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Abstract Bayesian models of cognition provide a powerful
way to understand the behavior and goals of individuals from
a computational point of view. Much of the focus in the
Bayesian cognitive modeling approach has been on qualita-
tive model evaluations, where predictions from the models are
compared to data that is often averaged over individuals. In
many cognitive tasks, however, there are pervasive individual
differences. We introduce an approach to directly infer indi-
vidual differences related to subjective mental representations
within the framework of Bayesian models of cognition. In this
approach, Bayesian data analysis methods are used to estimate
cognitive parameters and motivate the inference process with-
in a Bayesian cognitive model. We illustrate this integrative
Bayesian approach on a model of memory. We apply the
model to behavioral data from a memory experiment involv-
ing the recall of heights of people. A cross-validation analysis
shows that the Bayesian memory model with inferred subjec-
tive priors predicts withheld data better than a Bayesian model
where the priors are based on environmental statistics. In
addition, the model with inferred priors at the individual
subject level led to the best overall generalization perfor-
mance, suggesting that individual differences are important
to consider in Bayesian models of cognition.

Keywords Bayesianmodels of cognition . Bayesian data
analysis . Episodic memory . Individual differences

Introduction

Bayesian models of cognition (BMCs) have experienced a
recent upsurge in popularity in the cognitive sciences. These
models have made significant theoretical contributions to
cognitive science in their accounts of why people behave as
they do. The strength of BMCs (sometimes also referred to as
rational models) is that they can be used to characterize the
computational problems people face when trying to make
sense of the world given the sparse and noisy input from our
senses. Assuming that the mind solves inference problems in a
Bayesian way, BMCs give a principled account of how we
update our beliefs about the world given observed data, and
how our prior knowledge about the world influences our
judgment. These models have been applied to a broad range
of areas in human cognition (Anderson, 1990) and specific areas
such as reasoning (Oaksford & Chater, 1994), generalization
(Tenenbaum & Griffiths, 2001), number concepts in children
(Lee & Sarnecka, 2010), categorization (Huttenlocher, Hedges
& Vevea, 2000), episodic memory (Shiffrin & Steyvers, 1997;
Steyvers & Griffiths, 2008), and semantic memory (Hemmer &
Steyvers, 2009; Steyvers, Griffiths, & Dennis, 2006). For an
overview of BMCs of cognition see Oaksford & Chater (1998),
but also see Mozer, Pashler, & Homaei (2008), Jones & Love
(2011), Marcus &Davis (2013), and Bowers &Davis (2012a,b)
for critiques of BMCs.

Traditionally, the focus in the Bayesian cognitive modeling
approach has been on qualitative model evaluations, where
predictions from the models are compared to data that is
averaged over participants. At this qualitative level, BMCs
can provide useful insights into the cognitive goals and com-
putational mechanisms of average individuals. In many
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cognitive tasks, however, there are pervasive individual dif-
ferences, e.g., in working memory (e.g., Unsworth, 2007),
judgment and decision making (e.g., Vickers et al., 2006),
and reinforcement learning (Steyvers, Lee, & Wagenmakers,
2009). While averaging across participants provides a power-
ful tool for analysis, it might also lead to mischaracterizations
of the behavior of individuals, and of the underlying cognitive
goals and processes. Estes (1956) cautioned against the un-
critical use of averaged curves to determine effects of exper-
imental treatments in the study of learning. Reliance on aver-
age data can obscure important individual differences stem-
ming from different psychological parameters within a model
or even from different psychological models (Lee & Webb,
2005; Navarro et al., 2006). In this paper, our goal is to
develop new approaches in a BMC framework that allow us
to use Bayesian procedures to estimate individual difference
parameters. The individual differences can relate to process
parameters that regulate internal cognitive processes as well as
differences in the nature and use of prior knowledge relevant
to the cognitive task. Instead of assuming that prior knowl-
edge used in the BMC is based on environmental statistics,
our proposed approach allows researchers to estimate subjec-
tive prior knowledge that is adopted by individual subjects.
Therefore, instead of making strong assumptions about the
source of prior knowledge, we simply estimate the prior
(subjective) knowledge for individual observers that accounts,
in a quantitative fashion, for the observed cognitive behavior.

One consequence of our approach is that incorporating
individual differences and subjective prior knowledge in
BMCs will increase the flexibility of these models to account
for data, which can raise concern about the relative flexibility
of these models compared to some non-BMCs (e.g., Bowers
& Davis, 2012a). However, it is important to note that the
quantitative framework we propose allows for standard
methods of model selection that can guard against selecting
overly flexible models. Our argument here is not that all
BMCs will necessarily benefit from the individual differences
framework. Our main contributions are (1) to describe the
modeling framework that allows researchers to estimate the
subjective priors and potentially include individual differences
in the subjective priors, and (2) to provide a demonstration on
a reconstructive memory task that a BMC with subjective
priors and individual differences is able to generalize to un-
seen data better than a corresponding model without subjec-
tive priors or individual differences.

While the approach to modeling individual differences is
not new in terms of the structure of individual differences that
we assume, the idea of inferring individual differences within
a BMC, based on human data, is novel. Several recent lines of
research have been introduced in this area. One approach
explored by Griffiths and colleagues (e.g., Martin, Griffiths,
& Sanborn, 2012; Sanborn & Griffiths, 2008; Sanborn,
Griffiths, & Shiffrin, 2010) is based on a new technique to

estimate subjective distributions using the rational framework
called ‘MCMC with people’. This technique is an iterative
procedure used to infer the subjective probability distributions
over categories. The standard approach for investigating men-
tal representations is to experimentally assess participant judg-
ments on fixed stimuli. In MCMC with people, however, the
stimuli are not predetermined but rather are adaptively select-
ed. This procedure is often applied between subjects but has
also been applied within subjects (Xu & Griffiths, 2010). One
advantage of this approach is that it is a simple procedure to get
samples from subjective distributions and does not require
parametric assumptions. The disadvantage is that these proce-
dures might require non-trivial modifications to existing exper-
imental designs because of their iterative nature. Furthermore,
MCMC with people cannot be applied after the fact and must
explicitly be a part of the experimental design. Thus, it might be
challenging to (re)interpret existing data with this method.

A second approach, termed ‘Doubly Bayesian’, seeks to
unify Bayesian models of the mind and Bayesian data analysis
(Huszár, Noppeney, & Lengyel, 2010). This approach as-
sumes participants to be quasi-ideal observers using
Bayesian inference in the mind. The ideal observer models
are then placed in a Bayesian data analysis framework to infer
the participants’ subjective distributions over stimuli. The
advantage of this approach is that it allows for the inference
of the mental representations of humans while eliminating
experimental constraints and confounds.

A third approach, termed ‘meta-Bayesian’ or ‘observe the
observer’ is based on Bayesian decision theory applied to
perceptual inference problems. This approach seeks to simul-
taneously model perceptual inference at the level of the sub-
ject and statistical inference about the perceptual inference
processes at the level of the experimenter (Daunizeau, den
Ouden, Pessiglione, Kiebel, Stephan et al., 2010). The
strength of this meta-Bayesian approach is that it extends the
Inverse Bayesian decision Theoretic (IBCT) problem to ex-
perimental psychology, neuroscience, and other experimental
paradigms not suitable for the IBCT problem.

In this research we develop an integrative framework sim-
ilar to the Doubly Bayesian and meta-Bayesian approaches
and focus our analysis on the problem of estimating subjective
priors. As the name suggests, the Bayesian approach is used in
two distinct ways – one as an estimation procedure to analyze
individual differences and the other to motivate the inference
process within a cognitive model. In this way, we apply ideas
of Bayesian Data Analysis (Kruschke, 2010; Lee, 2008) to
learn about the underlying psychological variables of the
BMC, and ideas from rational analysis to motivate a model
of the mind of the observer. The key point of our approach,
and that of Huszár et al. (2010) and Daunizeau et al. (2010), is
that combining these two approaches involves an application
of Bayesian inference at the level of the researcher and ob-
server. The observer is trying to make the best use of
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information to make a decision or update an internal repre-
sentation, and the researcher is trying to infer what is going on
in the inference process in the observer’s mind. Both the
observer’s model and the researcher’s model of the observer’s
model are being evaluated concurrently.

The plan for this paper is as follows. We will first sketch out
how to integrate the observer and experimenter models by
introducing each step – from the experimenter designing the
stimuli, and the BMCof the observer in the experimental task, to
the Bayesian account of the experimenter analyzing the
observed behavior. We will then illustrate this model on behav-
ioral data from an experiment for the recall of the height of
people and contrast three different approaches to determine the
subjective priors. Finally, we will assess the generalization per-
formance of the three models in a cross-validation procedure.

An integrated observer-researcher analysis

We will illustrate our approach with a relatively simple
Bayesian model of reconstructive memory. Our approach
can, however, in principle, be applied to other areas of mem-
ory, as well as any area of cognition. In the area of memory,
starting with the pioneering approach by Anderson (1990), a
number of BMCs have been developed in episodic and se-
mantic memory (Shiffrin & Steyvers, 1997; Steyvers &
Griffiths, 2008; Steyvers, Griffiths, & Dennis, 2006; Xu &
Griffiths, 2010). There are likely better and more sophisticated
Bayesian models of memory than the one instantiated here.
We chose this model because it is the simplest possible BMC
and provides a good qualitative fit to the data. One could
easily imagine more complicated models as we have in the
past. In a previous work, two of the current authors have
developed Bayesian memory models for the reconstruction
of events from memory using multiple sources of information
– episodic and semantic (Hemmer & Steyvers, 2009). In this
approach, episodic memory is viewed as a problem of
extracting and storing information from noisy signals present-
ed to our senses, which need to be combined with prior
knowledge about the environment. Specifically, in the exper-
iments by Hemmer and Steyvers, observers were presented
with a series of stimuli (e.g., vegetables and fruits) during a
study phase and were instructed to retrieve from memory an
attribute (e.g., the size) of specific stimuli at a later time. The
results showed that the memory estimation errors that ob-
servers make can be explained by the use of prior knowledge
– smaller objects were later recalled to be larger and larger
objects were later recalled to be smaller, as predicted by a
memory system that uses prior knowledge at the category
level to help the recall of instance-specific attributes.

In this paper, we will apply this Bayesian modeling ap-
proach to data from a memory task where people estimate the
height of men and women.We chose to illustrate our approach

with recall for height, because people are known to have
strong prior expectations for height (Nelson, Biernat, &
Manis, 1990), and are quite accurate at estimating height
based on accessible gender information (Kato &
Higashiyama, 1998). Furthermore, the distribution of heights
in the population is well documented, and known to be
normally distributed. As in the Hemmer and Steyvers (2009)
study, having categorical knowledge leads to two clear pre-
dictions about the effect of prior knowledge on episodic
memory. First, that there will be an overall regression to the
mean, where recalled height for people at heights below the
mean population height will be overestimated while recalled
height for people at heights above the mean population height
will be underestimated (see Fig. 1, panel A). The second and
critical prediction is that when two people (a short male and a
tall female) have the exact same height, recall will be differ-
entially biased towards the height distributions that are gender
specific. The tall female will be underestimated towards the
mean of female height and the short male (objectively the same
height as the female) will be overestimated towards the mean of
male height. In other words, prior knowledge will differentially
affect the memory of two people originally presented at the
same height. Figure 1, panel B illustrates this effect.

In the height estimation experiment, the goal of the observ-
er is to reconstruct the original study events (the heights of
people shown sequentially, either male or female) as best as
possible given their noisy episodic memory content and their
prior knowledge of the stimulus attribute (i.e., general knowl-
edge of heights of males and females). The goal of the re-
searcher who analyzes the data from the memory experiment,
on the other hand, is to estimate potential individual differ-
ences. In our scenario this could relate to differences in priors
or memory noise that are part of the BMC.

To analyze the goals of the researcher and observer simulta-
neously requires an integrative application of Bayesian infer-
ence. The conceptual challenge in this approach is to carefully
distinguish between observed and latent variables1 because
what is known and what is latent depends on whose perspective
we are considering. In the memory task, the observer and
researcher have access to different information. For example,
the observer knows their own memory content, but the re-
searcher does not. The researcher knows the original stimulus
that was provided, whereas the observer is trying to infer the
original study stimulus. Table 1 shows how the observer and the
researcher differ on what is known and what is latent.

We will adopt graphic models as a way to visualize the
structure of the model. There are different graphic models that
need to be considered – the model from the observer’s per-
spective, who is trying to reconstruct from memory the orig-
inal study event, and the model from the researcher’s

1 From now on, we will refer to observed variables as known variables to
avoid confusion with the term observer.
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perspective, who is trying to infer what is going on in the
observer’s mind. Figure 2 shows the graphic models from
these different perspectives. In the graphic models shaded
nodes indicate known variables and unshaded nodes indicate
latent variables. The arrows in the model indicate the condi-
tional dependencies. For simplicity and visual clarity we
eliminate any indices in the graphic model that represent the
repetitions in our sampling steps (across stimuli, categories,
individuals, etc.). The next sections detail these assumptions
at each stage of analysis.

Generating the stimulus from the researcher’s perspective

We first consider the question of how the stimulus is generated
in the experimental task. The left panel of Fig. 2 shows the
graphic model for the researcher who generates stimulus θ to
be studied by the observer in the task. The variable θmeasures
an attribute of the stimulus, such as the height of a person that
needs to be remembered. In the height memory experiment we
will report later, the stimulus is drawn from the true environ-
mental distribution with a mean of μ* and a precision of τ*,

which is known to the researcher. For simplicity, we assume
here that the environmental distribution of the stimulus is
Gaussian, μ ~ N (μ*, τ*). While the true environmental
distribution is known to the researcher, note that the observer
might not have perfect knowledge of the environmental sta-
tistics of the attribute.

A Bayesian account from the observer’s perspective

We next consider how the observer in the memory task might
reconstruct the studied stimulus. The goal for the observer is
to reconstruct the original attribute θ using the content of
episodic memory and their prior knowledge of the study
attribute. We first need to make some assumptions on how
the episodic memory contents are created during study. We
assume that a single memory sample y is drawn from a
Gaussian distribution centered on the original stimulus value2:

y e N θ;ψð Þ ð1Þ

The precision parameter ψ is a parameter that governs
memory noise – it controls the degree to which the stored
episodic representation resembles the attribute of the original
studied stimulus. Suppose the observer also has some subjec-
tive knowledge about the general distribution of attributes in
the form of a Gaussian distribution:

θ e N μ; τð Þ ð2Þ

This distribution corresponds to the prior in the observer’s
memory model. There are a number of approaches to deter-
mine the parameters μ and τ of this prior distribution. One
approach, consistent with a typical rational analysis of a
cognitive task, would be to assume that the observer has
learned the environmental statistics and that the actual envi-
ronmental statistics can be used as a proxy for the prior in the
observer’s model. In our experimental setting, we would
assume that μ=μ* and τ=τ*. Another approach is to assume
that the observer uses a subjective prior where the parameters μ
and τmight not accurately reflect the true environmental statis-
tics. In this case, the parameters μ and τ need to be estimated
from the behavior of the observer. In this paper, we will explore
both approaches to determine the observer’s prior.

The goal for the observer is to reconstruct the original
attribute from memory. Bayes’ rule gives us a principled
way of combining prior knowledge and evidence from mem-
ory to calculate the posterior probability, p(θ|y,ψ,μ,τ)∝
p(y|θ,ψ)p(θ|μ,τ). The posterior probability p(θ|y,ψ,μ,τ)

Fig. 1 Predicted biases in recall as a function of (A) the overall distribu-
tion of height in the population, and (B) gender information for the height
of females and males

Table 1 Known Variables for Observer and Researcher in Memory Task

Original stimulus Memory content Subjective prior

Observer No Yes Yes

Researcher Yes No No

2 We can also extend the approach and assume that multiple samples are
stored depending on the amount of study time. Since study time is not a
relevant factor in the current experimental approach, we have restricted
the model to a single sample.
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describes how likely attribute values θ are given the noisy
memory contents y and prior knowledge of the attributes.
Standard Bayesian techniques (Gelman et al., 2003) can
now be used to calculate the posterior distribution:

θ
��� y;ψ;μ; τ e N

ψyþ μτ
ψþ τ

;ψþ τ

� �
ð3Þ

Note that the mean in Eq. (3) is a weighted linear combi-
nation of the prior mean μ and memory content y. The prior
mean μ is weightedmore heavily in recall when the prior has a
higher precision τ and when the memory noise increases –
which is equivalent to a decrease in the memory precision, ψ.
This corresponds to the intuitive notion that if the prior is
strong, it will have a strong influence on recall. Similarly, if
memory contents are very noisy, the prior will also exert a
strong influence on recall. This BMC predicts systematic
biases toward the category center, or prior category mean, at
reconstruction. Note also that the solution in Eq. (3) assumes
that the memory precision, ψ is known to the observer. The
solution where the memory precision is latent for the observer
was presented in Hemmer and Steyvers (2009).

For purposes of notation it is important to distinguish be-
tween two conceptual usages of the variable θ. This variable can
refer to the actual stimulus value used during study but also the
value inferred by the observer at test.Wewill use θ to refer to the
actual stimulus and introduce a new variable θ* to refer to the
response produced by the observer. The response can be based
on the posterior distribution in Eq. (3) in a number of ways, such
as the mean, the mode, or a sample. We will assume that θ* is
based on a sample of the posterior distribution and therefore
follows the same distribution as Eq. (3). In the graphic model in
the middle panel of Fig. 2, we use the somewhat unconventional
notation of a dashed line between nodes θ and θ* to indicate that
θ* is based on a sample from the posterior of θ.

A Bayesian account from the researcher’s perspective

To explore individual differences in recall performance we
need to consider how to combine Bayesian data analysis with

our Bayesian model of reconstructive memory. Now that we
have specified the BMC for the observer, we can assume that
both the observer and the researcher use the same BMC, but
with different unknowns, as detailed in Table 1. To the ob-
server at test, the goal is to infer the original stimulus θ, which
is unknown at the time of test and must be inferred from the
episodic memory contents y. To the researcher, however, the
observer’s response is the observed data in the experiment,
and the unknowns are the memory contents y, memory noise
ψ and subjective priors μ and τ in the mind of the observer.

Each perspective is associated with different but interrelat-
ed graphic models. In the observer model, recall θ* is a sample
from the posterior distribution of θ given the observed infor-
mation. From the perspective of the researcher, both the
original studied attribute θ, as well the observer’s response
θ*, are part of the known (observed) data. We can restructure
the graphic model such that the dashed line (using the uncon-
ventional notation to indicate a sample from a posterior dis-
tribution) is removed and instead describe the process that
generates the observer’s response θ*. This is shown in the
right panel of Fig. 2. Note that although the graphic models in
the middle and right panels of Fig. 2 look very different, they
are in fact closely related and depend onwhich person is doing
the Bayesian analysis: the observer or the researcher.

The goal of the researcher is now to infer the observer
parameters in terms of the subjective priors μ and τ as well
as memory noiseψ in themind of the observer. In other words,
the researcher wants to know the posterior distribution of
p(y, ψ, μ, τ|θ, θ*), which using Bayes’ rule is given by
p(y, ψ, μ, τ|θ, θ*)∝p(θ*|y,ψ, μ,τ) p(y|θ,ψ) p(ψ) p(μ) p(τ).
The terms p(y|θ,ψ) and p(θ*|y,ψ, μ,τ) can be evaluated using
Eqs. 1 and 3, respectively. To complete the Bayesian analysis
from the researcher’s perspective, we need to specify the prior
distributions for the subjective observer variables,
p(ψ), p(μ), and p(τ). In the next section, we will describe a
reconstructive memory experiment and a number of modeling
approaches to estimate parameters in the Bayesian memory
model.

Overall, the novelty in this approach is that the posterior
distribution of the BMC (Eq. 3) is used as the likelihood

Researcher perspective

Generating experimental stimulus

Observer perspective 

Rational inference

Researcher perspective 

Inferring observer 

parameters

Fig. 2 Graphic models that relate the generation of experimental stimuli, and models from the observer’s and the researcher’s perspectives
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function for the human responses given the parameter values.
This enables us to use Bayesian methods to infer parameter
values (e.g., subjective priors, process level parameters) that
can best explain the human data. This is different from the
usual approach in Bayesian cognitive modeling, where the
posterior distribution is used only to simulate responses
from the model but where the BMC is not adjusted to
the human data. For the particular BMC we consider in
this paper, the posterior distribution is in an analytic
form which makes Bayesian estimation particularly
straightforward. However, Bayesian estimation can also
be applied to BMCs where the posterior does not come
in analytic form. Overall, the advantage of formulating
the BMC at the researcher’s perspective is that model
evaluation methods such as Bayesian model selection
and generalization tests can be applied to quantitatively
assess the BMC.

A reconstructive memory experiment

We will now describe the experiment involving memory for
heights of people, and show a number of approaches to
estimate subjective priors in the Bayesian memory model. In
the experiment participants viewed images of males and fe-
males that were representative of the general population.
Notably, the selected images for each gender were distributed
with the same range and frequency as the heights in the
general population.

Participants

Twenty-two undergraduate students at the University of
California, Irvine, CA, USA participated in the experiment.
The participants were not involved in the stimulus develop-
ment phase. They were compensated with course credit.

Stimuli

We developed naturalistic stimuli in the form of photographs
of real people. We photographed 212 randomly selected male
(68) and female (144) students at the University of California,
Irvine. They participated in exchange for course credit. All
images were taken against a white wall and next to a blue
door. The subjects were required to stand up straight, have
their hands to the side, maintain a neutral expression, and look
at a designated fixation point on the opposite wall. Women
were required to have their hair up. All participants were
instructed to stand in a fixed position relative to the camera.
The distance from the camera to the participants’ heels was
exactly 230 cm. The camera was maintained at 120 cm of
elevation (which was roughly the center of the photographic
frame) from the floor using a tripod. Each individual was

measured and their height was recorded in whole inches. See
Fig. 1 for sample images.

To ensure that our sample of individuals was representative
of the general population, we compared our sample distribu-
tion to height statistics obtained from the Center for Disease
Control (McDowell et al., 2008). Our sample ranged in height
from 147.3 to 182.9 cm for females and from 162.6 to 193 cm
for males. The sample was normally distributed around a
mean of 162.9 cm for females and 175 cm for males. This is
comparable to the range and distribution in the US population
over age 20 years with a mean of 162.1 cm for females and
176.3 cm for males.

From the 212 photographs we selected 48 images, 24
female and 24 male, to be used as the experimental stimuli.
Importantly, the selected images for each gender were distrib-
uted with the same range and frequency as the heights in the
general population based on the CDC data. The purpose of the
experimental stimuli was that it retained all aspects of the
figure, allowing participants to use prior knowledge of height
when interacting with the stimuli. All original stimuli mea-
sured 456 × 1229 pixels, a resolution sufficiently high such
that when we filled the whole screen with the image, no
artifacts due to pixilation were visible.

Procedure

Participants completed a continuous recall paradigm where
the study and test trials were randomly intertwined. The
study and test stimulus was presented sequentially on the
right side of the computer screen. On all trials an image
of a door was displayed as a comparison image on the left
side of the screen. The door in the image was the door to
the experimental room, and before entering the participants
were asked to familiarize themselves with their height
relative to the door.

Each study image was presented for 2 seconds at the true
height of the figure relative to the door. The true height of the
door remained fixed at 80 % of the total screen size. For each
test trial the height of the person in the stimulus was initially
presented at a random size between 50 % and 100 % of the
total screen size, which means that each test figure was ini-
tially presented between 50/80 = 62 % and 100/80 = 125 % of
their true size relative to the door. The task for the participant
was to rescale the height to address the question: “What was
the height of this person, compared to the door on the
left, when you saw them at study? If you are not sure,
make a best guess.” To reconstruct the studied size, the
participants used the computer mouse to move a slider
on the right edge of the screen. Once they had scaled
the figure to the size they recalled from study, they
clicked on a button labeled “OK” and proceeded to
the next trial until the experiment ended.
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Experimental results

To evaluate performance we measured recall error as the
difference between the recalled size and the studied size.
Positive numbers mean that the stimuli are overestimated at
recall and negative numbers mean that the stimuli are
underestimated at recall. The empirical results, shown in
Fig. 3, indicated a systematic regression to the mean effect.
There was a bias toward the mean height such that short
people were overestimated and tall people were
underestimated. Furthermore, there were two separate regres-
sion effects, one for male and one for female stimuli. In other
words, participants regressed to two different mean heights:
one for each gender. These differences are compatible with the
idea that people use their prior knowledge of height in the
population and use this information when recalling studied
heights of men and women.

To assess the influence of this gender-level prior knowl-
edge, a linear regression model was fitted separately for each
subject. The regressionmodel contained three parameters: two
intercept parameters, corresponding to male and female, and a
single slope parameter. Table 2 shows the mean estimated
slopes and intercepts across categories.3

These differences are consistent with an influence of prior
knowledge at a more fine-grained level of knowledge. The
intercept differences confirm the prediction that when a male
and a female are studied at the same height, reconstruction is
differentially biased depending on their relative height.

Bayesian model analyses

We next describe three model-based analyses of the empirical
results. First, we describe a qualitative Bayesian model where
the priors are not estimated and instead are based directly on
the environmental statistics. Next, we describe a model that
estimates a single subjective prior for all observers. Finally,
we present a hierarchical model in which each observer is
associated with their own subjective prior.

Priors determined by environmental statistics

Our first step is to apply the standard analysis in Eqs. 1, 2, and
3 to the experiment without directly estimating any parame-
ters. Instead, we assume that the observers adopt a prior that
corresponds exactly to environmental statistics. The goal of

this analysis is to compare the predictions of the BMC and the
empirical data at a qualitative level.

For the prior in Eq. 3 we use a meanμ female of 162.14 cm,
and μmale of 176.3 cm, and a precision τ female of 0.009 and
τ male of 0.007 (corresponding to standard deviations of
10.5 cm and 12.0 cm respectively). These are based on envi-
ronmental priors obtained from the CDC. They also corre-
spond to the distribution of the stimuli in the experiment (μ*

and σ* in Fig. 2, ‘Researchers Perspective’) and are centered
on the mean height for each gender. We used the model to
simulate exactly the same trials that we used in the experiment
– including the same sizes for study stimuli. For the memory
precision ψ, we used a value 0.0149, which is based on the
variance in the experimental stimuli, although the exact value
does not influence the qualitative results. The parameters and
priors used in the model are shown in the top panels of Fig. 4.
The two right panels at the top compare the simulated re-
sponses to those of human observers. For both simulated and
observed responses, the results show effects of the category
prior. The heights of people that are relatively short for their
gender are overestimated while the heights of people that are
relatively tall for their gender are underestimated.

Overall, when using environmental priors, the model pro-
duces results that are qualitatively consistent with the re-
sponses given by human observers. However, it is also clear
that there are quantitative differences between the observed
and predicted results. The model predictions for the female
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Fig. 3 Empirical results. Recall bias is shown as a function of original
study size and stimulus category

Table 2 Mean slopes and intercepts by category

Females Males

Mean SD Mean SD

Slope −0.39 0.28 −0.39 0.27

Intercepts 59.88 4.08 65.89 3.74

3 The results show that the intercept for female was smaller than that for
male. This difference in intercepts by relative study size supports the
prediction of gender-level prior effects. A one-way ANOVA with two
levels (female, male) found a significant effect of category [F (1, 42) =
25.83, p < .001].
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stimuli consistently lie above the observed values, and the
predicted slope for themale stimuli is too shallow compared to
the human observers. Both results suggest that there might be
other factors at work than observers simply using the true
environmental information, e.g., either that the observers use
a different prior to the environmental prior, or that some
subjects use the environmental prior while others use a differ-
ent prior, and that the observed pattern averages out the
individual differences in our pool of subjects.

Estimating subjective priors – no individual differences

In the next modeling approach, we use the integrated
observer-researcher analysis to estimate the subjective priors.
This model is less restrictive than the previous model because
the subjective prior does not have to correspond to the envi-
ronmental statistics. We start with a simple model that as-
sumes that all observers use the same subjective prior for μ
and τ (one each for the female and male category). Therefore,
the model assumes no individual differences. In addition, to
keep the model simple we assume a single memory noise
parameter across conditions (although this assumption can
be relaxed).

To introduce notation, let N andM represent the number of
observers and experimental trials per observer respectively.
Let K represent the number of categories in the experiment

(K = 2 in the current experiment). Let 1≤ i≤N index the
observers, 1≤j≤M index the trials in the experiment, and 1≤
k≤K index the stimulus category. In the experiment, each
observer receives a different ordering of trials in the experi-
ment. To keep track of the stimulus and category assignment
for each trial, we introduce the variable ci,j, where 1≤ci,j≤K, to
indicate whether a given stimulus is male or female for the i-th
observer on the j-th trial.

The no-individual difference model assumes that there is
only a single subjective prior for the male and female stimuli
across individuals. The prior distribution parameters μ and τ
are vectors that each contain two values for the male and
female stimuli respectively. Therefore, μ1 and μ2 represent
the means of the subjective prior distribution for male and
female heights respectively.

The no-individual differences model extends Eq. 3 as fol-
lows:

θ�i; j
���yi; j; ci; j;ψ;μ; τ e N

ψyi; j þ μci; jτ ci; j
ψþ τ ci; j

;ψþ τci; j

� �
ð4Þ

where we have assumed that the observer response θi,j
* has

the same distribution as the posterior distribution θi,j in the
observer model. We extend Eq. 1 with our new notation
to get the distribution of the memory trace for a specific
observer-trial:

yi; j

���θi; j;ψ e N θi; j;ψ
� �

: ð5Þ

Fig. 4 Comparison of the parameters and model predictions for the
model where the priors are determined by environmental statistics (top
row) or estimated without assuming individual differences (bottom row).
The left three columns show the point-estimates (top panel) and posterior
distributions (bottom panel) for themeans (μ), standard deviations (τ−1/2),

and memory noise parameter (ψ−1/2). The fourth column shows the
environmental prior and inferred prior corresponding to these parameters.
The two right columns show the mean posterior predictives for the recall
errors in the memory experiment, separately for the female and male
stimuli. Ht height, stim stimuli, prob probability
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To complete the model, we place vague prior distributions
on all of the parameters that are unobserved from the perspec-
tive of the researcher:

ψ e Gamma 0:001; 0:001ð Þ; μk e Unif 90; 300ð Þ; τ k e Gamma 1; 1ð Þ
ð6Þ

The resulting graphic model is shown in Fig. 5. In the
simulations of the model, we used JAGS (Plummer, 2003)
to estimate the joint posterior distribution of the model param-
eters {ψ,μ, τ, y}. For each model, we obtained 2,500 samples
from the joint posterior after a burn-in period of 2,500 sam-
ples, and we also collapsed across four chains.

Figure 4, bottom panel shows the model results. The model
provides a better fit of the empirical data relative to the
qualitative rational analysis (we will provide a quantitative
assessment of model fit in the next section). This suggests that
it is important to estimate the subjective prior. The panel
labeled ‘inferred prior’ shows the estimated prior distribution
that observers have for the heights of females and males. We
generated these estimates by drawing samples from a normal
distribution, where the parameters of this distribution were
resampled on each draw. The parameters for each sample of
the estimated priors were drawn from the inferred posterior
distributions of u and τ. Figure 6 shows the same results for
the environmental and inferred prior distributions but overlays
them to better illustrate the differences. The results suggest
that the prior used in the observer’s memorymodel is based on
an underestimation of heights in the population. Note that it is
possible that all our subjects have accurate knowledge of the
environmental statistics yet still use the wrong distribution in
their memory model. On the basis of the current experimental
data, we cannot conclude anything about the locus of the
mismatch between the environmental statistics and the esti-
mated priors. Our results simply suggest that if the subjects are
following Bayesian inference procedures to derive their

memory responses, they appear to do this on the basis of
distributions that are similar but not equivalent to the environ-
mental distributions.

Estimating subjective priors with individual differences

In the previous section we assumed that all observers have the
same prior distributions and memory precision. Here, we take
this a step further and allow for individual differences such
that each observer has an individual prior distribution with
mean μi and precision τi −we assume that each observer has a
single precision parameter that is used for both the female and
the male prior distributions. The individual differences model
extends Eq. 4 as follows:

θ�i; j
���yi; j; ci; j;ψi;μi; τ i e N

ψiyi; j þ μi;ci; jτ i

ψi þ τ i
;ψi þ τ i

� �
ð7Þ

Similarly, we extend Eq. 5 with individual differences to get
the distribution of thememory trace for a specific observer-trial:

yi; j

���θi; j;ψi e N θi; j;ψi

� � ð8Þ

As in the previous model, we place vague prior distribu-
tions on all of the parameters that are unobserved from the
perspective of the researcher:

ψi e Gamma 0:001; 0:001ð Þ;μi;k e Unif 90; 300ð Þ; τ i e Gamma 1; 1ð Þ
ð9Þ

We applied standard Bayesian inference techniques to infer
the unknown parameters ψi,μi and τi for each observer i.
Similar to the no-individual differences model, we obtained
2,500 samples from the joint posterior after a burn-in period of
2,500 samples, and we also collapsed across four chains.

Although we were able to infer posterior distributions for
the prior parameter values and memory precision for every
observer individually, we show the complete set of results for
only a representative subset of the observers in Fig. 7. The
right two columns in Fig. 7 show the posterior predictive
distributions for the responses for each of the four selected
observers. These are the distributions of future (unknown)
responses that the model predicts the observer will make for
new presentations of the stimuli. Each observer’s responses
fall within high-probability regions of the posterior predictive
distribution, which indicates that the model provides a good
description of the data. Figure 8 shows the mean posterior
predictive responses for all observers using both the individual
differences model and the environmental model. Whereas the
posterior predictive plots in Fig. 7 only show predictions for
stimuli that were used in the experiment, Fig. 8 shows mean
predictions over a wider range of stimuli. The panel labeled

Fig. 5 Complete graphic model from the researcher’s perspective with
no individual differences. The plates indicate repeated sampling steps for
observers (indexed by i) and trials (indexed by j)
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Fig. 6 Comparison of the estimated prior distributions for the height of females and males, and the true environmental distributions based on data from
the CDC

Fig. 7 Results for the individual differences model for observers 14, 8,
10, and 17 (from top to bottom). The first three columns show the
posterior distribution of model parameters for each observer. The fourth
column is a reconstruction of each observer’s prior distribution for the
height of females and males. The vertical lines in the first and fourth
columns show the actual mean height of females and males in the

environment (based on data from the CDC). The last two columns show
the posterior predictive distribution of future, unobserved, responses
(probability is proportional to the area of the grey squares) against
individual response data (black dots) for female (column 5) and male
(column 6) stimuli. Stim stimuli, ht height
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Female Stimuli

Male Stimuli

Fig. 8 Mean posterior predictive for the individual differences model (dark line) and the environmental prior model (light line) against averaged
response data (black dots) for each participant
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‘inferred prior’ (Fig. 7) shows the estimated subjective prior
distributions for the height of males and females that were
used by each observer. We estimated these subjective priors
for observer i by taking samples from a normal distribution
where, for each sample, the mean and precision were sampled
from the posterior distributions for μi and σi.

Our results suggest that there are individual differences
between observers’ prior distributions for height, as well as
for memory noise. It appears that some observers use a model
similar to the environmental model. For example, the estimat-
ed subjective priors for observer 14 (Fig. 7, top row) are very
similar to the environmental distributions. The mean posterior
predictive responses for the individual differences model for
this observer are very similar to those of the environmental
model (Fig. 8, second column of the third row).

Observer 8 is representative of several observers who ap-
pear to have subjective priors that underestimate the heights of
men and women. Figure 7 (second row) shows the estimated
subjective priors for this observer. Figure 8 (second column of
the second row) shows that the mean posterior predictive
responses for observer 8 follow the same pattern as the envi-
ronmental model predictions, but are consistently lower.

Observer 10 (Fig. 7, third row) had a very high estimated
memory noise. This corresponds with posterior predictive
responses that deviate more extremely from the studied
heights. Although they were more extreme, the observer’s
responses showed the same general pattern of overestimating
below-average heights and underestimating above-average
heights. This pattern is visible in the model predictions
(Fig. 8, fourth column of the second row).

Lastly, the results for some observers were not consistent
with a systematic regression to the mean effect. For example,
the responses of observer 17 (Fig. 7, bottom row) are not
suggestive of a bias toward the mean height such that short
people were overestimated and tall people were
underestimated. Instead, the dispersion of responses is rela-
tively symmetrical around the true height of the stimuli that
were being recalled. The average responses for observer 17
(Fig. 8, fifth column of third row) are very close to the true
height of the test stimuli. The averaged model predictions in
Fig. 8 form a line with a slope near zero, which captures
this observer’s tendency to provide responses that are
unbiased by the height of stimuli. The only systematic
bias appears to be an overestimation of the heights of
males, regardless of height.

Model comparison

The strength of the approach we have presented here using
the posterior distribution of the BMC as a likelihood function
for the purpose of Bayesian data analysis is that it allows us
to compare models quantitatively using approaches such as

Bayesian model selection techniques and generalization tests.
We pursue a simple generalization test based on cross-
validation where the data is partitioned into a training set used
to estimate the model parameters and a validation set (with
data unseen by the model) to test the generalization perfor-
mance of the model. There are a number of ways to set up
partitioning of the data into training and validation sets. One
could leave out a subset of participants and test which models
can best generalize to new data from new participants.
Alternatively, one can leave out a subset of trials from each
participant and test which models can best generalize to new
data from existing participants. Because one of our goals is to
compare BMCs with and without individual differences, we
have focused on the latter approach. This allows us not only to
test whether learned priors are better than empirical priors but
also whether learned priors at the individual subject level
generalize better than learned priors without individual
differences.

We used a tenfold cross-validation procedure where the
human data were split into ten randomly generated training
and validation sets. Each of the validation sets contained
approximately 10 % of the data. Each data point was in a
validation set exactly one time across the ten folds. In each
fold, we used Bayesian inference to infer posterior distribu-
tions for the unknown variables in a model based only on the
training data. For each individual, we computed the likelihood
of each of their responses, given the posteriors that were
inferred when the response was out-of-sample, i.e., the re-
sponse was in the validation set and did not contribute to the
inference. This resulted in a distribution of likelihoods for
each response consisting of likelihood values for each sam-
ple of the posterior. We combined these distributions across all
of an individual's responses, to obtain a distribution of the out-
of-sample likelihood of their responses.

We performed the above cross-validation procedure in
three different ways, which we will refer to as self prior, other
priors, and group prior. The results are shown as three distri-
butions for each individual in Fig. 9. For each individual, the
first bar (self prior) shows the distribution of the likelihoods of
that individual’s out-of-sample responses, given their individ-
ual posteriors in the individual differences model. The second
bar (other priors) shows the distribution of the likelihoods of
that individual’s out-of-sample responses, given all of the
other individuals’ posteriors, but excluding their own, in the
individual differences model. The third bar (group prior)
shows the distribution of the likelihoods of that individual's
out-of-sample responses, given the group posteriors in the no
individual differences model. The dotted lines show the joint
likelihood of individuals’ responses under the assumption that
they used the environmental prior distributions.

The self prior condition had the highest score for six
individuals, the group prior for 13 individuals, and the envi-
ronmental prior for three individuals. The self prior condition
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had the best overall score − 177 when taking the average of
all individuals' mean scores. The other conditions had scores
of −179 (group prior), −190 (environmental prior), and −207
(other priors). The subjective prior models, both with individ-
ual and without individual differences, outperformed the en-
vironmental prior model on average score per individual, with
at least one of the subjective models outperforming the envi-
ronmental model for 19 of 22 individuals.

The additional flexibility of the individual differences mod-
el allows it to have overall better generalization to unobserved
data from the same individual than the no-individual differ-
ences model. The poor performance of the other priors con-
dition, including the finding that this condition had the lowest
score for every individual, provides evidence that inferring an
individual's prior provides information about that individual
that leads to better predictions about their future behavior.

Although the self prior condition had a higher overall score
than the group prior condition, it only had the best score for
six of 22 individuals. This suggests that the inferred individual
priors did not always provide information that went beyond
the inferred group prior. However, the improved generaliza-
tion for some of the individuals, in addition to the overall
performance of the self condition, validates the idea that the
individual differences model does lead to useful insights about
some individuals’ prior knowledge.

Discussion

The traditional approach to Bayesian cognitive modeling re-
quires the experimenter to specify the observers’ prior knowl-
edge (usually by collecting normative data) in order to predict
observer responses using the model. The majority of studies
demonstrating the plausibility of BMCs use a qualitative
approach to model fitting generally the available data is not
used in an updating process to learn about latent model pa-
rameters or prior distributions. In this article we have illustrat-
ed the integrated observer-researcher analysis with a Bayesian
model of memory. By applying Bayesian data analysis in a
way that encapsulates the BMC we can infer posterior distri-
butions for any model parameters and priors given the avail-
able data.

We first implemented a qualitative BMC of behavioral data
on memory for the height of people. When assuming that the
observers in the task use the environmental prior, the model
produces results that are qualitatively consistent with the
responses given by human observers. However, the results
also suggest that some subjects might not use the true envi-
ronmental prior. It is important to estimate the subjective prior,
as this provides a better fit to the behavioral data. Extending
the analysis with individual differences suggests that there are
individual differences between observers’ prior distributions
for height, as well as for memory noise. For example, some
observers appear to use a prior consistent with the environ-
mental statistics whereas other observers appear to have sub-
jective priors that systematically underestimate the environ-
mental statistics.

A major advantage of our integrative Bayesian ap-
proach is that is also allows us to quantitatively evalu-
ate and contrast models. We illustrated this using a
cross-validation procedure in order to evaluate whether
or not there are true individual differences. By inferring
the BMC to a subset of the data, cross-validation allows
us to assess how well the model generalizes to withheld
data. We found that inferred priors outperformed envi-
ronmental priors, which validates the idea that we have
learned something useful about our subjects that leads
to better predictions of unobserved responses. The out-
of-sample likelihood of responses given the inferred
BMC with individual priors was highest for six of 22
individuals. The individual difference BMC had the
highest (out-of-sample) likelihood overall suggesting
that individual differences might be important to in-
clude, at least in the memory domain we considered.
While we have focused on cross-validation to compare
BMCs, any model selection techniques could be applied
as well (Pitt, Myung, & Zhang, 2002), including Bayes
factors (e.g. Lodewyckx, et al., 2011), Savage–Dickey
density ratio tests (Wagenmakers, et al., 2010), and DIC
(Spiegelhalter, et al., 2002).

Our work illustrates the usefulness of going beyond qual-
itative BMC evaluations, and how reliance on average data
can obscure important individual differences stemming from
different psychological parameters within a model or even

Fig. 9 Cross-validation results
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from different psychological models. Our integrated observer-
researcher analysis provides a way to explore individual dif-
ferences that can relate to process parameters that regulate
internal cognitive processes as well as differences in the nature
and use of prior knowledge relevant to the cognitive task.

The idea of applying Bayesian data analysis to cognitive
models is, in itself, not unusual. There are several examples in
the literature where cognitive models are analyzed with
Bayesian data analysis. For example, Lee (2008) showed
how three different cognitive models (MDS representation
for stimulus similarity, the generalized context model of cat-
egory learning, and a SDTaccount of deductive and inductive
reasoning) can be evaluated using Bayesian inference. The
goal of Bayesian data analysis, then, is to relate given models
of psychological processes to observed behavior. This ap-
proach provides, among other things, a powerful tool for
assessing individual differences within the cognitive model,
and as such provides the natural extension to go beyond
qualitative evaluations of the BMC. The novelty of our anal-
ysis is that we combine two different styles of Bayesian
inference, from the viewpoint of the observer who is drawing
rational inferences about data coming into the senses, and
from the experimenter who receives data from observer and
applies Bayesian inference to draw conclusions about latent
parameters in the observer’s mind.

While it could be argued that our approach of fitting priors
to data makes the models too flexible, the cross-validation
procedure clearly demonstrates that the inferred priors gener-
alize better to unobserved data. Furthermore, we assume that
the inferred priors must correspond to people’s actual subjec-
tive knowledge, but what we ascribe to priors could actually
reflect biases in perception or other processing stages. When
this sort of criticism is presented against a standard BMC
questioning its assumptions it is difficult to address one way
or the other. This further elucidates one of the advantages of
our approach: unlike with standard BMCs, the existence of the
likelihood in our models allows them to be directly compared
to competing models Bayesian or non-Bayesian. In this
sense, the assumptions of our model are falsifiable. It is
possible for another researcher can propose an alternative
model with different assumptions that involve perception or
other processing stages, and then compare their model to ours
using standard model comparisonmethods. We welcome such
a discussion, and believe this would make for would be great
future research.

There are a number of extensions we can pursue in the
integrative Bayesian approach. We assumed that people’s
responses were based on a sample from the posterior distribu-
tion. One direction for future research is to investigate alter-
native response processes from the BMC. The model could
include parameters to allow for different response strategies
such as probability matching (taking a single sample) and
maximizing (taking the mode of the posterior distribution).

One challenge is that the level of determinism in the response
process will trade off with the uncertainty in subjective priors
– an increase in the noise in the response process can be
counteracted by an increase in the precision of the priors
making it difficult to identify the subjective priors independent
from response level parameters. A direction for research is
to develop parametrizations of BMCs where a joint inference
of response and prior parameters lead to meaningful
interpretations.

Another course for future research is to better understand
how we can interweave the two Bayesian inference schemes
especially when inference at the observer level does not lead
to an analytical solution. In this case, it might become chal-
lenging to do Bayesian inference at two levels simultaneously.
For example, Huszár et al. (2010) point out that calculating the
posterior over subjective distributions in their model is intrac-
table. Daunizeau et al. (2010) also express concern that the
optimal policy in experimental decision measures lacks a
closed form solution. However, we plan to investigate approx-
imate inference techniques such asMarkov chainMonte Carlo
simultaneously at the two levels such that posterior samples at
the observer level become data at the experimenter level.

Lastly, another important direction is to expand the
scope of models and also include non-Bayesian models in
the model selection approach. At the researcher level, we
could allow for the possibility that the observer is using a
non-BMC (such as those illustrated in the Lee 2008,
examples). For example, one could conceive of a simple
mixture model allowing observers to use the BMC with an
informative prior or with an uninformative prior. This mixture
model could be extended to include other models as well,
e.g., if we do not believe that a given observer is well
fit by the Bayesian model but is instead better fit by a
simple heuristic. It is also possible to mix different
levels of analysis (Marr, 1982) within the model. For
example, one can mix models proposed at the compu-
tational level with models proposed at the algorithmic
level. Our overall goal is to develop a framework in
which multiple types of models can be compared and
investigated, thereby freeing the researcher from making
a particular commitment to one type of model.
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