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Strictly proper scoring rules, including the Brier score and the logarithmic score, are standard metrics by
which probability forecasters are assessed and compared. Researchers often find that one’s choice of strictly

proper scoring rule has minimal impact on one’s conclusions, but this conclusion is typically drawn from a
small set of popular rules. In the context of forecasting world events, we use a recently proposed family of
proper scoring rules to study the properties of a wide variety of strictly proper rules. The results indicate that
conclusions vary greatly across different scoring rules, so that one’s choice of scoring rule should be informed
by the forecasting domain. We then describe strategies for choosing a scoring rule that meets the needs of the
forecast consumer, considering three unique families of proper scoring rules.
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Introduction
In both research and application, there is often the
need to assess the correspondence between proba-
bilistic forecasts and event outcomes. There exist a
variety of statistical metrics to accomplish this assess-
ment, and analysts typically prefer metrics that are
not vulnerable to manipulation; that is, metrics for
which an individual cannot gain an advantage by sys-
tematically modifying her forecasts. This is because, if
a forecaster can improve her scores by modifying the
forecasts in light of the metric, then we have no way
of knowing when the forecaster is being truthful and
when the forecaster is capitalizing on the metric.

Starting with Brier (1950), Murphy (1972), and oth-
ers, these arguments have led to a body of work on
proper scoring rules (for a formal review, see Winkler
and Jose 2010). To formally define a proper scoring
rule, let f be a probabilistic forecast of a Bernoulli trial
d with true success probability p. Proper scoring rules
are metrics whose expected values are minimized if
f = p. Strictly proper scoring rules, a subset of proper
scoring rules, are metrics whose expected values are
minimized if and only if f = p. Although there exists
an infinite number of unique, proper scoring rules,

researchers typically employ a very small number of
strictly proper scoring rules in practice. These include
the Brier (quadratic) score, the logarithmic score, and
the spherical score. When considering only these few
popular rules, researchers often find that one’s choice
of rule does not impact one’s conclusions. This, in
turn, may lead researchers to believe that conclusions
are robust to choice of scoring rule. For example, Staël
von Holstein (1970) states that “different scoring rules
lead to essentially the same rankings of the assessors,
at least when the ranks are based on average scores”
(p. 154), with similar statements being made by Win-
kler (1971) and O’Hagan et al. (2006). More recently,
Bickel (2007) conducted a detailed examination of
these three scoring rules and showed that, although
rankings resulting from the three rules are highly cor-
related, specific individuals may lose or gain many
spots in the rankings. The change in rankings is most
prevalent when the number of potential outcomes is
greater than two.

Although many researchers have considered larger
families of proper scoring rules (e.g., Gneiting and
Raftery 2007; Hand and Vinciotti 2003; Johnstone et al.
2011; Jose et al. 2008, 2009; Winkler 1996), the focus
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is often on tailored model estimation instead of tai-
lored forecast evaluation. One exception is Johnstone
et al. (2011), who developed tailored scoring rules
that match a decision maker’s utility for various
forecast-outcome combinations. Additionally, Tetlock
(2005) considered many adjustments to standard scor-
ing rules in the context of political forecasts (see espe-
cially the technical appendix). In general, however,
the properties of these alternative scoring rules in
practice is underexplored, as are methods for select-
ing specific scoring rules from these families.

In this paper, we employ families of proper scor-
ing rules (first the beta family, followed by the power
and pseudospherical families) to obtain a more com-
prehensive evaluation of the impact of scoring rule
choice on forecaster comparison. We focus on fore-
casts for binary items, which is the situation where
Bickel (2007) and others found the three popular scor-
ing rules (Brier, logarithmic, and spherical) to be most
similar. We demonstrate that different strictly proper
scoring rules can yield very different substantive con-
clusions, which implies that researchers should care-
fully consider the scoring rule that is used to evaluate
forecasters. We then provide strategies for choosing a
scoring rule that is tailored to a specific forecasting
domain.

The remainder of the paper is organized as follows:
We first outline the family of proper scoring rules
that we employ, along with the ways in which we
use the family. Next, we apply the methods to com-
pare forecasts of world events, showing that different
strictly proper scoring rules yield considerably dif-
ferent conclusions. In light of this result, we discuss
strategies for choosing specific rules from families
of proper scoring rules. Finally, we discuss practical
implications.

The Beta Family of
Proper Scoring Rules
We initially focus on a parametric family of proper
scoring rules proposed by Buja et al. (2005). In this
section, we describe key results and background that
largely follows that of Buja et al.

We begin by considering scoring rules to be loss
functions associated with the reported forecasts f.
Taking di to be the outcome of trial i, fi to be the asso-
ciated forecast, and l4di � fi5 to be the “loss” associated

with trial i 4i = 11 0 0 0 1 I5, we can generally write a
scoring rule as

L4d � f5=
1
I

I
∑

i=1

l4di � fi50 (1)

Because we are focusing on situations where di is the
outcome of a Bernoulli trial, we can write the loss as

l4di � fi5= dil41 � 1 − fi5+ 41 − di5l40 � fi51 (2)

so that l40 � fi5 is increasing in fi and l41 � 1 − fi5

is increasing in 1 − fi. Additionally, both functions
should be bounded from below (typically at zero).

For situations where the di are Bernoulli, it can be
shown that the scoring rule is proper if and only if

l41 � 1 − fi5=

∫ 1

fi

41 − t5�4t5 dt1 (3)

l40 � fi5=

∫ fi

0
t�4t5 dt1 (4)

for some function �4t5 that is nonnegative and finite
across all open intervals on 40115 (see Schervish 1989,
Buja et al. 2005). Additionally, the scoring rule is
strictly proper if �4t5 is nonzero across all open
intervals on 40115. Thus, we can obtain a variety of
(strictly) proper scoring rules by defining �4t5 in var-
ious ways. For example, we obtain the Brier score by
defining �4t5= 1, and we obtain the logarithmic score
by defining �4t5= t−141 − t5−1.

Instead of defining a single scoring rule through
�4t5, Buja et al. (2005) developed a family of scor-
ing rules by parameterizing �4t5. Their beta family is
defined through the function

�4t � �1�5= t�−141 − t5�−11 �>−11 �>−11 (5)

with popular scoring rules being obtained as special
cases. For example, taking � = � = 0, we obtain the
logarithmic scoring rule via

l41 � 1 − fi5 =

∫ 1

fi

41 − t5t−141 − t5−1 dt (6)

=

∫ 1

fi

t−1 dt (7)

= log415− log4fi5 (8)

= − log4fi5 (9)
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and, similarly, l40 � fi5 = − log41 − fi5. The Brier score
can be obtained by setting �= �= 1. Further, as � and
� go to � together, we obtain a rule that is equivalent
to “misclassification” scoring, defined as

l41 � 1 − fi5 = c if fi < 0051 0 otherwise3 (10)

l40 � fi5 = c if fi > 0051 0 otherwise3 (11)

for some constant c. As � and � go together to �,
scoring rules from the beta family assume larger and
larger values. The beta family scoring rules can imme-
diately be scaled, however, to attain whatever maxi-
mum is desired.

In addition to these popular scoring rules, the beta
family yields novel proper scoring rules when � 6= �.
Buja et al. (2005) show that, for �1�> 0, the rules cor-
respond to situations where the cost of the outcome
di = 1 differs from the cost of the outcome di = 0. In
the misclassification case, this concept is intuitive to
understand: if c ∈ 40115 is the cost of a false positive
and 1− c is the cost of a false negative, cost-weighted
misclassification may be obtained by replacing Equa-
tions (10) and (11) with

l41 � 1 − fi5 = 1 − c if fi ≤ c1 0 otherwise3 (12)

l40 � fi5 = c if fi > c1 0 otherwise3 (13)

where the choice of score at fi = c is arbitrary. Note
that c is involved in both the score and the threshold
because we assumed c ∈ 40115 and the false negative
cost equals 1 − c.

Figure 1 Illustrations of Three Proper Scoring Rules in the Beta Family
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Notes. The left panel illustrates a cost-weighted misclassification rule, the center panel illustrates the scoring rule with � = 11 � = 3, and the right panel
illustrates the scoring rule with � = 301 � = 90. It is seen that, as � and � increase while maintaining a constant ratio, the scoring rules become similar to
cost-weighted misclassification.

The cost-weighted misclassifications are step func-
tions whose values change at the point fi = c, as dis-
played in the left panel of Figure 1 (taking c = 0025).
This figure includes fi on the x axis, the score associ-
ated with fi on the y axis, and two lines for the two
different outcomes associated with di. The left panel
is a simple visualization of Equations (12) and (13)
with c = 0025, with the line whose maximum is 0.25
representing l40 � fi5 and the line whose maximum is
0.75 representing l41 � 1 − fi5. In this graph, it is clear
that small values of fi (< 0025) are most important: if
one reports a small probability and is incorrect, one
receives a large score. Conversely, if one reports a
large probability and is incorrect, the resulting score
is considerably lower.

The beta family’s cost-weighted scoring rules are
similar to the step functions in the left panel of Fig-
ure 1, except that the scores change smoothly across
values of fi. We obtain the false-positive cost c from
�/4� + �5, with the scoring rule being more similar
to a step function as � and � increase (while main-
taining the same ratio). For values of � and � close to
zero, the curves gradually change, essentially reflect-
ing uncertainty in the exact value of c. This result is
illustrated in the center panel of Figure 1, which dis-
plays curves for � = 1, � = 3. As �, � increase to 30,
90 (right panel), the curves get closer to step func-
tions. In all three panels, low values of fi have the
most impact on the resulting score. In contrast, if we
had � > �, high values of fi would have the most
impact.
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The right panel of Figure 1 also shows that both
curves are essentially flat across much of the range
of f . Although this scoring rule is technically strictly
proper (because the curves are never exactly flat),
it yields scores that are practically equal for multi-
ple values of f . For example, if forecaster A always
reported a probability of 0.85 and forecaster B always
reported a probability of 0.5, the 4301905 scoring rule
would assign them practically equal scores. Thus, we
might call this particular rule practically nonstrict. We
return to this issue later, where we discuss its impact
on the variability in the conclusions that one draws.
First, however, we use the family to study the scoring
rules’ properties when applied to real forecasts.

Application: Forecasting World Events
The forecasts considered here arise from the
Aggregative Contingent Estimation System (ACES), a
Web-based environment that solicited forecasts con-
cerning world events from the general public. The
focal data in this paper include forecasts from over
1,000 forecasters on over 200 unique forecasting prob-
lems. Importantly, forecasters voluntarily logged in to
the website and chose specific problems to forecast,
resulting in very sparse data. A more detailed sum-
mary of the rationale and data collection procedures
can be found in Warnaar et al. (2012).

We use the ACES data to study the stability of
forecast evaluations in two general areas: comparison
of individual forecasters to a baseline, and compar-
ison of forecasters to one another. The two param-
eters of the beta family make it straightforward to
carry out these comparisons. This is because two sets
of forecasts for the same events (provided by human
forecasters, statistical models, aggregation methods,
etc.) can be evaluated at arbitrary points in the two-
dimensional space defined by 4�1�5, which allows us
to evaluate large grids of points within this space.

In our comparisons, we study summary statistics
across different scoring rules in the beta family. Our
summary statistics are generally based on the rank
ordering that is implied by the resulting scores. To
study the consistency of rank ordering across J sets
of forecasts for the same events (say, fj , j = 11 0 0 0 1 J ),
we can calculate the rank ordering of the J sets that is
implied by one scoring rule. We can then calculate the
rank ordering under other scoring rules in the beta

family, computing the Spearman correlation between
the two sets of rankings:

12
∑J

j=1

{

6Rj1�1�−4J +15/276Sj1�1� −4J +15/257
}

J 4J 2 −15
1 (14)

where Rj1�1� is the rank of set j under the beta scoring
rule with 4�1�5 and Sj1 �1� is the rank of set j under the
beta scoring rule with 4�1�5. In setting 4�1�5 = 41115
(which reflects the Brier score), we can use this equa-
tion to compare ranks under arbitrary scoring rules to
ranks under the Brier score.

We also wish to compare individual forecasters to
a baseline forecast. In this situation, we can count the
proportion of individuals who “lose to” the baseline
(i.e., who have higher scores than the baseline) under
specific scoring rules in the beta family. Given values
of � and �, this can be written as

J
∑

j=1

14L4d � fj5 > L4d � f∗551 (15)

where L4d � fj5 is the score associated with forecaster j
(see Equation (1)), L4d � f∗5 is the score associated with
the baseline f∗, and 14 5 is an indicator function that
equals one when the condition is satisfied.

In the next two sections, we use these methods
to evaluate forecasts of general world events across
the beta family of scoring rules. We use the restric-
tion �1 � > 0 to maintain interpretability: although
the beta family extends to � = −11 � = −1, the cost-
weighting interpretation breaks down for negative
values of � and �.

Comparing Forecasters to One Another
In this section, we use the beta family to generally
compare forecasters across a large set of proper scor-
ing rules, studying the extent to which forecaster
rankings vary across the rules.

Method. Using the ACES data, we compared 10 fore-
casters on 21 binary problems that they forecasted
(the appendix contains a set of artificial forecasts
that mimic the real forecasts). This set of forecast-
ers was selected because they all provided forecasts
for 21 common problems. Although the ACES data
included thousands of forecasters and hundreds
of problems, it was generally difficult to find a
set of forecasters providing forecasts for the same
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problems. This is because forecasters were free to
select forecasting problems, resulting in very sparse
data.

For the world events forecasted on the ACES web-
site, it is usually the case that di = 1 is valued more
heavily than di = 0. This is because the data are
coded so that for all i, di = 1 implies a change from
the status quo. That is, di = 1 includes changes in
world leaders and new conflicts between nations, and
di = 0 implies no change from the current state of
affairs. Thus, a strictly proper scoring rule with � 6=

� may be more useful for this particular application.
As previously discussed in the context of Figure 1,
scoring rules with � < � emphasize low-probability
forecasts: low-probability forecasts where di = 1 incur
a large penalty, and scores associated with high-
probability forecasts do not vary greatly. Conversely,
scoring rules with � > � emphasize high-probability
forecasts: high-probability forecasts associated with
di = 0 incur a large penalty, and the scores asso-
ciated with low-probability forecasts do not change
greatly.

Although scoring rules with � 6= � are useful, in
practice we may need to choose specific values of �

and � for “official” scoring. We provide some discus-
sion of this issue later. For now, however, we focus
on the sensitivity of one’s conclusions to the choice
of scoring rule. This can be assessed via evaluation of
the forecasters at multiple values of � and �.

Results. The forecaster rankings implied by the Brier
score and by the logarithmic score are displayed in
the middle two columns of Table 1. It is observed
that these rankings exhibit more variability than may
typically be expected, most notably for forecaster 1
(third row). This is because forecaster 1 tended to
report extreme forecasts, and the incorrect forecasts
were heavily penalized under the logarithmic score.
The sensitivity of the logarithmic score to incorrect,
extreme forecasts has been characterized as both an
advantage (Johnstone 2011) and disadvantage (Selten
1998): advantageous in the sense that it represents an
individual who has log utility for wealth in a gam-
bling context (a “Kelly bettor”; see Johnstone 2007 for
further discussion), and disadvantageous in the sense
that, if one incorrectly makes a forecast of 0 or 1, then
one’s average score can never recover. Aside from
forecaster 1, four other forecasters’ rankings changed

Table 1 Forecaster Rankings Implied by the Brier Score, Logarithmic
Score, and Another Scoring Rule from the Beta Family

Scoring rule

Brier Log Beta
Forecaster �= 1, �= 0, �= 9,
number �= 1 �= 0 �= 3

3 1 400095 3 400615 2 400055
9 2 400155 5 400785 4 400065
1 3 400165 10 410085 3 400055
5 4 400175 1 400495 5 400075
6 5 400205 9 410005 6 400105
7 6 400205 2 400585 1 400045
8 7 400215 8 400995 7 400115
2 8 400235 4 400705 8 400125
4 9 400315 7 400945 9 400155
10 10 400315 6 400875 10 400165
Spearman 1.00 0.15 0.81

correlations 1.00 0.31
1.00

Note. Numbers in parentheses are the actual scores assigned to each
forecaster.

by four spots across the Brier and logarithmic scores.
To study the behavior of the rules in more detail, arti-
ficial data that mimic the properties of the real data
can be found in the appendix.

The final column of Table 1 displays the ranking
under the scoring rule with �= 9, �= 3, which heav-
ily emphasizes high-probability forecasts. The rank-
ings further differ from those under the Brier and
logarithmic scores, resulting in some different conclu-
sions. Most notably, the best forecaster under this beta
score was ranked sixth by the Brier score. Addition-
ally, the third-ranked forecaster under this beta score
was ranked 10th by the logarithmic score. The Spear-
man rank-order correlations between the three scoring
rules are displayed at the bottom of the table. These
statistics show that the rankings are only modestly
related, and they also show that large correlations do
not necessarily imply complete consistency. For exam-
ple, rankings under the Brier score and beta score
have a relatively large correlation of 0081. However, as
noted previously, some individual forecaster rankings
changed considerably across these two rules.

In Table 1, the numbers in parentheses are the aver-
age scores that each forecaster received under each
rule. These show that the range of scores is com-
pressed under the beta rule with �= 9, �= 3, as com-
pared to the other two rules. This could result in extra
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variability in the rankings as compared to the other
scores (because they are closer together, so that rank-
ings may switch more often), though it is difficult to
use the differences between pairs of scores to draw
any specific conclusions. In particular, the scalings of
the scoring rules are arbitrary, so that a difference
of 0.01 could be very large in one instance and very
small in another instance.

To more globally examine the impact of scoring rule
on model rankings, Figure 2 displays Spearman cor-
relations between the forecaster ranking implied by
the Brier score and the forecaster ranking implied by
other scoring rules in the beta family. The x axis repre-
sents values of the � parameter, the y axis represents
values of the � parameter, and the shading repre-
sents the value of the rank-order correlation. As the
color moves from white to black, the model order-
ing from the beta scoring rule becomes less related
to the model ordering from the Brier score. The fig-
ure shows that, depending on the specific scoring rule
used, the rank order of the forecasters can change
dramatically. The correlations decrease as we move
off the diagonal, especially toward the upper left and
lower right corners of the plot. The lower right corner
reflects scoring rules for which �>�, which are rules
for which high-probability forecasts are emphasized
and low-probability forecasts are de-emphasized. The

Figure 2 Contour Plot Displaying Spearman Rank-Order Correlations
Between the Ordering Implied by the Brier Score and the
Ordering Implied by Beta Family Scoring Rules
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upper left corner reflects the opposite type of scoring
rule. Thus, if we place large value on high- (low-)
probability forecasts and small value on low- (high-)
probability forecasts, our forecaster assessment will be
considerably different than our assessment under the
Brier score.

Although choice of scoring rule has a large impact
on the results in this section, we do note that only 10
forecasters were involved. The correlations may not
change as much with larger numbers of forecasters,
though there would also seem to be greater opportu-
nity for changes in rankings. In the next section, we
consider a larger number of forecasters.

Comparing Individual Forecasters
to the Average
In this section, individual forecasters are compared
to the average forecast. The average forecast is not
necessarily a good benchmark against which to evalu-
ate individual forecasters. However, the average fore-
cast is often better than the typical forecaster (e.g.,
Armstrong 2001) or than a randomly-selected fore-
caster (e.g., Davis-Stober et al. 2013)—results that
are generally described as the wisdom of crowds
(Surowiecki 2005). These results have been demon-
strated in a wide variety of applications (e.g., Steyvers
et al. 2009, Turner et al. 2013, Yi et al. 2010), and we
study here the extent to which the results are robust
across sets of proper scoring rules.

Method. Data are from 624 ACES forecasters who
forecasted at least eight problems. The eight-problem
threshold is arbitrary and is intended to eliminate the
variability resulting from forecasters who forecasted
a small number of problems. We studied the results
under various thresholds from 3 to 16, and they remain
similar regardless of the specific threshold chosen.

To study the wisdom of crowds effect, we compare
each forecaster to the unweighted average of all items
that the forecaster chose to forecast. In other words,
we employ criterion (15), where f∗ is the unweighted
average forecast and J differs for each forecaster. We
first compute (15) with � and � fixed to 1, reflecting
the wisdom of crowds effect under the Brier score. We
then compute (15) across a large set of scoring rules
in the beta family, examining the extent to which the
wisdom of crowds effect is robust to choice of scor-
ing rule. As the proportion of individuals “losing to”
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the average decreases to 0.5 and beyond, the wisdom
of crowds effect disappears. It is of interest to exam-
ine the types of rules, if any, that cause the effect to
disappear.

Results. Focusing on Brier scores, we found that
the average beat 519 of 624 individuals. The 95%
confidence interval associated with this proportion
(computed via R’s binom.test( ) function) is 4008100865,
which may be taken to indicate a wisdom of crowds
effect. However, we can also find strictly proper scor-
ing rules for which the effect disappears. For exam-
ple, under the beta-family scoring rule associated
with � = 004 and � = 3045, we find that the average
beat only 333 of 624 individuals. The 95% confidence
interval associated with this proportion is 40049100575,
which suggests that the wisdom of crowds effect has
largely diminished, if not completely disappeared.

The � = 004, � = 3045 scoring rule places empha-
sis on low-probability forecasts. This is illustrated in
Figure 3, which is similar to the earlier Figure 1:
the two lines reflect the score that one receives for
a forecast f (x axis), depending on whether the out-
come is d = 0 or d = 1. This specific figure looks very
similar to the middle panel of Figure 1, where low-
probability forecasts associated with d = 1 are most
heavily penalized. Additionally, high-probability fore-
casts from about 0.7 to 1 are assigned essentially equal
scores. Such a scoring rule may be useful when d = 1
is a rare occurrence: regardless of the forecast that one

Figure 3 Plot of the �= 004, �= 3045 Scoring Rule
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makes on a d = 0 trial, one’s score does not change
by much. However, if one makes a bad forecast on a
d = 1 trial, one receives a harsh punishment.

Returning to the comparison of individuals to the
average forecast, we found that the scoring rule from
Figure 3 diminishes the wisdom of crowds effect. This
result implies that the average forecast receives harsh
punishment more often than the individual forecast-
ers: the average forecast is good at predicting that the
status quo will be maintained (d = 0), at the cost of
some bad forecasts associated with the overturning of
the status quo (d = 1). Conversely, individuals forecast
the overturning of the status quo more often, which
in turn avoids the large penalties under the � = 004,
�= 3045 rule.

We consider an expanded set of scoring rules in Fig-
ure 4, displaying the proportion of individuals beaten
by the average under each rule in the set. The x axis
corresponds to values of the � parameter, the y axis
corresponds to the proportion of individuals beaten
by the average, and separate lines correspond to val-
ues of the � parameter. It is seen that, for values of
� that are large relative to �, the average beats fewer
than half of the individuals. It is additionally seen
that, in cases where �= �, the proportion remains sta-
ble at just above 0.8. This is especially notable because
the logarithmic score (� = 01� = 0) and Brier score
(�= 11�= 1) are included among these cases.

We do not argue that the � = 004, � = 3045 scor-
ing rule (or others considered in Figure 4) is the most

Figure 4 The Proportion of Individuals Beaten by the Average Under
an Expanded Set of Scoring Rules in the Beta Family

�

P
(a

ve
ra

ge
 b

ea
ts

 in
di

vi
du

al
)

0.4

0.6

0.8

1.0

0 2 4 6 8 10

� = 0.01
� = 1
� = 5
� = 10

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

20
0.

38
.8

3]
 o

n 
03

 D
ec

em
be

r 
20

13
, a

t 1
2:

11
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Merkle and Steyvers: Choosing a Strictly Proper Scoring Rule
Decision Analysis 10(4), pp. 292–304, © 2013 INFORMS 299

sensible one to use in practice. Additionally, the fact
that the lines in Figure 3 look flat over some intervals
of f implies that this particular scoring rule is practi-
cally nonstrict. That is, although the scoring rule has
a unique minimum (achieved by forecasting the true
probability of event occurrence), there exist multiple
values of fi for which the resulting score is practically
equivalent to the minimum. In practice, one may wish
to define a threshold that separates “practically non-
strict” scoring rules from other, strictly-proper scor-
ing rules. If we only consider the latter subset, then
the wisdom of crowds effect may not be diminished
to such an extent. More generally, the results in this
section illustrate the fact that strictly-proper scoring
rules do not place strong constraints on the conclu-
sions drawn.

Choice of Scoring Rule
Given the variability observed in the previous sec-
tions, the reader is likely to wonder how a specific
scoring rule could be chosen for a specific forecast-
ing domain. Focusing on the beta family of scoring
rules, the most intuitive choice may involve a focus
on the cost c = �/4�+�5. Note that, in the context of
evaluation, c represents the decision-maker’s cost, as
opposed to the forecaster’s cost. The forecasters them-
selves may often have a different view of the costs,
either through their own beliefs or through the scor-
ing rule that was presented to them.

In classification contexts (i.e., when forecasts can
only equal zero or one), we mentioned earlier that
c reflects the cost of a false positive, and 1 − c the
cost of a false negative (see Equations (10) and (11)).
In probabilistic forecasting contexts, c reflects the
relative emphasis on high-probability forecasts, as
opposed to low-probability forecasts: a value of
c = 005 reflects equal emphasis on low- and high-
probability forecasts, and values of c greater (less)
than 0.5 reflect emphasis on high- (low-)probability
forecasts. Although c does not determine a specific
scoring rule in the beta family (one must also fix
either � or �), it often accounts for much of the vari-
ability that is observed across scoring rules.

To demonstrate the impact of c on scoring-rule vari-
ability, we revisit the two examples described ear-
lier in the paper. For each example, we examine
the variability in scoring rules for fixed values of

Figure 5 Spearman Correlation Between Forecaster Rankings Under
the Brier Score and Forecaster Rankings Under Other
Scores in the Beta Family
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c ∈ 40115. Focusing on the comparison of forecasters to
one another, Figure 5 displays Spearman correlations
between forecaster ranking under the Brier score and
forecaster ranking under other rules in the beta fam-
ily. The x axis is c, the y axis is the Spearman correla-
tion, and lines reflect values of � (along with � and �,
a beta family scoring rule can be uniquely determined
by c and �). It is observed that, for a fixed value of
c, the Spearman correlations tend to be very similar
to one another. This implies that, if one fixes c a pri-
ori, the results are relatively insensitive to the specific
scoring rule chosen. As c becomes more extreme, the
results exhibit more variability.

Focusing on the comparison of forecasters to the
average, Figure 6 displays the proportion of individu-
als that are beaten by the average for various scoring
rules in the beta family. This figure is similar to Fig-
ure 4. It is again observed that, for fixed values of
c ∈ 400210085, the proportion of individuals beaten by
the average is similar across scoring rules. Addition-
ally, there is greater variability in the correlations for
extreme values of c.

These results suggest a general strategy for choos-
ing a scoring rule in the beta family. First, one chooses
a value c that reflects the relative cost of false pos-
itives and false negatives in a misclassification con-
text. If c is, say, between 0.2 and 0.8, then the specific
scoring rule that is ultimately chosen may not exert
a large influence over one’s conclusions. If c is more
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Figure 6 The Proportion of Individuals Beaten by the Average Under
an Expanded Set of Scoring Rules in the Beta Family
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extreme, however, then choice of scoring rule may still
exhibit large variability. To choose a specific scoring
rule for fixed c, we propose restricting �+�> 0, then
experimenting with a small number of specific �+�

values. These values can be roughly conceptualized
as the certainty associated with choice of c (see Buja
et al. 2005 for further discussion): values of �+� close
to zero imply low certainty in c, whereas increasing
values of �+ � imply increasing certainty. Addition-
ally, to give some perspective, our experience indi-
cates that values of �+ � greater than, say 100, tend
to result in similar conclusions.

Although useful, this strategy is not foolproof. For
example, there are likely to be some situations where
c is close to 0.5 yet scoring rules exhibit varying con-
clusions. Additionally, researchers may be interested
in data summaries other than those used in this paper
(which were Spearman correlations and proportions
of forecasters surpassing a threshold). To choose a
scoring rule in these situations, researchers may fix
c, generate artificial data that mimic the domain of
interest, and study variability in the measure of inter-
est across multiple scoring rules. To ease such an
examination, we have written an R package (scoring)
that contains our implementation of the beta family
(along with the power and pseudospherical families
described later). This package is on the Comprehen-
sive R Archive Network and can be downloaded and
installed in the usual way.

Comparison to Other Families
The beta family is not the only one that could be used
to study sensitivity to choice of scoring rule. Other
notable families include the power family and pseu-
dospherical family, which are one-parameter families
that encompass a wide variety of proper scoring rules.
For two-alternative situations such as those consid-
ered here, the families may be written as (Jose et al.
2008, 2009):

lpow4di �fi5=−

(

r�−1
i −1
�−1

−
6r�i +41−ri5

� −17
�

)

1 (16)

lsph4di �fi5=−
1

�−1

[(

ri
4r�i +41−ri5

�51/�

)�−1

−1
]

1 (17)

where ri = difi + 41 −di541 − fi5 (which is just the fore-
cast associated with the outcome that occurred) and
� > 1. As � tends to one, both families converge to
the logarithmic scoring rule. For � = 2, we obtain the
Brier score from the power family and the spherical
score from the pseudospherical family.

We conjecture that scoring rules from the beta fam-
ily are more likely to exhibit varying conclusions
than are the scoring rules within either family above,
because the beta family has two parameters and a
more complex functional form. The abovementioned
families have been extended, however, to situations
where one wishes to evaluate forecasts with respect to
a baseline (or prior) forecast (Jose et al. 2009). For two
alternative forecasts, we take qi = dib+ 41 − di541 − b5,
where b is the baseline forecast associated with di = 1.
The power and pseudospherical families with base-
line b may then be written as:

lbpow4di �fi5=−

(

4ri/qi5
�−1 −1

�−1

−
6r�i /q

�−1
i +41−ri5

�/41−qi5
�−1 −17

�

)

1

(18)

lbsph4di �fi5

=−
1

�−1

[(

ri/qi

4r�i /q
�−1
i +41−ri5

�/41−qi5
�−151/�

)�−1

−1
]

0

(19)

To study variability in conclusions across scoring
rules, these families could potentially be used in a
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manner similar to that of the beta family: we can
first fix b at a baseline forecast of interest, just as we
fixed c in the beta family. The � parameter of these
families is more difficult to set, because it does not
have a simple interpretation (just as the beta family’s
� + � did not have a simple interpretation). How-
ever, we can still examine variability across values
of �.

To compare the use of these families to that of
the beta family, we replicated Figure 5 using the two
new families. In these replications, we allowed b to
vary from 0 to 1, examining the Spearman correlation
between rankings under the Brier score and rankings
under rules in the families from (18) and (19). Results
are shown in Figures 7 and 8. It is seen that the pseu-
dospherical family results (Figure 8) are similar to
the beta family results: once one fixes the parame-
ter b, there is less variability in scores for different
values of �. However, the range of correlations is
smaller (and closer to one) than the range of correla-
tions under the beta family.

The power family results (Figure 7) differ from
the other families, however. Under this family, the �

parameter has a larger impact on the correlation than
the b parameter. This is because, as � gets large, only
extreme forecasts influence the rankings (nonextreme
forecasts are all assigned the same score, regardless of
the outcome). Additionally, at � = 2, the parameter b

has no impact on forecaster rankings. This is because,

Figure 7 Spearman Correlation Between Forecaster Rankings Under
the Brier Score and Forecaster Rankings Under Scores in
the Baseline Power Family
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Figure 8 Spearman Correlation Between Forecaster Rankings Under
the Brier Score and Forecaster Rankings Under Scores in
the Baseline Pseudospherical Family
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for � = 2, Equation (18) reduces to

r2
i − 2ri

2qi41 − qi5
+

1
241 − qi5

+
1
2
1

where the denominator of the first term is the same
regardless of the outcome di, and the second term is
constant across forecasters.

Because the power family’s b parameter has little
impact at large values of �, one must adopt a mod-
ified strategy for choosing a scoring rule from the
family. We suggest first setting b because it is more
intuitive, as was done for the other families. In set-
ting �, then, one must decide whether the scoring
rule should be sensitive to nonextreme forecasts (e.g.,
for b = 005, whether a forecast of 0.4 should receive
a different score from a forecast of 0.6). If the scor-
ing rule should be sensitive to these forecasts, then
smaller values of � (say, less than 20) are necessary.
To choose a specific value of �, it is probably nec-
essary to create plots of specific scoring rules in a
manner similar to Figure 3. These plots can be easily
created using the scoring package that we described
previously.

In addition to the power and pseudospherical fami-
lies, Johnstone et al. (2011) propose a family of proper
scoring rules that are tailored to decision-makers’ util-
ity functions. For example, in a betting context, a
decision maker may be assumed to have a utility
function associated with gains and losses in wealth.
The Johnstone et al. family can be used to obtain
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a proper scoring rule that reflects this utility func-
tion. Importantly, this family presumes that the deci-
sion maker can declare her utility associated with the
actions she may take based on a forecast f . As the
authors state, such a declaration is difficult or impos-
sible in complex forecasting scenarios or in situations
where multiple decision makers use the same fore-
cast f . Thus, for the forecasts of world events con-
sidered here, this family would not be useful without
strong assumptions about the forecasts’ consumption.

Conclusions
As mentioned in the introduction, previous re-
searchers have stated that different proper scoring
rules lead to similar rankings of the assessors, at least
when the rankings are based on average scores. Sim-
ilarly, we find that different scoring rules in the beta
family lead to similar rankings of forecasting methods,
so long as our scoring rules are such that c remains
approximately constant (focusing on the beta family).
However, it is possible to find practically different
rankings under beta family rules where � 6= �; these
are scoring rules that generally lie off the diagonal of
graphs such as Figure 2 and that have differing cost
parameters c. This, in turn, implies that it is insuffi-
cient to use a scoring rule simply because it is strictly
proper; instead, it is beneficial to consider the specific
way in which the scoring rule rewards and penalizes
forecasts.

The beta family, or other two-parameter families
such as the power or pseudospherical with baseline,
can generally help analysts choose a scoring rule that
suits their needs. This can be accomplished by first
fixing a parameter that is interpreted as a cost of false
positives (in the beta family case) or as the baseline
forecast (in the power and pseudospherical cases).
The second parameter can then be chosen by plotting
the resulting scoring rule under multiple potential
values, in a manner similar to Figure 3. Addition-
ally, in the beta and pseudospherical cases, the ana-
lyst may be comforted by the fact that this second
parameter has a smaller impact on forecaster rankings
than the first parameter. Finally, in the absence of the
need to choose a single scoring rule, one can easily
visualize results across sets of scoring rules, as was
displayed in Figures 2 and 4. These comparisons can
provide the analyst with information about the types

of forecasts that are (in)accurate and about the extent
to which conclusions are robust.

This paper further shows that, although proper
scoring rules encourage honest reporting from the
forecaster, they place much less constraint on the indi-
vidual who chooses the scoring rule. In particular,
(i) choice of strictly proper scoring rule can have a
large impact on one’s results and conclusions, (ii) fam-
ilies of scoring rules can be used to evaluate forecasts
more holistically, and (iii) it is possible to choose spe-
cific scoring rules from these families in a relatively
intuitive fashion. Thus, forecast evaluators should
routinely consider choosing scoring rules from these
families that are tailored to the domain, as opposed
to relying on popular, default scoring rules.

Computational Details
Results were obtained using the R system for statis-
tical computing (R Development Core Team 2013),
version 3.0.1. R is freely available under the General
Public License 2 from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/. To
evaluate forecasts under the beta, power, and pseu-
dospherical families of scoring rules (for binary
outcomes), the R package scoring is also freely
available under the General Public License 2 from
CRAN.
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Appendix
Although we are unable to share the original data, Table A.1
includes artificial forecasts from the section titled “Compar-
ing Forecasters.” These forecasts mimic the distributional
properties of the original forecasts. Forecasts of exactly 0
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Table A.1 Artificial Forecasts Mimicking the Distributional Properties of the Forecasts from the “Comparing Forecasters” Section

Forecaster ID

Item 1 2 3 4 5 6 7 8 9 10 Outcome

1 0 0044 0 0026 0 0043 0055 0009 0014 0009 0
2 0 0041 003 0074 0041 0059 0051 0004 0002 0048 0
3 0 0099 0021 0094 0026 0003 0019 1 0004 005 0
4 0 0041 0035 0089 0089 0079 0052 0091 0004 0059 1
5 0 0 0 0 001 003 004 001 0 0 0
6 0011 0022 1 0005 0014 003 0064 0002 0009 0011 1
7 0 0 003 0085 0005 0006 0018 0 0017 0041 0
8 0 0071 0019 0017 0005 0 0045 0019 0025 0041 0
9 001 0004 0 0001 0035 0003 0054 0007 0019 0049 0

10 0075 0084 0039 0097 0075 1 0046 0 1 0076 0
11 0 0057 0 0001 0009 0009 0045 0 0019 0016 0
12 0 0003 0 0022 0084 0 005 0001 0 0076 0
13 0026 0075 0 0024 0001 0006 004 0005 0018 0075 0
14 0009 0002 0021 0075 0016 0002 0034 0003 0021 0091 0
15 0 0001 0 0053 0004 0001 0025 0006 0024 0084 0
16 0 0005 0014 004 0014 0001 0049 0 0 0009 0
17 0 0003 0011 0037 003 0 005 0006 0 008 0
18 0 0005 0009 0025 0054 0 0046 0074 0 0014 0
19 0 0047 0085 0018 0075 0001 0044 0008 1 0075 1
20 0 0002 1 0058 0076 0097 0053 0095 0 0076 0
21 0 0006 0009 0028 0019 0001 0048 0006 0 0014 0

and 1 were coded as 0.0001 and 0.9999, respectively, so that
no forecaster could obtain a score of infinity.
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