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Abstract

Some of the earliest work on understanding how concepts are organized in memory used a network-
based approach, where words or concepts are represented as nodes, and relationships between words
are represented by links between nodes. Over the past two decades, advances in network science and
graph theoretical methods have led to the development of computational semantic networks. This
review provides a modern perspective on how computational semantic networks have proven to be use-
ful tools to investigate the structure of semantic memory as well as search and retrieval processes within
semantic memory, to ultimately model performance in a wide variety of cognitive tasks. Regarding
representation, the review focuses on the distinctions and similarities between network-based (based
on behavioral norms) approaches and more recent distributional (based on natural language corpora)
semantic models, and the potential overlap between the two approaches. Capturing the type of relation
between concepts appears to be particularly important in this modeling endeavor. Regarding processes,
the review focuses on random walk models and the degree to which retrieval processes demand atten-
tion in pursuit of given task goals, which dovetails with the type of relation retrieved during tasks.
Ultimately, this review provides a critical assessment of how the network perspective can be reconciled
with distributional and machine-learning-based perspectives to meaning representation, and describes
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how cognitive network science provides a useful conceptual toolkit to probe both the structure and
retrieval processes within semantic memory.

Keywords: Cognitive network science; Distributional semantic models; Semantic memory; Semantic
networks

Within the past decade, there has been an explosion of research aimed at better under-
standing semantic memory representations using tools from network science (for a recent
review, see Siew, Wulff, Beckage, & Kenett, 2019). The majority of the work in this domain,
broadly termed as “cognitive network science,” has been directed at understanding how close
or far apart are concepts within a network-like model, and ultimately using these measures
of distance to predict various aspects of human behavior. In addition, there has been consid-
erable interest in using computational metrics from graph theory to describe the local and
global characteristics of networks, that is, how concepts are organized and clustered within
a network configuration. Understanding semantic memory organization and processes (how
word meanings are structured within memory and retrieved) has been at the forefront of these
explorations. Indeed, the notion of a semantic network has been computationally implemented
using behavioral norms from semantic tasks or natural language corpora, giving rise to quan-
titative estimates of concept connectivity (e.g., Steyvers & Tenenbaum, 2005) and how infor-
mation or activation may “spread” within a network (e.g., De Deyne, Verheyen, & Storms,
2016; Vitevitch et al., 2011). This burgeoning field of semantic network research provides a
new lens to reexamine questions pertaining to both the structure of knowledge representation
as well as processes that operate upon this structure to ultimately produce complex human
behavior.

1. Early debates in semantic memory research

Although there has been considerable recent progress in developing computational seman-
tic networks, the notion of a semantic network reflecting the relations among words is not new
to cognitive science. A semantic network was first explicitly implemented by Quillian (1967),
who attempted to maximize storage space within a computer-like architecture, by conceptu-
alizing a hierarchical network with concepts and edges describing related propositions (i.e.,
a robin <is a> bird and a bird <has> wings). Although there was initial empirical support
for such a hierarchical model by Collins and Quillian (1969), there were some limitations
that were addressed in the Collins and Loftus (1975) model, which attempted to capture the
strength of the relationship between concepts by the length of the pathway connecting two
nodes. The early concerns also motivated an important alternative representational format
that relied on the notion of a set of semantic features representing concepts (e.g., a bird <has
wings>, <flies>, <lives in a nest>, etc.), instead of an unanalyzable localist node within a
network (e.g., Smith, Shoben, & Rips, 1974). Of course, a feature-based representation need
not be necessarily orthogonal to a network-based approach, given that a semantic network
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can also encode features (e.g., bird-wings). The critical difference between these representa-
tional formats was that feature-based models solely emphasized the shared features between
concepts, whereas semantic network connections could, in principle, reflect a broad range of
semantic relationships, some of which may not directly emerge out of shared features (e.g.,
baby-stork, mouse-cheese, etc.).

An important insight that emerged from these early theoretical debates on the nature of
semantic representations (i.e., network vs. feature-based) was that these representational dis-
tinctions demanded distinct retrieval processes. Collins and Loftus (1975) relied heavily on
the metaphor of a spreading activation mechanism, that is, concepts within the network were
activated and activation then spread to neighboring nodes and propositions in proportion to
the strength of association between them, leading the individual to confirm or reject the valid-
ity of the sentence in a sentence verification task. On the other hand, Smith et al. proposed
that individuals engaged in a feature comparison process between the subject and predicate of
the sentence, which was followed by a two-stage decision process that involved both analytic
(more attention-based) and nonanalytic (more automatic) processes used to drive responses
(see McCloskey & Glucksberg, 1979 for an early single process feature comparison model).
These original explorations into semantic representations nicely illustrate how it is critical
to consider the nature of the representation (e.g., network vs. feature-based) along with the
specific processes that access the representation (e.g., spreading activation vs. featural com-
parison) to account for behavior.1

The present review will examine how modern computational network models of seman-
tic memory have advanced our understanding of how concepts are represented and retrieved
within semantic memory. The first section will provide an overview of some basic representa-
tional principles of recent developments in network science, emphasizing the differences and
similarities between network representations and more recent distributional semantic repre-
sentations. The second and third sections will delineate how semantic network research has
provided useful tools to investigate both the structure of semantic memory as well as the
processes, respectively, which operate upon this structure to ultimately provide an account of
cognitive behavior across a variety of tasks. The fourth section will discuss how one might dis-
entangle data, structure, and processes by providing a brief overview of the strengths and limi-
tations of the network-based approach in comparison to the distributional modeling approach.
The final section will address some conceptual questions about networks and their utility, to
ultimately provide ways in which network-based perspectives can help develop a more unified
account of semantic memory structure and processing.

2. Network versus distributional models of meaning representation

An important class of models in addition to feature-based and network-based models are
distributional semantic models (DSMs). These include a family of computational models that
apply statistical algorithms to word co-occurrence patterns extracted from large text corpora
(e.g., Wikipedia or Google News databases) to learn semantic representations. Although
one could argue that DSMs date back to early work by Osgood (1952), there has been an
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Fig. 1. Number of citations based on Google Scholar to popular Distributional Semantic Models (DSMs) from
2000 to 2020.

explosion of these models within the past decade due to the availability of large text databases
and the implementation of different types of machine learning algorithms. As shown in
Fig. 1, the left panel indicates some of the first DSMs that were developed to capture high-
dimensional semantic spaces based on natural language corpora. The right panel of Fig. 1
reflects more recent DSMs that are based on larger natural language corpora and involve
machine learning algorithms to generate the semantic space. It is particularly noteworthy that
there is an explosion of citations to these more recently developed models within the past
decade (note the different scales for the y-axes across the two panels).

The guiding principle within DSMs is that meaning can be inferred via statistical regulari-
ties in natural language, which can be captured through different learning mechanisms such as
Hebbian or error-driven learning, probabilistic inference, etc. (more recent work also exam-
ines such regularities in other modalities such as vision, see Bruni, Tran, & Baroni, 2014).
Within DSMs, meaning is typically represented in a high-dimensional space (e.g., BEAGLE;
Jones & Mewhort, 2007), or a large collection of topics (as in topic models, see Griffiths,
Steyvers, & Tenenbaum, 2007). Relationships between concepts are then inferred via some
measure of association strength (e.g., cosine similarity between semantic vectors, probability
distributions within topic models, etc.) and DSMs have shown remarkable success at mod-
eling some aspects of human behavior (for recent reviews, see Günther, Rinaldi, & Marelli,
2019; Kumar, 2021b).2

Clearly, the notion of extracting patterns of co-occurrences from natural language in
DSMs is very different from a feature-based and network-based perspective. It is impor-
tant to emphasize here these classes of models (network-based, feature-based, and distri-
butional) generally vary along two critical dimensions—the underlying data source, as well
as the ultimate structure of the representation. In terms of data, while distributional models
typically use natural text or speech corpora to learn semantic representations, network and
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feature-based models are typically based on human-generated norms. The word “typically”
is important here because one can generate semantic networks from text corpora (e.g., Beck-
age, Smith, & Hills, 2011; Steyvers & Tenenbaum, 2005), and construct high-dimensional
spaces using human-generated norms (e.g., Jamieson, Jain, Fernandez, Glattard, & Nowak,
2015; Kumar, Steyvers, & Balota, under review). Therefore, although models exist within this
continuum of using language itself or responses from semantic tasks, a common difference
between these models is the data used to define the representation.

The second distinctive issue pertains to structure—while feature-based and distributional
models typically represent words in a distributed manner (e.g., as a list of features, along
several dimensions, topics, etc.), networks typically represent words using a single node.
Therefore, the types of processing assumptions that follow from the underlying structure have
important implications for behaviors these models seek to explain. For instance, while net-
works offer a way to conceptualize similarity between concepts in terms of the “path length”
between concept nodes, distributional and feature-based models consider the “angle” or the
“overlap” between concept vectors to be indicative of similarity. Importantly, as mentioned,
models can be transformed from being a high-dimensional space to a network (e.g., by thresh-
olding cosine similarity values to construct “paths;” see Steyvers & Tenenbaum, 2005) and
from a network to a high-dimensional space (e.g., by construction word association spaces;
see Kumar et al., under review; Steyvers, Shiffrin, & Nelson, 2005). In addition, integrating
feature-based information with distributional semantic representations has also been explored
in the literature (e.g., Andrews, Vigliocco, & Vinson, 2009; Howell, Jankowicz, & Becker,
2005; Jones & Recchia, 2010). Given that different types of models can be flexibly modified
to fit into one structure or another, the data used to build these models appear to be more
critical than the underlying structure itself. The following section focuses on how networks
generally created from behavioral norms have contributed to our understanding of semantic
memory structure.

3. Semantic memory network structure

Although semantic networks have been critical in describing the structure of semantic
memory, “network” is an umbrella term for several different ways of conceptualizing memory
structure. As discussed, Collins and Quillian originally invoked a propositionally based hier-
archical network, whereas Collins and Loftus’ (1975) network was more associative in nature.
Steyvers and Tenenbaum (2005) provided a starting point of using modern network science to
understand the nature of semantic representation. They used three large datasets, the Nelson,
McEvoy, and Schreiber (2004) free association norms, Roget’s Thesaurus (Roget, 1911), and
WordNet (Fellbaum, 1998; Miller, 1995) to construct three different semantic networks. Free
association is a ubiquitous task in psycholinguistics where participants are asked to respond
with one or several words that come to mind in response to a given cue word. Steyvers and
Tenenbaum used responses produced from the Nelson et al.’s free association norms as a
metric to connect edges between different word nodes (i.e., if at least two participants out of
120 participants on average responded tiger to lion, an edge was created between them; see
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Fig. 2. Depiction of three semantic networks created by Steyvers and Tenenbaum (2005). LION and TIGER were
connected in the word association network if TIGER was produced as a response to LION. In the thesaurus-based
network, LION and TIGER were connected if they shared common semantic categories (e.g., animal). In the
WordNet-based network, LION and TIGER were connected if there was a relationship between them (e.g., is
related to).

left panel of Fig. 2). Roget’s Thesaurus contains a large collection of words classified into
different semantic categories, which Steyvers and Tenenbaum then used to connect edges
between words by applying the criterion of at least one shared semantic category (second
panel of Fig. 2). Finally, the WordNet-based semantic network captures connections between
words and their meanings, and also different types of semantic relationships (e.g., antonym,
hypernymy, etc.). Importantly, however, the type of relationship was not implemented within
the Steyvers and Tenenbaum model, who instead used the presence or absence of any
relationship between words as the criterion to draw edges within the network (see right panel
of Fig. 2).

One important outcome of this network-based approach to representing meaning-related
information is that it affords quantitative methods to estimate the distance between concepts
as a function of number of intervening nodes (or path length), and ultimately test hypotheses
for how semantic distance may guide behavior in cognitive tasks. For example, within an
undirected associative network configuration (see Fig. 3), lion and stripes are 2 steps apart,
compared to the directly connected lion and tiger, therefore providing the opportunity to test
for mediated priming (see Balota & Lorch, 1986) and more distant semantic priming effects
in priming-based tasks. Indeed, replicating Kenett, Levi, Anaki, and Faust (2017), Kumar,
Balota, and Steyvers (2020) recently showed that path lengths from such networks not only
accounted for the original mediated 2-step priming effects, but also differences between more
distant concepts, that is, there was a reliable difference in response latencies in a primed
perceptual identification task for words representing concepts that were four versus six steps
away within associative semantic networks.

Although the number of links between two concepts provides a measure of distance, it is
important to acknowledge that the notion of path length is somewhat arbitrary. Specifically,
network construction requires an explicit decision on how to define an edge between two
concepts (see Castro & Siew, 2020, for a detailed discussion). As noted, in the Steyvers and
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Fig. 3. Large-scale structure and path from LION to STRIPES in the undirected associative network created by
Steyvers and Tenenbaum (2005), adapted from Kumar et al. (2020).

Tenenbaum work, they implemented an edge in their associative network if a cue (e.g., lion)
produced the same first response (e.g., tiger) for at least two individuals out of 120 individuals
on average. Why not 1, 10, or 20 responses out of 120 to produce an edge? We will refer to
this as the all-or-none problem. Another approach would be to directly implement strength of
association (as defined via free association norms) as the “distance” between any two nodes,
as in the original Collins and Loftus (1975) model. There are clear effects of strength of asso-
ciation and category dominance in priming tasks (e.g., Balota & Duchek, 1988; Lorch, 1982)
that would support this type of structural organization. Indeed, more recent work has relied
on the frequency of response production as a measure of edge weight in association networks
(e.g., De Deyne, Perfors, & Navarro, 2016; De Deyne & Storms, 2008), and has been shown
to account for similarity and relatedness judgments. Other researchers have used a technique
called percolation analysis to examine whether systematically removing edges within a net-
work with weights/strengths below a certain threshold can provide useful information about
the resilience, flexibility, and robustness of individual semantic networks (Cosgrove, Kenett,
Beaty, & Diaz, 2021; Kenett et al., 2018; also see Gruenenfelder, Recchia, Rubin, & Jones,
2016. for a DSM-based network thresholding study on free association). Therefore, although
this flexibility in edge construction within semantic networks can be viewed as problematic
from an interpretation standpoint, systematically measuring how human behavior maps on to
different network-based thresholds could also provide novel insights into individual differ-
ences in concept connectivity and cognitive flexibility.

3.1. Structural properties and growth in semantic networks

Another important aspect of modern semantic network analyses is the opportunity to exam-
ine small- and large-scale properties of the network using graph-theoretical measures. These
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include node degree (referring to the total number of connections for a given node in a net-
work) and clustering coefficient (a metric that describes the extent to which the neighbors of a
node are interconnected and is an indicator of network density), among others. These metrics
have been useful in characterizing the semantic networks of typical and atypical populations
(e.g., see Christensen, Kenett, Aste, Silvia, & Kwapil, 2018; McNally et al., 2015), as well as
examining patterns related to creativity (e.g., Kenett & Faust, 2019; Kenett, Anaki, & Faust,
2014) and aging (Wulff, De Deyne, Jones, Mata, & Aging Lexicon Consortium, 2018).

Steyvers and Tenenbaum found that the semantic networks they implemented exhibited
small-world structure, which is also a property of naturally occurring networks such as the
World Wide Web, as reflected by sparse connectivity, short average path lengths, and strong
clustering. This leads to the important question of why naturally occurring networks would
develop these characteristic signatures. Barabási and Albert (1999) proposed that new con-
nections in a network are made in proportion to the existing number of connections for a
given node, therefore following a “rich get richer” principle, formally called the principle
of preferential attachment. Finding support for this hypothesis, Steyvers and Tenenbaum
(2005) modeled networks based on existing connections and showed that these networks
closely resembled behavioral associative networks. Other work in this domain has examined
whether the growth of semantic networks among children actually follows these patterns. For
example, using a longitudinal sample of nouns acquired by children of ages 16–30 months,
Hills, Maouene, Maouene, Sheya, and Smith (2009) showed that there was stronger evidence
for preferential acquisition among children, instead of preferential attachment. According to
preferential acquisition, words are acquired in proportion to how well they connect to other
words in the learning environment, not how well they connect to already-learned words in
the internal lexicon, as would be predicted by the preferential attachment hypothesis (also see
Fourtassi, Bian, & Frank, 2020). Overall, these growth mechanisms are critical in understand-
ing how new words may be acquired from the natural environment by children as well as how
cognitive structures and the processes involved in language acquisition are inextricably linked
to each other.

3.2. Relational information within semantic networks

Another important issue in current network science is the extent to which specific networks
can capture the varied contexts within which a word may be found or used. Consider the
word lion. Within a directed associative network (Steyvers & Tenenbaum, 2005), lion has
12 direct outgoing links, as shown in Fig. 1 (first panel), which represent different types of
relationships (e.g., a lion <can be spotted at a> safari vs. a lion <is similar to a> tiger) but
are not classified as such in a nonlabeled network. This example demonstrates the diversity
as well as levels of meaning-related information available to humans within their semantic
memory, which may not be fully captured in commonly implemented semantic networks.
Therefore, there is a need to supplement semantic networks created from semantic tasks with
explicit relational information to accurately reflect the structure and interconnectedness of
semantic memory.
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There have recently been some promising attempts to build networks that include specific
types of relational links between words. ConceptNet (Speer, Chin, & Havasi, 2016) is a prime
example of such a development. ConceptNet links concepts through different types of rela-
tionships, as opposed to word association networks where there is no distinction between the
types of edges. This network configuration is based on a number of crowdsource databases
including Open Mind Common Sense (Singh, 2002) and “Games with a purpose” designed
to collect common knowledge (Nakahara & Yamada, 2011). Edges in ConceptNet are labeled
according to 36 different types of relations. For example, symmetric relations might include
“located near” and “similar to,” whereas asymmetric relations would include “capable of”
and “created by.” Importantly, Speer et al. not only constructed this edge-labeled network but
also used a retrofitting procedure to combine ConceptNet with distributional word represen-
tations from two popular machine learning-based DSMs, word2vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014), to create ConceptNet Numberbatch, a more powerful seman-
tic representation model. ConceptNet Numberbatch outperformed state-of-the-art DSMs on a
series of cognitive tasks including semantic relatedness judgments, analogy completion, and
story completion. This is a significant step forward in the field, which suggests that one may
need to include labelled pathways connecting concepts to represent semantic memory struc-
ture. Hybrid models utilizing distributional semantics from large language corpora may be
particularly advantageous to this enterprise.

ConceptNet Numberbatch represents an important shift in reconciling network-based
accounts with alternative representational accounts of semantic memory structure. However,
it also raises important questions about how search and retrieval would operate within such
a configuration. Would one search via the specific types of relationships or the specific con-
cepts presented in a task? Alternatively, there may be an initial fast nonspecific search pro-
cess reflecting global similarity followed by a more detailed search process. This highlights
the importance of considering the types of processes demanded by a task to access specific
relations within a network.

4. Retrieval processes from semantic memory

As discussed earlier, structure always needs to be coupled with processes that act on that
structure to perform a specific task, given that different tasks differentially emphasize dif-
ferent components of lexical/semantic processing (see Balota, Paul, & Spieler, 1999, for
a discussion). Recent work in semantic memory research has focused on computationally
implementing processing frameworks that could account for search and retrieval processes
within semantic memory. The foundational ideas of spreading activation proposed by Collins
and Loftus (1975, also see Anderson, 1983) discussed earlier, have helped guide some of the
research in this domain. Specifically, the notion of a word activating its neighbors in propor-
tion to the associative strength between the words has been formalized via stochastic random
walks within a semantic network. Random walk models assume that a “walker” starts from a
particular node and selects subsequent nodes to traverse within a network based on the edge
weight (or similarity) between the starting node and its neighbors (see Fig. 4).
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Fig. 4. A schematic of random walks within a semantic network. Walkers A and C both start from LION and
traverse different paths. Walker B starts from LAKE and ends the walk on TIGER.

Within these random-walk models, edge weights are typically derived from behavioral
responses (e.g., free association norms) and the parameters that govern the walk can provide
powerful insights into how an individual may search memory. For example, a decay parameter
that penalizes longer paths over shorter paths has been shown to be important in certain tasks
such as relatedness judgments (De Deyne, Verheyen, et al., 2016). Overall, principles of ran-
dom walks have been successfully applied to explain performance in several semantic tasks,
such as semantic fluency (Zemla & Austerweil, 2018), letter fluency (Griffiths, Steyvers, &
Firl, 2007), and the Remote Associates Test (Bourgin, Abbott, Griffiths, Smith, & Vul, 2014;
Smith, Huber, & Vul, 2013), as well as to explore the memory structure of creative individuals
(Kenett & Austerweil, 2016).

Another domain where random walks and path-based models have been applied to under-
stand complex search and retrieval processes is within the context of language games (e.g.,
Beckage, Steyvers, & Butts, 2012; Fathan et al., 2018; Kumar et al., under review). For
example, Kumar et al. (under review) applied random-walk-based models to examine search
and retrieval within a cooperative word game, Connector. Within Connector, a Speaker is
given two words (lion and tiger) from a 20-item word board and asked to produce a one-word
clue (e.g., cat) that is related to both words (see Fig. 5). The Guesser then attempts to identify
the two words on the board that the Speaker might have been referring to, based on the
clue (e.g., given the clue cat, a Guesser might select lion-snake from the board). Kumar
et al. showed how player responses were predicted by a distance measure capturing random
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Fig. 5. An experiment trial in Connector in Kumar et al. (under review). The Speaker generates a one-word clue
(CAT) to a word-pair on the board (LION-TIGER). The Guesser responds with two words (LION-SNAKE).

walks operating over an associative semantic network. Of course, this is not an explicit
search model and future work should examine how local and global search processes and/or
foraging can account for unconstrained search processes within semantic memory.

In addition to implementing random walks, some recent proposals have attempted to quan-
tify how activation from a given node may eventually spread within the network across sev-
eral time steps. For example, Vitevitch, Ercal, and Adagarla (2011) and Siew (2019; also see
De Deyne, Verheyen, et al., 2016, for a similar model) formalized the notion of spreading
activation in a model based on connections within either phonological or associative net-
works, respectively, and showed that these activations successfully explained performance
in spoken word recognition, false memory recall, as well as large databases of semantic
priming effects in lexical decision and naming tasks (Hutchison et al., 2013). Of course, it
is again important to consider how this conceptualization of spreading activation would fit
with a relationally organized lexicon (e.g., ConceptNet), that is, would activation spread to
relation-specific nodes, or diffuse through the complete network? If activation does, in fact,
differentially spread across different relationships, are some relationships more predictive of
performance in priming and fluency tasks than others? Although there are several remain-
ing questions to be answered, this work is clearly important in illustrating how a network-
based structural approach can be effectively combined with a temporally constrained process
(spreading activation) to explain behavior.

Random walks represent one proposal for retrieval from semantic memory, and alterna-
tive processing mechanisms have also been explored in the literature. For example, Hills,
Jones, and Todd (2012; also see Hills et al., 2015) proposed a two-process model operat-
ing over a distributional model of semantic memory (BEAGLE; Jones & Mewhort, 2007) to
account for behavior in the semantic fluency task. Their model assumes a local search pro-
cess focused on random-walk-type processes operating over the semantic space to produce
semantically related clusters of items, and a global process focused on long-distance “jumps”
within semantic space when the local cluster is sufficiently depleted, similar to animal for-
aging patterns found in the wild (Hills, Kalff, & Wiener, 2013). This two-stage local-global



A. A. Kumar, M. Steyvers, D. A. Balota / Topics in Cognitive Science 14 (2022) 65

switching process has surface-level similarity to the two-process decision model proposed by
Smith et al. (1974), wherein a fast familiarity-based process is followed by a slower analytic
process. Indeed, it is possible that more global semantic information is retrieved relatively
quickly, which is followed by a more detailed search of specific relations, possibly driven
by labeled edges. The distinction between fast automatic nonanalytic processes followed by
more attention-driven analytic processes is fundamental to a wide variety of two-stage models
of human behavior (see, Atkinson & Juola, 1974; Balota & Chumbley, 1984; Jacoby, Jones,
& Dolan, 1988). Investigating how this two-process distinction fits within a network-based
perspective to fully account for human behavior in semantic tasks is an important next step
for semantic network research.

5. Semantic networks: Looking under the hood

Although we have primarily focused on a network-based approach, as noted there are
important alternative models of semantic memory (e.g., DSMs), and indeed, there is empirical
work comparing the extent to which different classes of models capture human behavior. For
example, Vankrunkelsven, Verheyen, Storms, and De Deyne (2018) compared a DSM trained
on text corpora to an associative model based on the Small World of Words (De Deyne et al.,
2019) free association dataset, and showed that the associative model significantly outper-
formed the DSM in predicting behavioral ratings of words on lexical properties such as age
of acquisition and valence. Other work has also shown that associative models generally better
capture relatedness and similarity judgments (De Deyne, Perfors, et al., 2016; De Deyne, Ver-
heyen, et al., 2016), conceptual association in language games (Kumar et al., under review),
and visual and affective features of concepts (De Deyne, Navarro, Collell, & Perfors, 2021),
compared to DSMs.

There are two possible reasons why associative network models outperform DSMs. One
possibility is that associative models are more likely to capture perceptual/motor aspects of
meaning that are missing from DSMs created from textual corpora. However, it is a pri-
ori unclear why associative norms might capture such sensory/motor information any more
than natural language. This issue is related to the “grounding” problem in cognitive science,
wherein DSMs have been previously criticized for solely relying on text corpora to develop
semantic representations (Barsalou, 2016), in addition to being strongly biased by factors
such as the size of the text corpora and parameter tuning (Kenett, 2019). Indeed, accumulating
evidence suggests that semantic memory is more likely a combination of linguistic, affective,
and sensorimotor interactions (for a review, see Kumar, 2021b). To reflect this emerging view,
multimodal DSMs (e.g., Bruni et al., 2014) and multiplex networks (e.g., Stella, Beckage, &
Brede, 2017) that integrate different sources of information (perceptual, phonological, etc.)
to construct semantic representations are an active area of research in this field.

However, another possibility is that the success of semantic networks at accounting
for behavior in cognitive tasks is entirely due to the shared variance between the free
association task and the tasks on which DSMs and associative models are compared. Specif-
ically, free association and fluency data are among the most popular methods to create
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semantic networks (e.g., Christensen and Kenett, 2019; De Deyne et al., 2008; Kenett et al.,
2017; Nelson, Dyrdal, & Goodmon, 2005; Zemla & Austerweil, 2018). It is important to
remember that free association norms and semantic fluency data represent outcomes of
semantic retrieval tasks in and of themselves. Therefore, one may be concerned about a type
of circularity, that is, there may be considerable overlap in the retrieval processes used in
these norming tasks (e.g., free association) and other semantic tasks, which may produce an
advantage for behavioral networks in accounting for performance in these tasks (see Jones,
Hills, & Todd, 2015, for detailed arguments). Indeed, comparisons of DSMs versus asso-
ciative models that differ solely on the underlying data source and use similar metrics (e.g.,
cosine similarity) for both types of models (e.g., De Deyne, Verheyen, et al., 2016; Kumar
et al., under review) continue to demonstrate advantages for associative models. Furthermore,
even when DSMs and associative models are both supplemented with additional visual and/or
affective information as in De Deyne et al. (2021), associative models still continue to better
capture behavioral performance across relatedness/similarity judgments and tasks that rely
on such information. Therefore, the data underlying network models (free association) and
distributional models (natural language corpora) appear to be critical when considering their
relative predictive power, and the shared variance between free association and other tasks
may be confounding some of these observed patterns.

An important insight from these comparative studies is that there are strengths and limita-
tions to utilizing human-generated norms versus natural language corpora to create semantic
representation models. First, it is at least possible that free associations may evoke certain
types of meaning-related processing (e.g., mental imagery, emotional experiences, etc.) that
is not consistently reflected in natural language corpora. For example, the mental image of a
banana being yellow or being peeled is extremely salient and yellow and peel may therefore
be frequently produced as responses to banana within a free association task,3 whereas DSMs
that capitalize on co-occurrence patterns in text may instead emphasize the similarity of a
banana to other fruit such as apple and mango.4 In this light, network models based on free
associations may therefore provide complementary information to text-based DSMs. Second,
it is certainly possible that there is some shared variance between the free association task and
the evaluation tasks, although this could not easily explain why DSMs sometimes outperform
associative models in semantic priming tasks (e.g., Kumar et al., 2020), or why the benefit
of free association data over DSMs is minimal for some types of lexical information (e.g.,
concreteness, Vankrunkelsven et al., 2018). Ultimately, it is likely that the success of free
association-based models is a combination of some shared variance, and also meaningful
semantic information not presently captured within DSMs. Hence, future work should focus
on (a) better understanding the processes underlying free association (as in Gruenenfelder
et al., 2016; Kumar, 2021a; Nelson, McEvoy, & Dennis, 2000; Richie, Aka, Bhatia, in prepa-
ration), (b) using associative network models as an evaluative baseline for DSMs (see Kumar
et al., under review), and (c) exploring “network”-based models with different underlying
sources of information (e.g., multiplex networks, text-based networks, etc.).

Ultimately, the strength of the semantic “network” approach may be considered inde-
pendent of the underlying data source. Regardless of whether the data come from human-
generated norms (as has been typical), distributional models (as in Gruenenfelder et al., 2016),
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thesauri, or WordNet (as in Steyvers & Tenenbaum, 2005), one can still investigate questions
about structure and process using the network approach. Critically, it is important to conduct
studies that systematically manipulate the underlying data source within different network-
based models to understand which type of data best captures human performance across
different semantic tasks. Indeed, as shown by Steyvers and Tenenbaum (2005), networks
created from different data sources can show similar large-scale global connectivity, but still
differ in critical local hubs (highly connected nodes), as well as the extent to which they map
onto behavioral data from naming and lexical decision tasks. Additionally, Gruenenfelder
et al. (2016) showed that a hybrid DSM model that incorporated both associative (direct co-
occurrence-based) and contextual (indirect co-occurrence-based) information from text-based
corpora best captured different properties of free association norms (e.g., power distributions,
clustering, etc.). Therefore, meaning may be represented at different levels (contextual and
associative), and the network approach allows researchers to effectively test different models
and identify different aspects of what constitutes meaning at the global and local scale.

6. Current questions in semantic network research

Given the promise of network-based approaches to examine semantic memory structure
and processes, it is also important to consider outstanding questions in the field, and the
extent to which networks are capable of answering these questions. This section will focus on
the strengths and potential limitations of the network-based approach, and also provide future
directions aimed at improving our overall understanding of semantic structure and processing.

6.1. Automatic spreading activation versus attentional retrieval processes

As noted, whenever one considers process-based assumptions regarding network models,
it is important to consider the extent to which activation and search processes are under the
control of attention. In a landmark semantic priming study, Neely (1977) was able to totally
dissociate an automatic fast-acting spread of activation from a slower attention-demanding
retrieval process. For example, the word cat could be automatically activated by the brief
presentation of dog, via an automatic spreading activation mechanism, but one could also
obtain priming for cat if participants engage in a controlled process of predicting which words
might follow dog. This original dissociation nurtured considerable empirical work that fit
within this perspective (see McNamara, 2005; Neely, 1991, for a review of priming studies),
and the distinction between automatic processes and attention-demanding processes is central
to virtually all aspects of cognition from pattern recognition (see Treisman, 1969), memory
retrieval (see Jacoby et al., 1988), to person perception (see Smith & DeCoster, 2000). As
noted, it is possible that qualitatively distinct information (e.g., associative vs. relational) or
different characteristics of the same network (e.g., local vs. global) may be retrieved via these
different retrieval modes. Ultimately, we believe that any model of structure and process will
need to incorporate such distinct retrieval processes to fully account for observed behavior in
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a given task, or at the very least demonstrate how a single process model may accommodate
the data that have been used to support multiple process models.

6.2. Compositionality

An important aspect of language is that it is compositional, that is, phonemes combine to
form words, words combine to form phrases, and so on. Although semantic networks have
been mostly conceptualized and applied at the lexical/conceptual level, some recent work has
examined how words or concepts can be combined to form higher level conceptual structures.
For example, Kenett and Thompson-Schill (2020) analyzed how semantic network parame-
ters changed in a conceptual combinations task, where participants were given ambiguous
noun pairs (e.g., robin-hawk), and produced interpretations that were attributive (applying
a dominant feature of one word to another, for example, a red-breasted robin-like hawk) or
relational (connecting two words thematically, e.g., a hawk that preys on robins). The authors
found that the associative networks constructed after the conceptual task exhibited greater
global connectivity (i.e., shorter average path lengths and higher global clustering) when
participants were primed with relational interpretations. This work highlights the dynamic
nature of semantic knowledge, and more importantly, provides insights into how concepts
represented at the word level may be combined to produce higher order compositional struc-
tures. Of course, more work is needed to understand how these higher order structures that
emerge during tasks can be computationally realized within a network model of semantic
memory. For example, how might a sentence (e.g., Mary loves Jack) be represented using a
semantic network, and how might syntax influence this representation (e.g., distinguishing
between Mary loves Jack and Jack loves Mary)?

At present, network models lack an account of how representations scale up to truly
represent these higher order structures, whereas some DSMs propose that individuals use
prediction error and linguistic context to guide their internal representations for sentences,
phrases, and even events (e.g., Elman, 1990; Franklin, Norman, Ranganath, Zacks, & Gersh-
man, 2020; for a review, see Kumar, 2021b). In addition, there are studies showing that some
type of vector composition or compounding process applied over distributional semantic
representations results in compositional representations (e.g., Marelli, Gagné, & Spalding,
2017; Mitchell & Lapata, 2010). Therefore, it is important to reconcile the distributional
approach with the network-based approach. The elaborate labeled connections within Con-
ceptNet Numberbatch discussed earlier are an important step in this direction. Of course, this
nicely dovetails with the previous section, because it is quite possible that the higher order
aspects of comprehension may demand qualitatively distinct retrieval processes that may be
more attention-demanding, compared to more automatic activation processes.

6.3. Newer insights from machine learning

In addition to exploring how DSMs trained on language corpora explain human behavior,
there has also been a growing interest in machine learning to extract relational struc-
tures between concepts. Specifically, although DSMs typically represent words in a
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high-dimensional space and provide a natural way of estimating semantic “distance” in
this space (e.g., how related are lion and zebra, compared to lion and safari), the specific
types of relationships encoded within these representations remain unknown (e.g., lion and
zebra can both be spotted at a safari, whereas only a lion is a predator). Some recent work
has attempted to address this question by incorporating relational learning during word
vector computations. For example, Camacho-Collados, Espinosa-Anke, and Schockaert
(2019) used a neural network model to learn distinct relational word vectors for different
words within a sentence and showed that for a given word pair (e.g., innocent-naïve), their
relational representations identified subtle relationships as indicated by nearest neighbors
(e.g., vain-selfish, cruel-selfish), compared to the nearest neighbors produced by a nonrela-
tional DSM that were harder to interpret (e.g., murder-young, conspiracy-minded; also see
Jameel et al., 2018). Constructing relational representations echoes ideas similar to encoding
relational information via ConceptNet discussed earlier, but goes a step further in that it
does not rely on crowdsourced knowledge bases but explicitly derives these relations from
text. This method has the potential to uncover abstract and subtle relationships that may not
be encoded well enough through specific relation categories. This is clearly an important
development that could potentially be applied to construct labeled semantic networks, which,
in turn, could have broad implications for how well relational networks account for human
performance. A promising future direction would be to examine how well semantic net-
works constructed from relational vector representations encode aspects of human behavior
observed in cognitive tasks, a domain that remains relatively understudied.

Network or graph-based approaches to knowledge representation have also been explored
from a machine learning perspective (for a review, see Grohe, 2020). Specifically, in recent
years, there has been considerable interest in identifying latent communities within real-world
networks using machine learning techniques. For example, Perozzi, Al-Rfou, and Skiena
(2014) proposed DeepWalk, an algorithm that combined the notion of a random walk with
inferring the next words in a sequence using insights from the predictive word2vec model.
Perozzi et al. showed how DeepWalk successfully captured social relationships in a network
of bloggers and Youtube users (also see node2vec; Grover & Leskovec, 2016). Other research
in this area has focused on training more sophisticated neural networks, such as graph neu-
ral networks (GraphSage; Hamilton, Ying, & Leskovec, 2017) that are able to capture more
significant changes to the graph structure, such as the addition of new nodes, and deep net-
work embeddings (Line; Tang et al., 2015). These networks preserve the local and global
structure to produce meaningful representations that can then be applied to downstream tasks
such as predicting upcoming links in a sequence of nodes. The task of link prediction is
particularly interesting, because it allows researchers to probe how information may prop-
agate within a network, and echoes ideas similar to spreading activation discussed earlier.
This work is important in illustrating how existing semantic network-based accounts can be
further strengthened by borrowing techniques from machine learning. Specifically, uncover-
ing latent dimensions from associative semantic networks using algorithms like DeepWalk or
GraphSage could provide further insights into how concepts cluster into meaningful neighbor-
hoods as well as change as a function of new information entering the network. Furthermore,
utilizing algorithms of link prediction could provide mechanisms to develop compositional
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representations at the phrase or sentence level within semantic networks, which could ulti-
mately inform our understanding of how semantic knowledge accumulates over time and
guides behavior.

6.4. Semantic networks within the brain

The discussion so far has conceptualized semantic network models as a viable account
for how concepts are organized and retrieved to perform different tasks. However, a basic
assumption in all of this work is that we are somehow approximating the mind, which ulti-
mately needs to be implemented in a physical brain. Although early explorations into connec-
tionist modeling and neural networks (e.g., Rumelhart, Hinton, & McClelland, 1986) were
inspired by neurobiology, state-of-the-art neural network models are not considered accurate
models of the brain (see Bengio, Goodfellow, & Courville, 2017, for a discussion). In a sepa-
rate domain of research, intrinsic brain networks (e.g., Fox, Zhang, Snyder, & Raichle, 2009)
are considered central to distinct types of cognitive processing. It is important to emphasize
here that although “networks” is used as a catch-all term across different fields, it represents
qualitatively and quantitatively different information from the types of semantic networks
discussed in this review. For example, neural networks delineate error-driven learning mech-
anisms for capturing information across different sets of nodes, whereas brain networks are
based on regions of the brain that are activated/inhibited during task performance. Both types
of networks are in contrast to semantic networks that mainly consider words as the unit of
interest. This begs the question of whether semantic networks are neurobiologically plausible
accounts of meaning representation. One way to answer this question may be to conceive
meaning as a multivoxel neural pattern of activity (e.g., Fedorenko, Nieto-Castanon, & Kan-
wisher, 2012; also see Musz & Thompson-Schill, 2017), and semantic networks could then
potentially track the flow and structure of information activated across these time-dependent
distinct neural patterns. Although there is some evidence that semantic retrieval may indeed be
represented via distinct neural activity (e.g., Musz & Thompson-Schill, 2015), such neurally
inspired semantic network accounts remain relatively underexplored. Another possible way to
reconcile semantic networks with neurobiological accounts may be to assume that semantic
networks exist at the algorithmic or computational level, whereas neurobiological accounts
of semantic memory exist at the implementational level, consistent with Marr’s (1982) levels
of analysis. In this way, a complete theory of semantic memory may emerge from eventu-
ally integrating the algorithmic and conceptual accounts of meaning-based processing with a
structural implementation at the neuronal level.

7. Discussion

The notion of networks has come very far within the span of over half a century when it
was first proposed as a model for human semantic memory (Collins & Quillian, 1969; Quil-
lian, 1967). As this review has described, the field has progressed from purely conceptual
accounts of meaning representation to quantitative methods of estimating the size and nature
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of semantic memory. At the same time, the progress in computational modeling has led to
deeper explorations into the ways in which humans learn and access such networks, giv-
ing rise to more complex models of semantic knowledge and processing, as well as raising
questions about the validity and cognitive plausibility of these models. The present review
focused on how cognitive network science has been instrumental in describing the structure
of semantic knowledge as well as the cognitive processes that guide navigating this structure
to ultimately produce behavior. These discussions have emphasized the utility of the network
approach to capture the flexibility of semantic relationships as well as temporal processes that
govern retrieval from such networks.

As we have seen, the term “networks” can refer to a broad range of models, ranging from
associative semantic networks and knowledge graphs to social or biological networks. These
networks differ both in the data contributing to the structure of the network, as well as the
underlying processes operating upon this structure. In the present review, we have described
how networks created from behavioral norms have been useful in explaining a wide array
of cognitive phenomena. However, we have also noted some potential issues regarding cir-
cularity within this approach, and emphasized that purely associative networks may not be
sufficient to fully characterize the vast amount of relational information available to humans.
We have also provided future directions to integrate this information into existing networks by
utilizing distributional models (e.g., ConceptNet Numberbatch) and techniques being widely
applied in machine learning (e.g., Camacho-Collados et al., 2019). Similarly, in thinking
about the processes that drive the network-based perspective, as discussed, the notion of ran-
dom walks, automatic spreading activation versus attentional analytic processes, and growth
mechanisms have all been applied to explain a wide range of cognitive phenomena. In fact,
as the preceding section highlighted, machine learning researchers are now leveraging tools
from graph theory to adequately represent and study real-life networks. Therefore, an inte-
grated account of semantic memory may indeed involve extracting distributional information
from natural environment and ultimately representing this information using network-based
structures that may provide insights to more general dynamics of cognitive processing.

In light of the work discussed, one way to reconceive semantic networks may be to use
natural language (the proxy for which is typically large text corpora) and other nonlinguis-
tic sources of information (such as images, phonology, and affective stimuli) as a starting
point from which relational and concept learning occurs, and then augment this learning pro-
cess with processing mechanisms that directly follow from a network-based perspective. For
example, one could conceptualize a multimodal DSM that also learns relational informa-
tion (via text corpora or knowledge graphs) to produce semantic representations that can
ultimately be used to guide processing via spreading activation or random walks. Thus, an
important takeaway from this review is to potentially envision semantic networks as a col-
lection of tools and methods to conduct deeper explorations into the structure of knowledge
representation.

Ultimately, the goal of semantic memory research is to develop a computational model of
knowledge structure and the processes that describe the different ways in which individuals
learn and use meaning. So, an obvious question may be whether semantic networks are a
literal account of human knowledge and processing, that is, does human knowledge truly
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exist as a network? Although explorations into exactly how knowledge is represented within
the brain will continue (see Castro & Siew, 2020, for a discussion), in light of the work
discussed in this review, it seems most likely that modern distributional models (specifically
multimodal DSMs) provide a promising account of learning meaning from natural environ-
ment, whereas semantic network accounts provide useful conceptual tools to probe these
representations and the processes that operate upon these representations. A simple analogy
from mathematics may be helpful here: although it is impossible to show the existence of a
negative number, we can all agree that the idea of a negative number indicating the lack of
something is clearly useful (e.g., −1 degree means colder weather) and has widespread appli-
cations and implications in fields such as psychology, geography, and physics. In a similar
manner, although the physical existence of semantic networks demands further inquiry, the
present review has provided substantial evidence in favor of considering the conceptual and
computational utility of envisioning semantic memory as a network, which ultimately allows
us to ask and answer more focused questions about how human knowledge guides cognition.

Notes

1 Computational feature-based models have significantly contributed toward understand-
ing semantic memory organization and processing (see Cree & McRae, 2003; McRae,
2004; McRae, De Sa, & Seidenberg, 1997), and have also been recently integrated with
quantitative semantic network-based accounts (Solomon, Medaglia, & Thompson-Schill,
2019) to account for flexible concept use. However, despite some advantages of feature-
based models (see Buchanan, Valentine, & Maxwell, 2019), there is also some concern
regarding how the critical features for a concept are learned in the first place (see Jones,
Willits, Dennis, & Jones, 2015). Due to space limitations, we will not fully explore
feature-based representations in the current paper.

2 It is important to note here that there are also other types of semantic models, such as
dynamic attractor networks (e.g., McLeod, Shallice, & Plaut, 2000), although we explic-
itly focus on DSMs and semantic network models in the current paper.

3 The empirical frequencies of producing yellow, peel, and apple in response to banana
in the Small World of Words database are 65, 16, and 10, respectively, see https://
smallworldofwords.org/en/project/explore

4 See http://bionlp-www.utu.fi/wv_demo/ for a fast demo on nearest neighbors of words
within a popular text-based DSM (word2vec).
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