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Abstract
Large-scale data sets from online training and game platforms offer the opportunity for more extensive and more precise
investigations of human learning than is typically achievable in the laboratory. However, because people make their own
choices about participation, any investigation into learning using these data sets must simultaneously model performance–
that is, the learning function–and participation. Using a data set of 54 million gameplays from the online brain training site
Lumosity, we show that learning functions of participants are systematically biased by participation policies that vary with
age. Older adults who are poorer performers are more likely to drop out than older adults who perform well. Younger adults
show no such effect. Using this knowledge, we can extrapolate group learning functions that correct for these age-related
differences in dropout.

Keywords Dropout · Skill acquisition · Learning functions · Missing data · Naturalistic environments · Large-scale data
sets · Bayesian modeling

Learning in the real world involves many choices. We decide
when to study, how to study, and when to stop studying
and turn to something else. In the history of research on
learning, particularly within psychology, the vast majority
of scientific approaches attempt to control for these and
other sources of variation in self-control, with the hope that
what will emerge is an “uncontaminated” view of learning
and memory (Koriat & Goldsmith, 1994; Benjamin, 2007;
Nelson & Narens, 1994)

Whatever the merits of this approach, it is unsatisfactory
for large ecologically situated data sets in which learners
come and go at their leisure. Understanding learning and
memory in tasks in which learners exert considerable
control over aspects of their learning requires an explicit
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consideration of metacognitive factors that determine
participation and influence performance.

Here we present learning data from the online “brain-
training” platform Lumosity. Lumosity provides a number
of different games for users that are intended to tap
memory, attention, flexibility, speeded processing, and
problem solving. Many of these games are based on well-
worn tasks from cognitive psychology. Millions of people
play these games, providing a very rich platform on which
to study learning (Donner & Hardy, 2015). However, unlike
lab studies, where individuals follow a strict regime and can
be coerced to provide a sufficient number of data points to
fit functions to that individual’s performance, participants
in online platforms decide when to play, how often to play,
and when to quit. A joint consideration of participation
and performance allows us to use these large-scale data
sets to evaluate theories of learning and of metacognition.
Generally, the use of online platforms for investigating skill
learning has grown in the past few years (Donner & Hardy,
2015; Huang et al., 2017; Stafford & Dewar, 2014), and is
part of a welcome new trend of using naturally occurring
large-scale data sets to develop and test theories of cognition
(Goldstone & Lupyan, 2016; Griffiths, 2015).

The lesson we draw here is that any model of skill
learning from an uncontrolled source like an online learning
platform must jointly deal with questions of performance
and of participation. When individuals drop out of the task
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randomly, like they often do in the lab (say, due to computer
problems), then dropout behavior increases variability
and the potential for heteroskedasticity at more distant
points in the learning function. However, when individuals
drop out for reasons that are related to their current or
future performance, learning functions are directly biased.
Averaging across individuals has long been known to
influence the shape of learning functions (Estes, 1956),
but the effects of voluntary participation on group learning
functions has not, to our knowledge, previously been
considered. This is not a statistical problem: only a model
of the process by which individuals choose to stay or go can
debias such effects.

In this paper, we present a theoretical and empirical
investigation of the effects of voluntary participation and
withdrawal on aggregated learning functions. We start with
an empirical analysis of learning functions for individuals
and for groups that differ in age. We show that individuals
who drop out earlier lie on a different learning trajectory
than those who continue, indicating that group learning
functions will be biased by differential participation.
Specifically, older adults who withdraw early exhibit a
slower rate of improvement than older adults who continue
with the task. Younger adults do not reveal this systematic
pattern of withdrawal. In addition, we apply models of
learning to individual performance functions and estimate
the trajectory of those functions for a subset of users of
different ages. Using these individual fits, we show that
the slopes of the learning functions are typically shallower
for individuals who drop out early. We then use the fits
to extrapolate performance for those who withdrew to
trials that they never actually completed. In doing so, we
show that age-related group learning functions corrected
for differential withdrawal are markedly different than the
uncorrected functions.

As a starting point for considering the effect of
systematic dropout on learning curves, Fig. 1 shows
simulated data under a number of scenarios. The left panel
shows simulated learning curves that vary in learning rate
and asymptote. The red curve shows the aggregate learning
function. The middle panel uses the same learning curves
and simulates the effect of dropout when individuals drop
out for reasons unrelated to performance. In this case, the
aggregate learning curve is unbiased by the dropout. In the
right panel, the probability of dropping out is negatively
related to (latent) asymptotic performance. Here it can be
seen that the aggregate learning function is considerably
biased from the original.

One of the advantages of using large-scale naturalistic
data sets for cognitive research is the diversity of users
such platforms attract. Here we use the large age range
of participants to examine the learning curves and dropout
rates of users across the lifespan. Older users might have
different motivations for using Lumosity than younger
users, and those motivations might influence participation
policies. Older adults may be motivated to combat cognitive
decline and thus be more inclined to stick with tasks that
they find difficult. Alternatively, they may be more sensitive
to the stereotype threat posed by poor performance and thus
be quick to quit tasks that they perform poorly on. Age
effects on memory and attention tasks are well documented
(Park & Schwarz, 2000) but can only be fairly interpreted in
naturalistic data sets by seriously considering participation
policies.

Method

The Lumosity platform provides a number of games that
tap memory, attention, flexibility, speeded processing, and
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Fig. 1 Illustration of the effect of dropout under different scenarios.
A random set of learning curves, shown in the left panel, was gener-
ated using the exponential learning function in Eq. 1 for 100 simulated
users that varied in asymptote and learning rate but not intercept. In the

middle panel, learners drop out at random. In the right panel, learners
are more likely to drop out when the (latent) asymptote of the function
is lower. The red line is the aggregate learning function
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problem solving. In the Lumosity program, users are given
a recommended daily training session of five different
cognitive training games. One five-game session takes
approximately 15 min to complete. Outside of the training
sessions, Lumosity users can also opt to select and play
games directly from the entire library of over 50 available
games. As of 2018, over 90 million users from 182 countries
had signed up to participate. The data set that we are
working with includes the gameplay event history for three
cognitive games. This data set includes 194,695 users,
584,077 individual learning curves, and 54,224,152 single
gameplay events.

Tasks

The tasks included Lost in Migration, Ebb and Flow, and
Memory Match. Screenshots of these games are shown in
Fig. 2.

Lost inmigration This is a selective attention game inspired
by the Eriksen flanker task (Eriksen & Eriksen, 1974). The
goal is to respond to the direction of the target (a bird)
and ignore the direction of distractors that flank the target.

Fig. 2 Screenshots of the three cognitive games and their correspon-
dence to classic cognitive tasks

During each trial, the target and distractors are arranged in
different spatial layouts. Users are asked to use the arrow keys
to indicate which direction the target is pointing; the layout
and orientation of the distractors varies from trial to trial.

Ebb and flow This is a game designed to test the ability
to switch between different tasks. Users have to shift focus
between two different rules depending on the color of the
leaves. When the leaves are green, the user has to determine
the direction in which the leaves are pointing and respond
accordingly. When the leaves are orange, the user has
to respond based on the direction that they are moving.
“Inhibition” trials occur when the orientation and direction
of movement are different, requiring the user to express
behavior associated with one rule and inhibit behavior
associated with the other rule. On “no-inhibition” trials, the
orientation and direction of movement of the stimuli lead to
the same response.

Memory match This is a two-back working memory task
(e.g., Kane, Conway, Miura, & Colflesh, 2007) where
sequential stimuli are presented one at a time. The user
holds each stimulus in short-term memory while new
stimuli are presented. In the two-back task, users determine
whether the stimulus currently presented (the card on the far
right in the bottom display of Fig. 2) matches the stimulus
presented two trials earlier. If users make a mistake, they
are given hints by revealing the previous two stimuli in the
sequence, which allows the user an opportunity to re-learn
the current history for subsequent trials.

Scoring Each gameplay event has a fixed duration: 45 s
for Lost in Migration; 60 s for both Ebb and Flow and
Memory Match. At the end of each gameplay event, users
are provided feedback on mean response time per trial,
mean accuracy, and a score that is based on the total number
of correct trials completed within the fixed time period as
well as bonus points based on a variety of factors (e.g.,
streaks of correct responses). The total score is the focal
point on the feedback screen, so it can be assumed that the
conditions foster a combination of speed and accuracy.

Data processing

The raw data is described at the individual trial level (i.e.,
individual decisions within a particular gameplay event)
and include response time, accuracy, as well as the type
of condition associated with the trial. In the raw data, any
trial with a response time higher than 5 s was coded as
5 s. For the purpose of this research, we analyzed the
data summarized at the gameplay event level. Specifically,
we focused on the number of correct trials completed per
gameplay, a value that is closely related to the inverse of the
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mean response time for correct decisions. It is also closely
related but not identical to the point score shown to the user
because we omitted any bonus points that are part of the
game scoring. For Memory Match, we did not include the
hint trials in the total trial count (even if the decision was
correct) because hint trials reveal a partial or full history of
recent trials making these trials substantially easier.

In total, the data set contains the full gameplay history
for 194,695 users across these three games spanning a
period from Dec 18, 2012 to Oct 31, 2017. Users spent a
median of 2.2 years on the platform. Some of the gameplays
had timestamps but lacked any recorded gameplay data.
After removing these missing records, the data set reduced
to 194,682 users, 572,825 individual learning curves, and
44,204,431 single gameplay events. Because a key aspect
of our work involves an analysis of the timepoint at
which users voluntarily stop playing, users that were still
active within the 100 days prior to the last recorded event
were removed from analysis. The final data set contained
163,160 users, with a total of 400,874 learning curves and
22,477,188 gameplay events. The games Lost in Migration,
Ebb and Flow, and Memory Match were played a median of
69, 67, and 9 times, respectively, by individuals. The lower
number of game plays for Memory Match could be due to
differences in user interest and engagement but also because
the game shows up less frequently (relative to Ebb and Flow
and Lost in Migration) in the suggested training program
sent to users.

User demographics

Basic demographic information is available based on
information provided when signing up for Lumosity. The
majority of users are female (57%), with 36% males and
7% of users who did not provide gender information.
The majority of users are older than 50 (65%), reflecting
the appeal of these cognitive games to older players.
We coded the age of users in seven bins leading the
following breakdown of the user sample: 1–20 (1.58%), 21–
30 (9.43%), 31-40 (8.7%), 41–50 (14.1%), 51–60 (26.8%),
61–70 (27.6%), and 71-80 (11.4%). The youngest age group
(1–20) is omitted from all analyses because of the relatively
small sample size and the heterogeneous nature of this
age group. Most users live in the United States (63%),
with substantial populations from Canada (9.6%), Australia
(9.1%), and Great Britain (2.2%). Consequently, it is a
sample heavily biased towards the West.

Results

A subset of the model analysis scripts are publicly available
on the Open Science Framework (https://osf.io/ymkhb/).

For our analyses, we utilize Bayes factors (BFs) to deter-
mine the extent to which the observed data adjust our
belief in the hypothesis that are differences between two
groups and the null hypotheses (no difference between
groups). There are numerous advantages of BFs over con-
ventional methods that rely on p values (Rouder et al., 2009;
Jarosz & Wiley, 2014; Wagenmakers, 2007), including
the ability to detect evidence in favor of a null hypothe-
sis and a straightforward interpretation. In our notation, BF
> 1 indicates support of the alternative hypothesis while BF
< 1 indicates support of the null hypothesis. For instance,
BF = 5 means the data are five times more likely under
the alternative hypothesis than the null hypothesis. In some
instances, we report log BF factors, such that log BF < 0
indicates support of the null hypothesis and log BF > 0
indicates support for the alternative hypothesis.

Aggregate learning curves Figure 3 shows aggregate
learning curves for the three cognitive tasks for six age
groups (grouped by decade of life). The effects of age
are readily apparent and robust across the tasks: older
users start at a lower performance level and continue on a
lower trajectory. It is noteworthy that the decrements are
consistent throughout the decades–there is no point at which
performance decrements accelerate. However, the point here
is that caution needs to be taken when interpreting these
aggregated curves. The aggregate learning curves obscure
not only individual differences in learner characteristics
(Heathcote et al., 2000) but also in participation. As training
progresses, more users drop out, and the aggregate curves
reflect only the progress of the self-selected users who
remain. The effect of this dropout can be observed in Fig. 3
by the increase in the noise in the more distant points on the
function.

The relationship between performance and participation
One way to address the effects of voluntary withdrawal is
to examine whether the trajectory of learning curves differ
for users who drop out early and late. Figure 4 shows the
learning curves disaggregated into two groups: those who
drop out early (after 30–50 games for Lost in Migration
and Ebb and Flow, or 15–25 games in Memory Match) and
those who continue and play at least 100 games in Lost
in Migration and Ebb and Flow, or at least 60 games in
Memory Match. The lower cutoff points for Memory Match
were chosen because people play that game less.

Across all three tasks, a pattern is clear: the trajectories
of the learning curves for older subjects differ, depending
on when they choose to stop playing. This is not apparent
for younger subjects. This effect confounds interpretation of
the age-related learning functions shown earlier, and must
be accounted for to gain an unbiased picture of age-related
differences on these tasks. We return to this point shortly.

https://osf.io/ymkhb/
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Fig. 3 Aggregate learning curves for three cognitive tasks separated by age groups. Performance is assessed by the number of correct decisions
per game play. The learning curves are restricted to the first 150 game plays for Lost in Migration and Ebb and Flow, and 100 games for Memory
Match. Note that no curve smoothing was applied to obtain these results

Table 1 shows performance and provides statistical tests
of differences in performance between participants who
drop out early and those wh7o drop out late. We examine

these differences at the start of learning (gameplays 1–3)
and at a later stage of learning (gameplays 28–30 for Lost in
Migration and Ebb and Flow; gameplays 13–15 for Memory
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Fig. 4 Aggregate learning curves separated into early and late dropout users. Top, middle, and bottom rows correspond to the cognitive tasks Lost
in Migration, Ebb and Flow, and Memory Match. Columns correspond to different age groups
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Table 1 Differences in performance across early and late dropouts as a function of age group

Initial games Late games

Game Age group ylate yearly Nlate Nearly logBF ylate yearly Nlate Nearly logBF

Lost in Migration 21..30 58.3 56.7 1487 2574 8.56 67.1 67.7 1259 2703 −0.96

31..40 53.2 50.6 1729 2195 30.78 62.8 62.4 1461 2309 −2.13

41..50 46.9 43.9 3648 2835 66.33 57.3 56.4 3165 3022 9.15

51..60 42.0 38.0 8286 4011 211.45 52.4 50.7 7619 4647 79.58

61..70 37.0 33.2 9023 3187 188.01 46.9 45.2 9433 4038 70.65

71..80 32.8 28.7 3325 1027 79.11 40.9 38.7 3923 1525 40.24

Ebb and Flow 21..30 57.8 60.3 844 2096 19.83 73.3 75.3 795 1885 11.62

31..40 53.4 54.7 1034 1630 2.39 70.4 71.8 1158 1566 6.43

41..50 47.6 48.3 2209 1916 −1.11 66.2 65.5 2552 1968 −0.70

51..60 42.8 42.2 5227 2846 1.05 61.7 59.6 5925 2989 49.94

61..70 38.2 37.5 5668 2307 1.68 55.3 52.3 7023 2741 87.66

71..80 35.0 34.6 1936 783 −2.21 47.8 44.8 3072 1180 37.41

Memory match 21..30 52.9 51.2 233 1483 −1.27 65.4 63.9 297 2012 −1.70

31..40 49.7 47.5 209 1229 −0.55 61.6 58.2 289 1840 2.66

41..50 47.0 43.3 358 1578 8.06 57.5 51.2 555 2658 34.64

51..60 42.5 38.4 742 2503 27.08 51.3 44.4 1190 4573 100.96

61..70 37.2 33.6 740 1698 21.32 43.6 37.7 1390 3785 97.13

71..80 32.5 28.0 230 405 8.95 37.2 30.6 509 1022 45.51

Initial games refer to the first three games played by the learner, Late games are based on games 28–30 for Lost in Migration and Ebb and Flow
and games 13–15 for Memory Match, close to the point of withdrawal for the early-dropout group. yearly and ylate are the average performances
across the early and late dropouts, respectively. Nearly and Nlate are the number of users that were used to compute the average performance levels.
The log Bayes factor assesses the evidence for a difference between the early and late dropout performance levels at equivalent stages of practice

Note: the Log Bayes factors are based on JZS Bayesian two sample t tests with default prior scales (Rouder et al., 2009). Negative values provide
support towards the null hypothesis of an absence of differences between groups whereas positive values provide support for the alternative
hypothesis of a difference between groups

Match). This later stage of learning corresponds to latest
gameplays for which we have complete information from
the users who dropped out early. In general, people who
drop out early exhibit poorer performance (the average log
BF in the table is 37.15). This effect is detectable even on the
very first three trials that the subject experiences (average
log BF = 37.19). The effect is considerably stronger in older
adults: users 51 and over reveal an average log BF of 63.64,
compared with 10.67 for those 50 and younger.

Applying amodel of learning

To better understand the relationship between dropout and
learning, we applied simple models of skill acquisition to
the data from individual subjects. The goal is to fit these
curves to individual users and to assess the properties of
the learning curve as a function of dropout. If learning and
dropout are related, as Fig. 4 suggests, individual learning

curves will be different for early and late dropouts. Here
we will focus on the slope of the learning function, a
parameter that captures the rate at which performance is
increasing at one moment in time. Although the slope is not
an individual parameter of any of the models we fit, it can be
easily computed and directly compared across the models
we evaluate. If users drop out because of slow acquisition,
then the slope of the acquisition function for subjects who
drop out early will be lower than the slope of subjects who
drop out later, conditional on number of gameplays to that
point.

Once the individual learning curves are estimated,
performance can be extrapolated to later gameplays for
subjects who dropped out early, simulating the effects of
continued play. This enables a direct comparison between
the aggregated learning curves that do and do not take the
effect of dropout into account. At that point we can make
an assessment of the effects of learning in the absence of
participant-related bias.
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Because of the computational challenges of working with
the large Lumosity data set, we subsampled the data for the
purpose of modeling. We sampled for each game and age
group a random set of 2400 users, creating a data set with
38,113 unique users across age groups and 46,200 learning
curves, involving a total of 2,197,964 gameplays.

Learning functions Many different modeling approaches
have been proposed to model the improvement of performance
as a function of practice, including descriptive models such
as exponential and power law learning functions (Newell
& Rosenbloom, 1981; Evans et al., 2018; Heathcote et al.,
2000), and cognitive architectures such as SOAR (Laird
et al., 1987) and ACT-R (Anderson & Lebiere, 2014).

We focus on two simple learning functions that are suffi-
ciently accurate to capture the overall characteristics of learn-
ing curves. We use a three-parameter exponential (Heath-
cote et al., 2000), and a three-parameter power function
(Newell & Rosenbloom, 1981):

yt = u − ae−ct Exponential
yt = u − at−c Power

(1)

These learning models describe performance y as a function
of t , which in our case corresponds to the number of
gameplays. The models have three parameters: learning rate
c, asymptotic performance u and learning gain parameter a,
the difference between initial and asymptotic performance.
The learning rate captures the speed of learning relative to
the learning gain and does not allow for a simple comparison
across learners who differ in their learning gain. To compare
the rate of learning across users with different learning
gains, we will estimate a slope parameter st , based on the
derivative of the learning functions:

st = (ac)e−ct Exponential
st = (ac)t−c−1 Power

(2)

Before we explain how we estimate these parameters, we
first describe our procedure for assessing model fit and the
ability of the model to generalize to new data.

Model evaluation: predicting future performance

In order to choose among competing learning models, many
methods have been used. A standard approach is to use fit
statistics that quantify the balance between model fit and
model complexity (Myung, 2000; Myung et al., 2000) such
as AIC and BIC (Donner & Hardy, 2015), MDL (Pitt et al.,
2002), WAIC (Evans et al., 2018), and Bayes Factors (Lee,
2004).

Here we follow a different approach based on gener-
alization and cross-validation. Such tests are not widely

used in psychology but they have many appealing properties
(Yarkoni & Westfall, 2017) and have been used success-
fully in perceptual decision-making (Cassey et al., 2016)
and memory modeling (Robinson et al., under review). Here
we use a specific approach that is similar to one previously
used to evaluate different models of forgetting (Wixted,
2004). To motivate the approach, it is important to consider
that the goal of the model is to assess the characteristics
of learning functions for users that drop out at different
times. By definition, the learning curves for users who quit
sooner will have fewer observations than the learning curves
for subjects who continue to play. To compare across these
groups, it is important that models estimated from smaller
number of observations generalize accurately to future per-
formance. Therefore, one critical test for a model is whether
it accurately extrapolates the learning function.

An example of our evaluation approach is illustrated in
Fig. 5. It shows a learning curve from one user in the
Lumosity data. The Exponential and Power functions are
estimated for different amounts of observed data. When
the full performance history is observed, the power and
exponential models produce very similar model fits (solid
black lines). However, the differences between these models
become more clear when the models have to extrapolate
beyond the observed data. When the model is only given a
portion of the learning history and is extrapolated beyond
that limited training set, the two learning functions show
clear differences. The extrapolated functions are shown
by the dotted lines, in which darker shading indicates a
training set with more gameplay events. The results for this
particular user’s learning curve shows that the exponential
model consistently underestimates future performance,
dramatically so when only a small part of the learning curve
is observed. The power model also becomes more accurate
as it is trained on more data, but there is no systematic bias.
The exact results of the model comparison vary from subject
to subject, but this tendency of the exponential model to
underestimate asymptotic performance is quite general and
is also consistent with an analysis of forgetting functions by
Wixted (2004).

We will employ this model selection approach by
withholding data from a sample of users and assessing
the ability of each model to predict the withheld data.
Specifically, we partially withheld data from 1134 randomly
selected learning curves with the restriction that these
learning curves included at least 150 gameplays. These
learning curves were randomly assigned to three different
types of generalization tests. In the three tests, the model
observed either the first 20, 40, or the first 100 gameplays,
and the remaining performance history was withheld from
the model. The goal for the model is to predict the withheld
performance between 100 and 150 gameplays.
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Fig. 5 Maximum likelihood fits of the Exponential (left) and Power (right) models to a learning curve from a single user playing Ebb and Flow.
The lines correspond to model fits based on different amounts of observed data, varying from the first 20 gameplays only to the full learning curve
up to 200 gameplays. The dashed lines show how the model extrapolates to future learning performance that it has not been trained on. results of
extrapolating learning curves

Hierarchical Bayesianmodel

We associate each individual learning curve with its own
learning parameters (ui , ai , ci). The learning curve models
the latent learning state xt after t gameplays. This leads to
the following models:

xt = ui − aie
−ci t Exponential

xt = ui − ait
−ci Power

(3)

We assume that the actually observed performance outcome
is based on a sample from a positively truncated normal
distribution around the predicted learning state xt at trial t :

yi,t ∼ TN(xi,t , σ ) (4)

where σ is standard deviation which captures the perfor-
mance variations around the latent learning state. We place
a half normal prior TN(0, 5) on σ . With this observation
model, deviations from the theoretical learning curve can
be explained in part by the noise model, a characteristic
that is consistent with historical and more recent models of
learning curves (Evans et al., 2018).

To define the hierarchical model, we need to specify
how the individual learning parameters are sampled from
population distributions. Normally, all available data is
pooled in some fashion in a hierarchical model. However,
because of the relatively large data size, the substantial
performance differences we observed across games and age
groups, and the different number of users within each age
group, we apply a separate hierarchical model to each age
group within each game (i.e., the model is applied to the
subset of 2400 users for each age group and game). Within
each hierarchical model, the learning parameters associated

with all learning curves for a particular age group and game
are sampled from a single set of population distributions.

The non-linearities in these learning models can be
challenging for model inference if no restrictions are placed
on model parameters. For our data, we can use knowledge
of human limitations to place a priori constraints on
parameters. For example, the fixed time periods placed on
each gameplay imposes strong constraints on the number
of correct trials that can be completed. It is very unlikely
that any user will ever be able to complete 200 correct
trials within the 45- or 60-s time limit (only 18 out of
22 million gameplays led to a score higher than 200 and
these scores are likely due to recording errors). Therefore,
it is convenient to place bounds of [0,200] on the learning
parameters u and a. In addition, it is useful to constrain the
learning parameter c. While a low value of c is indicative
of slow learning (learning stays close to the starting point),
a very high value is also consistent with slow learning
because the transition to asymptote is made very quickly and
stays there. We imposed bounds of [0,0.5] on the learning
parameter to facilitate inference and interpretation (note that
a learning rate of 0.5 captures even the fastest learners,
achieving over 90% of their learning in six gameplays).
With these a priori restrictions, it is useful to reparametrize
the individual learning parameters a, u, and c using scaled
inverse-logit transforms:

ui = 200f(u′
i )

ai = 200f(a′
i )

ci = 0.5f(c′
i )

(5)

where f (x) = 1/(1+exp(−x) is the inverse logit transform.
This formulation ensures that any value for u′, a′ will map
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to values in the restricted parameter range of the original
parameters.

Within the hierarchical model, each transformed param-
eter ui , ai , and ci is sampled from a normal population
distribution with a mean and standard deviation sampled
from a normal and half normal prior:

u′
i ∼ N(μu, σu) μu ∼ N(0, 1.5) σu ∼ TN(0, .75)

a′
i ∼ N(μa, σa) μa ∼ N(0, 1.5) σa ∼ TN(0, .75)

c′
i ∼ N(μc, σc) μc ∼ N(0, 1.5) σc ∼ TN(0, .75)

(6)

The 1.5 standard deviation for the prior mean of the
population distribution was chosen such that the learning
parameters are roughly uniformly distributed in the original
scale.

Parameter inference

Two procedures were used for parameter inference. Because
the data include 46,200 learning curves, and each learning
curve has up to three parameters, model inference involves
more than 138,000 parameters, making statistical inference
computationally challenging. To facilitate initial model
exploration and testing, we used the L-BFGS optimization
procedure from Stan (Carpenter et al. 2017) to find MAP
estimates. These are point-estimates of the parameters that
maximize the posterior probability of the model parameters
given the observed data. This procedure is not fully
Bayesian, as it does not take the uncertainty in model
parameters into account. However, the optimization allowed
us to explore the parameter space of models within a reaso-
nable time frame (typically a few minutes).

The second procedure on which all results in this
paper are based involved Markov chain Monte Carlo using
JAGS. For each combination of age group and game, we
ran the hierarchical model with seven chains for 2000
iterations and obtained 100 samples from each chain. This
procedure was repeated for both models. The Gelman-
Rubin convergence diagnostic (Gelman et al. 1992) led to
R̂ values below 1.1 across variables, suggesting that the
chains converged. Posterior predictives were calculated for
all withheld observations of the partially observed learning
histories: for each sample s of the learning parameters for
learning curve i, Eq. 3 was used to generate predicted
performance levels. These predictions were then averaged
across samples to generate point predictions for extrapolated
performance levels.

Modeling results

Generalization results Figure 6 shows the results of the
generalization tests. The Power model has lower absolute
prediction errors overall than the Exponential model, a
difference that is not significant when only the first 20

gameplays of the learner’s performance are observed (N =
366, t = 1.79, BF = .286 in a Bayesian paired sample t
test), but becomes more pronounced when the models are
trained on 40 and 100 observations (N = 376, t = 4.76,
BF = 100+ and N = 392, t = 4.86, BF = 100+
respectively). In addition, the Power model is less biased
overall than the Exponential model, with smaller mean
deviations than the Exponential model (N = 366, t =
−2.75, BF = 2.39 and N = 376, t = −10.93, BF = 100+,
N = 392, t = −11.51, BF = 100+ for 20, 40, and 100
observed gameplays, respectively). Overall, the exponential
model tends to under-predict future performance levels,
confirming the generality of the example result shown in
Fig. 5. Therefore, even though we will report modeling
results for both models, these generalization results suggest
that any model extrapolations are likely more accurate for
the Power than the Exponential model.

Analyzing slopes of individual learning curves We assessed
the slope s of the learning function for both the early and
late dropouts at the time of dropout for the early dropout
users (using Eq. 2). In this comparison, we can evaluate
the rate at which performance is increasing at the time that
the early dropouts stop playing. Table 2 shows the mean
inferred slope across the early and late dropouts. In addition
to Bayes factors, Cohen’s d values are shown to indicate
effect sizes. The pattern across tasks is clear, and consistent
with the analysis of performance shown in Table 1. In 14 of
18 comparisons, the slope for people who drop out early is
lower than the slope for people who drop out later.

Among the older adults (61–80), this pattern is evident
in six out of six comparisons, and the Bayes factors are
definitive in five of those six cases. Older adults who
drop out sooner consistently exhibit slower acquisition at
the point of withdrawal than older adults who continue.
There is little evidence that younger adults show this
pattern, especially when using the power model (which
provided a better assessment of extrapolated performance in
the majority of cases). This finding confirms our concern
that the age effects apparent in the original learning
functions shown in Fig. 3 are compromised by differential
participation.

Predicted effect of dropout on learning curves across age
groups With the predicted learning functions in hand for
those who drop out early, we are in a position to debias the
original learning functions. Figure 7 shows the aggregate
learning curves as predicted by the model. Dashed lines
show the aggregate learning curves when we simulate
the effect of continued learning regardless of dropout.
Solid lines simulate the effect of dropout and individual
model learning curves contribute only to the aggregate
at observed data points in the corresponding user data.
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Fig. 6 Generalization performance for different learning functions
across different levels of observed gameplays. For each of partially
observed performance history, the model is used to predict future per-
formance between 150 and 200 gameplays. Prediction error is assessed
by the mean absolute deviation (MAD), shown on the left, as well as

the mean deviation (MD), shown on the right. The prediction errors
are averaged over the 150–200 gameplays, separately for each of the
learning curves. The bars show the interquartile range of the predic-
tion errors across learning curves. The horizontal lines correspond to
the median

The latter aggregate curves are closely related to the
empirical learning curves from Fig. 3 that are not corrected
for differential participation. The results show that the
aggregate empirical learning curves are biased and show

increases in performance throughout gameplay that are
exaggerated by dropout. These effects are more pronounced
for older adults, and are evident for all age groups for the
Memory Match task.

Table 2 Mean slope of the individual learning functions across models, games, age groups, and early and late dropout groups

Model/Game Age group Early Late Nearly Nlate d BF

Exponential

Lost in Migration 21–40 0.073 0.129 1106 645 0.703 100+

41–60 0.100 0.166 836 1183 0.710 100+

61–80 0.142 0.180 723 1556 0.415 100+

Ebb and Flow 21–40 0.103 0.194 1151 577 0.862 100+

41–60 0.167 0.250 851 1280 0.720 100+

61–80 0.216 0.277 745 1636 0.504 100+

Memory Match 21–40 0.397 0.512 396 104 0.524 100+

41–60 0.303 0.420 453 152 0.744 100+

61–80 0.218 0.295 515 203 0.670 100+

Power

Lost in Migration 21–40 0.122 0.109 1106 645 −0.228 100+

41–60 0.140 0.133 836 1183 −0.121 1.80

61–80 0.133 0.143 723 1556 0.155 17.53

Ebb and Flow 21–40 0.166 0.165 1151 577 −0.025 0.06

41–60 0.186 0.193 851 1280 0.109 1.00

61–80 0.164 0.207 745 1636 0.574 100+

Memory Match 21–40 0.342 0.426 396 104 0.555 100+

41–60 0.241 0.336 453 152 0.803 100+

61–80 0.158 0.249 515 203 0.872 100+

The learning slope is assessed at gameplay 30 for Lost in Migration and Ebb and Flow and gameplay 20 for Memory Match, when the early
dropout users start to drop. The Bayes factors are based on JZS Bayesian two-sample t tests with default prior scales (Rouder et al. 2009). Bayes
factors above 5 are bolded and values above 100 are truncated. Additionally, d shows the effect sizes as assessed by Cohen’s d
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Fig. 7 Aggregate of individual model-based learning curves across age groups based on Exponential model (top) and Power model (bottom).
Dashed lines indicate the predicted learning curves aggregated across all users, regardless of dropout. Solid lines represent the empirical aggregated
learning curves that do not take dropout into account. For the latter curves, averages based on fewer than 20 observations were omitted from the
visualization

Discussion

Online training platforms like Lumosity provide an incred-
ibly rich source of data on cognitive skill acquisition. A
visual analysis of the aggregate, uncorrected learning func-
tions shown in Fig. 3 reveals this immediately. However,
they also pose new challenges for the development of
cognitive theories and computational models. Lumosity is
designed to keep users engaged and to increase engage-
ment, and grants users control over many aspects of their
own learning. The complex role of voluntary participation
and withdrawal cannot be ignored. We have shown here that
decisions about participation affect learning functions. In
these data, older adults who experienced difficulties with
the task were more likely to quit than older adults who per-
formed more ably. Younger adults showed this effect less

clearly and less dramatically, if at all. Consequently, per-
formance functions were biased differently by dropout as a
function of age.

Current models of skill acquisition and learning are
mostly designed to explain empirical data that is collected
under carefully controlled laboratory circumstances where
participants have limited or no control over the task and
training schedule and where participants are trained for the
same number of sessions. Models of skill acquisition and
learning will have to be expanded to take into account the
many metacognitive control processes that affect when and
how learning takes place, as well as when learning ceases.
Self-regulated learning is important in both applied and
theoretical circles (Bennett et al., 2018, 2017; Gureckis &
Markant, 2012; Lieder & Griffiths, 2017; Merkle et al.,
2017) but the majority of models of learning eschew such
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concerns. We have demonstrated that there is a relationship
between drop out and performance but the causal direction
of this relationship is not yet clear. Some users might
drop out because of changes in performance. Alternatively,
users who are about to quit might be less motivated,
try less hard, and improve their performance less. To fully
account for this data, a joint account of learning and dropout
is required. Recently, a number of modeling approaches
have been proposed to look at quitting times (Okada et al.,
2018) as well as the relationship between performance
and quitting (Agarwal et al., 2017). The Lumosity data
will provide a challenging data set to develop a broad
computational framework for learning and dropout.

In this work, we used simple learning functions to capture
the global changes in performance over time. It is possible
that the model results depend on the definition of the
performance measure. Currently, we focused on the number
of correct decisions per game play but previous learning
curve analyses (e.g., Heathcote et al., 2000) have focused on
response time, which is closely related to the inverse of our
current performance measure. Future modeling work will
have to investigate whether the model selection results are
sensitive to the choice of performance measure.

The Lumosity data can be used to develop and test exten-
sions of learning models to capture more complex aspects
of learning dynamics. For example, additional parameters
could be added to the learning functions to capture delays in
the onset of learning (Evans et al., 2018). In addition, learn-
ing could be characterized by multiple piece-wise learning
functions to capture different phases of learning (Donner &
Hardy, 2015). The current learning functions represent time
discretely but it is likely that a more complex learning model
that explains learning as a function of actual elapsed time
will explain some variability in performance currently unac-
counted for in our models. For example, such a model could
explain learning dynamics at short time scales (e.g., within
individual sessions when users play several games consecu-
tively) as well as longer time scales (e.g., between sessions).
Finally, future modeling work will have to investigate the
learning dynamics across different games. Lumosity users
typically interweave their practice of various games and
a full account of learning will need to explain the joint
performance over all games as a function of time.

One important challenge when analyzing naturally occur-
ring data sets such as Lumosity is understanding the causal
relationships between the uncontrolled factors that relate to
behavior (Goldstone & Lupyan, 2016). For example, the
results of Fig. 4 show not only that early and late dropouts
lie on different learning trajectories but also that their ini-
tial performance differs as well. There are a number of
causal interpretations for these initial performance differ-
ences. One explanation is that early performance feedback
affected later participation decisions. Users who are adept

at the game and feel reinforced by the feedback might
stick with the game longer. In this case, there is a direct
causal link between initial performance and participation
decisions. Another explanation is that an unobserved vari-
able mediates initial performance and dropout. Users who
have better self-control or grit (Duckworth & Gross, 2014)
are more likely to stick with the game; these cognitive and
motivational factors may have made them better at related
skills—enabling them to perform better initially on a new
task. Disentangling these causal relationships might require
a combination of approaches. Obviously, conducting labora-
tory experiments that control some of the underlying factors
could shed some light on the underlying effects. However,
a number of modeling techniques could be pursued on the
existing data to test the adequacy of these different causal
assumptions. For example, if user self-control and grit are
the causal forces that are responsible for extended learn-
ing and subsequent improved generalization across different
games, we should be able to observe dependencies across
games—users who finish playing one game after extended
practice should be at an advantage at the start of practice for
another game.

In addition to testing different causal relationships, the
use of computational models can be helpful in testing what-
if scenarios. For example, the results in Fig. 7 were used
to simulate the counterfactual scenario in which users who
dropped out actually continued to learn. These simulations
can be used to predict the amount of training necessary
for one individual to surpass another, or to reach a pre-
determined goal. Although these model predictions cannot
be confirmed without actual data collection, the use of
models is helpful to explore the space of possibilities for
future empirical investigations and decide which experi-
ments are most informative.

Generally, we believe that naturally occurring data such
as the Lumosity data set will push the development of cog-
nitive theory and computational modeling to exciting new
directions of self-regulated learning, metacognitive control,
and self-assessment. It may also naturally lead to connec-
tions to other fields in psychology in order to understand
individual difference factors related to motivation, effort
and self-control.
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