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Abstract 

In some eyewitness situations, a group of individuals might 
have witnessed the same sequence of events. We consider the 
problem of aggregating  eyewitness testimony, trying to  
reconstruct  the true sequence of events as best as possible. 
We introduce a Bayesian model which incorporates individual 
differences in memory ability, as well as informative prior 
knowledge about event sequences, as measured in a separate 
experiment. We show how adding prior knowledge leads to 
improved model reconstructions, especially in small groups of 
error-prone individuals. This Bayesian aggregation model 
also leads to a “wisdom of crowds” effect, where the model's 
reconstruction is as good as some of the best individuals in 
the group.  
 

Keywords: Eyewitness Testimony; Wisdom of Crowds; 
Rank Ordering; Bayesian Modeling; Serial Recall. 

Introduction 

Studies of eyewitness testimony have shown that human 

memory can be incomplete and unreliable (e.g., Loftus, 

1975). In real world situations, there might be multiple 

eyewitnesses, all of whom witnessed the same set of events.  

This raises the possibility of recovering the true account of 

events by analyzing the similarities in the recalled memories 

across individuals. Different individuals might also recall 

different aspects of the events, such that an aggregate 

narrative, based on the group‟s memory, would be closer to 

the true sequence of events than that of any one individual. 

An investigator might try to manually reconstruct the 

aggregate narrative, or witnesses might be allowed to 

discuss the events in order to develop the group narrative. 

Communication between witnesses however, has been 

shown to lead to much worse performance (Gagnon and 

Dixon, 2008), and humans have been shown to be 

inconsistent in assessing group information from multiple 

sources (Stasser & Titus, 1985). To avoid these problems, 

we propose a model of aggregation that can integrate the 

recalled memories from a number of independent  

individuals , while also taking in other important factors, 

such as individual differences and prior knowledge, into 

account. 

Research on the “Wisdom of Crowds" (WoC) has shown 

that an aggregation of independent judgments often leads to 

a group estimate that is closer to the ground truth than that 

of most of the individuals (Surowiecki, 2004). These group 

estimates are often simply found by taking the mean, 

median, or mode of responses (Galton, 1907; Surowiecki, 

2004). Much of the previous literature on aggregation of 

judgments has focused on tasks where individuals estimate 

numerical quantities and probabilities (Budescu, Yu, 2007; 

Hogarth, 1978; Wallsten, Budescu, Erev, & Diederich, 

1997). It is, however, often that case that eyewitness have to 

retrieve information more complex than single numerical 

estimates.  

The WoC effect can also be demonstrated with more 

complex problem sets. For example, the WoC effect has 

been demonstrated with solutions to problem-solving 

situations such as finding minimum spanning trees for a set 

of nodes (Yi, Steyvers, Lee & Dry, in press). Steyvers, Lee, 

Miller, and Hemmer (2009) showed that order information 

from semantic memory can also be combined across 

individuals to give high accuracy in reconstructing the true 

order of items along some physical or temporal dimension; 

when individuals recalled the order of US presidents, or the 

order of rivers according to length, many of the individual 

orderings were error-prone, but the aggregate orderings 

were more accurate, on average. In Steyvers et al. (2009), a 

number of aggregation models for order information were 

tested. It was found that using Bayesian models that 

incorporated psychologically plausible representations, 

cognitive processes and individual differences  

outperformed basic heuristic aggregation approaches, such 

as taking the mode.. 

When errors across indivduals are uncorrelated (as they 

tend to be when individuals independently give their 

judgments) the errors will cancel out in the aggregate. 

Therefore, one expects the best results in WoC experiments 

with a large number of individuals. In eyewitness situations 

however, there is rarely a "crowd" available to witness the 

same set of events. In these cases, we have to rely on a small 

number of individuals (in many cases, just one) and 

significant errors might not cancel. Therefore, it might not 

be sufficient to just analyze the commonalities across the 

witness reports. We propose that it is better to combine the 

witness reports along with prior knowledge about the 

particular event sequence. Combining prior knowledge with 

noisy information has been shown in other domains to 

improve the recovered estimate (Hemmer & Steyvers, 2008; 

Konkle & Oliva, 2007; Kan, Alexander, Verfaelle, 2009). 

We focus in this research on the problem of 

reconstructing event sequences. The goal is to reconstruct 



the true ordering of a set of events by aggregating the 

recalled orderings from a small number of individuals, all of 

whom witnessed the same event sequence. The novelty of 

the current approach is that we incorporate informative prior 

knowledge in an aggregation model for order information in 

order to improve the aggregate estimate. This is especially 

helpful when aggregating across a small number of error-

prone individuals.  

We present our results as follows. We first report on 

behavioral experiments wherein we tested people‟s ability to 

reconstruct, from episodic memory, the order of stereotyped 

events (e.g., getting up in the morning), or random events 

(e.g., clay animation without a clear story line). We also 

report on experiments where we measured prior knowledge 

for the same set of events. We then describe a Bayesian 

approach that aggregates the orderings across individuals 

while taking prior knowledge into account.  

Empirical Study on Serial Recall 

Much research on serial recall has been done on random 

word and letter sequences that do not have any obvious 

organization. In such experiments, individuals are shown a 

sequence of words or letters, and the task is to recall the 

original temporal order as best as possible during a later test. 

Typical errors in the recalled orderings are transposition 

errors where the orderings are locally perturbed (Estes, 

1997; Nairne, 1992) -- two events nearby in time tend be 

reconstructed as occurring nearby but the amount of 

perturbation noise depends on many factors such as time 

elapsed between study and test, stimulus characteristics and 

individual differences. Similar patterns have been observed 

in more naturalistic experiments, such as naming the day of 

the week an event occurred (Huttenlocher, Hedges, & 

Prohaska, 1990), as well as for autobiographical memory, 

such as ordering the events of September 11
th

 (Altmann, 

2003). With more naturalistic event sequences, prior 

knowledge about the event sequences can influence episodic 

memory. People have clear expectations for routine 

activities and are sensitive to the ordering of actions within 

an activity (Bower, Black & Turner, 1979). 

We conducted a series of behavioral experiments using 

two types of event sequences. We used a number of 

stereotyped event sequences, such as getting up in the 

morning, or jumping on a bus, for which people have clearly 

defined expectations, and a number of random event 

sequence, such as clay animation sequences or Japanese 

pizza commercials, for which the temporal organization 

might be less structured. To assess the prior knowledge 

people have about these types of events, we first conducted 

a prior knowledge study where we asked participants to 

order the events in the most natural order possible without 

actually showing them the original, true event sequence. 

This allows us to estimate a model for the prior probability 

of each sequence. 

In a separate experiment, we assessed serial recall for 

each of event sequences. It should be noted that our 

definition of serial recall differs from the standard use of the 

term in that our task only involves ordering the events, not 

recalling the items to be ordered, as in a standard serial 

recall task. In our task, we first showed a video of the 

original event sequence which was followed by a serial 

recall test in which individuals ordered image stills from the 

video as best as possible according to the original temporal 

sequence in which the events appeared. No communication 

between individuals was allowed in any of our tasks, and 

therefore the data consists of independent recollections from 

individuals.   

6BMethods 

Participants were undergraduate students at the University 

of California, Irvine. There were 16 participants in the prior 

knowledge experiment and 28 participants in the serial 

 

Figure 1. The sequence A-J shows the 10 images from the „bus‟ video sequence in the correct temporal order. The two 

tables show the participant orderings in the prior knowledge and serial recall experiment. The first row is the participant 

id. The second row is the Kendall‟s tau distance between the true ordering and the recalled order for that participant. 
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recall experiment. 

Materials. We sampled 6 videos from YouTube.com.   

Three videos depicted stereotyped events sequences (getting 

up in the morning, a wedding, getting on the school bus). 

Three videos depicted more random event sequences (a 

Japanese yogurt commercial, a Japanese pizza commercial, 

and a clay animation sequence). For each of the 6 videos 10 

still images of individual scenes were drawn. See Figure 1 

for an example.   

Prior Knowledge Experiment. Participants were shown 

10 image stills from a given event sequence (e.g., Wedding) 

and asked to order the 10 images based on their prior 

expectation of how the event in the slides might unfold. 

Importantly, in this experiment, participants were never 

shown the original video sequence from which the image 

stills were drawn. They responded using an interactive 

interface in which the images were randomly ordered on the 

screen and the instruction was to order the images in any 

way to make the sequence as natural as possible. 

Serial Recall Experiment. Participants first viewed the 

original video sequence. Participants were then presented 

with the same interface as in the prior knowledge 

experiment. They were shown 10 image stills that they had 

to order in the original temporal order. For both the prior 

knowledge and memory experiment, the initial ordering of 

the 10 image stills, as well as the order of the 6 video 

sequences, was randomized across participants. 

Results and Discussion 

To evaluate the performance of participants, we measured 

the distance between the reconstructed and the correct 

ordering. A commonly used distance metric for orderings is 

Kendall‟s τ  (Marden, 1995). This distance metric is the 

minimum number of adjacent pairwise swaps necessary to 

resolve any disagreements between the two orderings being 

compared. Values of τ range from 0 ≤ τ ≤ (𝑁−1)/2, where 

N is the number of items in the order: N=10 for all of our 

event sequences. In our experiment, a τ=0 indicates that the 

participant responded with the exact correct ordering. A 

τ=1 indicates that one adjacent pair of items was swapped. 

When participants are using a random guessing strategy, 

their expected mean expected distance is τ =(𝑁−1)/4 = 
22.5.  

Figure 1 shows the raw data collected for the "bus" video 

sequence – a stereotyped event sequence. In the prior 

knowledge experiment, participants produced orderings that 

were much better than chance, suggesting that a priori, it is 

possible to guess the true ordering of events in these types 

of event sequences.  In the memory experiment, 2 

participants produced the correct ordering, and 15 more 

were within one swap of the true order. Note that very few 

identical orderings are produced between participants. We 

found that for all 3 random events, in both the prior 

knowledge experiment and the memory experiment, each 

participant produced a unique ordering. For the 3 

stereotyped event sequences however, only one sequence 

led to unique orderings across all participants.  

Figure 2 shows the distributions of the Kendall τ 
distances for the serial recall and prior knowledge 

experiment. The top panel shows the distances for 

stereotyped event sequences and the bottom panel shows the 

distances for random event sequences. The dashed line 

shows the distribution of distances that can be expected 

from a random guessing strategy (this distribution can be 

calculated exactly, see Marden, 1995). For both the 

stereotyped and random event sequences, the distances are 

lower for the memory task than for the prior knowledge 

task. The distances are also lower for the stereotyped event 

sequences than for the random event sequences. Even when 

participants did not study the videos (the prior knowledge 

condition), they performed better than chance in the 

stereotyped condition, as compared to the random condition 

where prior knowledge performance led to a distribution of 

distances very similar to distances expected from chance 

performance. These results demonstrate that general 

knowledge about events can greatly contribute to the 

accuracy of recalling these events.    

Modeling 

We can conclude from our empirical study that prior 

knowledge can lead to improved average performance in 

recall. When ordering scenes from an event with strong 

prior expectations, the resulting orderings are relatively 

close to the true ordering. Of course, performance improves 

on average after observing the true event sequence and later 

recalling the sequence from memory. This raises the 

question of how one might incorporate an informative prior 

in a model for aggregating rank-ordered recall. Such priors 

might guard against errors from a small number of poorly 

performing individuals. In this paper, we explore very 

simple models to aggregate the orderings of individuals. The 

goal of the modeling is not to build a comprehensive model 

of recall that specifies all the representations and processes 

involved in storing and retrieving information from 

memory. Instead, we will focus on simple probabilistic 

models such as a Mallows model (e.g. Steyvers et al., 2009) 

that allow us to aggregate the retrieved orderings from a 

number of individuals using Bayesian inference. The current 

model incorporates two important differences to the 

Figure 2. Distributions of Kendall τ distances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stereotyped

Random

0 4 8 12 16 20 24 28 32
0

0.1

0.2

0.3

0.4

0.5

0.6
wedding/morning/bus



0 4 8 12 16 20 24 28 32
0

0.05

0.1

0.15 clay/pizza/yogurt



 

 

Prior

Episodic Memory

Chance



previous work by Steyvers et al. (2009). First,  we 

generalize the model to allow for individual differences in 

memory performance. These individual differences are 

estimated by the model in a purely unsupervised fashion and 

do not require knowledge of past performance in other tasks 

or access to a known ground truth.  With the individual 

differences, the model finds aggregates that are weighted 

towards solutions provided by the individuals that are 

estimated to have good memory performance.  

Second, we develop a simple extension of Mallows 

models that allows for informative priors. This prior is 

estimated from the orderings produced in the prior 

knowledge experiment.  

Mallows Model with an Uninformative Prior 

In a basic Mallows model (Marden, 1995), all individuals 

are assumed to derive their orderings from a single 

underlying ordering, that we will refer to as the group 

knowledge. The group knowledge is a latent variable in the 

model that can be estimated from the data. Importantly, 

Mallows model assumes that each individual produces 

orderings centered on the group ordering with distant 

orderings less likely than orderings close to the group 

ordering. Although Mallows-type models have often been 

used to analyze preference rankings (Marden, 1995), they 

have not been applied, as far as we are aware, to ordering 

data from serial recall experiments. In our first extension of 

the standard model we allow for individual differences in 

memory performance. We evaluated this aggregation model 

by comparing the estimated group ordering to the ground 

truth. If the model is able to tap into the collective wisdom 

of a group of individuals, the estimated group ordering 

should be close to the true ordering.  

Specifically, let 𝒚𝑗  represent the ordering from individual 

j, and 𝝎 the latent group ordering. In a Mallows model, the 

probability of each individual ordering given the group 

ordering is given by  

                              𝑝 𝒚𝑗  𝝎,𝜃𝑗  ∝ 𝑒−d 𝒚𝑗 ,𝝎 𝜃𝑗                  (1) 

where for simplicity we have omitted the normalization 

constant. The function d  returns the Kendall 𝜏 distance 

between two orderings. The scaling parameter 𝜃𝑗  determines 

how close the observed order for individual j is to the group 

ordering. It can be interpreted as an individual (inverse) 

noise parameter -- good individuals tend to closer to the 

group consensus (high 𝜃) whereas poor performing 

individuals return more idiosyncratic orderings further away 

from the group knowledge (low 𝜃). We will assume a 

Gamma prior on the individual noise levels: 

𝜃𝑗  ~Gamma(𝜃0𝜆, 1 𝜆  , where 𝜆 is a hyperparameter that 

sets the overall level of cohesion expected from the group. 

Notably, in this first model, we have assumed a uniform 

prior over group orderings, 𝝎~Uniform(Ω), where Ω is the 

set of all orderings. Therefore, a priori, the model assumes 

no preference for a particular group ordering. 

Figure 3, panel a, shows a graphical representation of the 

model. Shaded nodes represent observed variables while 

nodes without shading represent latent variables. The arrows 

indicate the conditional dependencies between the variables 

and the plate represents the repeated sampling steps across 

M subjects in the memory experiment.  

Mallows Model with an Informative Prior 

We now introduce a simple variant of this model that 

allows for an informative prior. The idea is that the group 

knowledge is itself sampled from a Mallows model: 

                              𝑝(𝝎 𝝎𝟎,𝜃∗ ∝ 𝑒−d 𝝎,𝝎𝟎 𝜃∗
              (2) 

where 𝝎𝟎 is the prior ordering from which the group 

ordering is derived, and 𝜃∗ is a scaling parameter. This prior 

stage in Mallows model at first might not seem to gain any 

additional information because it is not clear how the prior 

ordering can be constrained. However, we have data in the 

prior knowledge experiment in which N participants tell us 

what orderings they expect from certain scenes. Let 𝒚𝑗
0 

represent the prior ordering given by individual j in the prior 

knowledge experiment. We assume that these are produced 

by a Mallows model with 𝝎𝟎 as the "center": 

 
 

Figure 4. Calibration results for the two models for one 

event sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-3 -2 -1 0 1

0

5

10

15

20

25

log 



R=-0.969

-3 -2 -1 0 1

0

5

10

15

20

25

log 



R=-0.986

Uninformative 

Prior

Informative 

Prior

 
Figure 3. The graphical model representations for the 

Mallows model with an uninformative prior (a) and an 

informative prior about the group knowledge (b).  
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Figure 3, panel b, shows the corresponding graphical 

model. With this model, we are setting a prior on the group 

ordering -- when there is only data available from a few 

individual in the memory experiment, the group ordering 

will be influenced by the data from the prior knowledge 

experiment leading to group orderings that are a priori 

deemed likely. When data from more individual becomes 

available in the memory experiment, the prior knowledge 

data will have a diminishing influence on the group ordering 

which will be mostly determined by the memory data.   

Modeling Results 

All latent variables in the model were estimated using a 

MCMC procedure, separately for each event sequence. The 

result of the inference procedure is a probability distribution 

over group orderings, of which we take the mode as the 

single answer for a particular problem. Note that the 

inferred group ordering does not have to correspond to an 

ordering of any particular individual. The model just finds 

the ordering that is close to all of the observed memory 

orderings.  

Figure 4 shows the calibration for the two models on a 

single event sequence (the clay animation video). Each 

panel shows the relationship between the inferred θ (related 

to the distance of each individual to the group ordering) and 

the Kendall‟s τ distance of the individual‟s answer to the 

ground truth. The plots show that individuals who are close 

to the group ordering tend to be closer to the ground truth. 

This means that the models can calibrate the performance 

levels of individuals, even in the absence of any explicit 

feedback or access to the ground truth.   

Figure 5 shows the Kendall‟s τ distance for each 

individual in the memory experiment averaged over the six 

event sequences. Note that there are substantial individual 

differences with some individuals coming relatively close to 

the ground truth. The figure also shows the average model 

performance. Comparison between individual and model 

performance reveals a WoC effect: The model performs as 

well as some of the best individuals, with only one 

individual outperforming the model. Therefore, we can 

conclude there is a weak WoC effect (a strong WoC effect 

would correspond to a situation where the model 

outperforms all individuals in the group).   

We now focus on applying the model to subsets of 

participants to mimic eyewitness situations that typically 

involve only small number of individuals. In the first 

analysis, we select a random set of K individuals from the 

original set of 28 individuals.  We then apply the two 

models to the subset of individuals. Figure 6 shows model 

results for the model with the informative and uninformative 

prior separated for stereotyped and random event sequences. 

For random event sequences, where the prior is weak, there 

is no improvement in the aggregation between the two 

models (if anything, there is a small performance decrement 

for the model with the informative prior). For stereotyped 

event sequences however, people have strong prior 

expectations about the true ordering of events and there is a 

marked improvement in the aggregate response in the model 

with the informative prior. This improvement is most 

pronounced with low sample sizes (K=1 and K=2) when the 

prior can still exert an influence on the inferred group 

orderings. Note that when K=1, the model with the 

uninformative prior has no information other than the 

ordering given by a single individual – therefore, the 

aggregate solution given by the model is equivalent to the 

ordering provided by the individual. This results in an 

average tau of around 15. However, performance for the 

model with the informative prior is much better resulting in 

a tau of around 8, because the aggregate solution combines 

the single remembered ordering with the a priori likely 

orderings. 

To better highlight the benefit of the prior information, we 

also conducted a model analysis where we selected the 

worst performing individuals in the sample. In this sampling 

procedure, we sample the K worst individuals where we 

vary K from 1 (the single worst performing individual) to 28 

(all individuals combined). Figure 7 shows model results for 

both models separated for stereotyped and random event 

sequences. The relative performance benefits can be seen 

most clearly for the stereotyped event sequences for low 

sample sizes (K=1 and K=2). In these cases, the worst 

individuals recall event sequences that are a priori unlikely 

and the prior "corrects for" the noise in the available data.    

Therefore, these analyses suggest that an aggregation 

model with informative priors can be used to guard against 

the most egregious errors committed by the worst 

individuals in the memory task.  

Conclusions 

We have presented two approaches for aggregating recalled 

sequences of events in order to reconstruct the true event 

sequence as best as possible. Individuals are likely to differ 

in their ability to recall event sequences and pay attention to 

different parts on an event sequences. Therefore, by 

 
Figure 5. Performance of individuals and model (with 

informative prior) averaged over six event sequences. 
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analyzing the consistencies in orderings across individuals, 

we can extract the collective wisdom in the group. We 

presented two aggregation approaches based on Mallows 

model that allow for individual differences. The models 

combine information at the group level with information at 

the individual level to explain orderings given by an 

individual. In the first approach, the model uses only the 

data from the individuals who all witnessed an event 

sequence. In the second approach, the model uses an 

additional source of data based on the prior knowledge 

about the events extracted from another group of 

individuals.  

We demonstrated a weak WoC effect, where the average 

performance of the model was better than every individual, 

save one. We have also shown that a Mallows model with 

informative priors has a markedly improved ability to 

reconstruct the ground truth in cases where the event 

sequences are highly stereotyped and a small sample of 

poorly performing individuals is used for aggregation.  This 

is particularly important in eyewitness situations where we 

typically have only a small number of individuals available.  
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Figure 7. Results from the models with an uninformative 

prior (model 1) and informative prior (model 2) for 

subsets of the worst K individuals from the memory task. 
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Figure 6. Results from the models with an uninformative 

prior (model 1) and informative prior (model 2) for 

random subsets of K individuals from the memory task. 
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