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As robots and autonomous agents integrate into society, understanding their influence on human social
dynamics is crucial. We investigate human–robot interactions, focusing on the impact of prosocial behavior by
robots on subsequent human interactions and humans’ willingness to exhibit prosocial behavior toward robots.
Our study involved a token-collection game in a grid-world environment. Players, human or robot, could
become trapped; a prosocial action involved another player freeing the trapped individual. Findings indicate
that robots demonstrating prosocial behavior toward humans can inspire prosocial behavior toward others.
Humans also show a notable propensity to assist robots. Witnessing robots engage in prosocial behavior
may activate social norms related to cooperation, prompting humans to emulate these behaviors. Robots’
actions could improve the saliency of these acts, focusing people’s attention on prosocial behaviors they
might not notice otherwise. Overall, the findings suggest that robots can promote prosocial behavior among
humans, contributing to a more cooperative social environment. This research has implications for design
and implementation of future autonomous systems, emphasizing the importance of social considerations in
human-AI interaction studies.
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1 Introduction
The proliferation of artificially intelligent agents has introduced a new dynamic into the human
social environment. As autonomous agents become more common in everyday service applications,
we need to consider how they can promote human well-being in the emerging hybrid society.
Studies in the field of human-AI interaction often focus on trust and cooperation between humans
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and autonomous agents [45, 56]. Researchers have also focused on developing hybrid systems that
surpass the respective capabilities of both humans and autonomous agents [31, 49, 53]. However,
another critical aspect is the social dimension: how do social dynamics change with the inclusion
of autonomous agents? [37]. People may follow social norms introduced by autonomous agents,
such as conversational roles or dynamics [35, 51]. Additionally, researchers can develop policies
to encourage greater acceptance of autonomous agents in the public realm [8]. This research
investigates the prosocial interactions between humans and autonomous agents, and specifi-
cally, how people’s prosocial behavior toward others is influenced by the actions of autonomous
agents.

Research in this area has been limited in several ways. First, much of the existing research has uti-
lized economic games to measure participants’ tendency to behave prosocially toward autonomous
agents such as robots [11, 20, 22, 31]. In these games, participants often interact with robots in a con-
trolled environment, making decisions about the division of monetary rewards that reveal human’s
level of generosity or fairness compared to interactions with other humans [11, 20]. However, using
economic games to probe reciprocity between humans and robots presents challenges because the
relevance of monetary rewards to a robot is ambiguous for human participants. Second, previous
research has mostly focused on direct reciprocity between one human and one autonomous agent
[6, 11, 20, 22, 31]. However, consistent interactions with the same robot are unlikely in real-world
scenarios. Most Human–Robot Interactions (HRIs) in social environments, such as roads, are
ad hoc and brief. Therefore, understanding social dynamics in these contexts requires studying
indirect reciprocity, which considers how people’s behavior toward one agent may be influenced
by their experiences with other agents.

To address these challenges, we designed a token-collecting game in a grid-world environment.
Participants pursue a primary goal while having the opportunity to perform prosocial acts toward
another agent. This setup allows us to explore prosocial interactions in a context more reflective of
real-world scenarios, where prosocial behavior is not the primary focus but can emerge naturally
from the environment. Our investigation into the prosocial dynamics between humans and robots
focuses on two key research questions. First, we examine whether prosocial behavior exhibited by
robots toward humans can influence subsequent social interactions among humans, potentially
triggering prosocial behavior between them. The chain of interactions we investigate, also known
as upstream reciprocity, is illustrated in Figure 1. Does a person (Person B) helped by a robot become
more prosocial toward another person (Person C) in the future? The second research question
explores whether humans are willing to exhibit prosocial behavior toward robots. Given that
robots are not fully autonomous and may sometimes need human assistance, understanding human
willingness to help robots is essential. The knowledge gained from this research will enable us
to explore the potential of using autonomous agents to promote well-being among humans and
develop better policies for fostering acceptance of robots in our society.

2 Related Works
2.1 Prosocial Interactions in HRI
Prosocial behavior has diverse definitions [43, 46], but at its core, it describes actions aimed at
benefiting another individual [46]. Being prosocial increases the well-being of the helper and the
recipient [55]. While prosocial behaviors among humans have been extensively studied, questions
remain about how these interactions translate to human–robot contexts, presenting novel research
opportunities [3, 25, 41, 47]. In the context of direct reciprocity, which is described as reciprocal
cooperation between two individuals, the findings demonstrated what has been referred to as “AI
exploitation” [11, 22, 26, 31]. In this dynamic, humans trust an autonomous agent partner to the

ACM Transactions on Human-Robot Interaction, Vol. 15, No. 1, Article 4. Publication date: August 2025.



Promoting Prosocial Interactions between Humans with Autonomous Agents 4:3

Fig. 1. An illustration of our two research questions (RQ1 and RQ2) related to different types of upstream
reciprocity.

same extent that they would another human, but take more advantage of benevolent behavior
when it originates from an autonomous agent than from another human.

Consider this scenario: a delivery robot is on its way to deliver an item and sees someone drop
something. Picking up and returning the item is a prosocial act. If this prosocial act initiated
by the delivery robot has a positive impact on the human receiving the help, that person might
be more inclined to be prosocial in the future when they witness another person accidentally
dropping something. The interaction discussed above is described as upstream reciprocity, which is
the tendency to be more inclined to assist a new person if you have previously been aided by others,
which is also referred to as pay-it-forward reciprocity [34, 36]. This tendency is often attributed to
emotional and affective processes. Receiving help leads to feelings of gratitude, which then directly
motivates the individual to give back in kind [32]. Alternative explanations for these upstream
effects have centered on behavioral mimicry, wherein an individual observing assistance might
mirror that behavior in interactions with others [16]. Empirical support for upstream effects comes
from field studies, such as observing drivers, who are more inclined to stop for others if someone
just stopped for them, in parking lots [34]. Upstream reciprocity has not been studied to the extent
of direct reciprocity in HRI.

2.2 Prosocial Interactions in Economic Games
Most previous studies on the topic of prosocial interactions between human and autonomous agents
have utilized economic games to examine direct reciprocity between humans and autonomous
agents, treating prosocial interaction as a primary task with an explicit utility value in one-shot
interactions [13, 20, 22, 26, 31, 54]. Specific examples include well-known games such as prisoner’s
dilemma and stag hunt [26]. When interactions extend across multiple iterations, it has been
observed that autonomous agents can learn to build cooperative relationships with humans, mainly
when these agents use simple non-binding signals for communication [11].

Although economic games are an effective way to study prosocial interaction between humans
and autonomous agents, the setup of most economic games makes prosocial interaction the primary
task of the experiment. These games are often represented in matrix form, where the rows and
columns symbolize the possible strategies of the players [4]. Using these matrix-form stochastic
games presents scenarios in which it is immediately obvious when another agent is helping or
can benefit from prosocial actions. For instance, in one study, participants and a robot sit in front
of a computer screen to play a prisoner’s dilemma game, where all four options available to the
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participant explicitly indicate how prosocial the participant or the robot will be by choosing each
option, such as choosing to give oneself 10 coins and the robot 0 coins [20]. However, setups like
these in simple economic games do not always reflect real-world social decisions, as prosocial
interactions in a spatial context might not be the primary task in an environment and require
awareness of the other person’s actions and their need for assistance, which is not necessarily
related to the primary task the agents are performing.

2.3 Prosocial Interactions in Spatio-Temporal Games
Recently, researchers have extended the scope of economic games to include stochastic games
played within spatial grid environments [11, 28, 33]. Such games demand planning concerning
spatial actions and thinking about the other player’s intentions temporally over the course of
several actions. The coordination and planning required by spatio-temporal games reflect complex
social decision-making, offering valuable insights into the dynamics of human cooperation and
competition. For instance, hierarchical models were developed using classic economic games in a
spatio-temporal setting to establish joint intentionality [28]. A spatial variation of the Prisoner’s
Dilemma game was employed to demonstrate that social perceptions strongly predict preferences
for artificial agents [33]. Spatial game environments bring the study of prosocial behavior closer
to real-world situations in which humans and robots share the same space, such as interactions
with delivery and cleaning robots. This makes the findings more relevant to understanding human
interactions beyond the confines of traditional economic games. In this context, both agents—the
human and the autonomous agent—might be engaged in a primary task unrelated to prosocial
behavior, making any prosocial act a secondary, optional task without explicit utility. Recall the
delivery robot picking up the pen in the example above: picking up the pen and returning it to the
person is a prosocial act unrelated to the delivery robot’s primary task. In this example and our
behavioral experiments, prosocial behavior emerges from situational awareness rather than as a
premeditated objective.

2.4 Indirect Reciprocity in Task-Oriented HRI
Some prior research has examined how social robots influence human behavior. One study found
that when children interacted with a more prosocial robot, they were more willing to share
stickers with other children [42]. Similarly, other studies on social robot behavior in children have
shown that negative (antisocial) behaviors are reciprocated at an earlier age, whereas prosocial
behaviors are learned later in development [7]. Additionally, when children observed prosocial or
antisocial behavior from robots, they demonstrated less sharing behavior during a dictator game
after witnessing antisocial behavior [40]. However, although these studies investigate the effects of
robot behavior on human behavior, they do not examine adult populations, do not explore indirect
reciprocity, or do not analyze prosocial behavior in a task-oriented environment where helping is
not explicitly incentivized.

Additionally, some studies have examined the impact of robot behavior on adult populations.
Prior research on carryover effects in HRI suggests that human behaviors toward others can be
shaped by prior interactions with a robot. Even when the initial interaction was not explicitly
prosocial, people adjusted their behavior toward others based on their experience with a social
robot during an inclusive or exclusive ball-tossing task [14]. Similarly, people’s encouragement
style was influenced by their previous interaction with a robot, depending on whether the robot
provided them with polite or impolite encouragement [19]. However, while these studies explore
related topics, it is important to highlight the fundamental differences between our study and
previous research.
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While these studies provide valuable insights into how human behavior is shaped by robotic
interactions, prosocial behavior in these settings was either the primary focus of the task or
measured indirectly—for example, by assessing participants’ physical distance from the interviewer
after interacting with the robot [14, 19]. Our study extends this line of research by examining
task-based, action-driven prosocial interactions in a spatial game environment, where participants
must actively decide whether to engage in explicit helping behaviors. Unlike prior research that
explicitly instructs or emphasizes prosocial behavior, our approach allows prosocial actions to
emerge naturally as secondary tasks in an environment where helping is not the primary objective.

Moreover, as we discussed before, past research has not fully explored how indirect reciprocity
functions in goal-driven environments with adult population. The economic game literature has
traditionally focused on explicit, utility-based decision-making, often in one-shot or matrix-form
games where prosocial actions are clearly defined [20, 22, 26, 31]. However, real-world interactions,
such as those with delivery robots, occur in dynamic settings where prosocial opportunities are not
explicitly framed as part of the primary task. Our study addresses this gap by investigating how
participants’ exposure to prosocial robot behaviors influences their willingness to assist others
within a complex, task-oriented environment.

By situating our study within spatio-temporal game environments, we align with recent research
that extends economic games into dynamic, spatial settings [28]. These environments better reflect
real-world social interactions, where prosocial actions are often optional, effortful, and contingent
on situational awareness. In sum, our research builds upon previous work by examining prosocial
behavior propagation in a multi-agent environment where helping is not explicitly incentivized.
By investigating upstream reciprocity toward both humans and robots, we provide new insights
into how autonomous agents influence social norms in task-oriented settings and how humans
generalize prosocial behaviors across different agent types.

2.5 Present Research
In this research, we conduct behavioral experiments to investigate upstream reciprocity between
humans and autonomous agents. We are particularly interested in the tendency to be more inclined
to assist a new person if one has previously been aided by others—across different agent types. Our
main research question is whether people demonstrate upstream prosociality toward other humans
after receiving prosocial behavior from a robot. Additionally, we investigate whether participants
exhibit upstream reciprocity toward robots after being assisted by other robots.

For instance, in the scenario where an individual assists someone by picking up something they
dropped on the way to a printer, the question arises whether that person will perform a similar
action in the future if the assistance is initiated by a robot. Moreover, if a person is assisted by a robot,
will they demonstrate a similar kind of upstream reciprocity toward another robot, considering
that current applications with autonomous agents still occasionally need human assistance?

This study examines whether the type of agent—human or robot—affects the likelihood of people
reciprocating or helping others in future interactions. In our experiments, these questions are
addressed using both quantitative and qualitative methods. Throughout this article, we use the term
“autonomous agent” to refer to entities capable of executing goal-directed behaviors independently.
This includes behaviors that are pre-programmed or scripted, as long as they are perceived as inten-
tional and self-initiated by participants. While this form of autonomy does not imply cognitive or
emotional sophistication, it reflects independence commonly observed in service or delivery robots.

3 Method
We designed a token-collecting game in a 2D grid world to simulate interactions between humans
and robots in a spatial environment. In previous research using spatio-temporal variants of economic
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Fig. 2. An overview of the game setup and different stages of gameplay.

games, prosocial interactions between agents were foregrounded as the primary task, and rewards
for being prosocial were explicit and directly observable [20, 28, 54]. In contrast, in our experimental
setup, participants’ primary task of collecting tokens was not directly related to prosocial acts, and
participants were neither rewarded nor punished for performing prosocial acts. The game setup
is illustrated in Figure 2. Players, humans or robots, became trapped in designated areas of the
game space. The prosocial action—carried out by either another human or a robot player—involved
rescuing the trapped player to facilitate continued token collection.

In each round, participants were paired with a different player, either another human or a robot,
to examine the effects of indirect reciprocity [2, 10]. By manipulating the sequence of agents and
the opportunities for prosocial acts, we explored how these factors influenced players’ prosociality
across multiple rounds. If participants were paired with another human player in one of the rounds,
they were playing alongside a simulated human player using replayed human movement sequences
from a previous experiment rather than a real human player. We chose this replay design to
maximize experimental control while ensuring that the other human player, like the robot player,
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Fig. 3. Flow of the experiment: Each round lasts 90 seconds, with a total of four rounds. Participants com-
pleted an instruction phase at the beginning and an end-of-trial questionnaire at the conclusion. The entire
experiment takes approximately 14 minutes to complete.

always assisted the participant when given the opportunity. As a result, the replay design ensured
compatibility between the robot and other human player conditions.

The experiment was not explicitly presented as a cooperative or competitive environment.
Participants received no specific instructions regarding prosocial behavior, and the game neither
rewarded nor penalized such actions. Additionally, the mechanism of the prosocial act—saving a
trapped player—had to be observed by participants rather than being explicitly revealed through
experiment instructions or game settings. As a result, by positioning the prosocial act as an implicit
secondary task within the environment, we were able to observe the reasoning behind choosing to
be prosocial or not when no explicit utility was involved.

3.1 Participants
A total of 401 participants were recruited through Prolific1 (50% male, 49% female), aged 18 to 76
(M = 38, SD = 12). All participants resided in the United States and self-reported being English
speakers. Informed consent was obtained from all participants. This study received approval from
the University of California, Irvine Institutional Review Board under protocol number #3624.

3.2 Procedure
3.2.1 Experimental Procedure. Participants took part in the experiment, which was hosted on a

web site and consisted of an online token-collection game set in a simple grid-world environment.
The experiment lasted about 14 minutes on average. Figure 3 illustrates the flow of the experimental
setup. Participants were informed that the experiment’s goal was to examine their strategy in a
two-player interaction game. Participants first completed a tutorial that guided them through the
game’s setup. This tutorial included the mechanisms for collecting tokens and switching doors.
The tutorial instructions made no mention of the possibility of becoming trapped in one of the
rooms, nor did they specify whether the game was competitive or cooperative. After completing a
game tutorial, participants were asked to assign an ID to their player, which would be used during
gameplay.

Following the experiment, participants were asked to complete a post-trial questionnaire. This
questionnaire sought to elicit information about the participants’ interactions with the other
players, as well as their motivations for helping or not helping the other player. After completing
the post-trial questionnaire, participants who interacted with another human player were informed
that this player was based on a replay of previously collected human movement patterns (see later
section on the human replayer implementation), and they were given the option to withdraw from
the study.

3.2.2 Measurements. We gathered time-series data that recorded player movement and the
current game state at each of both players’ moves to aid in quantitative analysis. We collected qual-
itative data through a post-game questionnaire. The questions focused on participants’ awareness
of the other player’s situation (e.g., whether they noticed that the other player was trapped), their

1https://www.prolific.com/.
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assessment of the other player’s helpfulness, their perception of the game’s nature (competitive or
cooperative), and their reasons for helping or not helping the trapped player.

3.2.3 Gameplay Details. The experiment consisted of four rounds of gameplay, where each
participant was paired with another player who could be either a robot or a human (replay player).
Each round lasted 90 seconds. To simulate an online gaming experience, a 15-second countdown
was initiated at the start of each round, with the message “Finding a new human player for the
new round … Trying to find another player in X seconds.” It was implied that pairing with the
robot player would only occur if no human players were available. At the start of each round,
participants were told whether their fellow player would be a robot or a human player, as well as
their ID. Participants were reminded at the start of each round that they were playing with a player
who was different from the previous round.

During each round, either the participant or a fellow player would be confined within a room
after a predetermined amount of gameplay, while the non-confined player had the opportunity
to demonstrate prosocial behavior by entering the room to free the trapped player. Figure 2(b)
and (c) illustrates this phase of the game. Players began each round diagonally across from one
another, one in the bottom-right corner and the other in the top-left corner. They collected tokens
of various colors and shapes, each unique to the player. Two counters in the top-right corner of the
screen kept track of the time since the game’s start and the total number of tokens collected by
both players. Below the counters, both players’ IDs were displayed, with text colored to match the
colors of their icons.

Tokens were generated at random in groups of three and placed in one of the four rooms on the
grid, making sure that no two players’ tokens appeared in the same room. When a player finished
collecting their tokens, a new set of three appeared in a different room. The participant (represented
by the orange avatar) entered rooms via an orange door, whereas the other player (shown in purple
for illustrative purposes) used a purple door. Each time a player entered a room, the door colors
changed, teaching them how to manipulate door settings to reset room access.

Figure 2(b) and (c) depicts scenarios in which the participant or robot player is trapped in a room
because both doors do not match the player’s color. A trapped player can only be freed if the other
(untrapped) player enters the room and resets the door colors, as they are unable to exit through
either door. The intended trapped player for each round would be confined to the first room they
entered after at least 20 seconds passed in the round. The timing of the trapping event was set to
ensure that all participants had engaged with the game round for a sufficient duration when the
trapping occurred.

3.2.4 Conditions. Table 1 list all conditions included in the experiment. We used the following
notation for the conditions: the letters “H,” “R,” and “P” refer to the other human (replay) player,
the robot player, and participant, respectively. The first four conditions (A–D) included scenarios
where participants received help from another player (human or robot) during the first two rounds
of the game. In the last two rounds, they were then given one opportunity in each round to help
the other player (human or robot). The type of agent from whom they received help, as well as the
type of agent whom they could help, remained consistent across the first two and last two rounds.
For instance, in condition C, the participant is first helped by another human player in the first two
rounds (� → % ), followed in rounds three and four by a chance to help a robot player (% → '). The
last two conditions (E–F) represent conditions where participants never received help from another
player. In each of the four rounds of the game, they had an opportunity to help the other player
(human or robot). Conditions E and F allow us to assess the baseline tendency of participants to
help the other player if they were never helped themselves.
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Table 1. The Six Conditions in the Experiment

Label Condition Participant Count

A ' → % , % → � 69
B � → % , % → � 61
C � → % , % → ' 68
D ' → % , % → ' 66
E % → � 67
F % → ' 70

% = participant; ' =AI robot player; � = another hu-
man player. The arrow represents the direction of help
that can be offered. For example, % → ' represents a
scenario where the participant has an opportunity to
help the robot player.

A between-subject design was employed in the experiment. Participants were randomly assigned
to one of the six experiment conditions. Table 1 denotes the count of participants in each condition.
To reinforce the perception of interacting with different players in each round, we varied the color
of the other player’s icon, player ID, and tokens. The participants were represented by an orange
avatar and collected orange flowers throughout the game, while the colors for the other human
player and robot player changed after each round. Colors were assigned so that in each of the four
rounds, a unique color was used for the other player in every round. Participants were represented
by an orange avatar, which remained consistent throughout the experiment. Consequently, in each
round, the other player had a different color, ensuring that there were no repeated colors within the
same round, and no player had the same color as the participant. The other human player collected
apple-shaped tokens, and the robot player collected butterfly-shaped tokens. In total, four colors
were used in the experiment (purple, green, blue, and yellow). The player IDs for the replay players
were randomly generated, and the player IDs for the robot players were given generic names such
as “YellowRobot2.”

3.2.5 Robot Player Implementation. The robot player was implemented using an A* path-finding
algorithm and moved at a constant speed of three grid positions per second. Based on a pilot
experiment, we determined that this speed is comparable to the average speed of human players.
The robot player’s movement was divided into four stages: navigating to a room, collecting tokens,
rescuing the trapped player, and becoming trapped.The robot player alternated between these stages
depending on the game state as shown in Figure 4. At each stage, the A* path-finding algorithm
created a path from one door to another.The robot player was designed to exhibit prosocial behavior
and always free the participant consistently. It began navigating toward the participant 5 seconds
after they were trapped.This design feature was intended to maximize human reciprocity toward the
robot player. The robot’s actions were generated via scripted path-planning algorithm. While these
behaviors were not responsive in real time, they were executed autonomously during gameplay,
providing participants with a consistent and independently acting agent.

3.2.6 Human Replay Implementation. Some participants were paired with another human player
in one of the rounds. However, they were actually playing alongside a simulated human player that
used replayed human movement sequences from a previous experiment instead of a real human
player. The movement data to construct the other human player were based on data from 343
participants collected in a previous pilot experiment [21]. To create a representative sample of
human movements, we selected only those participants who had an average speed of 2.5–3.5 grid
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Fig. 4. An illustration of the different states the autonomous agents switch between during the experiment.

positions per second, around the mode of participants’ speeds. The replay player was implemented
using the same logic as the robot player. However, instead of using a path-finding algorithm to
generate movement sequences, we utilized the movement and timing sequences from these subset
of previous participants. For each door-to-door combination on the grid, we randomly sampled 20
paths from these participants. During gameplay, when the replay player traveled from one door
to another, one of the 20 sampled paths was randomly selected, and the algorithm replayed the
movement and timing sequence of that chosen path. Like the robot player, the replay player began
navigating toward the participant 5 seconds after they became trapped to ensure that the perceived
prosociality was consistent between different agent types.

3.2.7 Differences between Robot and Human Player. The other human and robot players were
distinguished by not only their avatars but also their movement patterns. While the robot player’s
average speed was set to match that of the human players, the robot moved at a constant velocity
with each step, whereas replayed human players had the tendency to accelerate on straight paths
and slowed down at turns. In addition, the robot player tended to take more turns overall (the A*
pathfinding algorithm used to plan the robot paths did not induce penalties for turns), whereas
human movement was characterized by a minimal number of turns. Additionally, the robot player
was optimal as it followed the calculation of A* algorithms, whereas the human (replayed) player
repeated behavior from previous participants, and thus, exhibited imperfect behavior as people
sometimes overshoot or miscalculate the path to take. Overall, this resulted in a noticeably different
movement pattern for the robot and other human player. When the robot player was trapped, it
repeated a simple movement sequence within the room, mimicking the token-collection behavior
typical for that space. Similarly, the human (replayed) player exhibited the same behavior, following
recorded movement patterns of token collection in the same room. This design ensured that the
behavior of both agent types (robot and human) was highly similar while trapped, and neither
agent remained stationary.

3.3 Statistical Analysis
We employed the Bayesian logistic regression models and Bayesian A/B tests using the JASP
software packages [24] to determine the factors influencing participants’ decisions to engage in
prosocial behavior. In the Bayesian analyses, a Bayes factor, BF10, determines the extent to which
the observed data adjust our belief in the alternative hypothesis over the null hypothesis. Values of
3 < BF10 < 10 and BF10 > 10 indicate moderate and strong evidence against the null hypothesis,
respectively. Similarly, values of BF10 < 1 indicate support in favor of the null hypothesis.
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Table 2. Percentage of Prosocial Behavior by the Participant
across Conditions and Rounds

Round number

Label Condition 1 2 3 4

A ' → % , % → � - - 66.7% 73.9%
B � → % , % → � - - 67.2% 68.9%
C � → % , % → ' - - 51.5% 64.7%
D ' → % , % → ' - - 48.5% 54.5%
E % → � 16.4% 26.9% 34.3% 37.3%
F % → ' 25.7% 28.6% 32.9% 35.7%

Empty cells indicate rounds where participant did not have an opportu-
nity to exhibit prosocial behavior.

4 Results
In this section, we present the findings from our analyses on the propagation of prosocial behavior
among participants following interactions with different agent types (human or robot). Two key
research questions were explored: Do participants pass on prosocial behavior to another human
when assisted by a robot, and do they exhibit similar behavior toward robots after receiving help
from one? We begin by reporting the extent to which receiving assistance from an agent (human or
robot) influences participants’ subsequent likelihood of assisting another agent. We then describe
participants’ stated motivations for engaging or not engaging in prosocial behavior. Finally, we
examine how the similarity or difference in agent type (human vs. robot) affects these motivations.
All data collected from this study can be accessed here.

4.1 Participants Equally Pass on Prosocial Behavior to Humans When Helped by
Humans or Robots

Table 2 shows the proportion of prosocial acts by the participant by condition and round. The
Bayesian A/B test comparing conditions A and E provides strong evidence that participants are
significantly more inclined to assist another human after being aided by a robot, compared to having
received no prior help (BF10 > 100, CI = [1.20, 2.04]). Additionally, there is no evidence to suggest
that participants’ tendency to pass forward prosocial behavior to another human differs based on
whether they were helped by another human or a robot (BF10 < 1) when comparing conditions
A and B. Overall, participants demonstrate upstream reciprocity toward another human equally,
regardless of the type of agent that previously assisted them.

Furthermore, when examining the first four conditions (A–D) in Table 2, there is no evidence to
suggest that the type of agent showing prosocial behavior toward participants influenced their
decision to pass on the prosocial act, regardless of the type of agent receiving the help (BF10 < 1).
This result indicates that in this context robots have a similar level of social impact on human
behavior, as participants are equally likely to be prosocial toward another agent in the future after
being helped by a robot compared to being helped by a human. Additionally, when examining
whether there is an impact on participants’ tendency to be prosocial based on whether the type of
agent who previously helped them and the type of agent they have the opportunity to help are the
same, the results indicate that there is no effect of intergroup versus intragroup interactions. This
suggests that prosocial behavior in the context of this study is influenced not only by the identity
of the helper or the recipient but also by the act of receiving the prosocial behavior itself.
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4.2 Participants Pass on Prosocial Behavior to Robots, but Less Likely than to Humans
When comparing conditions D and F as shown in Table 2, there is strong evidence that participants
are more likely to help another robot after being helped by a robot, compared to when they have
never received help (BF10 > 100, CI = [0.42, 1.25]). Additionally, the Bayesian A/B test comparing
conditions C and D shows no evidence that participants’ tendency to pass forward prosocial
behavior to a robot differs based on the type of agent that helped them (BF10 < 1). Moreover, there
is strong evidence that participants are less likely to perform a prosocial act toward a robot player
compared to a human player (BF10 > 10, CI = [−0.762, 0]), which aligns with previous research
indicating that humans do not exhibit the same extent of prosociality toward robots as they do
toward humans [22]. Overall, participants exhibit upstream prosociality toward other robots after
being helped by robots.

4.3 Increased Prosociality over Time
The Bayesian logistic regression model with all six conditions shown in Table 2 revealed that the
more rounds participants interacted with other players, the more likely they were to save the
trapped player (BF10 = 82.8, CI = [−0.04, 0.45]). The effects of rounds suggest that the more time
participants spent interacting with another player, the more salient the other player’s actions
became. Consequently, participants were more likely to be prosocial toward the other player as
they became more aware of the other player’s situation.

4.4 ExploratoryQualitative Analysis
For the qualitative analyses, three researchers independently coded the responses for the reasons
why participants chose to help or not help. The coding scheme was created by iterating through the
emergent themes based on the reasons given for helping or not helping the robots. The approach
for developing the qualitative codes followed principles of Grounded theory [12]. The emergent
qualitative themes were representative of the reasoning for why participants helped or did not help.
Table 3 displays the top five motivations for both helping and not helping. We conducted a logistic
regression model on each motivation to examine the impact of different factors on participants’
motivations to help or not help another agent. These factors include the type of agent receiving
help, the type of agent previously assisting the participant, whether or not the participants have
previously received help, and whether the types of agents receiving help and assisting are the same.

4.4.1 Motivation to Help. When comparing the impact of each predictor on each motivation, we
found no evidence suggesting that the type of agents assisting the participants before, or the type
of agents they assist, leads to a difference in the likelihood of any reported motivations (BF10 < 1).
This indicates that, in general, participants’ motivations to help are not significantly influenced by
whether they previously received assistance from a human or a robot, nor by the type of agent
they are assisting.

However, we found strong evidence that people’s motivation is more likely to be reciprocity
when the types of agents they receive help from and help are the same, compared to when they
are different types of agents (BF10 = 39.9, CI = [0.35, 1.77]), as shown in Figure 5(a). This suggests
a specific and notable pattern: when participants both receive and provide help to the same type
of agent, they are significantly more likely to cite reciprocity as their motivation. This finding
highlights the role of perceived continuity in fostering reciprocal behaviors. When the agent types
differ, this sense of reciprocity decreases, possibly due to perceived differences between agent
identity. No other motivations are influenced by this factor (BF10 < 1).
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Table 3. Frequency of Top Five Themes for Saving the Other Player and Top Five Themes for
Not Saving the Other Player

Themes Sample Statement Percentage

Motivation to help:
Reciprocity “I was helping because I felt super bad, after the others

helped me”
27% (62)

Cooperation “I wantedmy partner to be able to achieve as many points
as possible”

21% (48)

Sense of fairness “It felt bad that they were not getting a fair chance to
beat me”

17% (39)

Empathy “The first time I didn’t but the second time I felt bad and
helped”

10% (22)

Obligation “Because it was the right thing to do” 10% (22)
Motivation to not help:
Unawareness “Because I didn’t notice it” 32% (55)
Competition “I thought it was a competition” 26% (45)
Prioritization “I wanted to get more tokens” 20% (35)
Inability “I didn’t know I could help” 13% (22)
Indifference “I didn’t care that he was stuck” 8% (13)

The number of participants is shown in parentheses. This table includes all six conditions.

Fig. 5. Motivations to help another player across (a) agent type and (b) prior receipt of help. The x-axis
represents the percentage of each motivation among all participants who helped either a human player or a
robot player. The y-axis represents the specific motivations for helping. For (a), inter-agent refers to helping a
different type of agent, while intra-agent refers to helping the same type of agent, based on the type of agent
that helped the participants. For (b), “received help: yes” means that the participants were helped by another
agent previously, and “received help: no” means that the participants were never helped by another agent.
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Additionally, reciprocity, cooperation, and fairness are more likely to be participants’ motivations
to help when they have received help from another agent, compared to when they have never
received help from another player (BF10 > 100, BF10 = 3.9, and BF10 = 6.2), as shown in Figure 5(b).
It is worth noting that reciprocity shows a significant difference depending on whether participants
have received help or not, because none of the participants would explain their choice to help as a
form of reciprocity if they have never been helped before.

4.4.2 Motivation to Not Help. There is no evidence indicating that any of the participants’
motivations for not helping differ based on any of the predictors described above (BF10 < 1).
Participants demonstrate similar patterns across different agent types and previous experiences. As
shown in Table 3, unawareness and competition are the two main motivations behind participants’
decisions to not help another agent. Here, unawareness refers to participants who responded with
comments such as “I may have just missed it by being hyper-focused on the flowers,” indicating
that they either did not notice or were unaware of the robot’s situation due to being preoccupied,
and competition refers to the motivation to outperform the other agent.

4.5 Results after Excluding Participants Reporting Unawareness or Inability to Help
A portion of participants reported that their motivation for not helping was due to being unaware
that another agent was trapped and needed assistance (55 participants). Additionally, some partici-
pants (22) indicated that they were unsure of the game mechanics required to free a trapped player
from a locked room. This may not accurately reflect group-level behavior, as participants’ failure
to help was not necessarily due to unwillingness to engage in prosocial behavior but rather their
inability to understand the game mechanics or recognize the opportunity to assist another agent.
The detailed summary of prosocial rate among participants is provided in Appendix A.

To address this, we created a subset of the data by excluding participants who reported unaware-
ness or inability as their motivations for not helping and who never helped other agents during
the experiment (45 participants). This adjustment resulted in a final subset of 356 participants. The
same data analysis as in the previous section was conducted, and the results are reported below.
Table A1 in Appendix A shows the frequency of prosocial behavior in each opportunity for each
condition.

Here, we observe a similar pattern in participants’ behavior in the subset of data compared to the
full dataset, as shown in Sections 4.1–4.3. When examining the first four conditions (A–D), there is
no evidence to suggest that the type of agent demonstrating prosocial behavior toward participants
influenced their decision to pass on the prosocial act, regardless of the type of agent receiving the
help (BF10 < 1). Additionally, there is no effect of time or intra-agent vs. inter-agent type.

When comparing conditions A and E using the Bayesian A/B test, we observe the same pattern:
participants are significantly more inclined to assist another human after being aided by a robot
compared to having received no prior help (BF10 > 100, CI = [0.98, 1.90]). Participants’ tendency to
pass forward prosocial behavior to another human does not differ based on whether they were
helped by another human or a robot (BF10 < 1) when comparing conditions A and B. As before,
participants demonstrate upstream reciprocity toward another human equally, regardless of the
type of agent that previously assisted them.

As before, the Bayesian logistic regression model including all six conditions shown in Table A1
revealed that the more rounds participants interacted with other players, the more likely they were
to save the trapped player (BF10 = 14.7, CI = [−0.01, 0.56]). These findings suggest that prolonged
interaction with other players made their actions more salient to the participants.

When examining participants’ prosocial behavior toward robots by comparing conditions D and
F, we again find that participants are more likely to help another robot after being helped by a robot,
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compared to when they have never received help (BF10 > 100, CI = [0.57, 1.48]). The Bayesian A/B
test comparing conditions C and D indicates that participants’ tendency to pass forward prosocial
behavior to a robot does not differ based on the type of agent that helped them (BF10 < 1). However,
participants are less likely to behave prosocially toward a robot player compared to a human player
when conditions A and D are compared (BF10 = 7.50, CI = [−0.71, 0]).

5 Discussion
As robots and other autonomous agents become more integrated into society, it is important
to understand their impact on human prosocial behavior. Most previous research on prosocial
interaction between humans and robots has focused on direct reciprocity between one participant
and one robot [26, 27, 39, 42, 58]. In addition, some previous studies in HRI have indicated that
emotion expression or actions initiated by robots can influence participants to be more prosocial
toward another robot [9, 15, 57]. In contrast, our research focuses on the broader question of how
robot prosociality toward humans encourages people to be prosocial toward other humans who
are not limited to cooperation or sharing behavior [42]. The findings provide strong empirical
evidence of robots’ social influence on human behavior toward one another. Our findings show
that participants exhibit strong upstream reciprocity toward other humans regardless of whether
they received prosocial acts from a robot or another human. Taken together, our findings show
that robots can be used to promote human well-being.

One explanation for the increase in prosocial behavior, when participants received assistance
from robots as opposed to when they did not receive assistance, is that the robots’ behavior served
as a model for participants on how agents should behave. The robots’ prosocial actions could be
interpreted as establishing a norm in the environment that participants believed that they were
expected to follow. For future projects investigating the possibility of using autonomous agents
to establish societal norms, researchers could investigate whether people imitate robot actions in
environments with various types of actions, such as negative actions, neutral actions, and other
types of prosocial actions.

Several studies have been conducted on social norms and dynamics among human agents
[5, 18, 50]. Nonetheless, there remains a gap in the literature regarding the role of autonomous agents
in establishing positive social norms in society. To understand how we can use autonomous agents
to promote positive social norms, we must first understand the nature of prosocial interactions
involving robots. For example, if assisting a human in a given situation is considered a moral norm,
where you feel obligated to help another person, would introduce a robot into the social dynamic
change it to a prudential norm, where being prosocial is not required but is seen as an honorable
thing to do [23]? Future research could address these types of questions by conducting a more
in-depth qualitative analysis of the participants’ reports from these interactions.

Another explanation for the increase in human prosocial behavior following exposure to robot
prosocial behavior is that some participants may have been unaware of the possibility of prosocial
behavior. In the context of our experiment, helpful behavior consisted of freeing a trapped agent from
a room. Some participants may not have realized that entering the room could free another agent.
Consistent with this explanation, our findings indicate that unawareness is the most important
reason for not assisting the other agent. In addition, participants became more prosocial in the later
rounds compared to the early rounds in conditions E and F. Participants’ remarks such as “In the
first round, I did not notice they were stuck. Then, after I noticed, I helped after some time passed,”
highlighting that participants were unaware of the possible ways to help other agents or unaware
of the other player’s situation. As time passed, the other player’s actions and situations became
more salient, thus increasing the likelihood of participants’ prosocial acts. This finding emphasizes
the difference between spatial-temporal games, such as the one we designed, and economic games.
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In economic games, the social dynamics between the agents are the primary task in the experiment
and the focus of participants’ attention [11, 20, 22, 26, 31]. In our game, the participants’ main task
is to collect tokens, and they do not necessarily need to pay attention to the other players. As a
result, participants must actively consider the other player’s actions and situations to decide to
save a trapped player from a closed room. Our results highlight an important aspect of prosocial
behavior that is typically not discussed in the relevant literature: the role of attention. To engage in
prosocial interactions, participants must be aware of the other agent’s situation. This results suggest
that robots’ actions could act as reminders in the environment, highlighting possible prosocial acts
and improving the saliency of these actions.

To ensure that our findings were not solely driven by participants who were unaware of the
possibility of prosocial behavior or unable to perform prosocial actions due to difficulty under-
standing the saving mechanism, we conducted an additional analysis excluding participants who
explicitly reported “unawareness” or “inability” as their reason for not helping. Importantly, even
after removing these participants, the core pattern of prosocial behavior remained consistent,
indicating that the observed upstream reciprocity effect was robust. Additionally, our prior research
has demonstrated that awareness plays a critical role in prosocial decision-making, particularly in
spatial environments where prosocial opportunities are not the primary task, reflecting a more
ecologically valid representation of everyday social interactions [21].

While our findings suggest that robot behavior has an influence on human prosociality, it
is important to recognize the simplicity of the autonomous agents in our study. There is no
dynamic social responsiveness or emotional expression during gameplay that was expressed by
the robots. Rather than engaging in real-time interactions, participants encountered consistent,
scripted behaviors that may not have been perceived as intentional social acts. However, despite this
simplicity, some participants still described the robot’s actions in explicitly social andmoral terms, as
they expressed feelings of fairness, empathy, or guilt, as shown in Section 4.4. These reports suggest
that even minimal behavioral cues from autonomous agents can elicit social interpretations and
motivate prosocial action. Future studies could explore how emotionally expressive and responsive
agents shape perceptions of social intentionality in HRIs.

6 Conclusion
The findings presented above highlight the dual role of autonomous agents—not only as facilitators
of prosocial behavior but also as catalysts for increasing the salience of prosocial opportunities in
dynamic, task-oriented environments. This insight has important implications for the design and
policy considerations of autonomous agents, suggesting that their presence can be leveraged to
promote social cooperation in real-world settings.

It is worth noting that in this project, we employed a virtual representation of the robot instead
of a physically embodied robot, as is commonly used in most HRI studies. The differences between
these two types of representations have been widely discussed in previous research [17, 29, 30,
38, 52]. The physical presence of a robot, compared to one displayed solely on a screen, provides
people with a greater sense of social presence, with physically embodied robots generally eliciting
higher levels of social presence [29]. A similar effect has been observed in interactions with children
during motor tasks—both virtual and embodied robots were effective in introducing the task,
but children engaged less with the virtual agent [17]. Other studies have also highlighted that
physically present robots are generally preferred over virtual agents [30, 52]. However, while there
are differences in the degree of social presence between virtual and physically embodied robots,
both representations have been shown to effectively achieve their experimental objectives—whether
it be introducing children to motor tasks or acting as proctors in exams [1, 17].
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Similarly, interactions with virtual agents in video game environments have been found to
influence players’ altruistic tendencies [38]. Other studies have shown that virtual agents can elicit
comparable social and behavioral effects as physically embodied robots in both educational and
motor learning contexts [44, 48]. Of course, there are limitations when generalizing experimental
results from virtual agents to physically embodied robots. However, the statistical power provided
by web-based experiments, combined with the comparable impact observed between virtual and
physical agents, makes this study a valuable starting point for developing empathetic agents capable
of influencing prosocial behavior.

Overall, our findings reveal that participants exhibited upstream reciprocity toward both other
humans and robots after being previously assisted by robots.This study contributes to the expanding
field of HRI, offering a glimpse of how technology could be integrated into our established social
dynamics. It underscores the potential for autonomous agents to actively contribute to our collective
well-being by demonstrating how robots can influence human prosocial behavior. This research
opens new avenues for exploring how technology can foster positive social interactions. As we
move toward a world increasingly populated by intelligent machines, understanding and leveraging
these dynamics will be crucial for building harmonious and mutually beneficial human–robot
relationships.

Data Availability
All behavioral data collected for this study are publicly available from the following OSF repository:
https://osf.io/5ptu8/?view_only=0748e136f5ad42b1ba96f1dff161a0d5.
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Appendix
A Rate of Helping Excluding Participants Who Reported Unawareness or Inability

Table A1. Percentage of Prosocial Behavior by Participants
across Conditions and Rounds

Round number

Label Condition 1 2 3 4

A ' → % , % → � - - 68.7% 76.1%
B � → % , % → � - - 73.2% 75.0%
C � → % , % → ' - - 52.2% 65.7%
D ' → % , % → ' - - 59.3% 66.7%
E % → � 20.8% 34.0% 43.4% 47.2%
F % → ' 30.5% 33.9% 39.0% 42.4%

Empty cells indicate rounds where participants did not have an op-
portunity to exhibit prosocial behavior. Participants who reported un-
awareness or inability as motivations for not helping and never helped
other agents during the experiment are excluded.
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