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Experimentation is at the core of research in the behavioral and neural sci-
ences, yet observations can be expensive and time-consuming to acquire
(e.g., MRI scans, responses from infant participants). A major interest of
researchers is designing experiments that lead to maximal accumulation
of information about the phenomenon under study with the fewest pos-
sible number of observations. In addressing this challenge, statisticians
have developed adaptive design optimization methods. This letter in-
troduces a hierarchical Bayes extension of adaptive design optimization
that provides a judicious way to exploit two complementary schemes of
inference (with past and future data) to achieve even greater accuracy and
efficiency in information gain. We demonstrate the method in a simula-
tion experiment in the field of visual perception.

1 Introduction

Accurate measurement is essential in the behavioral and neural sciences
to ensure proper model inference. Efficient measurement in experimenta-
tion can also be critical when observations are costly (e.g., MRI scan fees)
or time-consuming, such as requiring hundreds of observations from an
individual to measure sensory (e.g., eyes, ears) abilities or weeks of train-
ing (e.g., mice). The field of design optimization (Atkinson & Donev, 1992;
see section 2 for a brief review) pursues methods of improving both, with
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adaptive optimization (e.g., DiMattina & Zhang, 2008, 2011) being one of
the most promising approaches to date. These adaptive design optimization
(ADO) methods capitalize on the sequential nature of experimentation by
seeking to gain as much information as possible from data across the test-
ing session. Each new measurement is made using the information learned
from previous measurements of a system so as to achieve maximal gain of
information about the processes and behavior under study.

Hierarchical Bayesian modeling (HBM) is another approach to increasing
the efficiency and accuracy of inference (Gelman, Carlin, Stern, & Rubin,
2004; Jordan, 1998; Koller & Friedman, 2009; Rouder & Lu, 2005). It seeks
to identify structure in the data-generating population (e.g., the kind of
groups to which an individual belongs) in order to infer properties of an
individual given the measurements provided. It is motivated by the fact
that data sets, even if not generated from an identical process, can contain
information about each other. Hierarchical modeling provides a statistical
framework for fully exploiting such mutual informativeness.

These two inference methods, ADO and HBM, seek to take full advan-
tage of two different types of information, future and past data, respectively.
Because both can be formulated in a Bayesian statistical framework, it is
natural to combine them to achieve even greater information gain than
either alone can provide. Suppose, for instance, that one has already col-
lected data sets from a group of participants in an experiment measuring
risk tolerance and data are about to be collected from another person. A
combination of HBM and ADO allows the researcher to take into account
the knowledge gained about the population in choosing optimal designs.
The procedure should propose designs more efficiently for the new person
than ADO alone, even when no data for that person have been observed.

Despite the intuitive appeal of this dual approach, to the best of our
knowledge, a general, fully Bayesian framework integrating the two meth-
ods has not been published. In this letter, we provide one. In addition,
we show how each method and their combination contribute to gaining
the maximum possible information from limited data, in terms of Shannon
entropy, in a simulation experiment in the field of visual psychophysics.

2 Paradigm of Adaptive Design Optimization

The method for collecting data actively for best possible inference, rather
than using a data set observed in an arbitrarily fixed design, is known as
optimal experimental design in statistics and goes back to the pioneering work
in the 1950s and 1960s (Lindley, 1956; Chernoff, 1959; Kiefer, 1959; Box &
Hill, 1967). Essentially the same technique has been studied and applied
in machine learning as well, known as query-based learning (Seung, Opper,
& Sompolinsky, 1992) and active learning (Cohn, Ghahramani, & Jordan,
1996). Since in most cases data collection occurs sequentially and optimal
designs are best chosen upon immediate feedback from each data point, the
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algorithm is by nature adaptive—hence the term adaptive design optimization
(ADO) that we use here.

The recent surge of interest in this field can be attributed largely to the
advent of fast computing, which has made it possible to solve more complex
and a wider range of optimization problems, and in some cases to do so in
real-time experiments. ADO is gaining traction in neuroscience (Paninski,
2003, 2005; Lewi, Butera, & Paninski, 2009; DiMattina & Zhang, 2008, 2011),
and a growing number of labs are applying it in various areas of psychol-
ogy and cognitive science, including retention memory (Cavagnaro, Pitt,
& Myung, 2009; Cavagnaro, Myung, Pitt, & Kujala, 2010), decision mak-
ing (Cavagnaro, Gonzalez, Myung, & Pitt, 2013; Cavagnaro, Pitt, Gonzalez,
& Myung, 2013), psychophysics (Kujala & Lukka, 2006; Lesmes, Jeon, Lu,
& Dosher, 2006), and the development of numerical representation (Tang,
Young, Myung, Pitt, & Opfer, 2010). In what follows, we provide a brief
overview of the ADO framework.

ADO is formulated as a Bayesian sequential optimization algorithm that
is executed over the course of an experiment.1 Specifically, on each trial
of the experiment, on the basis of the present state of knowledge (prior)
about the phenomenon under study, which is represented by a statistical
model of data, the optimal design with the highest expected value of a
utility function (defined below) is identified. The experiment is then carried
out with the optimal design, and measured outcomes are observed and
recorded. The observations are subsequently used to update the prior to
the posterior using Bayes’ theorem. The posterior in turn is used to identify
the optimal design for the next trial of the experiment. As depicted in the
shaded region of Figure 1, these alternating steps of design optimization,
measurement, and updating of the individual-level data model are repeated
in the experiment until a suitable stopping criterion is met.

In formal statistical language, the first step of ADO, design optimization,
entails finding the experimental design (e.g., stimulus) that maximizes a
utility function of the following form (Chaloner & Verdinelli, 1995; Nelson,
McKenzie, Cottrell, & Sejnowski, 2011; Myung, Cavagnaro, & Pitt, 2013),

U(dt ) =
∫∫ [

log
p(θ |y(1:t), dt )

p(θ |y(1:t−1))

]
p(y(t)|θ, dt ) p(θ |y(1:t−1)) dy(t) dθ, (2.1)

where θ is the parameter of a data model (or measurement model) that
predicts observed data given the parameter, and y(1:t) is the collection of

1In this letter, we consider a particular form of ADO that assumes the use of a Bayesian
model and the information-theoretic utility (discussed further in the text). While this
choice has straightforward justification from the Bayesian perspective as the quality of
inference is evaluated on the level of a posterior distribution, there are other forms of ADO
that assume a non-Bayesian model or achieve other types of optimality (e.g., minimum
quadratic loss of a point estimate). Chaloner and Verdinelli (1995) provide a good review
of various approaches to design optimization.
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Figure 1: Schematic illustration of the steps involved in ADO (shaded region
only) and hierarchical ADO (HADO; whole diagram). See text for further details.

past measurements made from the first to (t − 1)th trials, denoted by y(1:t−1),
plus an outcome, y(t), to be observed in the current, tth trial conducted with
a candidate design, dt. In this equation, note that the function p(y(t)|θ, dt )

specifies the model’s probabilistic prediction of y(t) given the parameter
θ and the design dt, and p(θ |y(1:t−1)) is the posterior distribution of the
parameter given past observations, which has become the prior for the

current trial. Finally, log
p(θ |y(1:t),dt )

p(θ |y(1:t−1) )
, referred to as the sample utility function,

measures the utility of design dt, assuming an outcome, y(t), and a parameter
value (often a vector), θ .

U(dt ) in equation 2.1 is referred to as the expected utility function and is
defined as the expectation of the sample utility function with respect to the
data distribution p(y(t)|θ, dt ) and the parameter prior p(θ |y(1:t−1)). Under the
particular choice of the sample utility function, the expected utility U(dt )

admits an information-theoretic interpretation. Specifically, the quantity
becomes the mutual information between the parameter variable � and
the outcome variable Y(t) conditional design dt, that is, U(dt ) = I(�;Y(t)|dt )

(Cover & Thomas, 1991), which also represents the so-called Bayesian D-
optimality (Chaloner & Verdinelli, 1995). Accordingly, the optimal design
that maximizes U(dt ), or d∗

t = argmaxU(dt ), is the one that yields the largest
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information gain about the model parameter(s) upon the observation of a
measurement outcome.2

The second, measurement step of ADO involves administering the opti-
mal design d∗

t and observing the measurement outcome y(t), as illustrated
in Figure 1. The third and final step of the ADO application is updating the
prior p(θ |y(1:t−1)) to the posterior p(θ |y(1:t)) by Bayes’ theorem on the basis
of the newly observed outcome y(t).

In implementing ADO, a major computational burden is finding the op-
timal design d∗, which involves evaluating the multiple integrals in both the
sample and the expected utility functions in equation 2.1 (integral is implicit
in the sample utility). The integrals generally have no closed-form solutions
and need to be calculated many times with candidate designs substituted
during optimization. Furthermore, online data collection requires that the
integration and optimization be solved numerically on the computer in real
time. Advances in parallel computing (e.g., general-purpose GPU com-
puting) have made it possible to solve some problems using grid-based
algorithms. In situations in which grid-based methods are not suitable, sev-
eral promising Markov chain Monte Carlo (MCMC) methods have been
developed to perform the required computation (Müller, Sanso, & De Iorio,
2004; Amzal, Bois, Parent, & Robert, 2006; Cavagnaro et al., 2010; Myung
et al., 2013).

3 Hierarchical Adaptive Design Optimization

As currently used, ADO is tuned to optimizing a measurement process at
the individual participant level, without taking advantage of information
available from data collected from previous testing sessions. Hierarchical
Bayesian modeling (HBM; for theory, Good, 1965; de Finetti, 1974; Bernado
& Smith, 1994; for application examples, Jordan, 1998; Rouder, Speckman,
Sun, & Jiang, 2005; Rouder & Lu, 2005; Lee, 2006) not only provides a flexible
framework for incorporating this kind of prior information but is also well
suited for being integrated within the existing Bayesian ADO paradigm to
achieve even greater efficiency of measurement.

The basic idea behind HBM is to improve the precision of inference (e.g.,
power of a test) by taking advantage of statistical dependencies present in
data. For example, suppose that there are previous measurements taken

2In defining the mutual information here, we assume that the goal of ADO is to
maximize the information about all parameter elements of a model jointly rather than
some of them. In another situation, the model may be a mixture model whose parameter
θ contains an indicator to a submodel, and the goal of ADO may be to maximize the
information about the indicator variable (i.e., the problem of model discrimination; e.g.,
Cavagnaro et al., 2010). In this case, the required change is to redefine the sample utility
function in equation 2.1 by integrating out the parameters of no interest (e.g., submodel
parameters) from each of the distributions inside the logarithm.
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from different individuals who are considered a random sample from a
certain population. It is highly likely that measurements taken from a new
individual drawn from the same population will share similarities with
others. In this situation, adaptive inference will enjoy greater benefit when
taking the specific data structure into account rather than starting with no
such information. That is, data sets, as a collection, contain information
about one another, lending themselves to more precise inference. Since
individual data sets require themselves to be modeled (i.e., a measurement
model), the statistical relationship among them needs to be modeled on a
separate level, hence the model being hierarchical (for more examples of
the upper-level structure in a hierarchical model, see Koller & Friedman,
2009; Gelman et al., 2004).

From the perspective of Bayesian inference, HBM is a way, given a certain
data model, to form an informative prior for model parameters by learning
from data. An informative prior, however, may be constructed not only from
new empirical observations but also from established knowledge about
the data-generating structure. Since the use of prior information is one of
the major benefits of Bayesian optimal experimental design (Chaloner &
Verdinelli, 1995), it is no surprise to find examples of using informative
priors in the literature of design optimization. These applications focus on
imposing theoretically sensible constraints on the prior in a conservative
manner, in which the constraints are represented by a restricted support of
the prior (Tulsyan, Forbes, & Huang, 2012), regularization (Woolley, Gill, &
Theunissen, 2006), structured sparsity (Park & Pillow, 2012), and modeled
covariance structure (Ramirez et al., 2011). Some of these studies employ
hierarchical models because modeling a prior distribution with hyperpa-
rameters naturally entails hierarchical structure. Our study, by contrast,
focuses on learning prior knowledge from data, which is useful when the
phenomenon being modeled has yet to permit effective, theoretical (or algo-
rithmic) constraints to be used as a prior or when, if certain constraints have
already been incorporated, inference can further benefit from information
elicited from a specific empirical condition.

3.1 Formulation. To integrate HBM into ADO, we first specify a com-
mon form of a hierarchical Bayes model. Suppose that an individual-level
measurement model has been given as a probability density or mass func-
tion, p(yi|θi), given the parameter (vector), θi, for individual i, and the rela-
tionship among individuals is described by an upper-level model, p(θ1:n|η)

(e.g., a regression model with η as coefficients), where θ1:n = (θ1, · · · , θn)

is the collection of model parameters for all n individuals. Also com-
monly assumed is conditional independence between individuals such that
p(yi|θ1:n, y−.i) = p(yi|θi) where y−.i denotes the collection of data from all in-
dividuals except individual i (i.e., y1:n = (y1, · · · , yn) minus yi). Then the
joint posterior distribution of the hierarchical model given all observed
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data is expressed as

p(θ1:n, η|y1:n) = 1
p(y1:n)

p(y1:n|θ1:n)p(θ1:n|η)p(η)

= 1
p(y1:n)

[
n∏

i=1

p(yi|θi)

]
p(θ1:n|η)p(η), (3.1)

where p(η) is the prior distribution for the upper-level model’s parame-
ter, η, and the marginal distribution p(y1:n) is obtained by integrating the
subsequent expression over θ1:n and η.

The model also needs to be expressed in terms of an entity about which
the measurement seeks to gain maximal information. In most measurement
situations, it is sensible to assume that the goal is to estimate the traits of a
newly measured individual most accurately. Suppose that a measurement
session is currently underway on the nth individual, and data from previous
measurement sessions, y1:n−1, are available. Then the posterior distribution
of θn for this particular individual given all available data is derived from
equation 3.1 as

p(θn|y1:n) = 1
p(y1:n)

∫ ∫ [
n∏

i=1

p(yi|θi)

]
p(θ1:n|η)p(η) dη dθ1:n−1, (3.2)

where the marginal distribution p(y1:n) is obtained by integrating the inte-
grand further over θn. From a computational standpoint, it is advantageous
to turn the above posterior distribution into a sequentially predictive form.
Under the assumption of conditional independence, equation 3.2 can be
rewritten as

p(θn|y1:n) = p(yn|θn)p(θn|y1:n−1)∫
p(yn|θn)p(θn|y1:n−1) dθn

, (3.3)

where

p(θn|y1:n−1) = 1
p(y1:n−1)

∫ ∫ [
n−1∏
i=1

p(yi|θi)

]
p(θ1:n|η)p(η) dη dθ1:n−1

(3.4)

is the posterior predictive distribution of θn given the data from previous
measurement sessions, y1:n−1 (assuming that yn is yet to be observed).3 An

3Although the term predictive distribution is usually associated with a Bayesian model’s
prediction of a future observation, it may also be used to mean the prediction of a future,
latent variable in a hierarchical model, such as θn in the present context.
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interpretation of this form is that as far as θn is concerned, the predictive
distribution in equation 3.4 fully preserves information in the previous
data y1:n−1 and, in turn, serves as an informative prior for the current, nth
individual, which is updated on actually observing yn.

Having established the basic building blocks of hierarchical adaptive
design optimization (HADO), we now describe how measurement within
the HADO framework is carried out. Suppose that a measurement has
been taken in trial t − 1 for the nth individual, and the session is in need
of an optimal design to make the next observation, y(t)

n , in trial t. Then
the optimal design, d∗

t , is the one that maximizes the following mutual
information utility:

U(dt ) =
∫ ∫ [

log
p
(
θn

∣∣y1:n−1, y(1:t)
n , dt

)
p
(
θn

∣∣y1:n−1, y(1:t−1)
n

)
]

p
(
y(t)

n |θn, dt

)
× p

(
θn

∣∣y1:n−1, y(1:t−1)
n

)
dy(t)

n dθn, (3.5)

where y1:n−1 denotes the data from previous n − 1 measurement sessions,
and y(1:t)

n contains the nth individual’s measurements from past t − 1 trials
(i.e., y(1:t−1)

n ) plus an observation, y(t)
n , that is to be made in trial t using a

candidate design, dt. Note that this utility function of HADO, similar as it
may seem in its form to that of ADO in equation 2.1, takes all previously
observed data into account through the hierarchical model, not just that
from the current measurement session.

For HADO to be adaptive, Bayesian updating for posterior distributions
inside the utility function is performed recursively on two different levels
(see Figure 1). First, on the individual level (see the shaded region), updating
is repeated over each measurement trial (i.e., to find the optimal design d∗

t+1

after observing y(t)
n ) using equation 3.3 (i.e., Bayes’ theorem). Note that what

is modified in equation 3.3 is only the individual data model (i.e., p(yn|θn))
with yn = y(1:t−1)

n augmented with a new measurement, y(t)
n . Next, when the

session ends and a new one is to begin for the next participant (outside
the shaded region), the hierarchical model is updated, again using Baye’s
theorem, on the basis of all n sessions’ data, y1:n, and expressed in a posterior
predictive form for θn+1 (see equation 3.4 with n + 1 substituted for n). The
session counter n now shifts to n + 1, the trial counter t is reset to 1, and the
posterior predictive distribution becomes the prior for the new session to
start with (i.e., p(θn+1|y(1:0)

n+1 ) = p(θn+1|y1:n)). This two-stage adaptation is a
defining characteristic of HADO, hence the term hierarchical adaptive.

Although not implemented as an application example in this study, there
are additional forms of HADO that are worth mentioning. The idea of com-
bining the techniques of hierarchical Bayes and optimal experimental de-
sign is more general than described above. For example, suppose that one
wants to understand the population-level parameters, but it is difficult to
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collect sufficient data from each individual (e.g., in developing a human-
computer interaction model that functions robustly in a general setting).
This problem is best addressed by hierarchical modeling, but the applica-
tion of hierarchical modeling alone is merely ad hoc in the sense that the
acquisition of data is not planned optimally. In this case, introduction of
ADO will make it possible to choose optimal designs adaptively, not only
within but also across individual measurement sessions, so that the maxi-
mum possible information is gained about the population-level parameters.
That is, it is possible for the algorithm to probe different aspects of individ-
uals across sessions that best contribute to the goal of learning the common
functioning, not necessarily learning that particular individual. In achiev-
ing this, the optimal design maximizes the following information-theoretic
utility,

U ′(dt ) =
∫ ∫ [

log
p
(
η
∣∣y1:n−1, y(1:t)

n , dt

)
p
(
η
∣∣y1:n−1, y(1:t−1)

n
)

]
p
(
y(t)

n

∣∣θn, dt

)
× p

(
θn, η

∣∣y1:n−1, y(1:t−1)
n

)
dy(t)

n dθn dη, (3.6)

which measures the expected information gain from a design dt of the
next trial about the population-level parameter(s) η. As with the preceding
formulation, Bayesian updating needs to be performed on both individual
and higher levels, but in this case, updating p(θn, η|·).

One may also want to optimize an experiment to infer both the higher-
level structure and the individual-level attributes. The formal framework
employed in our study is general enough to address this problem (i.e.,
meeting seemingly multiple goals of inference). The utility function to
maximize for an optimal design in the next trial is a slight modification of
equation 3.6:

U ′′(dt )=
∫ ∫ [

log
p
(
θn, η

∣∣y1:n−1, y(1:t)
n , dt

)
p
(
θn, η

∣∣y1:n−1, y(1:t−1)
n

)
]

p
(
y(t)

n

∣∣θn, dt

)
× p

(
θn, η

∣∣y1:n−1, y(1:t−1)
n

)
dy(t)

n dθn dη, (3.7)

which equals I(�n, H;Y(t)
n |dt ) by the notation of mutual information (H

denotes the random variable corresponding to η). A simple yet notable
application example of this formulation is a situation in which the goal of
an experiment is to select among multiple, alternative models, assuming
that one of them is the underlying data-generating process for all individ-
uals, and at the same time to estimate distinct parameter values for each
individual. The utility that captures this goal is a special case of equation
3.7 in which the higher-level parameter η turns into a model index m and
the corresponding integration is replaced by summation over the indexes.
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In fact, a similar approach to choosing optimal designs for model selec-
tion and parameter learning has been proposed previously (Sugiyama &
Rubens, 2008), but the current framework is more general in that any type
of hierarchical structure can be inferred and the optimality of a design with
respect to the goal is understood from a unified perspective.

3.2 Implementation Considerations. In typical applications of hierar-
chical Bayes, posterior inference is conducted mainly to incorporate the
data that have already been collected, and all the parameters of interest
are updated jointly in a simulation-based method (e.g., via MCMC). This
approach, however, is not well suited to HADO. Many applications of adap-
tive measurement require the search for an optimal design between trials to
terminate in less than a second. To circumvent this computational burden,
we formulated HADO, as described in the preceding section, in a natural
way that suits its domain of application (experimentation), allowing the
required hierarchical Bayes inference to be performed in two stages. Below
we describe specific considerations for implementing these steps.

Once a numerical form of the predictive distribution (see equation 3.4)
is available, updating the posterior distribution, equation 3.3, within each
HADO measurement session concerns only the current individual’s param-
eter and data just as in the conventional ADO. Accordingly, the recursive
updating on the individual level will be no more demanding than the cor-
responding operation in conventional ADO since they involve essentially
the same computation. Beyond the individual level, an additional step is
required to revise the posterior predictive distribution of θn given all previ-
ous data on the termination of each measurement session, which is shown
outside the shaded area in Figure 1. The result becomes a prior for the
next session, serving as an informative prior for the individual to be newly
measured.4

Critical, then, to the implementation of HADO is a method for obtaining
a numerical form of the predictive distribution of θn before a new measure-
ment session begins for individual n. Fortunately, in most cases this distri-
bution conforms to smoothness and structured sparsity (a prior distribution
with a highly irregular shape is not sensible), being amenable to approxima-
tion. Furthermore, in modeling areas dealing with high-dimensional feature
space, certain theoretical constraints that take advantage of such regularity
are often already studied and modeled into a prior (Park & Pillow, 2012;
Ramirez et al., 2011), which can also be used to represent the predictive dis-
tribution. Otherwise, various density estimation techniques with built-in
regularization mechanisms (e.g., kernel density estimator) may be used to

4The same two-level updating can also apply to the case where the inference in-
volves the population-level parameters with optimal designs satisfying the utility func-
tion shown in equation 3.6 or 3.7 as long as the predictive distribution p(θn, η|y1:n−1) is
computable.
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approximate the distribution (Scott, 1992). For a lower-dimensional case, a
grid representation may be useful. In fact, grid-based methods can handle
multidimensional problems with high efficiency when combined with a
smart gridding scheme that exploits regularity (e.g., sparse grids; Pflüger,
Peherstorfer, & Bungartz, 2010).

Another consideration is that the predictive distribution of θn must be
obtained by integrating out all other parameters numerically, particularly
other individuals’ parameters θis. If θis (or groups of θis) are by design con-
ditionally independent in the upper-level model (p(θ1:n|η)p(η) in equation
3.4, it is possible to phrase the integral as repeated integrals that are easier
to compute. Also, note that the shape of the integrands is highly concen-
trated, with a large number of observations per individual (i.e., large t),
and the posterior predictive of θn tends to be localized as well with accu-
mulation of data over many sessions (i.e., large n). Various techniques for
multidimensional numerical integration are available that can capitalize on
these properties. Monte Carlo integration based on a general sampling algo-
rithm such as MCMC is a popular choice for high-dimensional integration
problems (Robert & Casella, 2004). However, unless the integrand is highly
irregular, multivariate quadrature is a viable option because, if applicable, it
generally outperforms Monte Carlo integration in regard to efficiency and
accuracy and, with recent advances, scales well to high-dimensional inte-
gration depending on the regularity (Griebel & Holtz, 2010; Holtz, 2011;
Heiss & Winschel, 2008).

Note that although an estimate of θn (e.g., posterior mean) is obtained
at the end of the measurement session, the main purpose of posterior up-
dating for θn within the session is to generate optimal designs. Thus, the
resulting estimate of θn may not necessarily be taken as a final estimate,
especially when the employed posterior predictive approximation is not
highly precise. If needed, additional Bayesian inference based on the joint
posterior distribution in equation 3.1 may be conducted after each test ses-
sion with added data (see the top right box in Figure 1). This step will be
particularly suitable when the upper-level structure (i.e., η) needs to be an-
alyzed or precise estimates of all previously tested individuals’ parameters
are required for a certain type of analysis (e.g., to build a classifier that
categorizes individuals based on modeled traits in the parameters).

It is also notable, from a computational perspective, that the procedure
inside the shaded area in Figure 1 requires online computation during the
measurement session, whereas the posterior predictive calculation outside
the area (i.e., computing its grid representation) is performed offline be-
tween sessions. In case multiple sessions need to be conducted continually
without an interval sufficient for offline computation, the same predictive
distribution may be used as a prior for these sessions; for example, offline
computation is performed overnight to prepare for the next day’s mea-
surement sessions. This approach, though not ideal, will provide the same
benefit of hierarchical modeling as data accumulate.
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Finally, in applying HADO, we may want to consider two potential
use cases. One is a situation in which there is no background database
available a priori and therefore the hierarchical model in HADO might
learn some idiosyncrasies from the first few data sets (i.e., small n). The
more likely use case is where there is a fairly large number of pretested
individuals who can be used to build and estimate the hierarchical model.
While HADO can be applied to both cases, it would be no surprise that
its benefit should be greater in the latter situation. Even so, the behavior
of HADO with small n is worth noting here. First, if there exists a prior
that has been used conventionally for the modeling problem, the prior
of the upper-level structure in HADO should be set in such a way that
when n = 0 or 1, it becomes comparable to that conventional prior if the
hyperparameters are marginalized out. Second, unless the model is overly
complex (e.g., in this context, the higher-level structure is highly flexible
with too many parameters), Bayesian inference is generally robust against
overfittting to idiosyncrasies in a small data sample because the posterior
of model parameters given the data would not deviate much from the prior.
Otherwise, if overfitting is suspected, HADO inference should start being
applied and interpreted once an adequate sample is accumulated.

In sum, ADO for gaining maximal information from sequential mea-
surements has been extended to incorporate the hierarchical Bayes model
to improve information gain further. Conceptually, HADO improves the
estimation of an individual data model by taking advantage of the mutual
informativeness among individuals tested in the past. While there may be
alternative approaches to forming an informative prior from past data for
a Bayesian analysis, hierarchical Bayes is the method that enables both the
generation of individual-level data and the relationship among them to be
modeled and inferred jointly in a theoretically justified manner. The formu-
lation and implementation of HADO provided above exploit the benefits
of both hierarchical Bayes and ADO by integrating them within a fully
Bayesian framework.

4 Application Example

The benefits of HADO were demonstrated in a simulated experiment in the
domain of visual perception. Visual spatial processing is most accurately
measured using a contrast sensitivity test, in which sine wave gratings
are presented to participants at a range of spatial frequencies (i.e., widths)
and luminance contrasts (i.e., relative intensities). The objective of the test
is to measure participants’ contrast threshold (detectability) across a wide
range of frequencies, which together create a participant’s contrast sensi-
tivity function (CSF). The comprehensiveness of the test makes it useful
for detecting visual pathologies. However, because the standard method-
ology can require many hundreds of stimulus presentations for accurate
threshold measurements, it is a prime candidate for the application of ADO
and HADO.
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Using the Bayesian framework described in section 2, Lesmes, Lu, Baek,
and Albright (2010) introduced an adaptive version of the contrast sensi-
tivity test called qCSF. Contrast sensitivity, S( f ), against grating frequency,
f, was described using the truncated log parabola with four parameters
(Watson & Ahumada, 2005):

S( f ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ max − δ if f < f max − β

2

√
δ

log10 2
;

γ max − (log10 2)

(
f − f max

β

2

)2

otherwise,

(4.1)

where γ max is the peak sensitivity at the frequency f max, β denotes the
bandwidth of the function (full width at half the peak sensitivity), δ is
the low-frequency truncation level, and all variables and parameters are on
base 10 log scales. The optimal stimulus selection through ADO, along with
the parametric modeling, was shown to reduce the number of trials (fewer
than 100) required to obtain a reasonably accurate estimate of CSF at only
minimal cost in parameter estimation compared to nonadaptive methods.

To demonstrate the benefits of HADO, the current simulation study
considered four conditions in which simulated subjects were tested for
their CSFs by means of four different measurement methods. We begin by
describing how these conditions were designed and implemented.

4.1 Simulation Design. The two most interesting conditions were the
ones in which ADO and HADO were used for stimulus selection. In the first,
ADO condition, the qCSF method of Lesmes et al. (2010) was applied and
served as the existing state-of-the-art technique against which, in the sec-
ond, HADO condition, its hierarchical counterpart developed in our study
was compared. If the prior information captured in the upper-level structure
of the hierarchical model can improve the accuracy and efficiency of model
estimation, then performance in the HADO condition should be better than
that in the ADO (qCSF) condition. Also included for completeness were two
other conditions to better understand information gain achieved by each
of the two components of HADO: hierarchical Bayes modeling (HBM) and
ADO. To demonstrate the contribution of HBM alone to information gain,
in the third, HBM condition, prior information was conveyed through HBM
but no optimal stimulus selection was performed during measurement (i.e.,
stimuli were not selected by ADO but sampled randomly). In the fourth,
non-adaptive condition, neither prior data nor stimulus selection was used
so as to provide a baseline performance level against which improvements
of the other methods could be assessed.

The hierarchical model in the HADO condition had two layers. On the
individual level, each subject’s CSF was modeled by the four-parameter,
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truncated log parabola specified in equation 4.1. The model provided a
probabilistic prediction through a psychometric function so that the sub-
ject’s binary response to a presented stimulus (i.e., detection of a sinu-
soidal grating with chosen contrast and frequency) could be predicted as
a Bernoulli outcome. The log-Weibull psychometric function in the model
has the form

�(c, f ) = .5 + (.5 − λ/2)
[
1 − exp

( − 10κ(log10 c+log10 S( f ))], (4.2)

where c and f denote the contrast and the spatial frequency, respectively, of
a stimulus being presented (i.e., design variables) and S( f ) is the contrast
sensitivity (or the reciprocal of the threshold) at the frequency f (i.e., CSF)
modeled by the truncated log parabola in equation 4.1. The two parameters
of the psychometric function, λ (lapse rate; set to .04) and κ (psychometric
slope, set to 3.5), were given particular values following the convention
in previous studies (Lesmes et al., 2010; Hou et al., 2010). On the upper
level, the generation of a subject’s CSF parameters was described by a
two-component, four-variate gaussian mixture distribution, along with the
usual normal-inverse-Wishart prior on each component and the beta prior
on mixture weights. Symbolically,

(
γ max

i , f max
i , βi, δi

) ∼
2∑

j=1

φ j N (μ j,� j), i = 1, · · · , n

(μ j,� j) ∼ NIW(μ0, κ0,�0, ν0), j = 1, 2 (4.3)

φ1 ∼ Beta(α0, β0), φ2 = 1 − φ1,

where the parameter values of the normal-inverse-Wishart prior (μ0 = (2,
0.40, 0.78, 0.5), κ0 = 2, �0 = 1

3π2 I, ν0 = 5) were chosen on the following
grounds. When there is little accumulation of data, the predictive distribu-
tion of CSF parameters should be comparable to the prior distribution used
in the previous research (i.e., the prior of the nonhierarchical CSF model in
Lesmes et al., 2010). The beta prior was set to α0 = β0 = 0.5. The choice of
a two-component mixture was motivated by the nature of the data, which
are assumed to be collected from two groups under different ophthalmic
conditions. In practice, when this type of information (i.e., membership to
distinct groups) is available, the use of a mixture distribution will be a sensi-
ble approach to lowering the entropy of the entity under estimation. While
a more refined structure might be plausible (e.g., CSFs covary with other
observed variables), we did not further investigate the validity of alterna-
tive models since the current hypothesis (i.e., individuals are similar to each
other in the sense that their CSFs are governed by a gaussian component in
a mixture model) was simple and sufficient to show the benefits of HADO.
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The procedure for individual-level measurement with optimal stimuli
(see the shaded area in Figure 1) followed the implementation of qCSF
(Lesmes et al., 2010) in which all required computations for design op-
timization and Bayesian updating were performed on a grid in a fully
deterministic fashion (i.e., no Monte Carlo integration; see Lesmes et al.,
2010 for detail). The posterior inference of the upper-level model, or the for-
mation of a predictive distribution given the prior data (outside the shaded
region in Figure 1), also involved no sampling-based computation. This was
possible because the upper-level model (i.e., gaussian mixture) allowed for
conditional independence between individuals so that the posterior predic-
tive density (see equation 3.4) of a particular θn value could be evaluated
as repeated integrals over individual θis. To increase the precision of grid
representations of prior and posterior distributions, which are constantly
changing with data accumulation, the grid was defined dynamically on a
four-dimensional ellipsoid in such a way that the support of each updated
distribution with at least 99.9% probability is contained in it. The grid on
the ellipsoid was obtained by linearly transforming a grid on a unit 4-ball
that had 20,000 uniformly spaced points.

The ADO (qCSF) condition shared the same individual data model as
specified in the HADO condition, but the variability among individuals
was not accounted for by an upper-level model. Instead, each individual’s
parameters were given a diffuse, gaussian prior comparable to the nonin-
formative prior used previously in the field. The HBM condition took the
whole hierarchical model from HADO, but the measurement for each in-
dividual was made with stimuli randomly drawn from a prespecified set.
Finally, the nonadaptive method was based on the nonhierarchical model
in ADO (qCSF) and used random stimuli for measurement.

To increase the realism of the simulation, we used real data collected
from adults who underwent CSF measurement. There were 147 data sets,
67 of which were from individuals whose tested eye was diagnosed as
amblyopic (poor spatial acuity). The remaining 80 data sets were from tests
on nondiseased eyes. Thirty-six of these individuals took the qCSF test (300
trials with optimal stimuli), and 111 were administered the nonadaptive
test (700 to 900 trials with random stimuli). The number of measurements
obtained from each subject was more than adequate to provide highly
accurate estimates of their CSFs.

To compare the four methods, we first used a leave-one-out paradigm,
treating 146 subjects as being previously tested and the remaining subject as
a new individual to be measured subsequently. We further assumed that in
each simulated measurement session, artificial data are generated from an
underlying CSF (taken from the left-out subject’s estimated CSF) with one
of the four methods providing stimuli. If HADO is applied, this situation
represents a particular state in the recursion of measurement sessions shown
in Figure 1; that is, the session counter is changing from n = 146 to n = 147 to
test a new, 147th subject. It does not matter whether the previously collected
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data were obtained by using HADO, since their estimation precision was
already very high as a result of using the brute-force large number of trials.

One may wonder how HADO would perform if it were applied when
there is a small accumulation of data (i.e., when n is small). As mentioned
earlier, Bayesian inference is robust against overfitting to idiosyncrasies in
a small sample, especially when the model is not very complex (here, the
higher-level structure is relatively simple). To demonstrate this, an addi-
tional simulation in the HADO condition was performed with small ns
being assumed.

Finally, since the observations from each simulated measurement session
were random variates generated from a probabilistic model, to prevent the
comparison of performance measures from being masked by idiosyncrasies,
10 replications of the 147 leave-one-out sessions were run independently
and the results were averaged over all individual sessions (10 × 147 = 1,470
measurement sessions were conducted in total).

4.2 Results. The whole simulation procedure was implemented on a
machine with two quad-core Intel 2.13GHz XEON processors and one
Nvidia Tesla C2050 GPU computing processor running Matlab. Grid-based
computing for utility function evaluations and Bayesian updating was par-
allelized through large GPUArray variables in Matlab. As a result, each
intertrial computing process, including stimulus selection, Bayesian updat-
ing, and grid adaptation, took 90 milliseconds on average, and hierarchical
model updating with 146 previous data sets took about 11 seconds, which
was six to eight times faster than the same tasks processed by fully vector-
ized Matlab codes running on CPUs.

Performance of the four methods of measurement and inference de-
scribed in the preceding section was assessed in three ways: information
gain, accuracy of parameter estimation, and accuracy of amblyopia classi-
fication. These evaluation measures were calculated across all trials in each
simulated measurement session. For information gain, the degree of un-
certainty about the current, nth subject’s parameters on observing trial t’s
outcome was measured by the differential entropy (extension of the Shannon
entropy to the continuous case):

Ht (�n) = −
∫

p
(
θn|y1:n−1, y(1:t)

n

)
log p

(
θn|y1:n−1, y(1:t)

n

)
dθn. (4.4)

Use of the differential entropy, which is not bounded in either direction on
the real line, is often justified by choosing a baseline state and defining the
observed information gain as the difference between two states’ entropies.
In the present context, it is

IGt (�0,�n) = H0(�0) − Ht(�n), (4.5)
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Figure 2: Information gain over measurement trials achieved by each of the
four measurement methods.

where H0(�0) denotes the entropy of a baseline belief about θ in a
prior distribution so that IGt (�0,�n) may be interpreted as the infor-
mation gain achieved on trial t during the test of subject n relative to
the baseline state of knowledge. In the current simulation, we took the
entropy of the noninformative prior used in the conditions with no hi-
erarchical modeling (i.e., ADO and nonadaptive) as H0(�0). Note that
the information gain defined here is a cumulative measure over the
trials in a session in the sense that IGt (�0,�n) = H0(�0) − H1(�n) +∑t

s=2

[
Hs−1(�n) − Hs(�n)

]
where the quantity being summed is informa-

tion gain upon trial s relative to the state before that trial.
Shown in Figure 2 is the cumulative information gain observed in each

simulation condition designed to evaluate the performance of the four dif-
ferent methods. Each of the four curves corresponds to information gain
(y-axis) in each condition over 200 trials (x-axis) relative to the noninforma-
tive, baseline state (0 on the y-axis). The information gain measures were
averaged over all 1,470 individual measurement sessions in each condition.
Then we further normalized the measures by dividing them by the aver-
age information gain at the 200th trial achieved by the crude, nonadaptive



2482 W. Kim et al.

method in order to take the value of 1 as a baseline level of performance
against which to compare the performance of the other methods.

First, the results demonstrate that the HADO achieves higher informa-
tion gain than the conventional ADO. The contribution of hierarchical mod-
eling is manifested at the start of each session as a considerable amount of
information (0.4) in the HADO condition (solid curve) than no information
(zero) in the ADO condition (dashed curve). As expected, this is because
HADO benefits from the mutual informativeness between individual sub-
jects, which is captured by the upper-level structure of the hierarchical
model and makes it possible for the session to begin with significantly
greater information. As the session continues, HADO needs 43 trials on
average to reach the baseline gain level (dotted, horizontal line), whereas
ADO (qCSF) requires 62 trials. The clear advantage diminishes as informa-
tion accumulates further over the trials since the measure would eventually
converge to a maximum as data accumulate.

The HBM condition (dash-dot curve), which employs the hierarchical
modeling alone and no stimulus selection technique, enjoys the prior in-
formation provided by the hierarchical structure at the start of a session
and exhibits greater information gain than the ADO method until it reaches
trial 34. However, due to the lack of stimulus optimization, the speed of
information gain is considerably slower, taking 152 trials to attain base-
line performance. The nonadaptive approach (dotted curve), with neither
prior information nor design optimization, shows the lowest level of per-
formance.

Information gain analyzed above may be viewed as a summary statistic,
useful for evaluating the measurement methods under comparison. Not
surprisingly, we were able to observe the same profile of performance dif-
ferences in estimating the CSF parameters. The accuracy of a parameter
estimate was assessed by the root mean squared error (RMSE) defined by

RMSE
(
ψ̂ (t)

)
= 20 ·

√
E
[(

ψ̂ (t) − ψ true
)2]

, (4.6)

where ψ̂ (t) is the estimate of one of the four CSF parameters (e.g., γ max) for a
simulated subject, which was obtained as the posterior mean after observing
trial t’s outcome, ψ true is the true data-generating parameter value for that
subject, and the factor of 20 is multiplied to read the measure on the decibel
(dB) scale as the parameter values are base 10 logarithms. The expectation
is assumed to be over all subjects and replications, and hence was replaced
by the sample mean over 1470 simulated sessions.

Results from the second analysis, comparing parameter estimation error
for each of the four models, are shown in Figure 3. Error was quantified in
terms of RMSE (y-axis, described above) over 200 trials (x-axis) for each of
the four parameters. As with the case of information gain, HADO benefits
from the informative prior through the hierarchical model as well as the
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Figure 3: Accuracy of parameter estimation over measurement trials achieved
by each of the four measurement methods.

optimal stimuli through design optimization, exhibiting the lowest RMSE
of all methods from the start to the end of a session. This holds for all four
parameters. The benefit of the prior information is also apparent in the HBM
condition, making the estimates more accurate than with the uninformed,
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ADO method for the initial 40 to 80 trials, but the advantage is eclipsed in
further trials by the effect of design optimization in ADO.

Since accurate CSF measurements are often useful for screening eyes for
disease, we performed yet another test of each method’s performance, in
which the estimated CSFs were put into a classifier for amblyopia. Despite
various choices of a possible classifier (e.g., support vector machine, nearest
neighbor), the logistic regression model built on selected CSF traits (Hou
et al., 2010), which had been shown to be effective in screening amblyopia,
sufficed for our demonstration. Performance of each measurement method
in classifying amblyopia was assessed in the leave-one-out fashion as well
by first fitting the logistic regression model using the remaining 146 subjects’
CSF estimates (assumed to be the same regardless of the method being
tested) and then entering the left-out, simulated subject’s CSF estimate
(obtained with the method evaluated in the simulation) into the classifier
to generate a prediction. The given, actual label (i.e., amblyopic or normal
eye) of the left-out subject, which had been provided by an actual clinical
diagnosis, was taken as the true value against which the classification result
in each simulation condition was scored.

Not surprisingly, classification accuracy increases with the accumula-
tion of measurement data in all methods. This is seen in Figure 4, which
shows the percentage of correct amblyopia classifications out of all cases
of amblyopic eyes over the first 100 measurement trials (i.e., hit rates).5 As
was found with the preceding tests, HADO demonstrates superior perfor-
mance, requiring only a small number of trials to produce highly accurate
classification results. Most notably, it takes on average 30 trials for HADO
to correctly classify an amblyopic eye 90% of the time, whereas the hierar-
chical adaptive method (ADO) requires 53 trials to achieve the same level
of accuracy, otherwise reaching 82% accuracy with the same 30 trials.

In the early trials of ADO and HADO, there can be considerable fluc-
tuation in classification accuracy. This is not due to a small sample size
(proportions out of 670 amblyopic eyes have sufficiently small standard
errors), but rather to the adaptive method itself. Seeking the largest pos-
sible information gain, the algorithm is highly exploratory in choosing a
stimulus that would yield a large change in the predicted state of the tested
individual. This characteristic especially stands out in early trials of the
classification task by causing some of the amblyopic eyes near the classi-
fier’s decision bound to alternate between the two sides of the bound across
one trial to another. This effect remains even after taking proportions out
of the large sample (670) because, with little accumulation of observations,

5Classification results for normal eyes are not shown since the prior of CSF parameters
was specified in a way that the classifier with any of the methods would categorize a
subject as being normal when there is little or no accumulation of data (i.e., a bias was
built in to avoid false alarms). In addition, the results are shown only up to 100 trials to
provide a better view of performance differences across methods.
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Figure 4: Accuracy of amblyopia classification over measurement trials
achieved by each of the four measurement methods.

selecting optimal stimuli in early trials is systematic without many possible
paths of the selection. Although this can lead to short-term drops in accu-
racy, the benefits of early exploration pay dividends immediately and over
the long term.

Finally, to see how this application of HADO performs when there is a
small accumulation of data, an additional simulation was conducted with
small ns (n = 4, 10, 40) assumed in the HADO condition. For each of the
same 147 simulated subjects (times 10 independent replications) as used
before, HADO was used to estimate its CSF by assuming that only n, rather
than all 146, subjects had been previously tested to be included in the
hierarchical model estimation. Among the n (4, 10 or 40) data sets, half were
randomly drawn from the normal-eye group and the other half from the
amblyopic group.

The results are in Figure 5, which displays the RMSE measures for esti-
mating the peak sensitivity parameter (other evaluation measures exhibit
a similar pattern, leading to the same interpretation). For comparison, the
data from the ADO and full HADO conditions are also plotted. CSF esti-
mation by HADO with n as small as 4 is no worse, and in fact slightly more
efficient, than that of ADO with a diffuse prior, as shown by the RMSEs
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Figure 5: Effect of the size of previously collected data sets on HADO estimation
accuracy of the peak sensitivity parameter.

when n = 4 (dash-dot curve) is consistently lower than those of ADO (dot-
ted curve) over trials. Visual inspection of the distribution of individual
estimates over all subjects and replications showed no larger dispersion
than the case of estimates by ADO at all trials. As n increases or more data
from additional subjects are available, the efficiency of HADO estimation
becomes higher (dashed and thin solid curves for n = 10 and n = 40), ap-
proaching the performance level of HADO with full data sets (thick solid
curve). These results indicate that the Bayesian estimation of this hierar-
chical model is robust enough to take advantage of even a small sample
of previously collected data. However, as noted in section 3.2, the effect of
small n may depend on the model employed, suggesting that the above
observation would not generalize to all potential HADO applications.

5 Discussion

This study demonstrates how hierarchical Bayes modeling can be integrated
into adaptive design optimization to improve the efficiency and accuracy of
measurement. When applied to the problem of estimating a contrast sensi-
tivity function (CSF) in visual psychophysics, HADO achieved an average
decrease of 38% (from 4.9 dB to 3.1 dB) in error of CSF parameter estimation
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and an increase of 10% (from 82% to 90%) in accuracy of eye disease screen-
ing over conventional ADO, under the scenario that a new session could
afford to make only 30 measurement trials. In addition, efficiency of testing
improved by an average of 43% in the sense that the required number of
trials to reach a criterion of 90% screening accuracy decreased from 53 to 30
trials.

Although the simulation study served the purpose of demonstrating
the benefit of the hierarchical adaptive methodology, the full potential of
HADO should be greater than that shown in our particular example. The
level of improvement possible with HADO depends on the sophistication
of the hierarchical model itself. In our case, the model was based on a
simple hypothesis that a newly tested individual belongs to the population
from which all other individuals have been drawn. Although the model has
flexibility in defining the population as a mixture distribution, it conveys
no further specific information about the likely state of a new individual
(e.g., his or her membership to a mixture component is unknown).

There are various situations in which hierarchical modeling can take
better advantage of the data-generating structure. For example, although
modeled behavioral traits vary across individuals, they may covary with
other variables that can be easily observed, such as demographic informa-
tion (e.g., age, gender, occupation) or other measurement data (e.g., contrast
sensitivity correlates with measures of visual acuity—eye chart test). In this
case, a general multivariate regression or ANOVA model may be employed
as the upper-level structure to use such auxiliary information to define a
more detailed relationship between individuals. This greater detail in the
hierarchical model should promote efficient measurement by providing
more precise information about the state of future individuals.

In many areas of behavioral science, more than one test measures the
same condition or phenomenon (e.g., memory, depression, attitudes). Often
these tests are related to each other and modeled within a similar theoretical
framework. In such situations, a hierarchical model provides a well-justified
way to integrate those models in such a way that behavioral traits inferred
under one model are informative about those estimated by another. Yet
another situation in which hierarchical modeling would be beneficial is
when a measurement is made after some treatment and it is sensible or even
well known that the follow-up test has a particular direction of change in its
outcome (i.e., increase or decrease). Taking this scenario one step further, a
battery of tests may be assumed to exhibit profiles that are characteristic of
certain groups of individuals. The upper-level structure can also be modeled
(e.g., by an autoregressive model) to account for such transitional variability
in terms of the parameters of the measurement model. With these kinds of
structure built in the hierarchical model, HADO can be used to infer quickly
the state of new individuals.

An assumption of the approaches to higher-level modeling discussed so
far is that the most suitable data-generating structure is already known. In
fact, sufficient data are needed to determine which structure is best suited.
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To be more precise, the optimally complex structure for the best possible
inference depends on the amount of information available; an arbitrarily
complex model that is not validated by data will lead to suboptimal in-
ference. For this reason, HADO will perform best when the hierarchical
model evolves along with the accumulation of data. Larger data sets make
it possible to evaluate better alternative modeling hypotheses, and analysis
methods such as Bayesian model choice (Kass & Raftery, 1995) or cross-
validation can be performed to guide model revision. In effect, the upper-
level model will evolve by incorporating an increasingly richer structure
(e.g., finer subgroup distinctions or better selected predictor variables in a
regression model).

The notion of model evolution fits with recent advances in nonpara-
metric Bayes methods that essentially seek to enable a statistical model
to adapt itself to the amount of information in the data by adding more
and more components with no preset limit (MacEachern, 2000; Rasmussen
& Williams, 2006; Teh & Jordan, 2010). This methodology can stretch the
extent of model evolution further and will be especially suited to HADO
because most modern measurement processes are computer based, so data
collection and organization are effortless, allowing the method to quickly
exploit a massive amount of data.

The technique of optimal experimental design or active learning has
been applied to a number of modeling problems in neuroscience and ma-
chine learning (Wu, David, & Gallant, 2006; Lewi et al., 2009; DiMattina &
Zhang, 2011; Cohn et al., 1996; Tong & Koller, 2002; Settles, 2010). These
models usually deal with a large number of features in order to predict
or describe response variables, resulting in a large number of parameters
to infer (e.g., neural receptive field modeling; Wu et al., 2006). A conse-
quence is the use of various methods for improving generalizability by
imposing certain constraints (Ramirez et al., 2011; Park & Pillow, 2012)),
which may be directly or indirectly interpreted as a prior from the Bayesian
perspective. In other words, a prior is used to reduce the variance of a
model. However, as this type of a prior is theoretically derived, it is by
nature conservative in order not to introduce bias. In this case, HADO may
be employed to enhance inference by learning further prior knowledge
from specific empirical conditions. This information may be encapsulated
into the existing, constrained structure of a model. To this end, different
forms of HADO described in section 3.1 will be useful. Computational
complexity, particularly numerical integration over many parameters, will
be challenging. Nonetheless, this should not be considered a hindrance.
As discussed in section 3.2, recent technical advances in both algorithms
and hardware as well as inherent regularity in each problem can be taken
advantage of to achieve adequate approximations with practical running
time.

Science and society benefit when data collection is efficient with no loss
of accuracy. The proposed HADO framework, which judiciously integrates
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the best features of design optimization and hierarchical modeling, is an
exciting new tool that can significantly improve the current state of the art
in experimental design, enhancing both measurement and inference. This
theoretically well-justified and widely applicable experimental tool should
help accelerate the pace of scientific advancement in behavioral and neural
sciences.
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