
Scoring Workers in Crowdsourcing: How Many
Control Questions are Enough?

Qiang Liu
Dept. of Computer Science
Univ. of California, Irvine

qliu1@uci.edu

Mark Steyvers
Dept. of Cognitive Sciences
Univ. of California, Irvine

mark.steyvers@uci.edu

Alexander Ihler
Dept. of Computer Science
Univ. of California, Irvine
ihler@ics.uci.edu

Abstract

We study the problem of estimating continuous quantities, such as prices, proba-
bilities, and point spreads, using a crowdsourcing approach. A challenging aspect
of combining the crowd’s answers is that workers’ reliabilities and biases are usu-
ally unknown and highly diverse. Control items with known answers can be used
to evaluate workers’ performance, and hence improve the combined results on the
target items with unknown answers. This raises the problem of how many control
items to use when the total number of items each workers can answer is limited:
more control items evaluates the workers better, but leaves fewer resources for the
target items that are of direct interest, and vice versa. We give theoretical results
for this problem under different scenarios, and provide a simple rule of thumb for
crowdsourcing practitioners. As a byproduct, we also provide theoretical analysis
of the accuracy of different consensus methods.

1 Introduction

The recent rise of crowdsourcing has provided a fast and inexpensive way to collect human knowl-
edge and intelligence, as illustrated by human intelligence marketplaces such Amazon Mechanical
Turk, games with purpose like ESP, reCAPTCHA, and crowd-based forecasting for politics and
sports. One of the philosophies behind these successes is the wisdom of crowds phenomenon: prop-
erly combining a group of untrained people can be better than the average performance of the in-
dividuals, and even as good as the experts in many application domains (e.g., Surowiecki, 2005,
Sheng et al., 2008). Unfortunately, it is not always obvious how best to combine the crowd, because
the (often anonymous) workers have unknown and diverse levels of expertise, and potentially sys-
tematic biases across the crowd. Naı̈ve consensus methods which simply take uniform averages or
the majority answer of the workers have been known to perform poorly. This raises the problem of
scoring the workers, that is, estimating their expertise, bias and any other associated parameters, in
order to combine their answers more effectively.

One direct way to address this problem is to score workers using their past performance on similar
problems. However, this is not always practical, since historical records are hard to maintain for
anonymous workers, and their past tasks may be very different from the current one. An alternative
is the idea behind reCAPTCHA: “seed” some control items with known answers into the assigned
tasks (without telling workers which are control items), score the workers using these control items,
and weight their answers accordingly on the unknown target items. The reCAPTCHA example is a
particularly simple case, where workers answer exactly one control and one target item. In general
crowdsourcing, the workers may answers hundreds of questions, raising the question of how many
control items should be used. There is a clear trade-off: having workers answer more control items
gives better estimates of their performance and any potential systematic bias, but leaves fewer re-
sources for the target items that are of direct interest. However, using few control items gives poor
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estimates of workers’ performance and their biases, also leading to bad results. A deep understand-
ing of the value of control items may provide useful guidance for crowdsourcing practitioners.

On the other hand, a line of research has studied more advanced consensus methods that are able
to simultaneously estimate the workers’ performance and items’ answers without any ground truth
on the items, by building joint statistical models of the workers and labels (e.g., Dawid and Skene,
1979, Whitehill et al., 2009, Karger et al., 2011, Liu et al., 2012, Zhou et al., 2012). The basic
idea is to score the workers by their agreement with other workers, assuming that the majority of
workers are correct. Perhaps surprisingly, the worker reliabilities estimated by these “unsupervised”
consensus methods can be almost as good as those estimated when the true labels of all the items are
known, and are much better than self-evaluated worker reliability (Romney et al., 1987, Lee et al.,
2012). Control items can also be incorporated into these methods: but how much can we expect
them to improve results, or does an “unsupervised” method suffice?

The goal of this paper is to study the value of control items, and provide practical guidance on how
many control items are enough under different scenarios. We give both theoretical and empirical
results for this problem, and provide some rules of thumbs that that are easy to use in practice.
We develop our theory on a class of Gaussian models for estimating continuous quantities, such as
forecasting probabilities and point spreads in sports games, and show how it extends to more general
models. As a byproduct, we also provide analytic results of the accuracy of different consensus
algorithms. Important practical issues such as the impact of model misspecification, systematic
biases and heteroscedasticity are also highlighted on real datasets.

2 Background

Assume there is a set T of target items, associated with a set of labels µT ∶= {µi∶ i ∈ T } whose true
values µ∗T we want to estimate. In addition, we have a set C of control (or training) items whose true
labels µ∗C ∶= {µ∗i ∶ i ∈ C} are known. We denote the set of workers byW; each worker j is associated
with a parameter ν∗j that characterizes their expertise, bias, any other relevant features. We denote
the complete vector of worker parameters by ν ∶= {ν∗j ∶ j ∈ W}. Both µ and ν are assumed to be
continuous variables in this paper. Denote by nt the number of target items and m the workers.

Let ∂i be the set of workers assigned to item i, and ∂tj (and ∂cj ) the set of target (and control) items
labeled by worker j. The assignment relationship between the workers and the target items can
be represented by a bipartite graph Gt = (T ,W,Et), where there is an edge (ij) ∈ Et iff item i is
assigned to worker j. Let ri be the number of workers assigned to the i-th target item, and let `tj
(and `cj) be the number of target (and control) items assigned to the j-th worker. Note that {ri} and
{`tj} are the two degree sequences of the bipartite graph Gt.

Denote by xij the label we collect from worker j for item i. In general, we can assume that xij is a
random variable drawn from a probabilistic distribution p(xij ∣µ∗i , ν

∗
j ). The computational question

is then to construct an estimator µ̂T of the true labels µ∗T based on the crowdsourced labels {xij},
such that the expected mean square error (MSE) on the target items, E[∣∣µ̂T − µ∗T ∣∣

2], is minimized.

Gaussian Model. We focus on a class of simple Gaussian models on the labels xij :

xij = µ
∗
i + b

∗
j + ξij , ξij ∼ N (0, σ∗2), (1)

where µ∗i is the quantity of interest of item i, b∗j is the bias of worker j, and σ∗2 is the variance.
For some quantities, like probabilities and prices, proper transforms should be applied before using
such Gaussian models. Model (1) is equivalent to the two-way fixed effects model in statistics (e.g.,
Chamberlain, 1982). It captures heterogeneous biases across workers that are commonly observed
in practice, for example in workers’ judgments on probabilities and prices, and which can have
significant effects on the estimate accuracy. This model also has nice theoretical properties and will
play an important role in our theoretical analysis. Note that the biases are not identifiable solely from
the crowdsourced labels {xij}, making it is necessary to add some control items or other information
when decoding the answers.

An extension of model (1) is to introduce heteroscedasticity, allowing different workers to have
different level of Gaussian noise: that is, xij = µ∗i + b

∗
j + σ

∗
j ξij , where ξij ∼ N (0,1) and σj is a

variance parameter of worker j. We will refer to this extension as the bias-variance model, and
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Model (1) as the bias-only model. We will also consider another special case, xij = µ∗j + σ
∗
j ξij ,

which assumes the workers all have zero bias but different variances (the variance-only model).
Theoretical analysis of the bias-variance and variance-only models are significantly more difficult
due to the presence of the variance parameters, but is still possible under asymptotic assumption.

2.1 Consensus Algorithms With Partial Ground Truth

Control items with known true labels can be used to estimate workers’ parameters, and hence im-
prove the estimation accuracy. In this section, we introduce two types of consensus methods that
incorporate the control items in different ways: one simply scores the workers based on their perfor-
mance on the control items, while the other uses a joint maximum likelihood estimator that scores
the worker based on their answers on both control items and target items. We present both methods
in terms of a general model p(xij ∣µi, νj) here; the updates for the Gaussian models can be easily
derived, but are omitted for space.

Two-stage Estimator: the workers’ parameters are first estimated using the control items, and are
then used to predict the target items. That is,

Scoring: ν̂j = arg max
νj

∑
i∈∂c

j

log p(xij ∣µ
∗
i , νj), for all j ∈W , (2)

Prediction: µ̂i = arg max
µi

∑
j∈∂i

log p(xij ∣µi, ν̂j), for all i ∈ T , (3)

where we use the maximum likelihood estimator as a general procedure for estimating parameters.

Joint Estimator: we directly maximize the joint likelihood of the crowdsourced labels {xij} of
both target and control items, with µC of the control items clamped to the true values µ∗C . That is,

[µ̂T , ν̂] = arg max
[µT ,ν]

{∑
i∈C
∑
j∈∂i

log p(xij ∣µ
∗
i , νj) +∑

i∈T
∑
j∈∂i

log p(xij ∣µi, νj)}, (4)

which can be solved by block coordinate descent, alternatively optimizing µT and ν. Compared to
the two-stage estimator, the joint estimator estimates the workers’ parameters based on both the con-
trol items and the target items, even though their true labels are unknown. This is because the labels
xij provide information on µ∗i through the model assumption p(xij ∣µ∗i , ν

∗
j ). Therefore, the joint

estimator may be much more efficient than the two-stage estimator when the model assumptions are
satisfied, but may perform poorly if the model is misspecified.

3 How many control items are enough?

We now consider the central question: assuming each worker answers ` items (we refer ` as the
budget), including k control items and `−k target items, what is the optimal choice of k to minimize
the expected MSE? To be concrete, here we assume all the workers (items) are assigned to the
same number of randomly selected items (workers), and hence the assignment graph Gt is a random
semi-regular bipartite graph, which can be generated by the configuration model (e.g., Karger et al.,
2011). We assume r is the number of labels received by each target item, so that r =m(` − k)/nt.

Obviously, the optimal number of control items should depend on their usage in the subsequent
consensus method. We will show that the two-stage and joint estimators exploit control items in
fundamentally different ways, and yield very different optimal values of k. Roughly speaking, the
optimal k should scale as O(

√
`) when using a two-stage estimator, compared to O(`/

√
nt) when

using joint estimators. We now discuss these two methods separately.

3.1 Optimal k for Two-stage Estimator

We first address the problem on the bias-only model, which has a particularly simple analytic solu-
tion. We then extend our results to more general models.

Theorem 3.1. (i). For the bias-only model with xij = µ∗i + ν
∗
j + ξij , where ξij are i.i.d. noise drawn

from N (0, σ∗2), the expected mean square error (MSE) of the two-stage estimator in (2)-(3) is

E[∑
i∈T

∣∣µ̂i − µ
∗
i ∣∣

2
/nt] =

σ∗2

r
(1 +

1

k
). (5)
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(ii). Note that r = m(` − k)/nt, and the optimal k that minimizes the expected MSE in (5) is
k∗ = ⌈

√
` + 5/4 − 3/2⌉ ≈

√
`, where ⌈z⌉ denotes the smallest integer no less than z.

Proof. The solution of two-stage estimator has a simple linear form under the bias-only model,

µ̂i =
1

r
∑
j∈∂i

(xij − ν̂j), ν̂j =
1

k
∑
i∈∂c

j

(xij − µ
∗
i ), for ∀i ∈ T , ∀j ∈W .

Since the xij are Gaussian, the µ̂i are also Gaussian. Calculating the mean and variance of µ̂i, we
have that Eµ̂i = µ∗i , and Var(µ̂i) as in (5). The remaining steps are straightforward.

Remarks. (i). Eq. (5) shows that the MSE is inversely proportional to the number r of workers per
target item, while the number k of control items per workers only refines the multiplicative constant.
Therefore, the resources assigned to the control items are much less “useful” than those assigned
directly to the target items, suggesting the optimal k should be much less than the budget `.

(ii). On the other hand, if k is too small, the multiplicative constant becomes large, which also
degrades the MSE. In the extreme, if k = 0 then the bias is unidentifiable, and the MSE grows
to infinity. In addition, if the budget ` grows to infinity, the optimal k should also grow to infinity,
otherwise the multiplicative constant is strictly larger than one, which is suboptimal. One can readily
see that k = O(

√
`) achieves the desired balance of trade-offs.

General Models. The bias-only model is simple enough to give closed form solutions. It turns
out that we can obtain similar results for more general models such as the bias-variance and the
variance-only model, but only in the asymptotic regime.

To set up, assume {µi} and {νj} are drawn from prior distributions Qµ and Qν , respectively. As-
sume log p(xij ∣µi, νj) is twice differentiable w.r.t. µi and νj all for x. Define the Fisher information
matrix Hµµ = −Ex[∇2

µµ log p(x∣µ, ν)], and similarly for Hµν and Hνν . Note that Hµµ is a random
variable dependent on µ, and denote by Eµ[Hµµ] its expectation w.r.t. Qµ.

Theorem 3.2. (i). Assume the crowdsourced labels {xij} are drawn from p(xij ∣µ
∗
i , ν

∗
j ), where

{µ∗i } and {ν∗j } are drawn from priors Qµ and Qν , respectively. The asymptotic expected MSE of
the two-stage estimator defined in (2)-(3), as both r and k grow to infinity, is

E[∑
i∈T

∣∣µ̂i − µ
∗
i ∣∣

2
/nt] =

σ̃2

r
(1 +

a

k
), (6)

where σ̃2
= Eµ[tr(H−1

µµ)], Jµµ = Ex,ν[∇2
µν log p(x∣µ, ν)H−1

νν∇
2
µν log p(x∣µ, ν)T ], and a =

Eµ[tr(H−1
µµJµµH

−1
µµ)]/Eµ[tr(H

−1
µµ)],

(ii). Note that r = m(` − k)/nt, and the optimal k that minimizes the asymptotic MSE in (6) is
k∗ = ⌈

√
a` + a2 + 1/4 − a − 1/2⌉ ≈

√
a`, where ⌈k⌉ denotes the smallest integer no less than k.

Proof. Similar to Theorem 3.1, except asymptotic normality of M-estimators (e.g., Van der Vaart,
2000) should be used.

Remarks. (i). The result in Theorem 3.2 is parallel to that in Theorem 3.1 for bias-only models,
except that the contribution from uncertainty on the workers’ parameters is scaled by a model-
dependent factor a, and correspondingly, the optimal k is scaled by

√
a. Calculation yields a = 2 for

the variance-only model, and a = 3 for the bias-variance model for any choice of prior Qµ and Qν .

(ii). Letting k take continuous values, the optimal k to minimize (6) is k∗ =
√
a` + a2 − a, which

achieves a minimum MSE of σ̃2/(` − 2k∗) (assuming nt = m). For comparison, the MSE would
be σ̃2/(` − k∗) if the worker parameters were known exactly. So, the uncertainty in the workers’
parameters creates an effective extra loss of k∗ labels for each target item. Note that this rule is
universal, in that it remains true for any a (and hence any model).
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3.2 Optimal k for Joint Estimator

The two-stage estimator is easy to analyze in that its accuracy is independent of the structure of the
bipartite assignment graph beyond the degree r and k. This is not true for the joint estimator, whose
accuracy depends on the topological structure of the assignment graph in a non-trivial way. In this
section we study the properties of the joint estimator, again starting with the simple bias-only model,
then discussing its extension to more general cases.

We first introduce some matrix notation. Let At be the adjacency matrix of Gt. Let Rt ∶=

diag({ri ∶ i ∈ T }) be the diagonal matrix formed by the degree sequence of the target items, and
similarly define Lt = diag({`tj ∶ j ∈W}) and Lc = diag({`cj ∶ j ∈W}).

Theorem 3.3. (i). For the bias-only model with xij = µ∗i + ν
∗
j + ξij , where ξij are i.i.d. noise drawn

from N (0, σ∗2), the expected MSE of the joint estimator defined in (4) is

E[∑
i∈T

∣∣µ̂i − µ
∗
i ∣∣

2
/nt] = σ

∗2tr((Rt −At(Lt +Lc)
−1ATt )

−1
)/nt, (7)

If At is regular, with Rt = rI and Lt = (` − k)I , this simplifies:

E[∑
i∈T

∣∣µ̂i − µ
∗
i ∣∣

2
/nt] = σ

∗2 1

r
tr((I −

` − k

`
W )

−1
)/nt, where W = R−1

t AtL
−1
t A

T
t . (8)

Proof. Assume B ∶= I −R−1
t At(Lt + Lc)

−1ATt is invertible. The solution of the joint estimator on

the bias-only model is µ̂T = µ∗T +B
−1zT , where zi =

1

ri
∑
j∈∂i

(ξij − ξ̄j), and ξ̄j =
1

`cj + `
t
j

∑
i′∈∂c

j∪∂t
j

ξij

and ξij = xij − µ∗i − ν
∗
j for ∀i ∈ T . We obtain (7) by calculating Var(µ̂T ).

Remarks. (ii). Equation (8) establishes an explicit connection between MSE and the spectral struc-
ture of the bipartite graph Gt. Consider the eigenvalues 1 = λ1 ≥ λ2 ≥ ⋯ ≥ 0 of W ∶= R−1

t AtL
−1
t A

T
t ,

where the second largest eigenvalue λ2 famously characterizes the connectivity of the graph Gt.
Roughly speaking, Gt has better connectivity if λ2 is small, and verse versa. Observe that

tr((I −
` − k

`
W )

−1
) =

nt

∑
i=1

(1 −
` − k

`
λi)

−1
≤

`

k
+

nt − 1

1 − `−k
`
λ2
. (9)

Therefore, the joint estimator performs better when λ2 is small, i.e., when the graph is strongly
connected. Intuitively, better connectivity “couples” the items and workers more tightly together,
making it easier not to make mistakes during inference.

Besides hoping for small error, one may also want the assignment graph to be sparse, i.e., use fewer
labels. Graphs that are both sparse and strongly connected are known as expander graphs, and have
been found universally important in areas like robust computer networks, error correcting codes, and
communication networks; see Hoory et al. (2006) for a review. It is well known that large sparse
random regular graphs are good expanders (e.g., Friedman et al., 1989), and hence a near-optimal
allocation strategy for crowdsourcing (Karger et al., 2011). On such graphs, we can also estimate
the optimal k in a simple form.

Theorem 3.4. Assume At is a random regular bipartite graph, and nt =m. We have that

E[∑
i∈T

∣∣µ̂i − µ
∗
i ∣∣

2
/nt] =

σ2

` − k
[
nt − 1

nt
(1 +O(

1

`
)) +

`

ntk
], (10)

with probability one as nt → ∞. If in addition ` → ∞, the optimal k that minimizes (10) is k∗ =

⌈
√
`2/nt + `2/nt2 + 1/4 − `/nt − 1/2⌉ ≈ `/

√
nt.

Proof. Use (9) and the bound in Puder (2012) for λ2 of large random regular bipartite graphs.

Remarks. (i). Perhaps surprisingly, the optimal k of the joint estimator scales linearly w.r.t. budget
`, in contrast to the square-root rule of two-stage estimators. However, since usually ` ≤ nt, we have
`/
√
nt ≤

√
`, that is, the joint estimator requires fewer control items than the two-stage estimator.
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(ii). In addition, the optimal k for the joint estimator also decreases as the total number nt of target
items increases. Because nt is usually quite large in practice, the number of control items is usually
very small. In particular, as nt → ∞, we have k∗ = 1, that is, there is no need for control items
beyond fixing the unidentifiability issue of the biases.

General Models. The joint estimator on general models is more involved to analyze, but it is still
possible to give an rough estimate by analyzing the Fisher information matrix of the likelihood. For
notation, let Hµµ = Rt ⊗ Eµ(Hµµ), and Hνν = (Lt + Lc) ⊗ Eµ(Hνν), where ⊗ is the Kronecker
product, and Hµν = [Hµiνj ]ij is a block matrix, where block Hµiνj for (ij) ∈ Et is a random copy
of −∇2

µν log p(x∣µ, ν) with random x, µ and ν, and Hµiνj = 0 for (ij) ∉ Et. Assuming the joint
maximum likelihood estimator in (4) is asymptotically consistent (in terms of large ` and r), we can
estimate its asymptotic MSE by the inverse of the Fisher information matrix,

E[∑
i∈T

∣∣µ̂i − µ
∗
i ∣∣

2
/nt] ≈ E[tr((Hµµ −HµνHνν

−1Hµν
T
)
−1

)]/nt,

where the expectation on the right side is w.r.t. the randomness of Hµν . This parallels (7) in The-
orem 3.3, except the adjacency matrices are replaced by corresponding Hessian matrices. Unfortu-
nately, it is more challenging to give a simple estimate of the optimal k as in Theorem 3.4, even when
At is a random bipartite graph, because the spectral properties of the random matrix are complicated
by blockwise structure, and may depend on the prior distribution Q(ν). However, experimentally
the optimal k follows the trend `

√
a/nt, where the constant a depends on both the model assumption

and the choice of Q(ν), and can be numerically estimated by simulation.

4 Experiments

We show that our theoretical predictions match closely to the results on simulated data and two real
datasets for estimating prices and point spreads. The experiments also highlight important practical
issues such as the impact of model misspecification, biases, and heteroskedasticity.

Datasets and Setup. The simulated data are generated by the Gaussian models definited in Sec-
tion 2, where µi and bj are i.i.d. drawn from N (1,1); and σj from a χ2-distribution with degree
4 for the heteroskedastic versions. The price dataset consists of 80 household items collected from
stores like Amazon and Costco, whose prices are estimated by 155 undergraduate students at our
institution. The true prices of the products are also collected for use as control items and evaluating
the algorithms. A log transform is performed on the prices before using the Gaussian models. The
National Football League (NFL) forecasting data was collected by Massey et al. (2011), where 386
participants were asked to predict the point difference of 245 NFL games. We use the point spreads
determined by professional bookmakers as the truth values in our experiments.

For all the experiments, we first construct the set of target items and control items by randomly
partitioning items, and then randomly assign each worker with k control items and `−k target items,
for varying values of ` and k. The MSE is estimated by averaging over 500 random trials. The
optimal k is estimated by minimizing the averaged MSE over 300 randomly subsampled trials, and
then taking average over 20 random subsamples.

Optimal Number of Control Items. See Figure 1 for the results of the bias-only model when the
data are simulated from the correct model. Figure 1(a) shows the empirical MSE of the two-stage
estimator when varying the number k of control items. A clear trade-off appears: MSE is large both
when k is too small to estimate workers’ parameters accurately, and when k is too large to leave a
sufficient number of labels for the target items. The MSE of the joint estimator in Figure 1(b) follows
a similar trend, but the improvement obtained by using control items is less significant (the left parts
of the curves are flatter). This is because the joint estimator leverages the labels on the target items
(whose true values are unknown), and relies less on the control items. In particular, as the number
nt of target items increases, the optimal value of k for the joint estimator decreases with a rate of
1/

√
nt (see Figure 1(d)), but that of the two-stage estimator stays the same. Overall, the empirical

optimal k of the two-stage and joint estimator aligns closely with our theoretical prediction of
√
`

and `/
√
nt, respectively (Figure 1(c)-(d)).

We show in Figure 2(a) the result of the bias-variance model when data are simulated from the
correct model. The optimal k of the two-stage estimator aligns closely to

√
a` with a = 3, matching
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Figure 1: Results of the bias-only model on data simulated from the same model. (a)-(b) The MSE
of the two-stage and joint estimators with varying ` and k and fixed nt = 100. The stars and circles
denote the empirically and theoretically optimal k, respectively. (c) The optimal k with varying `,
but fixed nt = 100. (d) The optimal k with varying nt, but fixed ` = 50. We set m = nt here.

the asymptotic result in Theorem 3.2, while that of the joint estimator scales like the line `
√
a/nt

with a ≈ 3, matching our hypothesis in Section 3.2.

Model misspecification. Real datasets are not expected to match the model assumptions perfectly.
It is important, but difficult, to understand how the theory should be modified to compensate for the
violation of assumptions. We provide some insights on this by constructing model misspecification
artificially. Figure 2(b)-(c) shows the results when the data are simulated from a bias-variance
model with non-zero biases, but we use the variance-only model (with zero bias) in the consensus
algorithm. We see in Figure 2(b) that the optimal k of the two-stage estimator still aligns closely to
our theoretical prediction, but that of the joint estimator is much larger than one would expect (almost
half of the budget `). In addition, the MSE of the joint estimator in this case is significantly worse
than that of the two-stage estimator (see Figure 2(c)), which is not expected if the model assumption
holds. Therefore, the joint estimator seems to be more sensitive to model misspecification than the
two-stage estimator, suggesting that caution should be taken when it is applied in practice.

Real Datasets. Figure 3 shows the results of the bias-only model on the two real datasets; our
prediction of the optimal k matches the empirical results surprisingly well on the NFL dataset (Fig-
ure 3(d)-(f)), while our theoretically optimal values of k on the price dataset tend to be smaller than
the actual values (Figure 3(a)-(c)), perhaps caused by some unknown model misspecification. How-
ever, our bias on the estimated k does not cause a significant increase in MSE, because the scale in
Figure 3(a)-(b) is relatively small compared to that in Figure 4(a).

Interestingly, the two real datasets have opposite properties in terms of the importance of bias and
heteroskedasticity (see Figure 4): In the price dataset, all the workers tend to underestimate the prices
of the products, i.e., bj are negative for all workers, and the bias-only model performs much better
than the zero-bias variance-only model. In contrast, the participants in the NFL dataset exhibit no
systematic bias but seem to have different individual variances, and the variance-only model works
better than the bias-only model. In both cases, the full bias-variance model works best if budget `
is large, but is not necessarily best if the budget is small and over-fitting is an issue.

5 Conclusion

The problem of how many control questions to use is unlikely to yield a definitive answer, since real
data are always likely to be more complicated than any model. However, our results highlight several
issues and provide insights and rules of thumb that can help crowdsourcing practitioners make their
own decisions. In particular, we show that the optimal number of control items should be O(`) for
the two-stage estimator andO(`/

√
nt) for the joint estimator. Because the number nt of target items

is usually large in practice, it is reasonable to recommend using a minimal number of control items,
just enough to fix potential unidentifiability issues, assuming the model assumptions hold well.
However, the joint estimator may require significantly more control items if model misspecification
exists; in this case one might better switch to the more robust two-stage estimator, or search for
better models. The control items can also be used to do model selection, an issue which deserves
further discussion in the future.
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Figure 2: (a) Results of the bias-variance model on data simulated from the same model. (b)-(c)
Results when the data are simulated from the bias-variance model with non-zero biases, but we use
the variance-only model (with zero bias) in the consensus algorithm. With this model misspecifi-
cation, the joint estimator requires significantly more control items than one would expect (almost
half of the budget `), and performs worse than the two-stage estimator.
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Figure 3: Results on the real datasets when using the bias-only model. (a)-(b) and (d)-(e) The
MSE when using the two-stage and joint estimators, respectively. (c) and (f) The empirically and
theoretically optimal k as the budget ` varies. Here we fix nt = 50 for price dataset and nt = 200 for
NFL dataset.
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Figure 4: Comparison of different models and consensus methods on the two real datasets. (a)-(b)
The MSE when selecting the best possible k as the budget ` varies. The workers in the price dataset
has systematic bias, and the bias-only model works better than the variance-only model, while the
workers in NFL dataset have no bias but different individual variances, and the variance-only model
is better than bias-only. In both datasets, the full bias-variance model works best if the budget ` is
large, but is not necessarily best if the budget is small when over-fitting is an issue.
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