contexts. This allows those models to accommodate the
observed constant accuracy in those conditions.

We describe a new approach to explain these speed–accu-
racy trade-offs, extending the ideas of Hawkins et al. (in
press). Our approach constrains and simplifies the models by
replacing the free parameters associated with different speed–
accuracy trade-offs in different conditions with a notion of
optimality. We describe experiments in which participants
made judgments in multiple conditions that each required a
speed–accuracy trade-off setting. We show that the trade-offs
can be explained—in an almost parameter-free manner—by
assuming that participants attempt to finish the experiment as
quickly as possible, conditional on maintaining a goal level of
accuracy. The approach of minimizing RT can be applied to
any model of multialternative choice with a speed–accuracy
criterion parameter. We apply our approach to an existing
Bayesian model to illustrate its ability to account for context
effects. We use the Bayesian model only as a vehicle to
demonstrate the utility of our RT minimizing approach, rather
than to espouse the Bayesian model as a complete account of
multialternative choice. Since declining accuracy rates are not
the default prediction for the Bayesian model, we compare its
quantitative fits with an alternative account, the max-minus-
next heuristic, which naturally predicts declining accuracy
rates. The RT minimizing approach allows the Bayesian mod-
el to provide a better account of data than a competing—and
more flexible—model.

Minimizing total experiment time The Bayesian ideal ob-
server is “optimal” in the sense that, for some predetermined
accuracy rate (a “criterion,” c), the expected decision time is
minimized. At a sequence of discrete time steps during the
decision process, the model calculates the posterior probabil-
ity that each response alternative is the correct response and
responds as soon as the largest of these probabilities exceeds
the response criterion. Thus, by default, the Bayesian model
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predicts constant accuracy at c for any number of choice
alternatives (no more details of the Bayesian model are re-
quired to follow our approach, but for a full description see
Brown et al., 2009).1

We illustrate our new approach to establishing speed–
accuracy trade-off settings using the data from Experiment 1
reported by Hawkins et al. (in press). Participants in that
task made judgments in many different set sizes that were
randomized across trials, from K 0 2…20. Figure 1 shows
that response accuracy (crosses) steadily declined as the
number of choice alternatives increased.

We model these data by assuming that participants have a
goal accuracy rate. For illustrative purposes, we assume a
goal accuracy rate of 60%, the mean accuracy observed in
Hawkins et al.'s (in press) data. If participants are free to set
a different response criterion (c) for each set size, then there
are many different ways one could achieve 60% accuracy.
For example, the simplest approach to achieving 60% accu-
racy is to set the same response criterion, c 0 .6, for all set
sizes, shown as a dotted gray line in Fig. 1. With this
constant response criterion the Bayesian model predicts
mean RT of 16.07 s across set sizes. An alternative approach
is to set response criteria that steeply decline as set size
increases, so that choices between few alternatives are far
more accurate than decisions between many. The dashed
gray line in Fig. 1 illustrates this approach, predicting an
average RT of 16.32 s. These are just two examples of
theoretically many possible combinations of response crite-
ria across set sizes that result in 60% correct responses.

Out of all the many ways to set the response criteria, there
is one setting that results in the fastest mean RT. This setting
will satisfy the goal of meeting the required accuracy rate
(60%) while minimizing the total time required to complete
the experiment; the associated criterion values are optimal in
this sense only. We refer to this approach as “Min-RT.” To
find these optimal criterion settings in our simulation stud-
ies, we conducted a brute force search over the range of
response criterion settings for each set size to examine the
predicted mean RT and accuracy of the model.

The criterion settings selected by Min-RT are completely
determined by the goal accuracy (60%) because they are the
unique set of criteria that minimize RT for that goal. The
response criterion settings predicted by the Min-RT ap-
proach for a goal accuracy of 60% are shown by the black
line in Fig. 1. Intriguingly, these criterion settings closely
match the observed data (i.e., the black line is close to the
crosses). The Min-RT approach is attractive because the

goal of minimizing the total time subject to a goal accuracy
rate is both simple and transparent. The approach is also
highly constrained because for any goal accuracy rate, Min-
RT selects just one response criterion setting for each set
size. We return to the question of how participants might
find the optimal settings in the Discussion section.

We conducted an experiment to test the predictions of the
Min-RT approach. The context hypothesis predicts that the
same stimulus presented in different contexts will elicit
different responses. We tested this hypothesis by manipulat-
ing a specific set size—trials with K 0 10 alternatives. We
expected decisions for K 0 10 alternatives to differ as a
function of whether this set size was the smallest or largest
number of choice alternatives experienced by a decision
maker across trials. We therefore manipulated set size in
two separate participant groups: a “low-K” group, who saw
K 2 f2; 4; 6; 8; 10g alternatives across trials, and a “high-K”
group, who made choices between K 2 f10; 12; 14; 16; 18g.
This means K 0 10 choices were the slowest trials for the
low-K context, but the fastest trials for the high-K context.
At the ordinal level, our hypothesis suggests that the low-K
group will respond faster and with lower accuracy to K 0 10
trials than the high-K group, reflecting a participant-
controlled speed–accuracy trade-off. At the quantitative lev-
el, Min-RT suggests that both groups will demonstrate the
same mean accuracy, and as a consequence, mean RT will
be faster in the low-K than in the high-K group. Min-RT also

1 Since the Bayesian model approximates the continuous passage of
time using discrete steps, predicted response accuracy will always be
equal to or slightly greater than the response criterion, because the
predicted RT is the first time step on which c is exceeded. This
overshoot has implications for model fits to data described below.
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Fig. 1 Accuracy data (crosses) from Experiment 1 of Hawkins et al.
(in press), as a function of the number of choice alternatives. The three
lines demonstrate different approaches to setting response criteria
conditional on a goal accuracy level of 60%: The black line shows
the response criteria selected by the Min-RT procedure, the dotted gray
line shows a constant response criterion of 60% across all set sizes, and
the dashed gray line shows steeply declining response criteria that
produce large differences in accuracy performance across set sizes.
The right side of the figure shows the predicted mean response time
(RT) for the three approaches
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makes different predictions about response accuracy across
set sizes for the two participant groups. The low-K group
will experience a greater range in RTs across set sizes than
the high-K group (according to Hick’s Law, Equation 1).
Min-RT therefore predicts that the low-K group will dem-
onstrate a greater decline in response accuracy across set
sizes than the high-K group, since this will result in consid-
erably shorter total experiment time.

Experiment

We based our experiment on the task employed by Hawkins
et al. (in press). This paradigm involved a visual display of
many squares representing the choice alternatives, randomly
allocated into positions within a four-row × five-column
grid. All choice alternatives began each trial as white
squares with black borders. Over the course of a trial, each
square randomly accumulated blue dots. On each 66-ms
time step, there was a 40% chance of each square accumu-
lating an extra dot, independently for each square. Just one
square accumulated dots more quickly—the target square,
which had a 50% chance. The participants’ goal was to
select this target square as quickly and accurately as possi-
ble. All the distractor elements had the same salience (i.e.,
accumulation rate), so we need not consider difficult ques-
tions about the statistical optimality of various settings of
the perceptual template. In situations in which target-to-
distractor similarity varies, such matters become important;
see McMillen and Behseta (2010) for detailed discussion.

The slow accumulation of evidence ensures that a clear
speed–accuracy trade-off emerges in this task: Early in the
decision process, when only a few dots have accumulated, a
distractor square is likely to be filled with more dots than the
target, by random chance. A demonstration version of this
experiment can be viewed online, at http://psych.newcastle.
edu.au/~sdb231/buckets/vanillaR.html.

Method

Sixty-seven first-year psychology students from the Univer-
sity of Newcastle participated online for course credit. Each
participant was randomly assigned to the low-K or high-K
context. To equate total experiment time, participants in the
low-K condition completed six blocks of 30 trials, and high-
K participants completed seven blocks of 20 trials. The
number of choice alternatives displayed on any trial was
randomly selected from K 2 f2; 4; 6; 8; 10g for low-K par-
ticipants and K 2 f10; 12; 14; 16; 18g for high-K partici-
pants, subject to the condition that each set size appeared
equally often in each block.

Apart from the difference in set sizes and trial numbers,
the experiment was identical for all participants. Each trial
began with K squares with white backgrounds that were
randomly allocated into positions within a 4 × 5 grid, each
measuring 100 × 100 pixels. During each trial, time pro-
ceeded in discrete steps of 15 events per second. At each
time step, a blue dot (2 × 2 pixels) had some chance of
appearing at a random, unfilled location in each square. The
probability of a dot appearing in each square was indepen-
dent and equal for all squares at .4, except for one randomly
selected target square, which had the probability of .5. The
participants’ task was to identify this target as quickly and
accurately as possible. Participants were free to allow dots to
accumulate until they felt confident with their decision. An
example of different time points within a single trial with 10
alternatives is shown in Fig. 2. The maximum number of
dots in each square was 2,500, meaning that no square could
fill in less than approximately 3 min (which is much longer
than any participant waited on any trial to make a response).
After making a response, participants were provided with
feedback in the form of many more time steps illustrated
very rapidly, indicating which choice was the true target
(which always ended up filling with the most dots). If the
participant correctly identified the target, it turned the cho-
sen square’s border green. Incorrect identification of the
target turned the chosen square’s border red, whereas the
true target square’s border was turned green.

Results and discussion

We excluded data from 12 participants who made fewer than
33% correct responses, and two participants whose host
computer displayed fewer than 13 time steps per second,
on average. Of the remaining data, we removed 138 trials
faster than 1 s, 25 trials slower than 100 s, and 122 trials in
which the host computer displayed fewer than 13 time steps
per second (3.45% of total trials).

Averaged RT and accuracy data are shown in Fig. 3 as
functions of the number of choice alternatives. The left
panel shows that both the low-K and high-K contexts dem-
onstrated an approximately log-linear increase in mean re-
sponse latency with increasing numbers of choice
alternatives, in accordance with Hick’s Law. The high-K
group demonstrated slower RTs overall than did the low-K
group, as predicted by Min-RT, and also slower responses to
K 0 10 trials, as predicted by the context hypothesis. The
right panel of Fig. 3 shows that accuracy steadily declined as
set size increased in both groups, although the decline was
greater in the low-K group, as predicted by the Min-RT
optimization hypothesis.

Using a two-way mixed ANOVA, we examined the
effects of decision context (low- vs. high-K) and the number
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of choice alternatives (where K 0 2 was paired with K 0 10,
K 0 4 paired with K 0 12, and so on). There were significant
interactions for both response latency and choice accuracy,
reflecting greater changes in the low-K context than the
high-K context. This is consistent with Hick’s Law because
the range of set sizes is greater for the low-K condition, on a
log scale.

As expected, RTs were significantly slower in the high-K
than in the low-K group (F ð1; 51Þ ¼ 17:79, p < .001). In
contrast, the mean proportion of correct responses did not
reliably differ as a function of context (low K:M 0 .58, SE 0
.03, IQR 0 .47–.64; high K: M 0 .63, SE 0 .04, IQR 0
.41–.76; for the main effect, p 0 .26). In both groups, RT
increased and accuracy decreased with an increasing number
of choice alternatives (for both main effects, p < .001). These
results are consistent with the interpretation that the decision
context promotes a speed–accuracy trade-off, resulting in
declines in accuracy with more choice alternatives, while
mean accuracy across groups remains relatively constant.

A critical prediction of the context effect hypothesis
relates to K 0 10 data common to both groups, which states

that K 0 10 choices will be treated differently across groups.
Consistent with this expectation, RTs for K 0 10 were slower
and accuracy was higher in the high-K than in the low-K
group, t(51) 0 2.42, p < .05, and t(51) 0 3.60, p < .001,
respectively.

To investigate whether our results were due to taking
averages across participants, we conducted individual-
participant analyses on accuracy data. TheMin-RT hypothesis
predicts that low-K participants should make larger adjust-
ments to their speed–accuracy trade-off settings across the
range of choice set sizes than high-K participants. This is
because the low-K participants experienced a larger range in
RTs across set sizes, because of the logarithmic increase of
Hick’s Law. Consequently, the optimum settings for response
criteria in the low-K group differ more across set sizes than in
the high-K group.We calculated linear regressions of response
accuracy against log2(K) separately for each participant in
each group (see Fig. 4). Nearly all low-K participants (27 of
28) had negative slope coefficients, suggesting that the speed–
accuracy trade-off observed at group level was sufficiently
robust to be observed at the individual-subject level. In the

(a) Early (b) Mid (c) Late

Fig. 2 Screenshots from the experiment at different time points during
a choice between 10 alternatives. a depicts the early stages of the trial
with relatively few dots in each square, b shows a mid point, and c
shows the later stages of the trial when many dots appear in each

square. The participants’ goal is to identify the square that accumulates
dots at the greatest rate, which in the current trial is in the third row of
column three
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high-K condition, there was a limited capacity to minimize
experiment time by trading speed and accuracy, because mean
RT did not differ verymuch across set sizes. In keepingwith the
Min-RT hypothesis, only a small majority of high-K partici-
pants (15 of 25) had negative slope coefficients. The regression
slopes in the low-K group were steeper on average (M 0 -.14,
SE 0 .01) than in the high-K group (M 0 -.04, SE 0 .03), and
this difference was significant, one-tailed independent samples
t test, t(51) 0 3.84, p < .001. This difference is consistent with
theMin-RT hypothesis and is based on accuracy versus set size
functions estimated at an individual-subject level.

Model predictions

To test the quantitative fit of the Min-RT approach to data,
we specified the goal accuracy parameter using the mean
accuracy from data for the low-K group, and just below the
mean accuracy for the high-K group (58% and 60%, respec-
tively). We used a value slightly below observed accuracy
for the high-K group to compensate for the accuracy over-
shoot problem described previously. Apart from these two
values, there were no model parameters estimated from our
data: Separate response criterion parameters (c) were deter-
mined for each set size by the model according to the Min-
RT goal of minimizing overall experiment time. Mean RT
and accuracy predictions of the model are shown as solid
lines on data in Fig. 3. Following Hawkins et al. (in press),
we scaled all model RTs by a factor of four (this is a fixed
parameter in the model). Without this scaling, the optimal
Bayesian model always responds much faster than humans.
The scaling factor can be interpreted as capturing a percep-
tual limit: The very small dots in our display may have been
perceptually grouped in fours. With these assumptions, the
Bayesian Min-RT model provides a good account of all the
data.

The operation of the Min-RT assumption can be made
clearer by comparing its predictions to the standard Bayes-
ian model predictions, with a fixed response criterion across
all set sizes. In the low-K context, the Bayesian model using
Min-RT criterion settings will complete the experiment in
10.3% less time than if a constant 58% accuracy criterion
was established for each set size. In the high-K context, the
benefits of adjusting response criteria are much smaller.
Hence, this group had less to gain by trading accuracy
across set sizes, and Min-RT predicts only approximately a
1% decrease in experiment time. This explains why the
range in accuracy across set sizes in the high-K group was
far smaller than that of the low-K group.

To compare the quantitative fit of the Min-RT approach
as applied to the Bayesian model, we also compared its
predictions with another single-parameter model of multi-
alternative choice: the max-minus-next heuristic. By default,
max-minus-next predicts accuracy rates that decline as set
size increases, so it naturally suits the qualitative data pat-
terns from our experiment. The purpose of comparing the
max-minus-next heuristic with the Bayesian model is to
demonstrate that the Min-RT idea is sufficiently powerful
to rescue the Bayesian decision mechanism, which was
previously shown (by Brown et al., 2009) to be inferior to
the max-minus-next decision mechanism in data with con-
text effects. The max-minus-next account proposes that a
response is triggered as soon as the evidence for the most
likely alternative exceeds the evidence for the second most
likely alternative by some threshold amount, ∆. Dragalin,
Tartakovsky, and Veeravalli (1999, 2000) demonstrated that
this simple decision heuristic approximates the optimal
multihypothesis sequential probability ratio test (Baum &
Veeravalli, 1994) when error rates are low. Brown et al.
found the max-minus-next heuristic to provide a good ac-
count of their data, demonstrating the Hick’s Law regularity
in RTs and also decreasing accuracy with increasing
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numbers of choice alternatives, even though error rates were
quite high.

We fit the max-minus-next model to our data by assuming
that the decision evidence was just the number of filled dots in
each stimulus. We applied the same 4× slow down imposed
for the Bayesian model (on the assumption that a perceptual
limitation ought to apply equally to the two models). The
dashed lines in Fig. 3 show that the model fits the data quite
well, assuming a response threshold of ∆ 0 3.2 dots for the
low-K context, and ∆ 0 4.5 dots for the high-K context
(obtained via optimization over a grid search in increments
of ∆ 0 .1). Noninteger values for ∆ might be interpreted as if
participants employ a mixture of integer values.

Since both models provided excellent fits to mean RT
data, we examined their predictions—under the same pa-
rameter settings—for the full distribution of RTs. For each
participant, we calculated the 10%, 30%, 50% (i.e., median),
70%, and 90% percentiles of the RT distribution for each set
size and then averaged these quantile estimates over partic-
ipants in each group. Quantile averaging of this kind pre-
serves distribution shape, under reasonable assumptions
about between-subjects variability (Gilchrist, 2000). These
distributions are shown separately for both groups as gray
lines in Fig. 5. The lines depict, from bottom to top, the
10%, 30%, 50% (shown with larger symbols), 70%, and
90% percentiles. The upper lines are spread further apart
than the lower lines, showing the positive skew of the RT
distribution. Model predictions are shown in black lines. In
the left panel, the max-minus-next heuristic predicts the
central tendency (median) in data well; however, this model
predicts too much variability in the distribution of RTs. In
contrast, the Min-RT Bayesian model, shown in the right
panel, quite closely predicts the percentiles of the RT distri-
bution for both groups, except for some potential misfit in

the smallest set sizes of the 70% and 90% percentiles of the
low-K group.

Model Selection The aforementioned analyses suggest that
both models account for the data reasonably well, but the
Min-RT Bayesian model is better able to capture the full
distribution of RTs. We then applied a model selection
technique (parameter space partitioning: Pitt, Kim, Navarro,
& Myung, 2006) to investigate whether the Bayesian mod-
el’s improved fit was due to model flexibility. Parameter
space partitioning involves simulating model predictions
across the entire parameter space of a model and evaluating
the qualitative data patterns the model is capable of produc-
ing. A model is preferred if it has little flexibility, if it
predicts the same empirical trends across all parameter set-
tings, and does not predict trends that do not occur in data.
We examined whether the models predicted the basic find-
ing—Hick’s Law for RTs—across all parameter settings.

We were limited to simulating the predictions of the core
Bayesian model (i.e., without the Min-RT approach to
selecting response criteria). Since the predictions of the
Bayesian model are probabilistic, and Min-RT depends en-
tirely on these probabilistic predictions, the Min-RT predic-
tions included too much simulation noise, given practical
amounts of computer time. Simulation noise makes the
model unsuitable for parameter space partitioning because
the model’s predictions then differ across the parameter
space because of noise, rather than model flexibility. We
also did not perform parameter space partitioning on accu-
racy predictions because there is no well-established equiv-
alent to Hick’s Law for accuracy data and thus no clear
target for what the models should and should not predict.
Furthermore, the core Bayesian model always predicts con-
stant accuracy with increasing set size, and the max-minus-
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next heuristic always predicts declining accuracy with in-
creasing set size. Both patterns appear in data, depending on
the decision contexts, so parameter space partitioning on
accuracy predictions will be uninformative.

We simulated data from both models for K 2
f2; 4; 6; 8; 10; 12; 14; 16; 18g to mimic the range of set sizes
from our experiment. The Bayesian model was simulated
across a response criterion grid from c 0 .26-.99 in incre-
ments of .01 (for c < .5 we removed the K 0 2 data
point, since this represents responses below chance
accuracy), and the max-minus-next model from ∆ 0
2-20 in increments of 1. The range in parameter values
for each model represents the maximum sensible range
for the models. For each parameter setting, we evalu-
ated whether Hick’s Law was predicted by calculating
the slope of the mean RT versus log2(K) relationship
for each successive pair of set sizes (i.e., K 0 2 to K 0
4, then K 0 4 to K 0 6, and so on). Hick’s Law asserts
these slopes should all be equal, so we classified the
model as predicting Hick’s Law whenever the range of
the slopes was smaller than some tolerance value (to
allow for small deviations from log-linearity). The tol-
erance values below are expressed as percentages of
the mean slope estimates.

Parameter space partitioning on RTs indicated that the core
Bayesian model is less flexible than the max-minus-next
heuristic. Both models always predicted the generic ordering
pattern expected in multialternative choice: RTs for K ¼ 2 <
K ¼ 4 < K ¼ 6…, which is a necessary, although not suffi-
cient, requirement for Hick’s Law. The max-minus-next heu-
ristic never satisfied Hick’s Law for tolerance values that were
more strict than 36%. At that same tolerance value, the core
Bayesian model predicted Hick’s Law across most of its
parameter space (69% of the range of c). These results are
shown more completely, as receiver operating curves, in
Fig. 6. The core Bayesian model predicted Hick’s Law across
almost all of its parameter space by a tolerance value of 66%.
For the same tolerance, the max-minus-next model predicted
Hick’s Law across less than half of its parameter space and did
not cover 95% until tolerance was at 82%.

The max-minus-next model performed rather poorly be-
cause it predicted smaller increases in RT at larger set sizes
than Hick’s Law suggests should occur. That is, max-minus-
next predicted a flattening in RT across the larger set sizes. To
illustrate, when examining only smaller set sizes, such as K≤
8, the max-minus-next model predicts Hick’s Law across 90%
of the parameter space for 59% tolerance, with the same area
covered with a tighter 29% tolerance for the core Bayesian
model. This suggests the max-minus-next model performs
acceptably for the set sizes typically studied in multialterna-
tive choice. However, Hick’s Law has been demonstrated to
hold for decisions between more than eight alternatives (e.g.,
Brown et al., 2009; Hawkins et al., in press).

General discussion

In the present study, we developed a novel approach to model-
ing context effects in multialternative decisions and compared
this approach to existing accounts. The RT minimizing ap-
proach (Min-RT) provides the first principled explanation for
context effects. Min-RT constrains speed–accuracy trade-off
settings across different set sizes in such a way as to minimize
total experiment time, and can be applied to any model with a
speed–accuracy criterion parameter. We demonstrated that
Min-RT can account for a previous data set as well as novel
empirical data. The experimental data reported presently also
provide further support for Hick’s Law, demonstrating that the
log-linearity in RTs holds for judgments in large-choice set
sizes, and is still observed despite high error rates (consistent
with recent literature, e.g., Brown et al., 2009; Kveraga et al.,
2002; Lacouture & Marley, 1995; Leite & Ratcliff, 2010). We
also provided a novel empirical demonstration of context
effects in multialternative choice.

The Min-RT Bayesian model and the max-minus-next
heuristic both fit mean RT and accuracy data; however, the
Min-RT Bayesian account provided a better fit to the RT
distributions. Parameter space partitioning suggested the core
Bayesian model is less flexible than the max-minus-next
model: The Bayesian model predicted the constrained Hick’s
Law regularity considerably more often than did the max-
minus-next model. The parameter space partitioning of the
core Bayesian model compares favorably to the same model
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flexibility analysis conducted by Schneider and Anderson
(2011) on their ACT-R memory retrieval model. Schneider
and Anderson examined K 2 f2; 4; 8g and found that their
model predicted the generic K ¼ 2 < K ¼ 4 < K ¼ 8 order-
ing of RTs across 88% of the parameter space, when
using a tolerance for equality between set sizes of
20 ms, corresponding to about 5% of their shortest
empirical response latencies. Using a similar 5% criterion
in our parameter space partitioning over the same set
sizes as in Schneider and Anderson, the core Bayesian
model predicted the generic RT ordering in 100% of the
parameter space, suggesting that the core Bayesian model
is less flexible than the ACT-R model. This comparison,
however, is not straightforward. Empirically, sometimes
response latency does not differ across set sizes—for
example, in tasks involving high stimulus–response com-
patibility or following extensive task practice (for a re-
view, see Schweickert, 1993; Teichner & Krebs, 1974).
This might suggest the ACT-R model is better suited to
explaining a broader range of multialternative choice
phenomena.

An interesting perspective on our notion that decision
makers try to minimize total experiment time, conditional
on maintaining a goal accuracy level, is to consider it as a
generalization of the concept of “reward rate” optimization
(e.g., Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006).
Reward rate is just the expected number of correct responses
per unit time, so in any experimental design—and for given
constraints on accuracy—there is a single speed–accuracy
trade-off setting that maximizes reward rate. Bogacz et al.
showed that most decision makers employed a too-careful
speed–accuracy trade-off: They could have increased re-
ward rate by making more frequent, but less accurate, deci-
sions. With practice, however, most decision makers can
eventually maximize reward rate (Balci et al., 2011; Simen
et al., 2009; Starns & Ratcliff, 2010). The concept of reward
rate is only directly applicable to experimental designs when
the time available to participants is fixed, but the number of
decisions is not: In the usual case, in which the number of
decisions is fixed, being very careful will maximize the total
number of correct decisions. One perspective on the Min-RT
hypothesis is that it generalizes the notion of reward rate to
the typical, fixed-trial, experimental designs. Without ex-
plicit instruction to do so, and without the structure imposed
by a fixed-time experimental design, a plausible goal for
participants is to leave the experiment as quickly as possi-
ble, without making socially unacceptable error rates.

The psychological plausibility of the Min-RT approach is
unclear: Could decision makers feasibly arrive at those
response criterion settings that minimize expected RT? It is
possible that observers might approximate this minimum
through a gradient descent search of some sort. For instance,
a decision maker might begin (by default) with a constant

response criterion across set sizes. In the Bayesian model,
successive adjustments to criteria will maintain the goal
accuracy as long as the sum of criterion increments across
conditions is zero (e.g., if the criterion for one condition is
raised by 1%, the criterion for another condition should be
decreased by 1%). With this constraint, the task of the
observer is simplified to just selecting which conditions
should have their criteria raised, and which lowered. Some
simple heuristics might get the decision maker close to the
global optimum; for instance, perhaps one might increase
the response criterion for the fastest condition and decrease
it in the slowest condition. An alternative approach to the
problem of psychological plausibility might be to relax the
assumption that observers set a response criterion indepen-
dently for every experimental condition. A lighter cognitive
load would result instead from estimating one or two param-
eters of some simple function that approximates the optimal
criterion settings (for a similar approach, see, e.g., Balci et
al., 2011). For example, combining our present results with
those from Hawkins et al. (in press) suggests that partici-
pants could get very close to the optimal solution by adjust-
ing just a single parameter of a power function. Such
process models of the search for optimal criteria are a topic
for future research on this problem.

We have provided further empirical evidence for Hick’s
Law and context effects in multialternative choice, and
developed the Min-RT approach that can be applied to most
existing domain general models of these choices. We com-
pared the goodness of fit of Min-RT as applied to a Bayesian
ideal observer to the max-minus-next heuristic in explaining
context effects and declining accuracy rates. The Bayesian
model outperformed the heuristic account on two fronts:
better fit to data and lower model flexibility. Min-RT pro-
vides a one-parameter approach to determining the speed–
accuracy criterion settings across set sizes that minimize
total experiment time. When applied to an existing domain
general model of multialternative choice, Min-RT provided
a strong account of context effects by describing mean RT,
mean accuracy, and RT distributions.
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