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Abstract

We develop a cognitive modeling approach, motivated by classic theories of knowledge representation and judgment from
psychology, for combining people’s rankings of items. The model makes simple assumptions about how individual
differences in knowledge lead to observed ranking data in behavioral tasks. We implement the cognitive model as a
Bayesian graphical model, and use computational sampling to infer an aggregate ranking and measures of the individual
expertise. Applications of the model to 23 data sets, dealing with general knowledge and prediction tasks, show that the
model performs well in producing an aggregate ranking that is often close to the ground truth and, as in the ‘‘wisdom of
the crowd’’ effect, usually performs better than most of individuals. We also present some evidence that the model
outperforms the traditional statistical Borda count method, and that the model is able to infer people’s relative expertise
surprisingly well without knowing the ground truth. We discuss the advantages of the cognitive modeling approach to
combining ranking data, and in wisdom of the crowd research generally, as well as highlighting a number of potential
directions for future model development.
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Introduction

People have all sorts of different knowledge, and are able to

express their knowledge in many ways. One ubiquitous form and

expression of knowledge involved ranking or ordering items to

produce a structured list, giving the relative positions of a set of

items with respect to a criterion of interest. Members of a selection

panel might each rank the job candidates they have just

interviewed from best to worst, children offered the choice of

three fast food restaurants can quickly communicate a preference

order, and popular culture generates new ‘‘top 10’’ lists every day.

In this paper, we consider the well-known wisdom of the crowd

effect [1] applied to rankings. The wisdom of the crowd effect

involves combining or aggregating the knowledge expressed by

different people, and considering how the aggregate and individual

expressions perform relative to some goal or criterion. It is often

found that the aggregate of a set of estimates—of the number of

jelly beans in a jar, or of the temperature in a room, or of the final

margin of a sporting contest—is closer to the truth than most or all

of the individual estimates from which it is calculated. Thus, our

focus is on combining the rankings provided by different people in

those situations where there is a (current or future) ground truth

against which an aggregate ranking can be assessed.

One motivation for considering ranking data in the wisdom of

the crowd context is that lists are a particularly powerful

expression of knowledge, because of their combinatorial nature.

If n items are ranked, one answer has been identified out of n!
possibilities, which, for even moderately large n, is very

informative. Ordering 10 items constitutes making a single

selection from 3,628,800 alternatives. A second motivation is that

producing relative rankings is often easier than providing absolute

numerical estimates, and the potential loss in detail may be

compensated by reliability. People can more easily and reliably

order the cities New York, Chicago, San Diego and Nashville in

terms of their relative populations than they can estimate the

actual populations. If the knowledge that is sought is satisfied by an

accurate rank order, it makes sense to deal directly with those

orders, rather than derive them from sorting population estimates

that are more difficult to obtain.

The wisdom of the crowd effect for ranking data has been

studied since at least psychology experiments in the 1920s [2].

Much of this previous research relies on statistical methods for

aggregating rankings, such as the Borda count [3]. The essence of

these statistical approaches is that each item is given points for the

position it is placed in individual rankings, and a combined points

tally is sorted to produce an aggregate ranking. Many probabilistic

models for analyzing and aggregating rank data have also been

developed in the statistics, social sciences, and machine learning

communities [3,4]. In the social sciences, rank aggregation

methods are often applied to the problem of combining people’s

preferences. In machine learning, methods for aggregating

rankings have found application in problems as diverse as

combining the lists returned by multiple search engines [5–7],

and the lists produced by different algorithms for object tracking

[8,9].

In this paper, we develop, demonstrate and evaluate an

aggregation approach motivated by modeling the psychological

process by which people produce ranking data. Theoretically, our
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approach differs from most previous methods because it assumes

the existence of a ground truth and the presence of meaningful

individual differences in the knowledge of different individuals.

These two assumptions form the foundation of our model, unlike

preference models that assume there is no ground truth, and

statistical methods for aggregation that do not explicitly incorpo-

rate individual differences. Methodologically, our approach differs

from many previous ones by relying on a generative model that

formalizes the joint distribution between data and model

parameters, and so is able to operate in a completely unsupervised

way [5].

The outline of the paper is as follows. In the next section, we

describe and implement a model—based on classic representa-

tional ideas in psychology dating back to Thurstone in the 1920s

[10]—for generating rank order data from latent knowledge with

individual differences. We then describe a corpus of data sets in

which people rank order items, dealing with various domains,

collected in a variety of ways, and involving both general

knowledge and prediction tasks. We present the results of applying

the model to all of these data sets, and compare its performance to

individual performance and the Borda count. Finally, we discuss

the strengths and directions for extension of our approach, and its

implications for integrating wisdom of the crowd methods for

aggregating knowledge with psychological models.

Thurstonian Model

The basic assumptions of a Thurstonian model in psychology is

that the attributes of stimuli can be modeled in terms of a

psychological continuum, represented by coordinates on a latent

dimension, and that there is variability associated with these

representations [10,11]. In its application to the wisdom of the

crowd effect, the natural assumption is that the underlying

dimension corresponds to the criterion of interest, the coordinate

locations correspond to the ground truth, and the variability in the

representations corresponds to the uncertainty people have about

the ground truth.

Figure 1 provides a conceptual overview of our Thurstonian

model [12,13], using a simple example involving four items and

two individuals. Panel A shows the latent representation for the

three items, m1,m2, m3, m4 on a scale. Panels B and C show how

these items are represented by two individuals, and how these

representations generate their ranking data.

The model assumes that the means of the item distributions

m1, m2, m3, m4 are the same for everybody, corresponding to the

idea that there is a single underlying truth to which everybody has

(imperfect or incomplete) access. In an extension of the standard

Thurstonian approach, however, we allow the widths of the

distributions to vary. This generalization allows the model to

accommodate the assumption that there are individual differences

in the knowledge about items. In Figure 1, Individual 1 is shown as

having more precise knowledge than Individual 2, and so s1vs2.

To determine their ranking of the items, our model assumes the

jth individual takes a mental sample for all of the items. For the ith
item, this sample, xij , is drawn from a Gaussian distribution with

mean mi and standard deviation sj . The order of the mental

samples then determines the ranking yj~ y1j , . . . ,y4j

� �
produced

by the individual, where yij is the rank position in which the ith

item was placed. In the example in Figure 1, the specific samples

drawn by Individual 1 lead to the ranking y1~ 1,2,3,4ð Þ whereas

Individual 2, in panel C draws a sample for the third item that is

smaller than the sample for the second item, leading to the ranking

y2~ 1,3,2,4ð Þ. More generally, the difference in the sj values

means that Pr x21vx31ð Þw Pr x22vx32ð Þ, and so Individual 1 is

much more likely than Individual 2 to rank items two and three in

the correct order. In this way, the overlap in the item distributions

can lead to differences the orderings produced by individuals, and

errors with respect to true rankings.

The parameters of the Thurstonian model permit two key

analyses. One analysis uses the mi parameters, which represent the

location of each item along the assumed latent dimension. The

inferred ordering of the mi parameters corresponds to an aggregate

or group ordering that has combined the ranking data provided by

the individuals. A second analysis involves the sj parameters,

which, since they measure the precision of knowledge about the

items, correspond psychologically to the expertise of each

individual.

Methods

Ethics Statement
The data used in this study were collected in four experiments

approved by the University of California Irvine Institutional

Review Board in human subjects protocol HS#2009–6757.

Informed consent was obtained through the presentation of a

study sheet, followed by verbal acceptance (for experiments done

in person) or through clicking ‘‘accept’’ rather than ‘‘decline’’ (for

online experiments). These forms of consent are appropriate, and

approved by the by the University of California Irvine Institutional

Review Board, because of the determined Exempt status of the

research procedures.

Participants
The participants for all of the experiments were undergraduates

recruited from the human subjects pool at the University of

California Irvine, and were compensated by course credit. In the

third and fourth experiments, participants were allowed to choose

whether or not to complete some of the questions. This means that

Figure 1. Illustration of the basic Thurstonian model. Panel A
shows the latent ground truth locations m1 , m2, m3 , and m4 of four items.
Panels B and C show, for two individuals, how the latent representa-
tions generate the mental samples that produce observed ranking data.
The mental samples xij for the jth individual on the ith item are draws
from the Gaussian distribution with mean given my the ground truth mi

for the item, and standard deviation sj for the individual. The ordering
of these specific mental samples produces the reported ranking yj for

the jth individual.
doi:10.1371/journal.pone.0096431.g001
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there are different numbers of participant for the tasks within these

experiments. In particular, a few of the tasks that were unpopular

have many fewer participants. The exact number of participants

who completed each task is reported in the Tasks section below.

Some questions used in the second experiment were also used in

the third experiment, and so the two sets of participants have been

combined for analysis.

It is possible to express the behavioral data either in an ordering

representation, in which the order items were placed is listed in

sequence, or a ranking representation, in which the position of each item

is recorded in sequence. These representations convey the same

information, and it is easy to translate between them. All of the raw

data for every experiment are available, in the ordering representation,

at http://webfiles.uci.edu/mdlee/LeeSteyversMiller2014Data.zip.

Procedures
All of the experiments involve ranking tasks requiring both

general knowledge of existing ground truths and predictions of

future outcomes. In all cases, every participants provided a

complete ranking of every item. The first experiment collected

data using physical cards for each item that were physically placed

in order by the participant on a large table and recorded manually

by the experimenters. The second, third, and fourth experiments

used a computerized experimental interface, in which the items

were originally placed in a random order, but could be dragged

and dropped until the participant was ready to submit their

ranking and move to the next task. No time limit was imposed on

the completing any of the tasks.

Tasks
The first experiment involved 26 participants completing a

single task that required ranking the 44 US presidents in

chronological order.

The second experiment involved 78 participants completing a

set of 17 ranking tasks. All of the tasks used 10 items and involved

general knowledge, but varied with respect to the nature of the

criterion for ranking. The tasks variously involved criteria relating

to time (US presidencies, US holidays, movie releases, classic

Oscar-winning movie releases, recent Oscar-winning movie

releases, book releases, and Superbowl appearances), population

Figure 2. Data and model inference summaries for rankings of the 44 US presidents. The presidents are presented in true chronological
order from top to bottom. The left ‘‘ranking data’’ panel shows the proportion of times each president was ranked in each position across 26
participants. The right ‘‘model inferences’’ panel shows, using a simple violin plot approach [29], the marginal posterior distribution of the parameters
of the Thurstonian model. These posterior density distributions represent the location of each president on an assumed latent dimension
corresponding to their chronological order.
doi:10.1371/journal.pone.0096431.g002
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(US cities, European cities, world cities, and countries), geography

(US state locations, country landmasses, and river lengths),

physical properties (hardness of materials), political facts (the ten

amendments), and religious conventions (the ten commandments).

The third experiment involved a maximum of 70 participants

completing a set of 8 tasks, 5 of which (US presidencies, US

holidays, US cities, world cities, and country landmasses) were the

same 10-item tasks as for the second experiment, and one of which

(nine of the ten amendments, combining ‘‘trial by jury’’ and ‘‘civil

trial by jury’’) was almost the same. The other two tasks in the

third experiment were prediction tasks, for the 32 teams in the US

National Football League (NFL), and the 21 competitors in the US

reality television show ‘‘Survivor: Nicaragua’’.

The fourth experiment involved a maximum of 148 participants

completing two prediction tasks, relating to the Western and

Eastern conferences of the US National Basketball Association

(NBA).

Results

We applied the cognitive model to all of the data sets by

implementing it as a graphical model in JAGS [14], based on a

recently developed approach for related Thurstonian models [15].

We used flat and relatively uninformative priors on the

mi*Gaussian(0,0:01) latent location and sj*Uniform(0,20)

expertise parameters. Note that, as is the convention in JAGS,

we parametrize the Gaussian distribution in terms of a mean and

precision (not variance). Our modeling results are based on

collecting 4 independent chains with 1000 samples each, after

10000 samples of discarded burn-in samples and thinning each

chain by recording only every 10th sample. The chains were

checked visually for lack of auto-correlation, and their conver-

gence was assessed using the standard R̂R measure of within-to-

between-chain variability [16]. Further formal details of both the

Borda count method, and the Thurstonian modeling method, are

provided in Appendix S1.

The 44 US Presidents Task
Figure 2 presents some aspects of the empirical and modeling

results for the US presidents data from the first experiment. The

‘‘ranking data’’ panel shows, by the areas of the circles, the

proportion of times each president was ranked in each position. It

is clear people have more accurate knowledge of the earliest

presidents (Washington, Adams, …) and the most recent

presidents (Clinton, Bush, Obama, ..). It is also clear that many

people know Lincoln was the 16th president, even though

knowledge of nearby presidents is much worse.

The ‘‘model inferences’’ panel shows the marginal posterior

distribution, and its expectation, for each of the mi model

parameters, summarizing the inferred location of each president

on the assumed latent dimension. The ordering of these

parameters corresponds to the group ordering inferred by the

model, so the probability Pr mivmj

� �
corresponds to the proba-

bility the ith president is ranked before the jth president. It is clear,

for example, George Washington is near-certain to be ranked first

in the group’s answer, but that Ford may mistakenly be placed

before Nixon. In general, the increase in the inferred mi

parameters with respect to true chronological order suggests that

the group’s answers will often be reasonably good ones.

Figure 3 presents an analysis that quantifies the relationship

between the rankings inferred by the model and the rankings

provided by the participants. It relies on Kendall’s tau, which

counts the number of adjacent pairwise swaps between two orders,

to measure performance [17]. The green marker on the left

indicates a tau distance of zero, corresponding to an answer

matching the true order. The red marker on the right indicates the

largest possible tau distance, corresponding to an answer that

reverses the true order. The dotted line shows the chance

distribution of tau distance, corresponding to the performance of

orders generated at random.

The distribution of tau distance for the 26 participants is shown

by the histogram of stick figures. The distribution of tau distance

for the Thurstonian model is shown by the blue histogram. A

distribution is needed because the model does not produce one

ranking. Rather, every sample from the joint posterior distribution

of m~ m1, . . . ,m26ð Þ corresponds to a ranking, and the blue

histogram in Figure 3 shows the tau distance for each possible

ranking, weighted by its posterior mass. The blue circle labeled

‘‘T’’ indicates the tau distance for a single model ranking,

corresponding to the ordering of the marginal posteriors for each

mi parameter. The yellow circle labeled ‘‘B’’ shows the tau distance

for the ranking generated by the Borda count method.

It is clear from Figure 3 that participants performed above

chance, but that there were large individual differences in the

accuracy of their rankings. Both the Thurstonian model and the

Borda count rankings performed as well as the very best

participants, with the single ranking produced by the Thurstonian

model being slightly closer to the truth than the Borda count

ranking.

Figure 3 also shows, in the inserted scatter-plot, the relationship

between the sj expertise parameter and actual performance over

all of the participants. Each participant is a point, plotted in terms

of the posterior mean of their sj and their t distance from the true

ordering. There is a strong positive correlation of r~0:95 between

these measures.

General Knowledge Tasks
Figure 4 presents the results for the remaining 18 general

knowledge tasks, using the same display approach introduced in

Figure 3. For all of the tasks, it is clear that there are significant

Figure 3. Performance of participants and aggregation meth-
ods for the 44 US presidents task. The distribution of tau distances
between participants’ rankings and the true order is shown by stick
figure people, relative to best-possible (green circle), worst-possible
(red circle), and chance (dotted line) performance. The distribution of
tau distance for ranking inferred by the Thurstonian model is shown by
the blue histogram, and the performance of a single ranking produced
by the Thurstonian is shown by a blue circle labeled ‘‘T’’. The
performance of the ranking produced by the Borda count method is
shown by the yellow circle labeled ‘‘B’’. The inserted scatter-plots shows
relationship between the inferred parameter measuring the expertise
individual participants and their tau distance measure of actual
performance.
doi:10.1371/journal.pone.0096431.g003
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individual differences in the performance of participants. For some

tasks (e.g., US holidays, movie releases, country landmasses) the

distribution of participant’s performance is well above chance

performance. For other tasks (e.g., world city populations,

European city populations, hardness of materials) it is far less

impressive.

Figure 4 shows that, for almost all the tasks, the Thurstonian

model performs as well or better than most participants. For some

tasks (e.g., US presidents, US holidays, recent oscar releases, US

states east to west, country landmasses, ten amendments) the

model’s inferring ranking is perfect or nearly perfect. In other tasks

(e.g., book releases, country populations, river lengths) the model’s

ranking fares well relatively to most participants, but does not

match the ground truth. In just a few tasks (e.g., Superbowl

appearances, European city populations, ten commandments) the

ranking inferred by the model is significantly worse than some

sizable subset of participants. The performances of the rankings

produced by the Thurstonian model and by the Borda count are

Figure 4. Performance of participants and aggregation methods for 18 general knowledge ranking tasks. Each panel corresponds to a
different task, and shows the distribution of the tau distance measure of performance for all participants (stick figure people), the Thurstonian model
(blue histograms) and summaries of the Thurstonian model (blue circle) and Borda count (yellow circle) aggregation. The inserted scatter-plots show
the relationship between the inferred expertise parameter and actual performance across all participants.
doi:10.1371/journal.pone.0096431.g004
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usually similar. There are only a few tasks for which either the

Borda count or Thurstonian model (e.g., US city populations) is

clearly superior.

Finally, Figure 4 shows that the expertise for each participant

inferred by the Thurstonian model almost always has a strong

correlation with the tau distance measure of performance. Many

of the correlations are above 0.90, and the lowest correlation is

0.47 for the hardness of materials task. The scatter-plots show that

these correlations are not being generated by outliers, but

summarize what is generally a close linear relatonship between

model-inferred expertise and actual observed performance.

Prediction Tasks
Figure 5 presents the results for the 4 prediction tasks, using the

same display approach. Significant individual differences in the

accuracies of the rankings predicted by participants are again

evident. For these tasks, the distribution of participant perfor-

mance generally does not seem much better than expected by the

chance distribution. The aggregate rankings inferred by the

Thurstonian model are always among the best-performed

participants, and for the NFL task outperforms all participants.

The aggregate rankings determined by the Borda count method

also perform relatively well, but are not as impressive, and are

never as good or better than the Thurstonian rankings. For three

of the four tasks (all but Survivor Nicaragua, where the correlation

is 0.48) there is a strong correlation around 0.85 between the

inferred expertise of participants and their tau distance measure of

actual performance.

Overall Performance
Figure 6 presents a summary of the Thurstonian model and the

Borda method over all of the tasks. For these analyses, the single

ranking produced by the Thurstonian model was compared to the

single ordering produced by the Borda count method. The main

panel shows the proportion of participants each method was

strictly better than, and strictly worse than, according to the

Kendall tau metric. Using just one of these measures is not

complete, because it is possible for a method to have the same level

of performance as participants on a task. The marginal

distributions of these proportions for both methods are also shown.

One clear conclusion from Figure 6 is that both the Thurstonian

model and Borda method perform well. They are typically better

than 80% or 90% of participants, and usually worse than only

10% or 20%. A second, more subtle, conclusion is that the

Thurstonian model usually performs better than the Borda

method. Most of the tasks lie above the diagonal for the ‘‘better

than’’ measure, and below the diagonal for the ‘‘worse than’’

measure. The marginal distributions show the Thurstonian model

has more mass at very good levels of performance above the 0.9

proportion for the ‘‘better than’’ measure, and more mass below

the 0.1 proportion for the ‘‘worse than’’ measure.

Discussion

The wisdom of the crowd effect is fundamentally about

knowledge aggregation. In this paper, we have focused on ranking

data as an expression of knowledge, and on cognitive modeling as

an approach to aggregation. Ranking data have been considered

before in the wisdom of the crowd context [18], but much less

often than simple numerical estimates. Cognitive models have

been considered before in the wisdom of the crowd context

[19,20], but much less often than standard statistical methods.

Very little work has been done that uses a cognitive modeling

approach for ranking data [3], and we believe we are the first to

Figure 5. Performance of participants and aggregation methods for 4 prediction tasks. Each panel corresponds to a different task, and
shows the distribution of the tau distance measure of performance for all participants (stick figure people), the Thurstonian model (blue histograms)
and summaries of the Thurstonian model (blue circles) and Borda count (yellow circles) aggregated rankings. The inserted scatter-plots show the
relationship between the inferred expertise parameter and actual tau distance performance across all participants.
doi:10.1371/journal.pone.0096431.g005
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use a Thurstonian modeling approach for ranking data that allows

for individual differences and involves a known ground truth.

Our results show that it is possible to combine people’s rankings

in useful ways, across a range of tasks covering general knowledge

as well as prediction problems. Both the Thurstonian modeling

approach we developed, and the standard Borda count statistical

approach, produce combined rankings that perform well relative

to individuals. There is some evidence in our results that the

Thurstonian modeling approach outperforms the Borda method,

although it is far from definitive. Over all of the tasks we

considered, the ranking generated by the Thurstonian model

usually outperforms the one generated by the Borda method, and

more often achieves very good levels of performance relative to

individuals. There is also some evidence in our results that the

Thurstonian model fares especially well in prediction tasks. In

the four prediction tasks we considered, shown in Figure 5, the

Thurstonian model outperforms the Borda method, and is among

the best of (or better than) the individual participants. Future

research needs to consider additional prediction tasks to provide

further evaluation of this suggestive finding.

Beyond the assessments provided by performance in matching

ground truths, however, we believe our results provide several

more general reasons for pursuing the Thurstonian approach. The

Thurstonian approach adopts a generative cognitive modeling

perspective, in which the focus is on formalizing how latent

psychological processes and parameters generate behavioral data.

This perspective means the Thurstonian model provides addition-

al information not immediately available from standard statistical

methods like the Borda count.

The best example of this general difference is in the measure of

individual expertise inferred by our model. As part of modeling

how people generate rankings, our model assumes each person has

some level of knowledge of the items being ranked. This level of

knowledge is parametrized by sj for the jth person, and is

naturally interpreted as a measure of their expertise. The scatter-

plots in Figures 3, 4, and 5 show that the expectation of the

posterior of the expertise parameters correlates, often very highly,

with the tau distance measure of actual performance. This is a

compelling set of results, because the the true ordering of the items is not

needed nor used to infer the expertise measures. The strong

correlations thus suggests that a person’s relative expertise can

be measured effectively by the Thurstonian model, using only their

behavioral data in completing the ranking task, without any

specific form of self-assessment of expertise, and without knowing

the ground truth [13].

Figure 7 presents our intuition as to why the Thurstonian model

might outperform the Borda method, and is able to infer expertise

successfully. The spatial arrangement of participants, shown by

stick figures, was found by applying classical multidimensional

scaling methods [21] to the tau distances between the rankings for

every pair of participants in the movie release dates task. There is a

visually clear cluster of participants in the middle-right of this

arrangement, all giving similar rankings. The Thurstonian model

is able to make this pattern of observed data likely by inferring that

the true latent locations of the items are consistent with the

rankings in the cluster, and that participants in this cluster have

narrow distributions from which they draw their mental samples.

Colloquially, the model infers that strong agreement on small set

of rankings out of a possible 10! is unlikely to have occurred by

Figure 6. Summary of the performance of the Thurstonian model and Borda method for all task. Each point in the main panel
corresponds to a task, showing the proportion of participants each method was better than (filled circles) and worse than (open circles). The
histograms show the marginal distributions of these measures.
doi:10.1371/journal.pone.0096431.g006
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chance, but likely to have occurred if the true order is providing a

signal shared by these participants.

The result of these inferences is that the aggregate ranking

produced by the Thurstonian model will fall in the cluster, as

shown by the blue cross, and that the inferred expertise of each

participant will depend on how close their ranking is to the

aggregate ranking. Figure 7 highlights both a relatively expert

participant, connected to the aggregate ranking by the solid line,

and a relatively non-expert participants, connected to the

aggregate ranking by the broken line. One way of thinking about

how the Thurstonian model differs from the Borda count in

producing an aggregate ranking is that the Thurstonian model

incorporates the inferred expertise. Those participants with

narrower distribution (smaller sj values) will have relatively

greater influence on the inference of the latent locations (the mi

values). In this sense, the Thurstonian model ‘‘up-weights’’ the

rankings of relatively expert participants in determining an

aggregate ranking, whereas the Borda count method treats the

ranking of each participant as having equal weight.

Of course, it would be possible to develop an extended Borda

count method that determined an expertise measure by comparing

individual and aggregate rankings, and used this measure as a

weight in combining individual rankings. Such an approach is

likely to perform similarly to the Thurstonian model we have

developed, although it would lack the inferential completeness

provided by the full joint posterior distribution afforded by the

Thurstonian model’s Bayesian approach. We note, however, that

the intuition that expertise can be measured by proximity to an

aggregate answer, and used as a weight in combining rankings,

emerged from the generative and cognitive modeling approach

used to develop the Thurstonian model. By thinking about how

people produce rankings, cognitive processes and parameters were

formalized that provided useful new insights, methods, and results.

The cognitive model developed here is a very simple

psychological account of how rankings are produced, and it is

easy to see multiple complementary ways in which it could be

extended. The assumption that there is a single latent true

ordering could be relaxed to allow for different substantive

opinion, perceptions,or misperceptions. There is a suggestion in

Figure 7 of a separate smaller cluster of participants who produced

different rankings This sort of representational structure can be

modeled as a latent mixture over multiple rankings, and naturally

expressed as a generative cognitive model with a richer sort of

individual differences. In some applications, one of the latent

orders might be regarded as a contaminant (e.g., if there is a

common misperception of some aspect of general knowledge), or

both latent orders might be regarded as legitimate opinions, as in

cultural consensus theory [22–24]. One appealing possibility is

that the identification of different representations might often be

possible, and especially important, in prediction settings. For

example, in making the predictions about NBA basketball

outcomes, it seems plausible that some significant subset of non-

expert participants might base their rankings on criteria like city

size or familiarity of team name. Creating a mixture model

representation that includes a mixture component capturing these

heuristic strategies might allow more precise and useful inferences

about the latent representations being used to generate rankings by

more expert participants.

A closely related extension is to consider more sophisticated

models of individual differences. The current modeling approach

assumes that a person’s expertise can be represented by a single

scalar (the sj parameter), and that these are independent for each

question. Theories of individual differences in expertise [25], and

more general psychometric theories—including classic test theory

and item-response theory models [26], and factor measurement

models [27]—provide a basis for extending this simple assump-

tion. Future work should also examine how structured measures of

individual differences and expertise derived from these theories

relate to observed co-variates, including measures like age, gender,

self-rated expertise, and so on. All of these sorts of extensions are

naturally incorporated in the graphical modeling framework, as

hierarchical extensions of the current model.

Finally, our Thurstonian model could also be extended to

include more realistic memory processes. For example, the

identification of Lincoln as the 16th president noted in Figure 2

suggests that people have both relatively and absolute knowledge

for order. In terms of the theories of memory needed to model

people’s behavior, both chaining and position encoding mecha-

nisms are clearly important [28]. Chaining models of memory

assume that sequences of items of encoded, and the retrieval of one

cues the retrieval of the next (Carter, Reagan, Bush, Clinton, …),

while position models assume that item-slot relationships are

encoded (Lincoln is the 16th president). Incorporating these sorts

of memory mechanisms into a cognitive model of how people

produce ranking data is likely to have implications for how their

ranking are aggregated and their individual differences are

understood.

The wisdom of the crowd is a fundamental challenge for

cognitive modeling. It requires understanding how different people

represent the potentially different knowledge they have, and how

they express that knowledge in behavioral tasks. We have shown

that a simple cognitive model performs well on the problem of

combining people’s rankings of items, including in predictive

settings, and provide useful insights into the expertise of

Figure 7. Intuition for successful performance of the Thursto-
nian approach to modeling the wisdom of crowds. A projected
representation of the distances between the rankings provided by
participants in the movie rankings task, showing a large cluster of
people with similar answers. The ranking found by the Thurstonian
model is shown by the large blue cross. An participant inferred to be
relatively expert near the Thurstonian ranking is connected by the solid
line, and a participant inferred to be relatively non-expert far from the
Thurstonian ranking is connected by the broken line.
doi:10.1371/journal.pone.0096431.g007
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individuals. Future work should develop richer cognitive models,

incorporating more sophisticated representation, memory, and

decision-making processes, with the complementary aims of

improving our applied ability to aggregate ranking data, and our

theoretical understanding of the knowledge individuals and groups

share.
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