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Abstract
In this study, we implement joint modeling of behavioral and single-trial electro-
encephalography (EEG) data derived from a cued-trials task-switching paradigm 
to test the hypothesis that trial-by-trial adjustment of response criterion can be 
linked to changes in the event-related potentials (ERPs) elicited during the cue-
target interval (CTI). Specifically, we assess whether ERP components associated 
with preparation to switch task and preparation of the relevant task are linked to 
a response criterion parameter derived from a simple diffusion decision model 
(DDM). Joint modeling frameworks characterize the brain-behavior link by si-
multaneously modeling behavioral and neural data and implementing a link-
ing function to bind these two submodels. We examined three joint models: The 
first characterized the core link between EEG and criterion, the second added a 
switch preparation input parameter and the third also added a task preparation 
input parameter. The criterion-EEG link was strongest just before target onset. 
Inclusion of switch and task preparation parameters did not improve the per-
formance of the criterion-EEG link but was necessary to accurately model the 
ERP waveform morphology. While we successfully jointly modeled latent model 
parameters and EEG data from a task-switching paradigm, these findings show 
that customized cognitive models are needed that are tailored to the multiple cog-
nitive control processes underlying task-switching performance. This is the first 
paper to implement joint modeling of behavioral measures and single-trial elec-
troencephalography (EEG) data derived from the cue-target interval in a cued-
trials task-switching paradigm. Model hyperparameters showed a strong link 
between response criterion and the pre-target negativity amplitude. Additional 
parameters (switch preparation, task preparation) were necessary to model the 
cue-locked ERP waveform morphology. This is consistent with multiple cognitive 
control processes underlying proactive control and points to the need for more 
nuanced models of task-switching performance.
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1   |   INTRODUCTION

Cognitive control refers to a set of processes that fine-tune 
behavior to achieve current goals and flexibly adapt goals 
depending on changes in context (Gratton et al.,  2018). 
Event-related potentials (ERPs) have provided evidence 
for multiple neural components associated with proac-
tive and reactive of cognitive control processes, and for-
mal models of cognition have identified distinct latent 
parameters linked to decision-making in task-switching. 
However, current modeling approaches can only loosely 
map neural and behavioral parameters of cognitive con-
trol (de Hollander et al.,  2016). In this study, we imple-
ment for the first time joint modeling of behavioral and 
neural measures derived from a cued-trials task-switching 
paradigm to characterize proactive cognitive control pro-
cesses involved in maintaining or updating task goals.

Cued-trials task switching paradigms tap into core cogni-
tive control processes that select, shift, and implement task 
goals and protect them from interference (Jamadar et al., 2015; 
Vandierendonck et al., 2010). Participants are presented with 
cues that are mapped to different tasks and must use these cues 
to prepare to respond to the relevant target dimension. For 
example, if the cue is associated with a Letter Task, they can 
prepare to classify the letter in the upcoming target as vowel 
or consonant. The following trial is a repeat trial if the next 
cue is also mapped to the Letter task. Alternatively, on switch 
trials, the following cue is mapped to the alternative task, e.g., 
a Number task, and the participant must update the task-set 
and classify the number in the upcoming target as odd or even.

Task switch trials are associated with poorer perfor-
mance than task repeat trials. This “switch cost” is smaller 
when the cue provides valid information that the task will 
change and the cue-target interval is sufficiently long to 
upload the new task rules before target onset (e.g., 
Meiran, 2000; Nicholson et al., 2005). Event-related poten-
tials (ERPs) recorded during the cue-target interval show 
temporally distinct components associated with proactive 
control processes (Braver, 2012) involved in preparing to 
switch or repeat a task (Jost et al.,  2008; Karayanidis 
et al., 2010; Lavric et al., 2008; Periáñez & Barceló, 2009). 
A large parietal switch-positivity1 is elicited by cues that 

reliably index an upcoming switch trial (Barcelo 
et al., 2006; Finke et al., 2012; Jost et al., 2008). The ampli-
tude of the switch-positivity is inversely related with trial 
by trial variability in the behavioral switch cost 
(Karayanidis, Provost, et al., 2011) and directly associated 
with switch-related BOLD signal activation in the poste-
rior parietal cortex (Jamadar et al., 2010). The amplitude 
of the later pre-target negativity is larger for partially in-
formative cues, that is, cues for which the identity of the 
task to be performed is revealed only at target onset 
(Karayanidis et al.,  2009), and is inversely related with 
trial by trial variability in the behavioral switch cost 
(Karayanidis, Provost, et al., 2011).

Decision making behavior in many contexts, includ-
ing cued-trials task switching, can be understood from 
the perspective of the accumulation of decision-relevant 
evidence to a response threshold or criterion (Forstmann 
et al., 2016; Ratcliff et al., 2016). The response criterion is 
a latent construct that can be estimated from evidence ac-
cumulation models, such as the diffusion decision model 
(DDM; Ratcliff, 1978). It represents the level of caution or 
the amount of information required when selecting one of 
two decisions (e.g., is the number odd or even). In cued-
trials paradigms, the response criterion is larger for switch 
than repeat trials (Karayanidis et al.,  2009; Karayanidis, 
Provost, et al.,  2011; Schmitz & Voss,  2012), indicating 
that the level of response caution can be readjusted for 
each trial depending on whether the cue indicates that 
the task will repeat or switch. Higher response criterion 
for switch trials is associated with a smaller cue-locked 
switch-positivity, suggesting that less efficient preparation 
to switch task results in more cautious decision making 
(Karayanidis et al., 2009). A higher response criterion for 
switch trials is also associated with smaller BOLD sig-
nal activation in the pre-supplementary motor area and 
greater activation in the subthalamic nucleus (Mansfield 
et al.,  2011), consistent with more cautious responding 
under less prepared conditions. These findings suggest 
that the information provided by the cue is used to prepare 
to switch or repeat task for the upcoming target and to set 
response criterion accordingly. The association between 
response criterion setting and amplitude of the cue-locked 
switch-positivity further suggests that the latter represents 
or triggers the adjustment of response criterion.

However, these modeling approaches can only loosely 
characterize the links between brain and behavior be-
cause the two data sources are modeled independently 

 1There is considerable discussion in the field about whether this 
represents an increased P300 component or a distinct ERP component, 
e.g., Periáñez and Barceló (2009). We discuss this at length in 
Karayanidis and McKewen (2021) and justify our reason for preferring 
the use of the term “switch-positivity” over enlarged P300.

K E Y W O R D S

EEG, ERPs, evidence accumulation, hierarchical Bayesian estimation, joint modeling, task 
switching
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and their relationship is examined using simple regression 
approaches (de Hollander et al., 2016).

The model-based cognitive neuroscience framework 
(Forstmann et al.,  2011) provides a novel approach for 
characterizing the coupling between neural and cogni-
tive mechanisms that underlie the dynamics of cognitive 
control by linking latent parameters derived from formal 
models of cognition with functional neural measures. This 
approach has been used to link distinct latent cognitive 
processes to time-sensitive event-related potential (ERP) 
components elicited by task stimuli (Palestro et al., 2018). 
The joint modeling framework directly characterizes the 
brain-behavior link by simultaneously modeling behav-
ioral and neural data, and implementing a linking func-
tion to bind these two sub-models (Turner et al.,  2017, 
2019). This joint model approach simultaneously deter-
mines latent variables to best account for the combined 
behavioral and neural data.

Therefore, the neural data can affect the estimation 
of the parameters of the behavioral model and vice versa 
(Turner et al., 2013, 2019). Van Ravenzwaaij et al. (2017) 
illustrated the strength of this approach by jointly model-
ing behavioral and target-locked EEG data from a mental 
rotation task using a linear ballistic accumulator (LBA) 
model. Drift rate (i.e., a latent parameter that character-
izes the rate at which evidence is accumulated towards 
a decision) was a stronger linking parameter than non-
decision time (i.e., the perceptual and response processes 
that are unrelated to the decision but affect response time) 
and explained rotation angle effects in both the behavioral 
data and the target-locked rotation-related negativity. This 
study demonstrated the strength of the joint modeling 
approach in directly linking EEG and behavioral data as-
sociated with reactive cognitive control. Specifically, EEG 
data associated with mentally rotating the representation 
of the task-relevant target stimulus were directly associ-
ated with decision model parameters that characterize the 
efficiency of the evidence accumulation process (i.e., drift 
rate).

The present study for the first time uses this joint 
modeling approach to establish the computational link 
between cue-locked EEG activity that represents proac-
tive control processes involved in maintaining or updat-
ing task goals and the response criterion parameter of a 
behavioral model that is based on principles of evidence 
accumulation using the DDM approach. We implement 
joint modeling of single-trial behavioral measures and 
cue-locked EEG data derived from a cued-trials task 
switching paradigm to link trial-by-trial adjustment of re-
sponse criterion to event-related potentials (ERP) elicited 
in preparation to switch or repeat a task. We use the to/
away task switching paradigm (Karayanidis et al.,  2009) 
in which four cues differ in the information they provide 

about whether to switch task or repeat the same task and 
which task to perform on the upcoming target. Typically, 
all cue-locked ERP waveforms show a large parietal posi-
tive deflection that resolves into a negative shift just before 
target onset. When cues validly indicate that the task will 
change, they also elicit a switch-positivity, even if they do 
not specify which task will be performed on the upcoming 
target. Cues that identify the relevant task for the upcom-
ing target, regardless of whether the task is the same as 
the previous trial or will change, elicit a smaller pre-target 
negativity. Thus, the switch-positivity varies with the 
need for switch preparation, whereas the pre-target neg-
ativity varies with level of task preparation. In this study, 
we examine the parameters arising from the behavioral-
neural joint model to test whether the function that links 
response criterion and EEG is sufficient to characterize 
variability in cue-locked ERPs as a function of cue type. 
Based on earlier evidence for a relationship between the 
switch-positivity and response criterion, we predict that 
the linking parameters will be stronger within the time 
range of the switch-positivity (400–600 msec post-cue). 
Given evidence from cue-locked ERPs for multiple pro-
active control processes, we then examine whether joint 
models that also characterize switch preparation and/or 
task preparation processes provide better estimation of be-
havioral and neural data.

2   |   METHOD

2.1  |  Participants

We conducted secondary analysis of data from 45 under-
graduate students (31 female, right handed) who com-
pleted one of two studies for course credit (Karayanidis 
et al., 2009; Mansfield et al., 2011). We combined these two 
data-sets that used an identical task-switching paradigm.

2.2  |  Task and stimuli

A gray circle (5° of visual angle) was continuously pre-
sented and divided into six wedges. Pairs of adjacent 
wedges were marked with thicker lines denoting three 
task sections: letter, digit and color (see Figure 1a). The 
target was a pair of characters (i.e., combinations of a 
letter, a digit or a non-alphanumeric symbol) and was 
presented either in gray or in one of four “hot” or “cold” 
colors. Each target (e.g., gray A4) consisted of three di-
mensions: one relevant to the currently cued task (e.g., 
the letter A mapped to a left hand response), one selected 
randomly from one of the two alternative tasks and incon-
gruently mapped with the relevant task (e.g., the digit 4 
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mapped to a right hand response) and one that was neu-
tral (e.g., letter and digit presented in gray—a color that 
was not mapped to any response). Participants responded 
with a button press using their left or right index finger. 
The hand assigned to each response was counterbalanced 
across participants. The same target could not appear on 
consecutive trials. The targets remained on screen until 
response or for 5000 ms.

Each trial consisted of a cue-target sequence with a 
1000 ms cue-target interval and a 400 ms response-cue 
interval (Figure  1b). Four trial types were defined by 
the location of the cue on the circle and were presented 
with equal probability in a pseudo-random sequence so 
that the same trial type was not repeated on more than 
four consecutive trials. Targets were always presented in 
one of the two cued segments. Trial type was defined 
by the location of the cue on trial N relative to trial N 
− 1 (Figure  1c). On repeat trials (25%), the cue high-
lighted the two segments associated with the same task 
as that completed on the preceding trial, indicating the 
task would be repeated. On switch-to trials (25%), the 

cue highlighted segments associated with one of the two 
tasks that were irrelevant on the previous trial, indicat-
ing that the task will switch and identifying the relevant 
task. On switch-away trials (25%), the cue highlighted a 
segment from each of the two tasks that were irrelevant 
on the previous trial, indicating that the task will change 
but not specifying which of the other two tasks is relevant 
for the upcoming target. Finally, on non-informative tri-
als (25%), the cue highlighted one segment associated 
with the task completed on the preceding trial and an 
adjacent segment associated with one of the other two 
tasks, indicating that the task is equally likely to repeat 
or switch. Non-informative cues were not entirely un-
informative as this would introduce a confound. Like 
switch-away trials, they indicated which two of the 
three tasks were likely to be relevant for the upcoming 
target. For switch-away and non-informative trials, the 
relevant task was identified by the position of the target. 
For non-informative cues, targets were equally likely 
to require a task repeat and a task switch. These four 
cue types offered different opportunities to engage in 

F I G U R E  1   The to/away task switching paradigm (Karayanidis et al., 2009). (a) Two adjoining segments of the gray circle are associated 
with one of three classification tasks. The table shows the stimuli used for each task and an example of stimulus–response mappings. (b) 
each trial comprised of a cue-target pair. (c) the position of the cue presented on trial N relative to that on trial N − 1 defined the trial type.
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proactive control during the cue-target interval. Repeat 
cues allowed the relevant task-set to be maintained and 
switch-to cues allowed the new task-set to be uploaded 
before target onset (Prepare Task, i.e., maintain or up-
date task-set). For switch-away and non-informative 
cues, task-set identification and uploading could only 
occur after target onset. Switch-away trials were partly 
informative, in that they indicated that the task will 
definitely change. So, during the cue-target interval, for 
both switch-to and switch-away cues, participants could 
deactivate the previously relevant task-set and prepare 
to change task (Prepare Switch).

Participants were instructed to respond as quickly and 
as accurately as possible. Incorrect responses were fol-
lowed by an auditory feedback tone. Average accuracy and 
response time (RT) for each block were presented to par-
ticipants so they could monitor their performance. Each 
block was followed by a short break and a longer break 
was offeredmid-way through testing.

2.3  |  Procedure and EEG recording

Participants completed two training sessions (approxi-
mately 30 min, maximum 14 days apart, total 1464 
practice trials) to establish strong cue-target and target-
response associations for each task. Each training ses-
sion included practice on each task alone (single-task 
blocks) and on switching between tasks (mixed-task 
blocks). After the second training session, the EEG cap 
was fitted and the test session administered. The test 
session included nine mixed-task blocks (96 + 5 warm-
up trials/block, total 909 trials, approximately 1 h with 
rest periods). Warm-up trials were excluded from fur-
ther processing.

EEG was recorded continuously using an ActiveTwo 
Biosemi EEG system (2048 Hz, bandpass filter of DC-400 
Hz) from 64 scalp electrodes (extended 10–20 system) plus 
bilateral mastoid, bilateral outer canthi, and both supra-
orbital and infraorbital ocular sites. The Biosemi system 
uses active electrodes with common mode sense and 
driven right leg electrodes providing a reference relative 
to the amplifier reference voltage.

2.3.1  |  EEG preprocessing

EEG data were processed using a MATLAB (2016) pipe-
line that included Fieldtrip (Oostenveld et al., 2011), CSD 
Toolbox (Kayser & Tenke, 2006) and in-house functions. 
Preprocessing was performed using Fieldtrip as follows. 
EEG data were re-referenced off-line to electrode Cz, 
down-sampled from 2048 Hz to 512 Hz using a zero-phase 

anti-aliasing filter with a low-pass cut off frequency of 
245 Hz. High pass and notch filtering were applied to re-
move line noise and low-frequency drift (high pass: 0.1 Hz, 
forward phase; 50 Hz notch: zero phase). Excessively 
noisy channels were identified with visual inspection and 
excluded (on average 7.62  ±  5.52SD electrode channels 
were removed per participant). For each cue type (repeat, 
switch-to, switch-away, non-informative), EEG epochs 
were extracted from 1000 ms before to 3500 ms after cue 
onset. While non-informative cues led to either a task 
switch or a task repeat trial (depending on target loca-
tion), this was not predictable during the cue-target in-
terval, so we do not differentiate non-informative switch 
and non-informative repeat epochs. To remove blink and 
vertical eye-movement artifact, independent components 
analysis (ICA) was performed using the fastICA algorithm 
(Hyvärinen & Oja, 2000). This produces a set of compo-
nents (one less than the amount of available electrodes). 
On average, 1.76 ± 0.96SD components corresponding to 
ocular artifact were identified by visual inspection and 
deleted. The remaining components were projected back 
into sensor (electrode) space. The data were low pass fil-
tered (30 Hz, zero-phase) to remove high frequency noise 
including muscular artifacts. EEG epochs that contained 
residual artifact larger than 120 μV were deleted. On av-
erage, 185.4 ± 19.0SD Repeat, 184.5 ± 18.6SD Switch-to, 
184.9  ±  17.5SD Switch-away, and 185.0  ±  16.9SD Non-
informative trials per participant were included for fur-
ther analysis.

After preprocessing, EEG data were re-referenced 
using average mastoids (i.e., the algebraic average of the 
mastoids). Based on Karayanidis et al. (2009) and Wong 
et al. (2018), analyses were conducted on electrode POz. 
Mean amplitude was extracted for each 100 ms time 
window from cue onset (0 ms) to target onset (1000 ms) 
as input for joint modeling. Grand average ERPs for 
each cue type were derived by averaging all single-trial 
EEG epoched data for that cue type for each participant, 
and then taking the average ERP waveform across all 
participants.

2.4  |  Joint model of behavioral and 
neural data

The joint models have two independent sub-models (be-
havioral and neural) that are structurally linked to form a 
model with similar properties to the sub-models. The link-
ing process allows the model to dynamically adjust itself 
and its constituents through proposed linking parameters 
that add constraints to the estimation process. Below we 
describe the behavioral and neural sub-models and the 
linking structure that binds them.
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2.4.1  |  Behavioral sub-model

The task switching paradigm generated two behavio-
ral data points on each trial: response choice, which 
was coded as correct or incorrect response (based on 
whether a left or right hand response was required for 
that particular stimulus code), and response time for 
each response. We refer to this as the choice-response 
time pair. We assume the choice-response time pairs 
were generated from a simple diffusion decision model 
(DDM) with four parameters: z, the starting point of 
evidence accumulation, ν, the drift rate (i.e., rate of 
evidence accumulation), α, the response criterion (i.e., 
the amount of evidence required to trigger a response), 
and τ, non-decision time (i.e., the time required for pro-
cesses outside of the decision process, such as stimulus 
encoding and response execution).

With the set of 4 model parameters that could be esti-
mated in each of the 3 tasks × 4 cue types = 12 cells of the 
design, one could freely estimate 4 × 12 = 48 model pa-
rameters. To simplify the model, we reduced the number 
of freely estimated parameters to eight by imposing four 
plausible constraints on the model parameters across task 
and trial type (outlined below). We used a hierarchical 
approach to determine the group level distributions, from 
which we sampled a parameter vector for each participant 
s ∈ {1, 2, …, S}, where S = 45 participants, to model the 
choice-response time pairs.

First, we assumed that only task type [t ∈ {color, 
letter, digit}] determined the drift rate, νt. It is plausi-
ble that drift rate varied with task difficulty, but not cue 
type, given that drift rates are driven by post-target stim-
ulus features. Second, we assumed that only cue type  
[c ∈ {repeat, switch-to, switch-away, non-informative}] 
determined the response criterion, αc. That is, we as-
sumed that some cue types led to higher response cri-
terion than others, but that criterion was independent 
of task. This is also plausible because it is generally ac-
cepted that response criterion does not vary as a function 
of post-target stimulus features. Third, we assumed that 
both task and cue type had negligible effects on non-
decision time, so there was a single value across condi-
tions, τs. Fourth, we assumed that there was no bias in 
favor of a left or right hand response [zc =  .5αc for any 
tasks, cue types and participants]. Finally, we assumed 
that the choice-response time pair for trial i, cue type c, 
task t and subject s, RTicts, was distributed as

where t|is and c|is, respectively, represent the task and cue 
type presented on trial i to participant s. The conditioning 
on cue and task for trial i of subject s holds in all cases that 

follow, so to simplify notation we henceforth suppress the 
explicit conditioning (i.e., .|is) and simply write νts, zcs, and 
αcs. Appendix S1 outlines the model structure and the as-
sociated prior distributions.

2.4.2  |  Neural sub-model

The neural data were extracted from single trial cue-locked 
EEG epochs by splitting the 1000 ms cue-target interval 
into ten 100 ms time bins. For every trial, we averaged 
across consecutive values within each time bin to obtain 
the mean amplitude for the bin (for similar approaches, 
see also Turner et al., 2017; Van Ravenzwaaij et al., 2017). 
We then used all single-trial EEG epochs for each cue type 
at a single electrode (POz) to model the ERP data. We as-
sumed the vector of mean amplitudes ERPis of the ERP 
for all time bins k ∈ {1, 2, …, 10} of trial i for subject s was 
multivariate normal distributed with mean vector μc|is and 
covariance matrix Σ

where MN is the multivariate normal distribution and Σ is 
a k × k matrix; we again suppress the explicit conditioning 
on trial and subject (i.e., . |is) and simply write the mean 
vector as μcs. Since functional brain activity and associated 
networks show dynamic temporal and spatial variation, we 
freely estimated the covariance between each time-bin pair 
{k1, k2} for k1, k2 ∈ {1, 2, …, 10}. Appendix S1 details the prior 
distributions.

2.4.3  |  Linking the behavioral and neural 
sub-models

To provide a targeted test of the brain-behavior relation-
ship, we focused on a hypothesized link between the re-
sponse criterion of the behavioral sub-model (α) and the 
mean EEG amplitude of the neural sub-model (μ). We 
elaborated this link to generate three joint models of in-
creasing complexity that we subsequently tested against 
the behavioral and neural data.

2.4.3.1  |  Joint model 1: Linking ERP amplitude with 
response criterion
The behavioral and neural sub-models were linked via a 
linear function such that the mean ERP amplitude in time 
bin k for cue type c of subject s, μkcs, was related to the re-
sponse criterion for cue type c of subject s, αcs,

(1)RTicts ∼ DDM
(

�t∣is,�c∣is,zc∣is,�s
)

(2)ERPis ∼MN
(

�c∣isΣ
)

(3)�kcs ∼ N
(

�0,s +
(

�
�,ks ⋅ �cs

)

, �
)
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where N (a, b) is the normal distribution with mean a and 
standard deviation b. The linking function imposes the con-
straint that the mean vector generating the cue type and 
subject-specific ERP data (μcs = {μ1cs, μ2cs, …, μ10cs}) is linearly 
related to the response criterion (α), with participant-specific 
intercept (β0,s) and slope (βα,ks) parameters. To simplify the 
model, we assumed the variance parameter σ was common 
across participants.

The linking function implies that conditions with higher 
response criterion are associated with larger mean ERP am-
plitude, where the sign of the slope parameter determines 
the direction of the ERP deflections. Importantly, the as-
sociation is not causal: larger ERP deflections may lead to 
higher estimates of response criterion or vice versa. By esti-
mating independent slope parameters for each time bin, we 
can identify the time course of the link between response 
criterion and ERP amplitude during the cue-target interval.

2.4.3.2  |  Joint model 2: Linking ERP amplitude with 
response criterion and switch preparation
We extended joint model 1 to incorporate that, in the to/
away paradigm, some cue types indicate with certainty that 
the task will change for the upcoming target. Cue-locked 
ERPs indicate that participants use this information to ac-
tivate neural processes associated with preparing to switch 
task (Karayanidis et al.,  2009). To operationalize “switch 
preparation”, we grouped together trials where the cue 
validly indicates that the task will change (switch-to and 
switch-away) as participants can activate neural processes 
to prepare to switch task (e.g., disengage the now irrelevant 
task rules), even if they do not know which of the other 
two tasks to activate (i.e., on switch-away trials). We also 
grouped together trials where the cue validly indicates that 
the task will repeat (repeat trials) and trials where the cue 
indicates that the task may repeat (non-informative trials). 
In the former, the participant knows they will not need to 
switch task and in the latter they do not know whether they 
will need to switch task, so they do not need to prepare to 
switch in either trial type. Switch preparation was coded as 
a binary indicator variable, Pswitch, such that

which we used to extend the linking function of joint 
model 1:

That is, the linking function in Equation  (5) allows 
“switch preparation” cues to differentially modulate 

cue-locked ERPs according to whether they provide cer-
tainty that the task will change, consistent with previously 
reported data (Karayanidis et al., 2009).

2.4.3.3  |  Joint model 3: Linking ERP amplitude EEG 
with response criterion, switch preparation and task 
preparation
In the to-away paradigm, some cue types identify the task 
to be performed on the upcoming target (repeat and switch-
to). For other cues (switch-away and non-informative), 
the identity of the relevant task is not available until 
target onset. Joint model 3 incorporated the notion that 
some cue types allow preparation for a specific task, and 
not just a change of task as in joint model 2. We again 
motivate this model extension on the theoretical founda-
tions of the to/away paradigm as well as cue-locked ERP 
evidence that participants actively upload the task when 
the cue allows (Karayanidis et al., 2009). We refer to this 
as “task preparation” and operationalize it as whether the 
cue provided valid information about the specific task that 
would be completed on the upcoming target.

Repeat cues validly indicate that the task completed 
on trial i −  1 will be repeated on trial i, so participants 
can actively maintain the currently activated task rules. 
Switch-to cues not only indicate that the task will change, 
but also validly identify the task that will be performed 
on the upcoming target. So, during the cue-target interval, 
participant can prepare in anticipation of target onset by 
maintaining the old task rules for repeat cues and upload-
ing the new task rules for switch-to cues. In contrast, for 
both switch-away and non-informative cues, the partici-
pant must wait until target onset to identify the relevant 
task and upload the new task rules, if needed. Collectively 
we code this information as a binary indicator variable, 
Ptask, where

We incorporate the task preparation variable in joint model 
3 such that

All four models—behavioral-only, and joint models 1, 2 
and 3—were estimated in a hierarchical Bayesian frame-
work via Markov Chain Monte Carlo. Supporting infor-
mation Appendix  S1 outlines the prior distributions for 
the parameters of the behavioral and neural models, in-
cluding the linking functions, and all parameter estima-
tion details.

(4)Pswitch ≔

{

0 if cue= repeat∕non−informative

1 if cue= switch−to∕switch−away

(5)�kcs∼N
(

�0,s+
(

�a,ks ⋅�cs

)

+

(

�Pswitch,k
⋅Pswitch

)

�

)

(6)Ptask≔

{

1 if cue= repeat∕switch− to

0 if cue=non− informative∕switch−away

(7)

�kcs∼N
(

�0,s+
(

�a,ks ⋅αcs
)

+

(

�Pswitch,k
⋅Pswitch

)

+

(

�Ptask,k
⋅Ptask

)

, �
)
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3   |   RESULTS

3.1  |  Behavioral data

Figure 2 shows mean RTs for correct responses (A) and 
mean accuracy rate (B) for each cue type.2 These highly 
practiced participants were both very accurate and fast. 
As shown previously, repeat cues resulted in faster and 
more accurate performance than the other cue types. In 
addition, switch-to cues, which provided information 
that could be used to prepare to switch task and to up-
load the new task-set before target onset, resulted in 
faster and more accurate performance than switch-away 

cues, which only supported preparation to switch task. 
Figure 2 also shows the response criterion (C) and drift 
rate (D) estimates for the behavioral-only model. As 
shown previously with this task using a similar diffu-
sion decision model in Karayanidis et al.  (2009), re-
sponse criterion was lowest for repeat cues and 
progressively increased for switch-to and switch-away 
cues, which required more evidence before committing 
to a decision. Drift rate was higher for the color task 
relative to both letter and digit tasks.

Figure 3 depicts observed and posterior predictive RT 
for correct responses and accuracy for individual partici-
pants for the behavioral model (column 1) and each joint 
model (columns 2-4). All four models provided a good ex-
planation of the behavioral data. There was little difference 
between the behavioral-only model and the three joint 
models either qualitatively or quantitatively as indicated 
by the root mean square error. In all cases, median RT was 
explained very well, with only minor underprediction of 
the fastest (10th percentile) and slowest (90th percentile) 

 2 Note that, for the non-informative cues, behavioral results are 
averaged across targets that prescribed a repeat vs a switch in task. Our 
behavioral model focuses on response criterion which is assumed to be 
set before target onset and hence before knowing whether the task will 
change. Therefore, we estimated a single response criterion for 
non-informative cues, regardless whether they ended up in a task 
switch or repeat.

F I G U R E  2   Mean response time for correct responses (a) and accuracy (b) as a function of cue type. Posterior distributions of the group-
level mean parameters from the behavioral sub-model are shown for the response criterion as a function of cue type (c) and for drift rate as 
a function of task type (d). In panels a and b, individual participant data are presented as dots and uncertainty bars display the mean and 
standard deviation across participants. In panels c and d, half violin plots display the posterior distribution and boxplots display the median 
and lower and upper quartiles.
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      |  9 of 15KARAYANIDIS et al.

responses. Accuracy was also fairly well described, al-
though there was some variability across participants and 
cue types owing to very high overall accuracy rates. So, the 
behavioral model characterized the data quite well across 
all four cue types, and the additional parameters from the 
joint models did not result in further improvement.

3.2  |  ERP waveforms

ERPs for each cue type were obtained by averaging all 
EEG epochs for that cue type (including correct and error 
trials). These observed ERP waveforms were compared to 

the waveforms derived from each joint model that were 
sampled from the posterior predictive distribution of each 
model. Figure  4a shows the grand average of observed 
cue-locked ERP waveforms and are largely consistent 
with previous findings with this paradigm (Karayanidis 
et al., 2009; Wong et al., 2018). Within the cue-target inter-
val, all four cue types showed a broad large positive deflec-
tion followed by a negative shift peaking just before target 
onset. In addition, there were two superimposed compo-
nents. The switch-positivity peaked approximately 400 ms 
after cue onset for the two cue types which provided cer-
tainty that a different task will be performed on the up-
coming target, i.e., switch-to and switch-away (Figure 4a). 

F I G U R E  3   Observed (x-axes) versus mean posterior predictive (y-axes) data for individual participants. The first column represents the 
behavioral model and columns 2–4 represent joint models 1–3, respectively. The top three rows depict the 10th, 50th and 90th percentiles of 
the correct RT distribution, respectively, and the bottom row shows mean accuracy. Each dot represents a single participant in a single cue 
type condition. Color represents cue types. The root mean square error is shown in the upper left of each panel.
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10 of 15  |      KARAYANIDIS et al.

From around 600 ms post-cue, the pre-target negativ-
ity emerged for all four cue-locked ERP waveforms but 
was larger for the switch-away and the non-informative 
cues, for which task identity was not available until target 
onset. These two components are consistent with the to/
away paradigm's manipulation of preparation to switch 
tasks and preparation to implement the task, which are 
represented in the switch preparation variable added to 
joint models 2 and 3, and the task preparation variable 
added to joint model 3.

3.2.1  |  Joint model 1

Joint Model 1 contained only the core link between mean 
EEG amplitude and response criterion. Figure 4b (upper) 
shows that the predicted ERP waveforms are consistent 
with the overall morphology of the grand average ERP 
waveform: a broad positivity over 200-700 ms followed 
by a sharp negative deflection. Figure  4b (lower) shows 
the 95% credible interval of the criterion-EEG scaling pa-
rameter (βα) for each time bin. The criterion-EEG link val-
ues over the 10 time bins showed a pattern similar to the 
deflections in the posterior predictive data: an early peak 

around 200 ms followed by a sustained dip over the time-
frame of the ERP positivity, and a second larger peak at 
time bin 10 (900–1000 ms) similar to the pre-target nega-
tivity. This indicates that response criterion is weakly re-
lated to EEG amplitude shortly after cue onset (200 ms) 
and more strongly just before target onset. The predicted 
ERP waveforms did not differ across the four cue types, 
indicating that the criterion-EEG linking function influ-
enced the general trends in the observed ERP but it did 
not differentiate the information provided by the four cue 
types.

3.2.2  |  Joint model 2

In Joint Model 2, we incorporated a variable representing 
switch preparation to inform the model whether the cue 
provided reliable information that the task will change for 
the upcoming target. As shown in Figure 4c (upper), the 
ERP waveforms predicted by Joint Model 2 showed a sub-
stantial improvement compared with Joint Model 1. The 
switch-positivity clearly emerged for both switch-to and 
switch-away cues and showed a similar timeline and am-
plitude as the observed ERPs.

F I G U R E  4   Grand average ERP waveforms for observed data and posterior predictive data for each joint model (top). (a) Observed ERP, 
(b) joint model 1 with response criterion only (βα), (c) joint model 2 with added switch preparation parameter (βP switch), and (d) joint model 
3 with added task preparation parameter (βP task). The lower panels show the 95% credible interval of the hyper parameters for each joint 
model: βα for scaling the response criterion α (orange), βP switch for scaling the prepare switch variable Pswitch (gray), βP task for scaling prepare 
task variable Ptask (red).
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      |  11 of 15KARAYANIDIS et al.

Figure  4c (lower) shows that the morphology of the 
criterion-EEG linking parameter estimates were very sim-
ilar in Joint Models 1 and 2, i.e., for both joint models, re-
sponse criterion was weakly related to EEG amplitude 
shortly after cue onset (200 ms) and more strongly just be-
fore target onset. The switch preparation parameter (βP switch) 
was strongly linked to EEG amplitude in the first half of the 
cue-target interval, showing a rapid rise that peaked over 
300–500 ms (Figure 4c, lower). The morphology of the beta 
values for the switch preparation parameter across the cue-
target interval corresponds with the morphology of the cue-
locked switch-positivity, which also peaks around 400 ms.

A shortcoming of Joint Model 2 is that—unlike the ob-
served data—the posterior predicted ERP amplitude did not 
differentiate between switch-to and switch-away cue types, 
and there was little differentiation between cue types in the 
latter part of the ERP waveform leading up to target onset.

3.2.3  |  Joint model 3

We extended Joint Model 2 with the addition of a variable 
representing task preparation to inform the model whether 
the cue reliably identified the task to be performed on the 
upcoming target. Figure 4d (upper) shows that Joint Model 
3 predicted not only the overall morphology of the ERP 
waveform and the switch-positivity, but also the later reor-
ganization of ERP waveforms across cue types. Specifically, 
it captured the smaller pre-target negativity for cues that 
allowed the task to be fully uploaded before target onset 
(i.e., repeat, switch-to) compared to cues where task iden-
tity was only available upon target onset (i.e., switch-away, 
non-informative). Thus, Joint Model 3 very closely predicted 
the temporal dynamics of the observed cue-locked ERP 
waveforms (Figure 4a). Figure 4d (lower) shows that add-
ing the task preparation parameter to Joint Model 3 had a 
minor effect on the morphology of the criterion-EEG and 
the switch-EEG beta values, reducing the magnitude of both 
estimates compared to Joint Model 2. The beta values for the 
link between task preparation and EEG showed a slow in-
crease from 300–400 ms, peaked at 600–700 ms, and slowly 
decayed thereafter. The maximal beta values corresponded 
to the period during which the ERP waveforms crossover to 
produce a larger pre-target negativity for those cues where 
the target carried important information about task identity, 
compared to cues where the identity of the task had already 
been provided.

3.2.4  |  ERP covariance across time

We also freely estimated the covariance matrix that sup-
ported the behavior-EEG linking function. Figure  5 

displays the 10 × 10 correlation matrix implied by the 
estimated covariance matrix. The off-diagonal entries 
show the temporal correlation of the ERP signal between 
all time-bin pairs. This was greatest in neighboring bins 
(lighter colors) and decreased with increasing distance 
(darker colors). The estimated patterns of correlation in 
Joint Model 1 (Figure 5) were similar for Joint Models 2 
and 3 (not shown). This result highlights the very high 
degree of temporal autocorrelation in the EEG signal, 
serving as an important reminder of the importance in 
explicitly modeling temporal covariation in neural data. 
Without such an explicit model of temporal covariation, 
the EEG data in each time bin would be treated indepen-
dently and would thus exert too much influence in a joint 
model. Our covariance estimation approach decreases the 
influence of each time bin in proportion to the amount of 
independent information contained within that bin.

4   |   DISCUSSION

This paper joint modeled behavioral and EEG measures 
of proactive cognitive control from a cued-trials task 
switching paradigm in order to provide direct evidence 
for a link between cue-locked ERP activity and response 
criterion setting. This aim can be broken down into two 
sub-questions. First, are response criterion estimates de-
rived from a joint model (and therefore informed by both 
behavioral and neural data) more informative than those 
derived from the behavioral model alone? Second, is the 
computational link between response criterion and cue-
locked ERP activity sufficient to model ERP components 

F I G U R E  5   Estimated correlation of the EEG amplitude across 
time bins from joint model 1; joint models 2 and 3 produced similar 
trends.
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associated with switch preparation and task preparation 
processes (i.e., switch-positivity and pre-target negativity)?

Joint Model 1, which modeled behavioral and EEG 
data, resulted in essentially identical response criterion 
estimates and pattern of response criterion differences 
across cue types as the behavioral model alone. Adding 
parameters to model switch preparation (Joint Model 
2) and task preparation (Joint Model 3) did not further 
change response criterion estimates. So, in response to the 
first question, jointly modeling behavioral and cue-locked 
ERP data reproduced, but did not further constrain the 
estimates of response criterion derived from a behavioral 
model alone.

Of our three joint models, Joint Model 3 most precisely 
captured the trends in behavioral and ERP data. There 
was evidence of a trade-off between task preparation and 
response criterion, but not switch preparation parameters. 
In Joint Model 3, only the late link between response crite-
rion and EEG, within the timeframe of the pre-target neg-
ativity, were reliable. Yet, ERP waveforms derived from 
Joint Model 3 most closely replicated the pattern of the 
observed ERP waveforms, including the differentiation 
between switch-to and switch-away waveforms, as well 
as between repeat and non-informative cue types. This is 
consistent with models proposing trial-by-trial variation 
in both switch preparation and task repetition benefit (De 
Jong, 2000), and previous findings that the amplitude of 
the switch-positivity varies with level of switch prepa-
ration (Karayanidis, Provost, et al.,  2011) and may even 
emerge on repeat trials when participants unnecessarily 
prepare task-set (Karayanidis, Whitson, et al., 2011).

Therefore, although response criterion setting was as-
sociated with ERP activity during the preparation interval, 
it alone was not sufficient to account for ERP differences 
as a function of cue information. Rather, at least two more 
parameters were required to model ERP findings: switch 
preparation and task preparation. The addition of these 
two binary parameters resulted in high fidelity of estima-
tion of the cue-locked ERP waveforms. It also modulated 
the pattern of impact of the response criterion parameter 
across the cue-target interval—that is, the estimation of 
response criterion setting varied according to whether the 
cue provided the opportunity to undertake switch and/or 
task preparation.

Interestingly, while more complex models were nec-
essary to accurately model the ERP waveforms, jointly 
modeling behavioral and neural data did not change re-
sponse criterion estimates. In fact, all models were equally 
adequate in reproducing the response criterion estimates 
derived from the behavioral data alone. This indicates that 
more complex models may be necessary to capture proac-
tive control processes. Specifically, we interpret our joint 
modeling results to mean that latent constructs relating to 

switch preparation and task preparation are “targets” for 
future theoretical development—with the view to devel-
oping a more complete cognitive model of cued-trials task 
switching.

5   |   CONCLUSIONS AND CAVEATS

This is the first direct confirmation that response criterion 
is associated with proactive control processes. It is tempo-
rally linked to neural processes elicited proactively after 
cue onset and adjusted trial-by-trial in the interval leading 
up to target onset. However, while we expected the link 
between response criterion and cue-locked ERP activity 
to be maximal in the timeline of the switch-positivity, it 
was instead temporally linked to the pre-target negativ-
ity. Although this suggests that response criterion setting 
occurs after the switch-positivity resolves, temporal over-
lap between ERP and behavioral (or latent) parameters is 
neither necessary nor sufficient to indicate a functional 
relationship between behavioral and neural processes 
(Luck, 2014). In fact, it is possible that response criterion 
is set earlier but impacts later task preparation.

Importantly, modeling response criterion alone was 
not sufficient to fully characterize variability in the neu-
ral signal across cue conditions. Therefore, the simple 
behavioral-neural model does not accurately represent 
the response criterion-EEG link. Switch preparation and 
task preparation parameters were necessary to estimate 
the ERP waveforms more accurately. Including both these 
parameters (Joint Model 3) modified the timeline of the 
response criterion linking estimates, with only the large 
late peak that coincided with the pre-target negativity re-
maining reliable.

In this study, switch and task preparation parameters 
were entered as categorical scores (present vs. absent) 
and successfully modeled the grand average ERP wave-
form. However, there is ample evidence that the level of 
both switch preparation and task preparation can vary 
from trial-to-trial, with task practice, and across individ-
uals (De Jong,  2000; Karayanidis, Whitson, et al.,  2011; 
Provost et al.,  2018; Steyvers et al.,  2019). Future varia-
tions of the model would need to consider such variation 
in preparation.

These findings are consistent with ERP evidence 
that preparation to switch tasks involves multiple pro-
active control processes that are differentially activated 
depending on the information provided by the cue 
(Karayanidis & Jamadar, 2014). Response criterion set-
ting is one mechanism by which we can flexibly adjust 
control depending on the difficulty of the upcoming de-
cision. On trials where the cue validly signaled that the 
task-set will change (switch-to, switch-away), response 
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criterion was set higher compared to repeat cues. As 
all targets included incongruent mapping between the 
task-relevant dimension (e.g., letter) and one of the two 
irrelevant tasks (i.e., either color or number), a higher 
criterion on these switch trials can protect against carry 
over interference from the recently activated (now irrel-
evant) task-set. Response criterion was also set higher 
on trials where the cue did not specify the task-set for 
the upcoming target (switch-away, non-informative), 
and this information was provided by the target itself. 
A higher response criterion on these trials can also in-
crease post-target interference control, as task activation 
will be weaker compared to trials where the task-set was 
either repeated or could be uploaded before target onset. 
Overall, these findings are consistent with recent mod-
els suggesting that response criterion is flexibly adjusted 
to regulate speed-accuracy tradeoff and optimize perfor-
mance (Karayanidis et al., 2009).

Thus, these findings are consistent with previous evi-
dence that flexible adjustment of response criterion plays 
a key role in proactive control processes that regulate 
task-switching performance. It is important to note that 
the version of the DDM model used here only allowed 
response criterion to vary across cue type. Drift rate was 
only allowed to vary across tasks (letter, number, color) 
as it represents post-target processes that were not exam-
ined here, whereas non-decision time was held constant 
across both cue type and task. We reran the analyses using 
a model that allowed both response criterion and non-
decision time to vary and this produced largely identical 
pattern of differences in response criterion and little vari-
ability in non-decision time.

We have previously argued that, in task-switching 
paradigms, DDM model parameters are not sufficient 
to represent task activation processes, such as selection 
and uploading of task-set parameters (Karayanidis et al.,   
2009). These processes may be completed proactively or 
reactively, depending on whether the paradigm provides 
advance information regarding task identity, requires 
advance uploading of the relevant task-set or enforces 
task uploading after target onset. For instance, on trials 
where there is insufficient time or information to upload 
the correct task-set before target onset, task activation 
may need to be completed after target onset, delaying 
the onset of evidence accumulation. Similarly, failure-
to-engage models argue that task preparation may fail 
on a proportion of trials even when the cue provides the 
time and information needed to prepare in advance (De 
Jong, 2000). ERP studies show that inter-trial variability of 
both switch-positivity and pre-target negativity amplitude 
is associated with RT (Karayanidis, Provost, et al., 2011), 
consistent with trial-by-trial variability in the efficiency of 
switch and task preparation (see also Cooper et al., 2017). 

This is likely to impact task activation and to load on non-
decision time. In a switch-stay paradigm without advance 
preparation (Steyvers et al., 2019), after each switch trial, 
task activation was dynamically adjusted over subsequent 
repeat trials and the efficiency of this task activation pro-
cess varied with task practice and age. Therefore, while 
there is substantial evidence that response criterion is an 
important contributing variable to proactive control in 
task-switching, the role of other processes such as task ac-
tivation need to be further examined. For future modeling 
directions, it will be important to not only investigate alter-
native ways of joining behavioral and neural data within 
the DDM modeling framework but also explore modeling 
approaches other than DDM.

It is puzzling that, although estimates from all three 
joint models closely resembled the estimates obtained 
from the behavioral model alone, the addition of neural 
measures did not produce any discernible change in re-
sponse criterion estimates or model fits. One reason that 
the neural data provided little additional value may be 
that we only modeled a very limited representation of 
neural data. Cue-locked EEG epochs were summarized 
in 10 × 100 msec epochs from a single posterior parietal 
electrode (POz) which typically produces the largest cue-
locked ERP effects in task-switching paradigms. This ERP 
signal is derived by averaging across multiple EEG epochs 
and represents averaged activity that has been conducted 
to this specific electrode from multiple neural generators 
(Luck, 2014). Using techniques that extract latent compo-
nents of the EEG signal across multiple scalp electrodes 
(e.g., independent component analyses or cluster analy-
sis) may provide alternative neural measures that more 
accurately represent underlying component processes.

In conclusion, we provide the first direct evidence 
for a link between cue-locked ERP activity and response 
criterion setting in a task-switching paradigm. However, 
response criterion was not sufficient to model proactive 
control processes involved in preparing to switch or re-
peat trial that are seen in the neural data. This may be 
partly due to the fact that only a small sample of neural 
data were modeled and/or to the simplicity of the be-
havioral model. While DDM models have a strong his-
tory of successfully modeling choice decision tasks, the 
component processes may not sufficiently explain per-
formance in more complex task switching paradigms. 
There is a definite need for customized computational 
models of cued-trials task switching paradigms that 
will differentiate between processes involved in task 
selection and switch preparation from processes in-
volved in the decision itself. Such models need to con-
sider variations in performance and ERP components 
as a function of implementing proactive versus reactive 
control. Manipulations of cue informativeness, time to 
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prepare and task practice may impact the efficiency of 
proactive control engagement, and, by extension, the 
need for reactive control after target onset (Jamadar 
et al.,  2015). While the DDM can provide the founda-
tion for modeling choice-RT for each component task 
in a task-switching paradigm, these findings suggest 
that we need to design tailored models to account for 
the additional layers of cognitive control required in 
cued-trials task-switching.

AUTHOR CONTRIBUTIONS
Frini Karayanidis: Conceptualization; data cura-
tion; formal analysis; funding acquisition; investigation; 
methodology; project administration; supervision; visu-
alization; writing – original draft; writing – review and 
editing. Guy E. Hawkins: Data curation; formal analy-
sis; investigation; methodology; software; supervision; 
visualization; writing – original draft; writing – review 
and editing. Aaron S. W. Wong: Data curation; formal 
analysis; methodology; software; supervision; visualiza-
tion; writing – original draft; writing – review and editing. 
Fayeem Aziz: Data curation; formal analysis; methodol-
ogy; software; visualization; writing – review and editing. 
Montana Hunter: Methodology; visualization; writing –  
review and editing. Mark Steyvers: Conceptualization; 
formal analysis; methodology; supervision; writing –  
review and editing.

ACKNOWLEDGMENT
Open access publishing facilitated by The University 
of Newcastle, as part of the Wiley - The University of 
Newcastle agreement via the Council of Australian 
University Librarians.

CONFLICT OF INTEREST
We have no conflicts of interest to disclose.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are avail-
able from the corresponding author upon reasonable 
request.

ORCID
Frini Karayanidis   https://orcid.
org/0000-0002-3317-9954 
Montana Hunter   https://orcid.
org/0000-0003-2704-5623 

REFERENCES
Barcelo, F., Escera, C., Corral, M. J., & Periáñez, J. A. (2006). Task 

switching and novelty processing activate a common neural 
network for cognitive control. Journal of Cognitive Neuroscience, 
18, 1734–1748. https://doi.org/10.1162/jocn.2006.18.10.1734

Braver, T. S. (2012). The variable nature of cognitive control: A dual 
mechanisms framework. Trends in Cognitive Sciences, 16, 106–
113. https://doi.org/10.1016/j.tics.2011.12.010

Cooper, P. S., Wong, A. S., McKewen, M., Michie, P. T., & Karayanidis, 
F. (2017). Frontoparietal theta oscillations during proactive 
control are associated with goal-updating and reduced behav-
ioral variability. Biological Psychology, 129, 253–264. https://doi.
org/10.1016/j.biops​ycho.2017.09.008

de Hollander, G., Forstmann, B. U., & Brown, S. D. (2016). Different 
ways of linking behavioral and neural data via computational 
cognitive models. Biological Psychiatry: Cognitive Neuroscience 
and Neuroimaging, 1, 101–109. https://doi.org/10.1016/j.bpsc.​
2015.​11.004

De Jong, R. (2000). An intention-activation account of residual 
switch costs. In S. Monsell & J. Driver (Eds.), Control of cogni-
tive processes (pp. 357–376). MIT Press.

Finke, M., Escera, C., & Barcelo, F. (2012). The effects of foreknowl-
edge and task-set shifting as mirrored in cue-and target-locked 
event-related potentials. PLoS One, 7(11), 1–10. https://doi.
org/10.1371/journ​al.pone.0049486

Forstmann, B. U., Ratcliff, R., & Wagenmakers, E. J. (2016). Sequential 
sampling models in cognitive neuroscience: Advantages, appli-
cations, and extensions. Annual Review of Psychology, 67, 641–
666. https://doi.org/10.1146/annur​ev-psych​-12241​4-033645

Forstmann, B. U., Wagenmakers, E.-J., Eichele, T., Brown, S., & 
Serences, J. T. (2011). Reciprocal relations between cogni-
tive neuroscience and formal cognitive models: Opposites 
attract? Trends in Cognitive Sciences, 15, 272–279. https://doi.
org/10.1016/j.tics.2011.04.002

Gratton, G., Cooper, P., Fabiani, M., Carter, C. S., & Karayanidis, F. 
(2018). Dynamics of cognitive control: Theoretical bases, para-
digms, and a view for the future. Psychophysiology, 55(3), 1–29. 
https://doi.org/10.1111/psyp.13016

Hyvärinen, A., & Oja, E. (2000). Independent component analysis: 
Algorithms and applications. Neural Networks, 13, 411–430. 
https://doi.org/10.1016/S0893​-6080(00)00026​-5

Jamadar, S., Michie, P. T., & Karayanidis, F. (2010). Sequence effects 
in cued task switching modulate response preparedness and 
repetition priming processes. Psychophysiology, 47, 365–386. 
https://doi.org/10.1111/j.1469-8986.2009.00932.x

Jamadar, S., Thienel, R., & Karayanidis, F. (2015). Task switching 
processes. In A. W. Toga (Ed.), Brain mapping: An encyclo-
pedic reference (pp. 327–335). Academic Press. https://doi.
org/10.1016/B978-0-12-39702​5-1.00250​-5

Jost, K., Mayr, U., & Rösler, F. (2008). Is task switching nothing but cue 
priming? Evidence from ERPs. Cognitive, Affective, & Behavioral 
Neuroscience, 8, 74–84. https://doi.org/10.3758/CABN.8.1.74

Karayanidis, F., Jamadar, S., Ruge, H., Phillips, N., Heathcote, A., 
& Forstmann, B. U. (2010). Advance preparation in task-
switching: Converging evidence from behavioral, brain activa-
tion, and model-based approaches. Frontiers in Psychology, 1, 
25. https://doi.org/10.3389/fpsyg.2010.00025

Karayanidis, F., & Jamadar, S. D. (2014). Event-related potentials 
reveal multiple components of proactive and reactive control 
in task switching. In Task switching and cognitive control (pp. 
200–236). Elsevier. https://doi.org/10.1093/acpro​f:osobl/​97801​
99921​959.003.0009

Karayanidis, F., Mansfield, E. L., Galloway, K. L., Smith, J. L., Provost, 
A., & Heathcote, A. (2009). Anticipatory reconfiguration elicited 

 14698986, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/psyp.14241, W

iley O
nline L

ibrary on [17/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-3317-9954
https://orcid.org/0000-0002-3317-9954
https://orcid.org/0000-0002-3317-9954
https://orcid.org/0000-0003-2704-5623
https://orcid.org/0000-0003-2704-5623
https://orcid.org/0000-0003-2704-5623
https://doi.org/10.1162/jocn.2006.18.10.1734
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.1016/j.biopsycho.2017.09.008
https://doi.org/10.1016/j.biopsycho.2017.09.008
https://doi.org/10.1016/j.bpsc.2015.11.004
https://doi.org/10.1016/j.bpsc.2015.11.004
https://doi.org/10.1371/journal.pone.0049486
https://doi.org/10.1371/journal.pone.0049486
https://doi.org/10.1146/annurev-psych-122414-033645
https://doi.org/10.1016/j.tics.2011.04.002
https://doi.org/10.1016/j.tics.2011.04.002
https://doi.org/10.1111/psyp.13016
https://doi.org/10.1016/S0893-6080(00)00026-5
https://doi.org/10.1111/j.1469-8986.2009.00932.x
https://doi.org/10.1016/B978-0-12-397025-1.00250-5
https://doi.org/10.1016/B978-0-12-397025-1.00250-5
https://doi.org/10.3758/CABN.8.1.74
https://doi.org/10.3389/fpsyg.2010.00025
https://doi.org/10.1093/acprof:osobl/9780199921959.003.0009
https://doi.org/10.1093/acprof:osobl/9780199921959.003.0009


      |  15 of 15KARAYANIDIS et al.

by fully and partially informative cues that validly predict a 
switch in task. Cognitive, Affective, & Behavioral Neuroscience, 9, 
202–215. https://doi.org/10.3758/CABN.9.2.202

Karayanidis, F., & McKewen, M. (2021). More than “just a test”—Task-
switching paradigms offer an early warning system for cognitive 
decline. In Psychology of learning and motivation (Vol. 74, pp. 
141–193). Elsevier. https://doi.org/10.1016/bs.plm.2021.02.006

Karayanidis, F., Provost, A., Brown, S., Paton, B., & Heathcote, A. (2011). 
Switch-specific and general preparation map onto different ERP 
components in a task-switching paradigm. Psychophysiology, 48, 
559–568. https://doi.org/10.1111/j.1469-8986.2010.01115.x

Karayanidis, F., Whitson, L. R., Heathcote, A., & Michie, P. T. (2011). 
Variability in proactive and reactive cognitive control processes 
across the adult lifespan. Frontiers in Psychology, 2, 318. https://
doi.org/10.3389/fpsyg.2011.00318

Kayser, J., & Tenke, C. (2006). Principal components analysis of 
laplacian waveforms as a generic method for identifying 
ERP generator patterns: I. Evaluation with auditory oddball 
tasks. Clinical Neurophysiology, 117(2), 348–368. https://doi.
org/10.1016/j.clinph.2005.08.034

Lavric, A., Mizon, G. A., & Monsell, S. (2008). Neurophysiological 
signature of effective anticipatory task-set control: A task-
switching investigation. European Journal of Neuroscience, 28, 
1016–1029. https://doi.org/10.1111/j.1460-9568.2008.06372.x

Luck, S. J. (2014). An introduction to the event-related potential tech-
nique. MIT Press.

Mansfield, E. L., Karayanidis, F., Jamadar, S., Heathcote, A., & 
Forstmann, B. U. (2011). Adjustments of response threshold 
during task switching: A model-based functional magnetic 
resonance imaging study. Journal of Neuroscience, 31, 14688–
14692. https://doi.org/10.1523/JNEUR​OSCI.2390-11.2011

MATLAB. (2016). Version 9.0.0.341360 (r2016a). The MathWorks 
Inc.

Meiran, N. (2000). Reconfiguration of stimulus task sets and re-
sponse task sets during task switching. In Control of cognitive 
processes: Attention and performance xviii (pp. 377–400). MIT 
Press.

Nicholson, R., Karayanidis, F., Poboka, D., Heathcote, A., & Michie, 
P. T. (2005). Electrophysiological correlates of anticipatory task-
switching processes. Psychophysiology, 42, 540–554. https://doi.
org/10.1111/j.1469-8986.2005.00350.x

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). 
FieldTrip: Open source software for advanced analysis of MEG, 
EEG, and invasive electrophysiological data. Computational 
Intelligence and Neuroscience, 2011, 1–9. https://doi.
org/10.1155/2011/156869

Palestro, J. J., Bahg, G., Sederberg, P. B., Lu, Z.-L., Steyvers, M., & 
Turner, B. M. (2018). A tutorial on joint models of neural and 
behavioral measures of cognition. Journal of Mathematical 
Psychology, 84, 20–48. https://doi.org/10.1016/j.jmp.2018.03.003

Periáñez, J. A., & Barceló, F. (2009). Updating sensory versus task 
representations during task-switching: Insights from cogni-
tive brain potentials in humans. Neuropsychologia, 47, 1160–
1172. https://doi.org/10.1016/j.neuro​psych​ologia.2009.01.014

Provost, A., Jamadar, S., Heathcote, A., Brown, S. D., & Karayanidis, 
F. (2018). Intertrial RT variability affects level of target-related 
interference in cued task switching. Psychophysiology, 55, 
e12971. https://doi.org/10.1111/psyp.12971

Ratcliff, R. (1978). A theory of memory retrieval. Psychological 
Review, 85, 59–108. https://doi.org/10.1037/0033-295X.85.2.59

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). 
Diffusion decision model: Current issues and history. Trends 
in Cognitive Sciences, 20, 260–281. https://doi.org/10.1016/​
j.tics.2016.01.007

Schmitz, F., & Voss, A. (2012). Decomposing task-switching costs 
with the diffusion model. Journal of Experimental Psychology: 
Human Perception and Performance, 38, 222–250. https://doi.
org/10.1037/a0026003

Steyvers, M., Hawkins, G. E., Karayanidis, F., & Brown, S. D. (2019). 
A large-scale analysis of task switching practice effects across 
the lifespan. Proceedings of the National Academy of Sciences, 
116, 17735–17740. https://doi.org/10.1073/pnas.19067​88116

Turner, B. M., Forstmann, B. U., Love, B. C., Palmeri, T. J., & Van 
Maanen, L. (2017). Approaches to analysis in model-based cog-
nitive neuroscience. Journal of Mathematical Psychology, 76, 
65–79. https://doi.org/10.1016/j.jmp.2016.01.001

Turner, B. M., Forstmann, B. U., & Steyvers, M. (2019). Joint models 
of neural and behavioral data. In Computational approaches 
to cognition and perception. Springer Cham. https://doi.
org/10.1007/978-3-030-03688​-1

Turner, B. M., Forstmann, B. U., Wagenmakers, E.-J., Brown,  
S. D., Sederberg, P. B., & Steyvers, M. (2013). A Bayesian frame-
work for simultaneously modeling neural and behavioral data. 
NeuroImage, 72, 193–206. https://doi.org/10.1016/j.neuro​image.​
2013.01.04

Van Ravenzwaaij, D., Provost, A., & Brown, S. D. (2017). A confirma-
tory approach for integrating neural and behavioral data into a 
single model. Journal of Mathematical Psychology, 76, 131–141. 
https://doi.org/10.1016/j.jmp.2016.04.005

Vandierendonck, A., Liefooghe, B., & Verbruggen, F. (2010). Task 
switching: Interplay of reconfiguration and interference con-
trol. Psychological Bulletin, 136, 601–626. https://doi.org/​
10.1037/a0019791

Wong, A. S. W., Cooper, P. S., Conley, A. C., McKewen, M., Fulham, 
W. R., Michie, P. T., & Karayanidis, F. (2018). Event-related 
potential responses to task switching are sensitive to choice 
of spatial filter. Frontiers in Neuroscience, 12, 143. https://doi.
org/10.3389/fnins.2018.00143

SUPPORTING INFORMATION
Additional supporting information can be found online in 
the Supporting Information section at the end of this article.

Appendix S1: Supporting Information

How to cite this article: Karayanidis, F., 
Hawkins, G. E., Wong, A. S. W., Aziz, F., Hunter, 
M., & Steyvers, M. (2023). Jointly modeling 
behavioral and EEG measures of proactive control 
in task switching. Psychophysiology, 00, e14241. 
https://doi.org/10.1111/psyp.14241

 14698986, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/psyp.14241, W

iley O
nline L

ibrary on [17/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.3758/CABN.9.2.202
https://doi.org/10.1016/bs.plm.2021.02.006
https://doi.org/10.1111/j.1469-8986.2010.01115.x
https://doi.org/10.3389/fpsyg.2011.00318
https://doi.org/10.3389/fpsyg.2011.00318
https://doi.org/10.1016/j.clinph.2005.08.034
https://doi.org/10.1016/j.clinph.2005.08.034
https://doi.org/10.1111/j.1460-9568.2008.06372.x
https://doi.org/10.1523/JNEUROSCI.2390-11.2011
https://doi.org/10.1111/j.1469-8986.2005.00350.x
https://doi.org/10.1111/j.1469-8986.2005.00350.x
https://doi.org/10.1155/2011/156869
https://doi.org/10.1155/2011/156869
https://doi.org/10.1016/j.jmp.2018.03.003
https://doi.org/10.1016/j.neuropsychologia.2009.01.014
https://doi.org/10.1111/psyp.12971
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1016/j.tics.2016.01.007
https://doi.org/10.1016/j.tics.2016.01.007
https://doi.org/10.1037/a0026003
https://doi.org/10.1037/a0026003
https://doi.org/10.1073/pnas.1906788116
https://doi.org/10.1016/j.jmp.2016.01.001
https://doi.org/10.1007/978-3-030-03688-1
https://doi.org/10.1007/978-3-030-03688-1
https://doi.org/10.1016/j.neuroimage.2013.01.04
https://doi.org/10.1016/j.neuroimage.2013.01.04
https://doi.org/10.1016/j.jmp.2016.04.005
https://doi.org/10.1037/a0019791
https://doi.org/10.1037/a0019791
https://doi.org/10.3389/fnins.2018.00143
https://doi.org/10.3389/fnins.2018.00143
https://doi.org/10.1111/psyp.14241

	Jointly modeling behavioral and EEG measures of proactive control in task switching
	Abstract
	1|INTRODUCTION
	2|METHOD
	2.1|Participants
	2.2|Task and stimuli
	2.3|Procedure and EEG recording
	2.3.1|EEG preprocessing

	2.4|Joint model of behavioral and neural data
	2.4.1|Behavioral sub-­model
	2.4.2|Neural sub-­model
	2.4.3|Linking the behavioral and neural sub-­models
	2.4.3.1|Joint model 1: Linking ERP amplitude with response criterion
	2.4.3.2|Joint model 2: Linking ERP amplitude with response criterion and switch preparation
	2.4.3.3|Joint model 3: Linking ERP amplitude EEG with response criterion, switch preparation and task preparation



	3|RESULTS
	3.1|Behavioral data
	3.2|ERP waveforms
	3.2.1|Joint model 1
	3.2.2|Joint model 2
	3.2.3|Joint model 3
	3.2.4|ERP covariance across time


	4|DISCUSSION
	5|CONCLUSIONS AND CAVEATS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENT
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


