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Abstract
Hierarchical Bayesian analyses have become a popular technique for analyzing complex interactions of important
experimental variables. One application where these analyses have great potential is in analyzing neural data. However,
estimating parameters for these models can be complicated. Although many software programs facilitate the estimation
of parameters within hierarchical Bayesian models, due to some restrictions, complicated workarounds are sometimes
necessary to implement a model within the software. One such restriction is convolution, a technique often used in
neuroimaging analyses to relate experimental variables to models describing neural activation. Here, we show how to
perform convolution within the R programming environment. The strategy here is to pass the convolved neural signal to
existing software package for fitting hierarchical Bayesian models to data such as JAGS (Plummer 2003) or Stan (Carpenter
et al. 2017). We use the convolution technique as a basis for describing neural time series data and develop five models to
describe how subject-, condition-, and brain-area-specific effects interact. To provide a concrete example, we apply these
models to fMRI data from a stop-signal task. The models are assessed in terms of model fit, parameter constraint, and
generalizability. For these data, our results suggest that while subject and condition constraints are important for both fit and
generalization, region of interest constraints did not substantially improve performance.
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Introduction

Analyzing neural data can be quite complicated as its qual-
ity can be affected by a variety of confounding factors,
such as motion, technological limitations, and patterns of
activation that are unrelated to the experimenter’s interests.
As a result, many data analytic strategies have been devel-
oped to sieve the important characteristics (i.e., “signal”)
from neural data, which are often obscured by sources of vari-
ance that are unsystematically related to the independent
variables of the experiment (i.e., “noise”). It is particularly
challenging to purify the signal within functional magnetic
resonance imaging (fMRI) data. For example, preprocess-
ing fMRI data often includes motion correction, slice timing
correction, mapping to a standardized space, and spatial
smoothing. Even after all of these preprocessing steps, it can
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be difficult to extract meaningful signal from fMRI data,
due to noise and perhaps more importantly, the slow nature
of the hemodynamic lag. As a consequence, it can be diffi-
cult to quantify statistical evidence or precisely identify the
neural basis of cognitive functions.

One convenient way to purify data quality while
simultaneously quantifying statistical evidence is through
hierarchical Bayesian modeling (Rouder and Lu 2005; Lee
2008; Shiffrin et al. 2008; Ahn et al. 2011; Turner et al.
2013). Within a hierarchical model, experimental effects
can be conceptualized as having a common basis, yet
still allowing for departures that are intrinsic to particular
factors. For example, subjects performing a task in a typical
experiment will undoubtedly have some commonalities:
they may have similar age ranges, they are all performing
the same task, and they may all be mentally healthy. Yet,
they may also have individual characteristics that allow
them to perform systematically differently from all other
subjects in our task. Hierarchical models allow us to balance
these different factors in a statistically principled manner.
Also, hierarchical Bayesian models improve parameter
estimates for a single trial by introducing additional
constraints on the estimates and reducing uncertainty.
Furthermore, Bayesian statistics allow us to quantify the
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effects in a way that is exclusively influenced by the data
from our current experiment, as well as our prior beliefs
about the relative magnitudes of the effects.

Despite the many advantages that hierarchical Bayesian
methods provide, they can be complicated to implement.
Fortunately, many statistical software packages facilitate
Bayesian estimation, enabling Bayesian solutions to oth-
erwise impenetrable analysis questions. However, because
many software packages are highly restrictive in the mod-
els they can fit to data, sometimes complicated workarounds
are necessary to perform more complex analyses. One area
where extant software packages have not yet been success-
fully applied is in the analysis of fMRI data. Although there
are potentially a few different reasons (see General Discus-
sion), we believe that a major limiting factor is the lack of
accessibility and clarity about how to relate the experimen-
tal design to the neural data acquired from the scanner. To
accomplish this, a mathematical process called convolution
is needed to combine the details of the stimulus presentation
with mathematical models that describe hypothesized neu-
rophysiological responses to the stimuli. In many papers, the
equations detailing how to perform convolution are some-
what obscured, making it difficult to imagine what the data
generating model is and how we can fit the model to data.
Although there are software packages available for imple-
menting Bayesian analyses for fMRI data, such as those
built into FSL (Chappell et al. 2009) or SPM (Han and Park
2018), these packages are difficult to customize and are
unfortunately not hierarchical. All of these complications
make it difficult for any aspiring modeler to analyze neural
data, and for example, link the parameters of interest to a
cognitive model (Turner et al. 2013, 2015, 2016, 2018).

Here, we present a more accessible introduction to mod-
eling neural activation by providing concrete convolution
equations, and connecting these equations with computer
code written in R. The benefit of this approach is that once
the design matrix for the experimental data is computed,
it can easily be passed to user-friendly Bayesian software
programs such as Just Another Gibbs Sampler (Plummer
2003, JAGS;) or Stan (Carpenter et al. 2017). These pro-
grams make Bayesian inference quite convenient, as several
algorithms facilitate efficient and accurate estimation of the
model parameters (e.g., Markov chain Monte Carlo). We
then develop five models of neural time series data that
increase in complexity in terms of the number of effects
that they are able to accommodate. Although the models
are intended to be generally applicable, we apply them to
data from a stop-signal task to provide a concrete example
of implementation. Within our task, we assess the models’
ability to both fit data and to generalize to new data through
out-of-sample prediction analyses. Hence, the present goal of
this article is to show the importance of condition- and subject-
level constraints in the stop-signal task, while providing the

tools necessary for others to carry out hierarchical Bayesian
analyses of fMRI time series data in their own research.

The outline of the article is as follows. First, we give
a brief overview of the literature on Bayesian analysis of
fMRI data, and of the literature on response inhibition.
Second, we explain how the general linear model analysis
used in fMRI can be implemented in a Bayesian framework.
Here, we explain how convolution is done effectively for
two types of experimental designs. Third, we develop five
models of neural time series data. An advantage of these
models, and a deviation from typical fMRI analyses, is
that they extract estimates of neural activation for each
trial/ stimulus, as opposed to a single estimate averaged
across trials for each condition. Fourth, we describe our
stop-signal task and the fMRI procedures. Fifth, we present
model fitting results from one run of the stop-signal task.
Sixth, we use an out-of-sample prediction analysis to test the
generalizability of the models across different runs of the
stop-signal task. We conclude with a summary of the results
and a discussion of limitations and future directions.

Bayesian Analyses of Neural Activation

One of the most standard methods in fMRI data analysis
is the general linear model (GLM). The GLM can be
considered a multiple linear regression model applied to
fMRI time series data, where the data are modeled as
a linear combination of factors such as the condition,
stimulus, and baseline level of activation. In addition, task-
irrelevant factors such as scanner drift, physiological noise,
and autocorrelation due to hemodynamic properties are
sometimes modeled (Friston et al. 1995). Although there are
scenarios where the linear modeling assumptions necessary
for the GLM do not hold for fMRI data (Monti 2011;
Poline and Brett 2012), the GLM approach still remains
the most frequently used data analysis method due to its
simplicity and approachability. However, fMRI analysis—
particularly the GLM—could be improved using Bayesian
statistics, where the uncertainty of model parameters must
be quantified in terms of posterior distributions. Although
fMRI analysis has been predominantly frequentist, we
certainly are not the first to suggest using Bayesian statistics
to improve fMRI analysis. Bayesian techniques such as
spatial priors, adaptive priors, and model comparisons have
been applied to fMRI research in various ways over the past
few decades (for a review, see Zhang et al. (2015)).

A natural extension of a Bayesian GLM applied to
a single subject is to introduce a hierarchical structure.
Although it is a technical point, extensions to hierarchical
models are relatively easy in the Bayesian framework,
compared to frequentist statistics. This is because Bayesian
statistics factorize multi-dimensional model parameters into
a series of conditional probabilities that depend on the



186 Comput Brain Behav (2018) 1:184–213

structure of the model (Kruschke 2014; Woolrich 2012). By
building a hierarchical layer, the information extracted from
one subject’s data helps to constrain the inference process
for other subjects. This information sharing allows subject-
specific effect parameters to be less affected by random
noise, because each parameter is affected by both the
subject’s data and the information learned across the group
(Kruschke 2014). Given these properties, one can view the
addition of a hierarchical structure for an fMRI time series
as an extension of the standard GLM; whereas the standard
GLM may only estimate condition-level effects, adding a
hierarchy enables the model to capture both condition-level
effects and stimulus-specific effects.

We are also not the first to use hierarchical Bayesian
techniques to analyze fMRI data. For example, hierarchical
Bayesian analyses have been used to impose spatial
constraints on voxel-level analyses (Bowman et al. 2008).
Although the analyses presented in this article are based on
clusters of voxels that comprise regions of interest (ROIs),
the methods presented here can easily be integrated into
existing pipelines for voxel-based fMRI analyses (see the
General Discussion).

Unfortunately, Bayesian approaches to neuroscience are
complex. With such complicated methods, it is difficult
to find a balance between ease of implementation and
ability to customize. Many Bayesian estimation programs
are home-brewed, which are complicated to write. Others
are deeply imbedded within software packages, and do not
allow the user to tailor the models to their experimental
design and analytic goals. Another barrier of using Bayesian
statistics is the computational burden. Programs such as
JAGS and Stan have helped ease this burden, and also
increased accessibility by creating a user-friendly working
environment that can be managed within R. In this paper, we
show how one can first perform convolution in R (which be
translated to other programming languages such as Matlab
or Python) and then pass the resulting convolved signal to
your preferred Bayesian software package.

Measuring Response Inhibition

One domain where hierarchical Bayesian analysis can be
helpful is when measuring response inhibition. Response
inhibition is considered an important component of cogni-
tive control (Miyake et al. 2000; Aron 2007; Logan 1985)
and has interesting applications to individual differences
(Miyake and Friedman 2012), attention deficit hyperactivity
disorder (Nigg 2001; Schachar and Logan 1990), obsessive-
compulsive disorder (Bannon et al. 2002; Penadés et al.
2007), and substance use disorders (Monterosso et al. 2005;
Nigg et al. 2006). Additionally, tasks designed to measure
response inhibition often produce many missing behavioral
observations. For example, if a subject was instructed to

withhold their response, a correct action would result in no
behavioral data. To gain a better perspective on the cognitive
processes that allowed for successful response inhibition,
we can look to patterns of neural measures during the trial.
In this sense, the issue of sparse or missing data can be
circumvented by thorough analysis of brain data.

Response inhibition has been studied extensively in
neuroscience and mathematical psychology. Considerable
research has led to well-developed theories of response
inhibition, in both of these fields. It is important to note
that most of this research, with a few exceptions, is either
focused entirely on neuroscience or modeling, without
much overlap between the two fields. We begin a brief
review of the response inhibition theories in neuroscience,
primarily within the context of fMRI experiments.

Within neuroscience, cognitive control theories, in gen-
eral, are based on the idea that fronto-parietal connectivity
allows for cognitively regulatory abilities (Miller and Cohen
2001; Jung and Haier 2007). Additionally, individual dif-
ferences found in these tasks arise from differences in
fronto-parietal connectivity, or whole-brain connectivity to
the prefrontal cortex (Cole et al. 2012). Response inhibi-
tion, including both stopping and not going, has been found
to involve the right inferior frontal gyrus, presupplementary
motor area, and the basal ganglia, although the distinct role
of each area in the network is contested (Aron et al. 2014;
Chikazoe et al. 2009; Sebastian et al. 2016; Verbruggen and
Logan 2008).

In addition to these neural theories, response inhibition
theories have been extensively modeled to examine the mecha-
nisms of the behavior. Behavioral models of the stop-signal
task are generally based on a race process, where go
processes and stop processes are different “racing” accu-
mulators (Logan and Cowan 1984). More recent models
add features such as stochastic accumulators (Logan et al.
2014) and the ability to estimate entire stop signal reac-
tion time distributions (Matzke et al. 2013). While many
of these models focus on purely behavioral data, some
have incorporated neuroscience by using single-unit neu-
rophysiology in experiments involving nonhuman primates
to constrain behavioral models and differentiate between
competing theories (Logan et al. 2015; Boucher et al. 2007).

Two tasks commonly used to measure response inhibi-
tion are the go/no-go and stop-signal tasks. In the go/no-go
task, subjects are instructed to respond to one stimulus (or
set of stimuli), often by invoking a motor response (i.e.,
pressing a button), and not to respond to a different stimu-
lus or set of stimuli. The stop-signal task extends this basic
paradigm by adding a stopping condition, where a go signal
is presented, but after a set delay, a “stop-signal” is pre-
sented. While the tasks both look at response inhibition, not
going (in the go/no-go task) and stopping (in the stop-signal
task) have overlapping, but not identical networks (Rubia
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et al. 2001; Swick et al. 2011). The development of a task
that has both stopping and not going components extended
upon this theory by confirming that both types of inhibi-
tion share a common network, but stopping and not going
have distinct subprocesses within that network (Sebastian
et al. 2013). The task we use in this paper has components
of a go/no-go task built into the stop-signal task to fur-
ther analyze these nuances in response inhibition. In this
next section, we begin by detailing how to construct a time
series of neural activity that can later be constrained by
task-specific details.

Bayesian Implementation of the General
Linear Model Analysis

Unlike many applications of Bayesian statistics for cog-
nitive models, to perform Bayesian inference on neural
activation, we must relate the stimulus effects to an entire
time series worth of neural activity throughout the experi-
ment. The reason for this is due to what is called hemody-
namic lag, where the effects of an individual stimulus may
linger for up to 30 s after stimulus presentation. These lin-
gering effects can have a major impact on our ability to
understand the systematic relationship that our independent
variables have on brain activity for most realistic experi-
mental designs where stimuli are presented within 30 s of
one another. Hence, to properly estimate stimulus effects,
we must carefully consider the specific sequence of stimulus
presentations.

Consistent with other Bayesian cognitive modeling
applications (Turner et al. 2017, 2018), we first define a
generative model that describes how stimuli provoke neural
activation for a given region of interest. This generative
model is used to describe the effects of each stimulus
in the experimental design through a set of activation
parameters. Once each individual stimulus is described,
we must combine these descriptions to form a convolved
neural signal. The convolved neural signal is a prediction
from our generative model, and so it can be compared to
data observed from an experiment to assess how well our
model prediction matches the observed data. Close matches
indicate that the set of activation parameters are accurate,
whereas poor matches indicate that at least a subset of
activation parameters need to be adjusted. The process of
inference is to adjust all of the activation parameters such
that close matches can be obtained for all neural time series
of interest.

Before providing all the details of our hierarchical
models, we felt it is necessary to detail the core component
of these models that relates each individual stimulus to
a predicted time series of neural activity. While we have
provided similar descriptions elsewhere (Palestro et al.

2018), the experimental design and purpose of the analyses
below are both quite different. Furthermore, despite its
simplicity, we find that most descriptions of convolution
are somewhat difficult to apply generally. Thus, we provide
a description of convolution in our specific task so that
other researchers wishing to use these tools may have them
readily accessible.

In this section, we describe how to construct a time
series of neural activity in three parts. First, we describe the
generative model of neural activity for a single stimulus.
Second, we describe how critical experimental design
variables should be collected and organized, to allow for
formal mathematical descriptions of neural activity. Third,
we describe how the experimental design variables can be
used with the generative model for each specific stimulus
to produce a predicted time series for neural activity.
This operation is known as convolution, and we discuss
two cases of convolution: finite impulse and the more
general boxcar convolution. To aid in this discussion, we
provide code in the Appendices that can implement the
analyses we report here. Appendix A provides the means
to calculate the canonical hemodynamic response function,
Appendix B enables the user to specify the stimulus
presentation for a specific experimental design, Appendix C
provides the function for performing convolution, and
finally, Appendix D provides the JAGS code for one of the
five hierarchical models we investigate here.

Hemodynamic Responses and Convolution

Unfortunately, scientists have yet to develop a way of
directly observing neural activity within the brain in a
noninvasive way that is safe for humans. One of the
current best approaches for measuring said neural activity
is through indirect observation of metabolic changes in
blood flow so that neurons consuming oxygen and glucose
can be replenished. The onset of neural activity leads to
a systematic series of local physiological changes, most
importantly the change in concentration of oxyhemoglobin
and deoxyhemoglobin (Poldrack et al. 2011). Ultimately,
fMRI experiments measure these concentrations through
the blood-oxygenation-level-dependent (BOLD) response.
The BOLD response is intended to measure changes in
brain activity as a dependent variable in our experiments: if
the BOLD response in a given brain area is systematically
related to the independent variable in our experiment, then it
follows that the area is somehow being recruited to process
the stimuli.

The BOLD response to a given stimulus is generally
characterized by an increase to a peak level of activation,
a decrease in activation below a baseline value, and then
an asymptotic return to the baseline value (e.g., Fig. 1).
To model the shape of these changes in the BOLD
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response through time, we can define what is called a
hemodynamic response function (HRF). Fortunately, after
many experiments, the field has settled on a few functional
forms, each having advantages and disadvantages (Poldrack
et al. 2011; Glover 1999; Boynton et al. 1996). One
particular functional form that is commonly implemented
in standard brain analysis software packages such as SPM
12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12) is the
double-gamma model (Glover 1999; Boynton et al. 1996),
given by
h(t) = βh0(t)

= β

(
ta1−1b1

a1 exp(−b1t)

�(a1)
− c

ta2−1b2
a2 exp(−b2t)

�(a2)

)
, (1)

where t is time, β is the amplitude of the response, and
�(x) = (x − 1)! denotes the gamma function. Many of
the parameters in Eq. 1 are fixed to specific values by
convention: a1 = 6, a2 = 16, b1 = 1, b2 = 1, and c =
1/6. These parameters define the shape of the HRF. While
we could freely estimate these to reflect their variability
across the brain or with stimulus types (Aguirre et al. 1998;
Buckner 1998), they are often assumed to have a canonical
form by using specific parameter values for simplicity in
computation. Hence, the key parameter in Eq. 1 is β, as
it defines how active a given voxel or region of interest is
following a stimulus presentation. Appendix A provides R
code that can be used to implement Eq. 1.

Fig. 1 Convolution of the hemodynamic response function (HRF).
The process of generating a convolved signal of neural activity is sep-
arated into three panels for a hypothetical stop-signal task: parameters
and design matrix (top row), individual HRFs for each stimulus (mid-
dle row), and a convolved HRF (bottom row). The top row shows
neural activation for seven stimuli of three different trial types: a go
trial (green), a no-go trial (blue), and a stop signal (red). The middle

row shows how individual HRFs (dotted lines) are aligned to the spe-
cific sequence of stimuli (triangles of corresponding color), where each
HRF is scaled according the β parameter represented in the top row
(i.e., the heights of each bar). The bottom row shows how the con-
volved predicted signal (solid black line) is formed, with the individual
HRFs from the middle row shown as a reference

http://www.fil.ion.ucl.ac.uk/spm/software/spm12
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Construction of a DesignMatrix

To construct a prediction of how neural activity changes
as a consequence of the stimulus variables, we must
first organize variables that define the experimental
environment. Specifically, it is important that we know (1)
which stimulus was presented at what point in time and (2)
how that particular stimulus should affect the neural activity.
As experimenters, we easily have access to (1), and we can
organize this information within a “design” matrix X. The
design matrix X must be constructed by setting individual
regressors for each level of the independent variable, and
some specification must be made for each trial (Rissman
et al. 2004; Mumford et al. 2012). X has a row for each
point in time a neural measure is collected (i.e., repetition
time), a column for each stimulus effect, and a column
for baseline activation (analogous to a y-intercept term in
linear regression). Within X, each column is constructed
by shifting the template HRF in Eq. 1 to the point in time
at which a stimulus was presented. More technically, the
HRF must be convolved with what is called an impulse
(response) function that defines the points in time a stimulus
was presented.

WhileX can be defined from the experimental design and
a template HRF, we nowmust specify the magnitude of each
stimulus effect on neural activity. To do this, we can define
an amplitude coefficient vector β such that each stimulus
can be scaled according to Eq. 1. In general, we will not
know the values of β that will scale each HRF appropriate to
perfectly match our data. Instead, we must estimate the the
values in β using, in our applications, Bayesian inference. In
particular, we will show how the single-stimulus estimates
can be constrained by building up hierarchical structures to
explain neural activity.

The top and middle panels of Fig. 1 illustrate how the
design matrix and amplitude coefficient vectors interact
within 30 s of a hypothetical stop-signal task. The top
row shows points in time at which seven stimuli of three
different trial types were presented: go trials are shown in
green, no-go trials are shown in blue, and stop-signals are
shown in red. Each bar in the top panel corresponds to a
column within X, and the location of each bar with respect
to time corresponds to the row within X where an individual
HRF would eventually be placed. The height of each bar
corresponds to the values of the parameters in β. For this
example, β includes stimulus-wise activation coefficients:

β = [β1, β2, · · · , β7]
ᵀ .

The middle panel of Fig. 1 illustrates how the HRFs in
Eq. 1 are shifted according to the stimulus presentation
sequence. Each bar in the top panel has a corresponding
triangle, as a reference, in the middle panel. In this example,
each stimulus has a corresponding HRF in the middle

panel, and each HRF is scaled according to the heights
of the bars in the top panel (i.e., the values of β). The
middle panel of Fig. 1 shows that the individual HRFs
for this particular stimulus sequence—which was actually
taken from our experimental design below—clearly overlap
through the experimental session. Therefore, any attempt to
estimate individual β parameters would be hopeless without
considering the entire time series.

Fortunately, the BOLD response exhibits a linear time
invariant (LTI) property that enables us to isolate the effects
of each individual stimulus presentation on the observed
neural time series (Boynton et al. 1996). The first result
implied by the LTI property is that if neural activation
follows a stimulus presentation but peak activation is
delayed by some arbitrary amount, the BOLD response
will also start at the time of the stimulus presentation and
be delayed by the same amount. This implies that if an
appropriate function is specified for neural activation, it
can be shifted to the time at which a given stimulus is
presented. This property is illustrated in the middle panel
of Fig. 1 where each HRF is shifted to the stimulus onset.
The second result implied by the LTI property is that the
scale parameter β (height of each HRF in the second row) is
linearly related to amplitude of the neural activation (height
of each line in the first row). In other words, trials with
larger neural activation will also have larger β values. The
final implication of the LTI property is in regards to how
the individual HRFs are combined to form one convolved
signal, which we now discuss.

Convolution

To impose the HRF expected for our particular experimental
design, we require a mathematical operation called convo-
lution. Convolution is usually described as an integration of
two functions, one of which defines the shape of the HRF
h(t), and the other defines the times at which the stimuli are
presented f (t). The shape of the HRF h(t) was defined in
Eq. 1. Conceptually, it is easy to define a function f (t) as an
indicator function that specifies when a stimulus is present
as

f (t) =
{
1 when a stimulus is presented at time t

0 otherwise.
(2)

The convolution of f (t) with h(t) is defined as

(f ∗ h)(t) =
∫ ∞

−∞
f (τ)h(t − τ)dτ . (3)

Here, the dummy variable τ allows us to slide the HRF
along the time axis until we reach the value of τ such that
f (τ) = 1. In other words, the variable τ is completely
inconsequential as it is integrated out over the temporal axis.
At this location, (f ∗h)(t) becomes the HRF shifted by τ , as
shown for each individual HRF in the middle panel of Fig. 1.
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Equation 3 considers the case of any generic function for
f (t) and all continuous values of time t . However, there are
a few things we can do to simplify Eq. 3 for the purposes of
pedagogy and pragmatic applications. First, we can assume
a discrete representation for time, rather than a continuous
one. This assumption is justified because fMRI scanners
are incapable of producing measures of brain activity that
are practically continuous through time (i.e., they usually
provide a set of measures from the whole brain every 1.5
or 2 s). With a discrete representation in place, we can
use summation rather than integration in Eq. 3. Second,
depending on the duration of stimulus presentation, f (t)

may take different forms. The simplest case is when f (t) =
1 for only one point in time t for a given stimulus, which
is called an impulse function (e.g., the top row of Fig. 1).
The more general case is when f (t) = 1 for a period of
time, such as a few seconds. In this case, the function is
often called a boxcar function. We begin with a description
of convolution using an impulse function because it is
conceptually simpler, and then move to the more general
form of boxcar convolution.

Impulse Convolution

The top panel of Fig. 1 shows the simplest case of f (t),
where stimuli are shown and removed immediately, such
that f (t) = 1 for a single point in time t for each stimulus.
Because of the impulse function, the convolution operation
in Eq. 3 is equivalent to simply shifting the starting point
of the HRF h(t), without additional scaling by β. For
convenience, we define h0,i (t) as the HRF corresponding
to the ith stimulus presentation; that is, h0,i (t) contains
the same information in h(t), but is shifted in time to
correspond to the ith stimulus presentation. Using a discrete

representation of time and an impulse function, we can
perform convolution by combining these individual HRFs
h0,i (t) in the following way:

N(t) = β0 +
R∑

i=1

βih0,i (t)

= β0 + (Xβ) (t), (4)

where R is the total number of stimulus presentations, and
β0 denotes an intercept term that shifts the time series
throughout the experiment. The bottom panel of Fig. 1
shows the predicted convolved neural activity N(t) from
the model across the 30-s time window (solid black line),
along with the individual HRFs from the middle panel as
a reference. Because the third result of the LTI property
suggests that the aggregated neural signal is a linear
combination of the individual stimulus effects, we can use
Eq. 4 to generate the convolved signal. Here, each individual
effect is described by a separate HRF, and these individual
HRFs from the middle panel are integrated together (i.e.,
through summation) to form the convolved signal.

If we wish to estimate the parameters β with software
packages such as JAGS or Stan, one strategy is to first
construct the design matrix X in our home environment
(e.g., R or MATLAB) so that we can pass the constructed
variable to the Bayesian software package of our choice.
Because the design matrix only needs to be computed
once, we can use advanced techniques (e.g., the fast
Fourier transform) to aid in the computation. Although
we do not investigate these methods here, this may be an
important consideration for different problems. Once the
functions in Appendices A-C are loaded into our R working
environment, the following block of code shows howwe can
perform convolution with an impulse response function:
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Fig. 2 Examples of convolution. Each panel shows an example of
convolution using either an impulse function (left) or a boxcar func-
tion (right). The gray solid line shows the convolved hemodynamic

response functions (HRFs) for the four stimuli. Red, green, blue, and
cyan dotted lines correspond to the individual HRFs corresponding to
each of the four stimuli, respectively

The function hrf.conv takes the HRF with a unit-level
amplitude (i.e., h0(x); Eq. 1, see Appendix A) and returns
convolved HRFs using design variables such as stimulus
onset times (t.start), stimulus duration (duration),
the number of measurements (measurement), and TR
(TR). The last argument resolution is only necessary
for boxcar convolution as the function hrf.conv was
intended to subsume impulse convolution as a special case
of boxcar convolution. Accordingly, to perform convolution

with an impulse function, simply set duration to zero.
We also decided to exclude the baseline activation column
from X and add the baseline activation separately to
simplify computation.

To generate a complete design matrix X, we use the
R function sapply to make hrf.conv return multiple
sequences of convolved HRFs according to each stimulus
onset in t.start as in line 8. Line 10 shows an example
of impulse convolution with four stimuli presented at t =
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Fig. 3 Effects of resolution on the convolution operation. The left
panel shows how the resolution of the temporal grid affects approxima-
tion quality. The stimulus intensity is shown over 4 s, with a stimulus
presented for 2 s at time t = 0.5. The red dots indicate a boxcar func-
tion defined at a high temporal resolution, the blue squares indicate a
boxcar function defined by a grid of low temporal resolution, and the

black line indicates the “true” boxcar function we would expect with
the stimulus onset and duration. The right panel shows the correlation
(y-axis) between convolved signals assuming an impulse function (yel-
low) and a boxcar function (red) as a function of the length of stimulus
presentation (x-axis)
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4, 7, 12, and 20. Here, we assume that we acquired 30
measurements with T R = 2. The resulting convolution used
in line 10 is shown in the left panel of Fig. 2. For more in-
depth details of how hrf.conv works, we refer the reader
to Appendix C where the full code is provided.

Boxcar Convolution

Although using impulse functions makes the conceptual-
ization of convolution significantly easier, it may not serve
some readers well. For example, impulse functions would
not be appropriate in experiments that use block designs, or
slow event-related designs where stimuli are presented for
many seconds. In these cases, we could not simply shift the
common HRF template to one specific time. Instead, boxcar
convolution would be needed.

Fortunately, we can maintain our discrete representation
of time when approximating the integration in Eq. 3. In this
case, the resolution of the temporal grid becomes vitally
important so that the predicted neural time series can be
approximated well. The left panel of Fig. 3 illustrates how
the resolution of the temporal grid will affect the quality of
our approximation. In this example, we have assumed that
the BOLD response is acquired every 2 s, and a stimulus
is presented for 2 s at the time t = 0.5. If we define a
boxcar function with extremely high resolution (red circles),
the true stimulus presentation details are well approximated.
However, if we use a grid with low temporal resolution, such
as the same resolution as our scan acquisition (blue squares),
our boxcar function would consist of a single point at t = 2.
This low resolution would not approximate the true stimulus
presentation details, and so the ensuing convolution is
unlikely to allow us to investigate the systematic effects the
stimuli have on the neural time series.

The left panel of Fig. 3 illustrates that one potential
strategy for solving the resolution problem is to implement
an “upsampling-convolving-downsampling” (UCD) cycle.

First, we could increase the temporal resolution of the
boxcar function (i.e., upsampling) within R, so that the
stimulus presentation details can be approximated well.
Second, we could use the high-resolution boxcar function to
convolve it with the HRF template to produce a prediction
for the neural time series. Using a discrete, albeit high-
resolution, grid would still enable us to approximate the
integral in Eq. 3 with the summation in Eq. 4. Third, we
could decrease the temporal resolution of the convolved
signal (i.e., downsampling) to match the fMRI acquisition.
This last step would allow for an easy comparison to the
observed neural time series through the GLM procedure
described above, preserving our ability to simply pass the
convolved design matrix X to any software package we wish
to use (e.g., JAGS, Stan).

At this point, one may wonder for which stimulus dura-
tions a UCD process would be necessary. To evaluate the
effects of resolution on the accuracy of the impulse function,
the right panel of Fig. 3 shows the correlation (i.e., y-axis)
between the predicted neural time series using impulse convolu-
tion (i.e., left panel of Fig. 2) and boxcar convolution (i.e.,
right panel of Fig. 2) for a single stimulus as a function of
stimulus duration (i.e., x-axis), using the canonical HRF.
The dark gray-shaded area represents the stimulus duration
and the light gray-shaded area represents the acquisition
time for our particular experiment below. The right panel
shows that the correlation remains high (e.g., greater than
0.9) for stimulus presentations that are shorter than 2 s. This
indicates that even for somewhat slow stimulus presenta-
tions, impulse convolution is nearly as effective as the UCD
cycle with a high-resolution grid (red lines). The yellow
lines show that downsampling from the high-resolution grid
has no effect on the correlations, which is expected given
that downsampling occurs after the convolution step.

As in the example of impulse convolution, the following
block of code shows how we can convolve the HRF with a
boxcar function using R:

As mentioned above, the function hrf.conv is made
to subsume impulse convolution. For boxcar convolution,
we need to specify a stimulus duration that is greater than

zero in seconds. Because the result of boxcar convolution
can arbitrarily scale a convolved HRF according to how we
set duration and resolution, the function normalizes
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the height of the convolved HRF (i.e., the maximum value
of the convolved HRF) to 1.

Line 2 provides an example of the syntax of boxcar
convolution within hrf.conv when stimulus duration is
nonzero. In this case, we should define duration as a
vector representing stimulus duration for each stimulus,
and use the R function mapply so that hrf.conv can
call the information in the onset and duration vectors for
each stimulus simultaneously. Line 4 presents a concrete
example when we show four stimuli at t = 4, 7, 12, and
20, and their durations are 2, 10, 10, and 2 s, respectively.
The right panel of Fig. 2 shows the resulting convolved
neural signal. Here, the HRFs for the second (green) and
third (blue) stimuli have extended durations compared to
the HRFs for the first (red) and fourth (cyan) stimuli due to
longer stimulus durations. As described above, the heights
of each individual HRF are scaled to have a maximum value
of 1, arbitrarily.

Summary

In this section, we described how to convolve a canonical
HRF with the design matrix for one’s specific experiment.
As convolution can be abstruse, we discussed how to
perform this operation in the simple case that stimuli are
shown briefly (i.e., an impulse function), and then the more
general case of stimuli presented for a longer duration.
Although the computer code for implementing impulse
convolution is relatively simple (see above), performing
convolution for the more general case is more difficult. To
facilitate this, Appendix A provides a function for the HRF
template, Appendix B provides a function that defines a
boxcar function, and Appendix C provides a function for
general convolution in R. These functions make Bayesian
analysis of fMRI time series data quite convenient as
they enable the design matrix X to be precomputed in R
and simply passed to either JAGS or Stan. Within these

Fig. 4 Graphical Diagrams for Each Model. Each panel illustrates a
graphical diagram for each model used in our analysis. Each node rep-
resents a variable in the model, where the filled nodes are the observed
neural time series from the experiment and empty nodes correspond to
latent variables. The design matrix (information about stimulus condi-
tion and onset time) was not included in this diagram for visual clarity.
Arrows represent relationships between variables and plates represent

replications across dimensions (e.g., conditions or subjects). Model 1
has no hierarchical component, model 2 constructs a hierarchy on the
condition-level, and model 3 constructs a hierarchy on the subject-
level. Models 4 and 5 both construct a hierarchy on the ROI-level:
model 4 assumes a common covariance matrix for the entire group
of subjects, whereas model 5 assumes one covariance matrix for each
subject
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packages, one can estimate the influence of an individual
stimulus (i.e., the β parameter) by using the dot product of
a vector of coefficients with the design matrix.

Model Specification

We developed five models of increasing complexity to
investigate which types of constraints should be used to best
capture neural data. Figure 4 shows a graphical diagram of
the five models. Each graphical diagram illustrates how the
model parameters, shown as empty nodes, are connected
to the neural data, shown as a gray-filled circle. Beneath
the nodes are a set of plates, which represent loops that
are needed to capture multiple features of the data. For
example, one plate corresponds to the different stimuli that
are presented throughout the experiment, as was illustrated
in the top panel of Fig. 1. The complexity of the models
increases in a progressive manner, where each model adds
an additional constraint based on either the experimental
condition, subject-to-subject variability, or different brain
regions of interest (ROI). As the section above detailed, the
design matrix is also part of the model structure as it relates
the experimental design to the neural time series, but we
have removed it for visual clarity. An additional parameter,
σβ , included in models 2–5, is also not pictured as it is
nonessential, but its role will be described in detail in later
sections. We now discuss each of the five models in turn.

Model 1

The first model is the simplest and has no hierarchical
component. Ni,t represents the observed neural data at time
t for a given region of interest in response to the presentation
of a go, no-go, or stop-signal stimulus, referenced as
stimulus j . The shape of the BOLD response is constructed
from convolved hemodynamic response functions discussed
in the previous section.

The observed neural data (i.e., BOLD responses) are
assumed to be derived by the sum of baseline activation
(β0) and the convolved hemodynamic responses, with an
assumption that the measurement error follows a normal
distribution:

N(t) = β0 +
R∑

i=1

hi(t) + ε(t)

= β0 +
R∑

i=1

βih0,i (t) + ε(t). (5)

Here βi and h0,i refer to the neural activation amplitude
and nonscaled HRF for the ith stimulus, respectively. R is

the number of stimulus presentations, which for one run
of our stop-signal task is 240. The notation ε(t) denotes
residual noise in the neural activity at each point in time that
is not accounted for by the model,

ε(t) ∼ N (0, σ ),

where N (a, b) denotes a normal distribution with mean
a and standard deviation b. Given this distributional
assumption, we can express the likelihood of the neural data
N using matrix notation as

N ∼ N (β0 + Xβ, σ ), (6)

where X and β are the design matrix with stimulus-wise
regressors and corresponding activation coefficient vector,
respectively.

In this model variant, β = [β1, . . . , β240]ᵀ (stimulus-
wise activation), β0 (baseline activation), and σ (mea-
surement noise) were freely estimated. For the activation
parameters, we imposed diffuse normal priors:

β0 ∼ N (0,
√
1000)

βi ∼ N (0,
√
1000) ∀ i = {1, 2, . . . , 240}.

Note that JAGS uses precision defined as an inverse of
variance (i.e., 1/σ 2) instead of standard deviation (i.e., σ )
for parameterizing the uncertainty of estimates. However,
in this paper, we will report the normal priors in terms of
standard deviation.

For the measurement noise parameter, we used a diffuse
inverse gamma prior

σ 2 ∼ InvGamma(0.001, 0.001),

where InvGamma(r, λ) is the inverse gamma distribution
with shape r and rate λ. As stated previously, JAGS uses
precision, but for reporting priors in this paper, we use the
more conventional notation of standard deviation. We report
the noise parameters in terms of variance, as the inverse
gamma distribution is conjugate for the variance parameter
in this model, which speeds the sampling procedure in
JAGS. We note that applying an inverse gamma prior with
shape r and rate λ for variance is equivalent to applying a
gamma prior with shape r and rate λ for precision.

Model 2

The second model adds a hierarchical structure across condi-
tions. For the stop-signal task, there were four conditions:
go, no-go, stop-signal presented before a response was
made, and a nuisance regressor. Here, the nuisance regres-
sor refers to trials in which a stop-signal trial was presented
after a response was made. As the response was already
made, we considered the late stop-signal to be cognitively
unimportant as it is clearly not related to response inhibition.
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Despite this, we included a parameter to model the effects
of this late stop-signal as it may have had some unintended
influence on the neural signal on subsequent trials.

To build a hierarchy across conditions, we added
hyperparameters δk where k = {1, . . . , 4} and σβ to capture
the mean and standard deviation of the single-stimulus βs,
respectively. Formally, we specified that

βi,k ∼ N (δk, σ
β),

where i corresponds to the individual stimuli, and k

corresponds to the four types of stimuli (i.e., go, no-go,
stop-signal, and nuisance stop-signal). For δk we imposed a
diffuse normal prior

δk ∼ N (0,
√
1000),

and specified a diffuse inverse gamma prior on σβ such that

(σβ)2 ∼ InvGamma(0.001, 0.001).

We did not assume baseline activation or noise was
constrained by condition, so the priors for β0 and σ are
equivalent to their specification in model 1.

Out of the five models, model 2 most closely resembles
the standard GLM analysis that would only consider
condition-level effects. Compared to the standard GLM, one
key difference in our analysis is that we obtain parameter
estimates for every stimulus presented in the experiment,
instead of averaging this effect out across trials (i.e., pooling
trials within the same condition). Because the δk parameter
captures the central tendency of the single-stimulus βs
within a given condition k, the δk parameter conveys the same
information as a β estimate would in the standard GLM.
However, one key difference is that the variance of the posterior
of δk will likely be larger than the standard GLM β.

Model 3

The third model adds an additional hierarchical structure
across subjects. The primary difference between models 2
and 3 is that model 3 assumes that each subject may have a
different generative model to describe their brain activation.
Formally, this assumption relates to adding subject-specific
parameters for the single-stimulus βs and the baseline
activation levels β0.

To build the hierarchy in baseline activation, we added
the hyperparameter μ0 to describe the mean baseline for
each of the j terms of β0. We specified that each subject’s
baseline activation is sampled from a common normal
distribution such that

β0
j ∼ N (μ0,

√
1000),

where j indexes the subject number. For the hypermean μ0,
we imposed a diffuse normal prior such that

μ0 ∼ N (0,
√
1000).

To build the hierarchy in stimulus activations, we added
the hypermean parameter μj to center each activation
parameter δj,k . Similarly with μ0, we assume that the
condition-level mean activation δj,ks differ among subjects
and are sampled from a normal distribution, which
incorporates individual differences in stimulus-wise brain
activation in terms of βi,j,k:

δj,k ∼ N (μj ,
√
1000), and

βi,j,k ∼ N (δj,k, σ
β).

Here, we have added the index j to refer to the j th subject.
We specified a similarly diffuse prior for μj , such that

μj ∼ N (0,
√
1000).

For the variability of single-stimulus βs (i.e., σβ ), we do
not assume individual differences and therefore the prior for
this parameter is defined in the same way as for model 2.

A final addition was the assumption that measurement
noise σ should also vary freely across subjects. However,
we did not build a hierarchy on the resulting σj s as it was
not clear what distribution they should take. For each σj , we
specified a similar prior as was declared in model 2:

σ 2
j ∼ InvGamma(0.001, 0.001).

Model 4

The fourth model investigates patterns of coactivation in the
ROIs across the brain. The rationale for including patterns
of coactivity was to build in functional constraint such that
ROIs that had similar profiles of activity through time could
constrain one another. In modeling perceptual decision-
making in a random dot motion task, Turner et al. (2015)
found that models including patterns of single-trial coactivation
performed better than models that did not, suggesting that
information in different ROIs can be used effectively to
constrain estimates of single-trial activation. This result
naturally follows from the conditional distribution of a
multivariate normal distribution when at least two ROIs
have nonzero functional correlation (Turner 2015).

To capture the pattern of coactivation, we used a hyper
variance-covariance matrix 	, a (24 × 24) matrix. For
this first model of coactivity, we assumed that coactivation
would be similar across all subjects, and so we did not
allow it to vary across any dimension of our experiment.
The matrix 	 works together with the hypermean vector
μ to control the distribution of the activation parameters
δ. Specifically, letting the subscripts j, k, and r represent
subject, condition, and ROI, respectively, we assumed

δj,k,1:R ∼ N24(μk,1:R, 	),

where Np(a, b) denotes a p-dimensional multivariate
normal distribution with mean vector a and variance-
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covariance matrix b. We introduce the notation μk,1:R to
refer to the kth row of μ such that

μk,1:R = [
μk,1, μk,2, · · · , μk,24

]ᵀ
,

and this notation is used similarly on δ.
With this additional hierarchical structure in place, the

notation for the parameters β was changed to index each
ROI:

βi,j,k,r ∼ N (δj,k,r , σ
β
r ).

Note that σβ
r no longer varies across subjects, but does vary

across ROIs. We specified the following vague prior for
each σ

β
r :

(σβ
r )2 ∼ InvGamma(0.001, 0.001).

The hyperprior for μk,1:R is a 24-dimensional multivari-
ate normal distribution

μk,1:R ∼ N24 (φ0, s0) ,

where φ0 is a 24-dimensional vector of zeros and s0 is
a (24 × 24) identity matrix (i.e., a diagonal matrix with
ones on the diagonal). We specified an inverse Wishart
distribution as the prior on 	 such that

	 ∼ W−1(I0, n0), (7)

where I0 is a (24 × 24) identity matrix representing the
scale of the distribution, and n0 = 24 is the degrees of
freedom of the inverse Wishart. It should be noted that
many different priors for the variance-covariance matrix
are possible. We chose the inverse-Wishart distribution
because of its mathematical convenience: it is a conjugate
prior for the variance-covariance matrix 	. However, the
inverse-Wishart distribution is quite inflexible in that it only
contains a precision matrix I0 and a degrees of freedom
parameter n0. Other, more flexible, priors decompose the
	 matrix and place priors on the resulting components (see
Gelman et al. 2004 for more details). Fortunately, software
packages, such as JAGS and Stan, make modification of
the prior on 	 straightforward, and so we recommend a
sensitivity analysis for this particular set of priors if one is
interested in their influence on the estimates of 	.

For the baseline activation parameter β0, we added an
index for the rth ROI, so that

β0
j,r ∼ N (μ0

r ,
√
1000), and

μ0
r ∼ N (0,

√
1000).

We also added an index to the measurement noise parameter
σ to index each subject and ROI, but did not constrain these
hierarchically for similar reasons as in model 3:

(σj,r )
2 ∼ InvGamma(0.001, 0.001).

Model 5

Model 5 is identical to model 4, except it allows each
subject to have their own variance-covariance matrix 	.
This assumption is based off of the idea that individual
differences in connectivity could lead to differences in
coactivation. Thus, the prior for δ in model 5 is

δj,k,1:R ∼ N24(μj,k,1:R, 	j )

for the j th subject and kth condition. As in model 4,
μj,k,1:R and δj,k,1:R are 24-dimensional vectors where
each element represents a different ROI. The hyperprior for
	j is equivalent to the specification in model 4 (i.e., Eq. 7),
except for the new index on 	j :

	j ∼ W−1(I0, n0).

All other priors are defined the same way as in model 4.

Model Summary

Table 1 provides a conceptual summary of the different
types of hierarchical constraints used in each of the five
models. The first model has no hierarchical component.
The second model constructs a hierarchy on the condition-
level, constraining single-stimulus βs by the type of
stimulus that was presented (i.e., go, no-go, stop-signal,
or nuisance stop-signal). The third model constructs
a hierarchy on the subject-level, assuming individual
differences in measurement noise, baseline neural activity,
and the condition-level constraint on single-stimulus βs.

Table 1 Conceptual summary
of the different types of
hierarchical constraints used in
each of the five models

Model Hierarchy ROI covariance matrix

Condition-level Subject-level ROI-level

Model 1

Model 2 X

Model 3 X X

Model 4 X X X Collapsed across subjects

Model 5 X X X One per individual
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The fourth and fifth models construct a hierarchy on the
ROI-level, building off of all previous assumptions, but
also add the additional feature of ROI coactivation. Model
5 differs from model 4 in that it has a covariance matrix
for each subject, whereas model 4 has one group-level
covariance matrix. As the five models have somewhat
similar JAGS code, Appendix A provides JAGS code for
model 3 as an example.

Assessing which hierarchical constraints are appropriate
is a tricky problem: we want the models to be complex
enough to fit data well, but we also want the models to be
able to generalize to new data accurately (Pitt and Myung
2002). In order to explore these considerations, we fit the
models to real experimental data. We chose to use the stop-
signal task because of its interesting cognitive applications
and relevance to missing data problems present in a variety
of tasks. Before discussing model fit and generalizability,
we review our experimental design and MRI procedures.

The Stop-signal Task

As discussed in the introduction, the stop-signal task is
a widely used paradigm in studying response inhibition
(Logan and Cowan 1984). Our task design differs from the
standard stop-signal task in that it also incorporates aspects
of the go/no-go task. The purpose of this incorporation is to
be able to distinguish between different types of response
inhibition: not going and stopping. In this section, we
describe the experimental methods of the task as well as the
initial fMRI processing.

Participants

The eleven participants analyzed in this study completed
the stop-signal task in the MRI scanner. All participants
were recruited from The Ohio State University and its
surrounding community and provided informed consent.
The study was approved by the Institutional Review Board
of the university. Among the eleven participants (mean
age = 24.6 years; range from 18 to 48) included in the
analysis, there were five females and six males.

Stimuli

All stimuli were programmed in Matlab using Psychtoolbox
extensions (http://psychtoolbox.org/) on a Windows PC.
The participant laid supine on the scanner bed and viewed
the visual stimuli back-projected onto a screen through a
mirror attached onto the head coil. Subjects were instructed
to press a button when they viewed an A, B, C, D, or E,
and to not press any button when they viewed an X, Y, or

Fig. 5 Example trials. Diagram showing the example stimulus within
a trial. Each row corresponds to a trial type from the stop-signal task
(one go trial, one no-go trial and one stop trial). For a stop trial, a
square around the letter appears after variable time to indicate to inhibit
response

Z. These trials resemble “go” and “no-go” trials of a go/no-
go task, but additionally on some trials a go signal was
presented but then after a delay, a stop signal (square around
the letter) appeared on the screen. The stimuli remained
on screen for 500 m/s. The task consisted of 64 “go”
trials, 16 “no-go” trials, and 80 “stop” trials of 3 different
delays (individually fit for each subject, based on response
time distributions). There were 160 trials per run, and each
subject completed three runs of the stop-signal task, so
there were 480 trials total. The model fitting focuses on the
first run, whereas the validation study uses all three runs.
Figure 5 shows example stimuli making up each trial. The
jitter in each trial was designed in such a way that the trial
duration ranged from 3 to 7 s, with an increment of 1 s. The
length of trial duration was optimized by optseq (https://
surfer.nmr.mgh.harvard.edu/optseq/). The button response
was collected using an MRI compatible fiber optical device
(fOPR; https://www.curdes.com/). The TTL output from the
fOPRP was fed into the RTBox (Li et al. 2010) to measure
response time with high accuracy.

Behavioral Results

Although our analysis does not incorporate a subject’s
behavior (e.g., response times, accuracy), it is still useful
to look at the behavioral results to better understand the
data. Figure 6 summarizes some behavioral aspects that
are important in the stop-signal task. The left panel of the
figure shows a histogram of the response times shown in
seconds. The response times are from all conditions and

http://psychtoolbox.org/
https://surfer.nmr.mgh.harvard.edu/optseq/
https://surfer.nmr.mgh.harvard.edu/optseq/
https://www.curdes.com/
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Fig. 6 Behavioral results. Figure showing response time distribu-
tion from the task (left) and the relationship between stop-signal
delay and the probability a response was successfully inhibited
(right). The histogram on the left shows the response time distribu-
tion in seconds across subjects and conditions. The scatter plot on
the right shows the relationship between stop-signal delay (x-axis)

and p(inhibit |signal), or the probability a response was success-
fully inhibited (y-axis). The squares indicate an individual subjects’s
p(inhibit |signal) for a given stop-signal delay, where every subject
has a distinct color. The black “+” signs refer to the group mean
p(inhibit |signal) at that given stop-signal delay

all subjects regardless of errors. The median response time
for errors where a button was pressed during a no-go/stop
trial is 0.44 s, and the median response time for correct
go trials where a button was correctly pressed is 0.46 s.
The right panel of Fig. 6 shows the relationship between
the length of a stop-signal delay (SSD; in seconds) and
the probability that the signal was successfully inhibited,
denoted p(inhibit |signal). The black “+” signs refer to
the group mean p(inhibit |signal) at that given SSD. The
squares indicate an individual subjects’ p(inhibit |signal)

for a given SSD, where every subject has a distinct color.
Each subject had three different SSD conditions and thus
three points on the plot. For the majority of subjects,
as SSD increases, p(inhibit |signal) decreases; in other
words, the longer the delay, the less likely the subject
was to successfully inhibit the response. It is important to
emphasize that while we show accuracy in these figures,
incorrect trials were modeled the same way as correct trials
in our analyses—we neither treated errors differently nor
removed error trials.

MRI Data Acquisition

MRI recording was performed using a 12-channel head
coil in a Siemens 3T Trio Magnetic Resonance Imaging
System with TIM, housed in the Center for Cognitive and
Behavioral Brain Imaging at The Ohio State University.
BOLD functional activations were measured with a T2*-
weighted EPI sequence (repetition time = 2000 m/s,

echo time = 28 m/s, flip angle = 72◦, field of view
= 222×222 mm, in-plane resolution = 74×74 pixels or
3×3 mm, and 38 axial slices with 3-mm thickness to cover
the entire cerebral cortex and most of the cerebellum).
In addition, the anatomical structure of the brain was
acquired with the three-dimensional MPRAGE sequence
(1×1×1 mm3 resolution, inversion time = 950 m/s,
repetition time = 1950 m/s, echo time = 4.44 m/s, flip angle
= 12◦, matrix size = 256×224, 176 sagittal slices per slab;
scan time 7.5 min) for each participant.

Image Preprocessing and Analysis

The fMRI preprocessing was carried out using FEAT (FMRI
Expert Analysis Tool) in FSL (FMRIB software library,
version 5.0.8; Smith et al. 2004). The first six volumes
were discarded to allow for T1 equilibrium. The remaining
images were then realigned to correct for head motion.
Data were spatially smoothed using a 6-mm full-width-
half maximum Gaussian kernel. The data were filtered
in the temporal domain using a nonlinear high-pass filter
with a 90-s cutoff. A two-step registration procedure was
used whereby EPI images were first registered to the
MPRAGE structural image, and then into the standard
(MNI) space, using affine transformations. Registration
from the MPRAGE structural image to the standard space
was further refined using FNIRT nonlinear registration.

After the neural data was preprocessed, the time series
from 24 regions of interest (ROIs) were extracted. The
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selection of ROIs was based on related literature (Dunovan
et al. 2015). Table 2 shows information about ROIs and
their corresponding indices, used in later figures. The MNI
coordinates in the table defined the center of each ROI, and
the radius of a sphere ROI was estimated from the number
of voxels provided in Dunovan et al. (2015).

As stated previously, the ideal model should be able to fit
data well, and be generalizable. To address both concerns,
we present our modeling analyses in two stages. First, we
fit the five models to one run of data from the stop-signal
task, assess the models’ ability to fit data from the first run,
and examine how the model structure constrains parameter
estimates, in particular the neural activation parameter β.
Second, we use the fitted models to generate predictions for
two additional runs of the same task, using the parameters
estimated from the first run, and the experimental design
variables from the remaining two runs. Together, the results
from these two analyses should help to identify models that
not only fit data well, but are also not too complex relative
to the data.

Run 1Model Fitting

The first step of our analysis is to see how well the
five models can fit the data. The models increase in

complexity, and so we might expect from the outset that
the more complex model will provide the best fits to data.
However, this is not always the case, depending on how
the model is structured, and which aspects of the data
inform the parameter estimation procedure. In this section,
we fit all five models to the first run of the stop-signal
experiment (runs 2 and 3 will be used in the validation
analysis in the following section). We compare the neural
predictions to the actual observed data, the single-stimulus
β estimates, and, for models 2 through 5, the constraint
on the hyperparameters. Within this analysis, an “ideal”
model would have neural predictions that closely resemble
the observed data and provide constrained and reasonable
estimates for β.

Methods

Fitting Details

We used JAGS to fit all five models. All of the models
had three chains, but took on one of two combinations
of adaptation, burn-in, and sampling iterations. The first,
longer procedure, was used for just model 1. In this
procedure, model initialization ran for 2000 adaptations.
After initialization, 4000 samples were discarded as burn-in.
Then, the posterior sampling ran for 6000 iterations. Thus,

Table 2 Regions of interest.
The table shows the number
index, name of each region of
interest, MNI coordinates, and
the number of voxels. MNI:
Montreal Neurological Institute

Number Name MNI [x y z] nVox (< 40)

1. Callosum [3 −23 29] 208

2. PCC (posterior cingulate cortex) [−2 −56 22] 957

3. preSMA (presupplementary motor area) [4 21 47] 1952

4. Left angular gyrus [−44 −72 30] 328

5. Left fusiform gyrus [−43 −60 −17] 84

6. Left IFG-1 (inferior frontal gyrus 1) [−37 18 −4] 912

7. Left IFG-2 (inferior frontal gyrus 2) [−44 9 29] 426
8. Left IPL (left inferior parietal lobe) [−34 −52 46] 459
9. Left ITG (left inferior temporal gyrus) [−56 −10 −20] 44
10. Left insula [−39 −3 7] 41
11. Left MFG (left middle frontal gyrus) [−3 50 −9] 477
12. Left putamen [−27 −13 7] 48
13. Left SFG (left superior frontal gyrus) [−9 57 35] 128
14. Left thalamus [−6 −16 −2] 72
15. Left ventral striatum [−1 16 −9] 100
16. Right caudate [13 10 6] 55
17. Right IFG (right inferior frontal gyrus) [43 20 12] 2830

18. Right IPL (right inferior parietal lobe) [48 −44 43] 1400
19. Right MFG (right middle frontal gyrus) [38 48 −10] 83
20. Right MTG (right middle temporal gyrus) [49 −66 26] 60
21. Right precuneus [12 −67 42] 83
22. Right putamen [31 −11 4] 44
23. Right SFG (right superior frontal gyrus) [21 49 31] 45
24. Right thalamus [9 −16 3] 154
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with three chains, there was a total of 18,000 samples for
each parameter. Because of computational complications,
the sampling lengths were shortened for models 2 through
5. In this procedure, model initialization ran for 1000
adaptations, followed by a burn-in period of 2000 iterations.
The posterior sampling then ran for 3000 iterations. With
the three chains again, there were a total of 9000 samples
for each parameter. For all models, the chains were plotted
and visually checked for convergence.

Results

To assess the models’ ability to fit data, we provide three
types of analyses. First, we examine the models’ predictions
of neural responses across time. Because all models were
fitted to the same time series, we can generate predictions
from the model and assess how similar they are to the data to
which they were applied. Second, we compare estimates of
the trial-level activation parameter β across the five models.

Fig. 7 Time series fits. Model predictions of neural activity of the left
ventral striatum. Rows correspond to subjects and columns correspond
to model. The black dots in each subplot are the real, observed BOLD

response. The solid red line is the mean of the posterior predicted neu-
ral data across the time series and the dotted red lines represent the
95% posterior predictive interval
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Unlike in the first comparison, β is latent and thus cannot be
examined in relation to any true metric. Third, we compare
estimates of the condition-level activation parameter δ.
Because δ is the hyperparameter of β, it is only present in
the models with a hierarchical component (i.e., only models
2–5 can be compared). We conclude by showing how these
δ estimates can be used to understand neural activation in
the stop-signal task.

Time Series Predictions

All five of the models predicted neural activation at every
point of the time series, which allowed us to compare the
quality of their fits to data. Figure 7 provides an example of
the first three models in predicting the neural activity of the
left ventral striatum (ROI 15) across the time series. Each
column corresponds to a model and each row corresponds to
a subject. The first three subjects were chosen for illustrative
purposes, but as we show next, they are representative of
the general trends with respect to mean and variability
across subjects. The black dots in each subplot represent
the observed BOLD responses from the data, whereas the
solid red line is the mean predicted neural data from the
model, and the dotted red lines represent the 95% posterior
predictive interval. The neural predictions from models 4
and 5 did not visually differ from the predictions from
model 3 and are not included in this figure.

Visually comparing across panels, Fig. 7 shows that
model 1 provides predictions that more closely match the
observed data. These results are exemplified for subject 3,

whose variability is largest among the three representative
subjects. Although Fig. 7 provides a close look at how
model predictions compare to the true time series, it shows
only a few subjects for only one out of many ROIs. To show
that the general conclusions from Fig. 7 apply to the entirety
of subjects and ROIs, we correlated each model’s predicted
time series with the observed time series for each subject
and ROI from the first run of the task. Figure 8 shows
these correlations. Each panel corresponds to a different
model, where the correlation values between predicted and
observed time series data are organized by ROI (rows) and
subject (columns). The colors indicate the value of the
correlation, where cooler (blue-green) colors indicate low
correlations and hotter (red-orange) colors indicate higher
correlations. Across panels, there is substantial variability in
the correlation values, where the lowest correlation across
models is 0.11 (in model 2), and the highest correlation is
0.97 (in model 1). Overall, model 1 provided predictions
that were the most highly correlated with the observed data.
Models 4 and 5 were the next most highly correlated, closely
followed by model 3. Model 2 had the lowest correlations
out of the five models. Additionally, in all five models,
subject 3 showed the most variability and lowest correlation
values overall.

As seen in Fig. 7, and more generally in Fig. 8, model
1 makes predictions for the neural time series that clearly
fluctuate in ways that nearly match the data, whereas models
2 and 3 make predictions that are relatively stationary
across time. This difference across model predictions can
be explained by considering the model structure. Model 1

Fig. 8 Time series correlations. Each panel shows the correlations
between a given model’s predictions for the neural time series and the
observed time series data for each ROI (rows) and subject (columns)
combination. Colors indicate the correlation between the observed

time series data for each subject and ROI combination (i.e., across
time). Cooler colors (i.e., blue/green) indicate lower correlations,
whereas warmer colors (i.e., orange/red) indicate higher correlations
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Fig. 9 Constraint on beta estimates. Representative plots of the con-
straint introduced when constructing a hierarchical component into a
model. These single-trial estimates are all for ROI 5, the left fusiform

gyrus. Each row corresponds to a different subject and each column
corresponds to a model. The red box shows the interquartile range and
the dotted lines show the range of the posterior

considers each neural time series as a separate entity, where
the estimates for each β parameter are purely influenced
by the neural time series shown in Fig. 7. Having only one
source of influence allows the estimates to be very sensitive
to the particularities of each time series. By contrast, the β

parameters for models 2 and 3 are influenced by multiple
time series, either across conditions (i.e., model 2), or both
condition and subject (i.e., model 3). In this way, models 2
and 3 are more constrained, and this constraint influences
the quality of the fits to data. For some aspects of the
data, such as predicting the neural time series, this added
constraint manifests in negative ways (e.g., as shown by the
quality of the fits). However, as the results in this article will
make clear, these constraints can manifest in positive ways,
too.

Constraint on Beta Estimates

While incorporating the details of the experiment into
the model structure did not improve the quality of the
predictions for the neural time series, it had a profound
effect on the quality of the single-trial beta estimates β.
Figure 9 compares estimates of β from the first three
models, using the left fusiform gyrus as an example. Similar
to Fig. 7, the rows correspond to the first three subjects and
the columns correspond to the first three models. Unlike in
Fig. 7, however, there is no evaluative metric for comparing

the accuracy of the estimated β values, as the parameter is
latent, or unobserved. The dotted lines refer to the range
of the posterior estimates and the red boxes denote the
interquartile range.

Figure 9 shows the effects of shrinkage on the estimates
of the parameter β, especially when going from a
nonhierarchical model (model 1) to a hierarchical model
(model 2). For example, the differences in the variance of
the estimated posteriors are so extreme that they distort the
y-axis (which changes across columns for visual clarity).
However, the improvement in the reduction of parameter
uncertainty has its limitations, as the estimates for models 4
and 5 did not drastically improve upon the estimates shown
for model 3, so they are not pictured. Importantly, models
4 and 5 provide more information regarding correlations
between ROIs. Additionally, models 4 and 5 provide more
constraint on the posteriors of other parameters, such as the
β hyperparameters (δ), which we now discuss.

Constraint on Delta Estimates

Another parameter of interest is the hyper mean for ROI
activation δ. As additional details of the experiment are
incorporated into the model, we should expect the estimates
for δ to improve because the amount of data it is directly
affected by continue to increase. Figure 10 shows the joint
distribution of δGo and δStop for the left fusiform gyrus
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Fig. 10 Constraint on β

hyperparameters in SS. The joint
distribution of δGo and δStop for
the left fusiform gyrus for model
2 (left) and model 5 (right).
Each red point corresponds to a
different subject. The
x-coordinate of the point is the
mean of the δ posterior for the
go condition and the
y-coordinate is the mean of the δ

posterior for the stop condition.
The error bars represent two
standard deviations from either
the δGo mean if oriented
horizontally or the δStop mean if
oriented vertically

in model 2 (left panel) and model 5 (right panel). In this
figure, each red point corresponds to a different subject.
The x-coordinate of the point is the mean of the posterior
estimate for δ in the go condition and the y-coordinate
is the mean of the posterior estimate for δ in the stop
condition. The error bars represent two standard deviations
away from either the δGo mean if oriented horizontally, or
the δStop mean if oriented vertically. By plotting the mean
activation of δ by trial type, we are better able to visually
assess which subjects had activation that was differentially

activated across the two conditions. For example, if a point
appears in the bottom right triangular area, it suggests that
the mean activation in go trials is higher than during stop
trials.

In Model 5, all eleven subjects show more activation in
the go condition than in the stop condition. In model 2,
however, only nine subjects show this pattern of activation.
Model 2 also inferred that subject 3 exhibited greater
activation for δStop than δGo, with a relatively larger
difference (or distance from the line of indifference) than

Fig. 11 Delta results for key ROIs. Figure showing the condition-level
neural activation (δ) for four regions of interest (left) and the loca-
tions of those regions of interest in the brain (right). On the left, each
ROI has a color-coordinated column corresponding to condition where
green is go, blue is no-go, and red is stop. The alpha-blended rectangles

denote the mean of the δ distribution for a single subject, and the
crosses denote the group mean. The right shows masks of the four key
ROIs: the preSMA (presupplementary motor area; [4, 21, 47]), left
fusiform ([− 43, − 60, − 17]), left ventral striatum ([− 1 ,16, − 7]),
and right IFC (right inferior frontal cortex; [43, 20, 12])
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observed in other subjects. However, in the model 5 subplot,
subject 3 shows the opposite pattern, with more activation
in δGo than in δStop, and is closer to the group mean.
Furthermore, in model 5, the posteriors for the δ parameters
for each subject are more constrained than the posteriors
from fitting model 2.

Delta and Response Inhibition

The additional constraint of the hierarchy on δ has important
implications in understanding the task that is being
modeled, because we are often interested in condition-
level differences. For example, in the stop-signal task,
researchers are interested in understanding the differences
between go and stop trials. Because δ is a conditional-
level hierarchy built on single-stimulus β estimates, we can
use δ estimates to compare activation levels in ROIs and
subjects in different conditions. Further constraining δ with
other hierarchical levels, such as in models 3, 4, and 5, help
us to make more informed conclusions on condition-level
differences.

Figure 11 shows how δ (estimated, in this case, using
model 3) can be used to understand conditional differences
in four key ROIs: presupplementary motor area (preSMA;
ROI 3), left fusiform gyrus (ROI 5), left ventral striatum
(ROI 15), and right inferior frontal gyrus (rIFG; ROI 17).
The left panel of Fig. 11 shows the mean of δ for go
stimuli (denoted by green), no-go stimuli (denoted by blue),
and stop-signal stimuli (denoted by red). The rectangles
show the mean for each subject, and the cross shows the
mean for the group. For the preSMA and left fusiform,
there is less activation in the stop condition than in either
the go or no-go conditions. Additionally, the subject-to-
subject variability within an ROI differs. For example,
the variability in the left fusiform is larger, whereas the
variability is smallest for the right IFG. The right panel
of Fig. 11 visualizes the locations of each ROI in the
brain. ROI 5 (left fusiform gyrus) and ROI 15 (left ventral
striatum) were chosen because they were used earlier in this
paper as illustrative examples to show how the subject-level
hierarchy constrains neural predictions and single-stimulus
β estimates. ROI 3 (presupplementary motor area) and ROI
17 (right inferior frontal cortex) were included because of
their relevance to the go/no-go and stop-signal tasks in the
cognitive neuroscience literature (Simmonds et al. 2008;
Aron et al. 2014).

Validation Analysis on Runs 2 and 3

The model-fit analysis in the last section evaluated how well
a particular model fit data from one run of the experiment.
However, it is also important that our models generally

characterize how the stimuli interact with mental operations.
To evaluate which models generalize to new data well, we
can use out-of-sample prediction on the other runs of the
stop-signal task. The validation analysis could help explain
why model 1 closely captured the trend of the neural data,
yet did not provide much constraint on the estimates of
the single-stimulus activation parameters β. In this section,
we use out-of-sample prediction to evaluate each model’s
ability to generalize to new data.

Methods

As each subject in our task provided data from three
different experimental runs, we used the estimated posterior
distributions from the first run (i.e., the previous section)
to generate predictions from the second and third runs.
Hence, the model predictions for the neural time series (i.e.,
the BOLD response) for both runs are not only based on
the parameter estimates from the first run, but the design
matrices X from runs 2 and 3. If a model variant can
generate out-of-sample predictions that more closely match
the data from runs 2 and 3 in terms of both central tendency
and variance, it can be said that the variant generalizes well.

Generating Out-of-sample Predictions

As we used Bayesian statistics to estimate the model param-
eters from run 1, we need to generalize the information
contained within the estimated posterior distributions to
runs 2 and 3. To do this, we must construct a posterior pre-
dictive distribution (PPD), which quantifies the probability
of observing new (i.e., out of sample) data y∗ based on the
posterior distributions of model parameters θ estimated on
data y. Mathematically, the PPD is expressed as

f (y∗|y) =
∫

f (y∗|θ)π(θ |y)dθ . (8)

The term π(θ |y) denotes the posterior distribution—the
estimates derived from fitting the model to run 1—and
the term f (y∗|θ) denotes a prediction from the model for
new data y∗, using the parameters θ and the design matrix
corresponding to each run. By integrating over all possible
values of θ in the parameter space, we can incorporate the
relative probabilities of θ in our predictions of y∗. In other
words, values of θ that are more likely (i.e., values of θ with
more posterior mass) will place higher predictive mass in
the data space corresponding to a prediction from the model
at the location of θ .

The key parameter used to generate the neural time
series in our model are the stimulus-wise neural activation
parameters βi . To generate predictions about βi , we must
refer to the hyper structure that governs the shape of each
βi across trials. For models 2–5, the hyper structure is
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defined by the condition-level hyper mean δj,k,r and the
hyper standard deviation σβ . Using the design matrix for
runs 2 and 3, we can generate samples from the distribution
of predicted single-stimulus βis by sampling

β*
i,j,k,r ∼ N(δj,k,r , σ

β).

Here, the design matrix for runs 2 and 3 provide the index
of which δj,k,r to use as the hyper mean, namely the j th
subject, kth condition, and rth ROI.

Unlike the other models, model 1 does not have a
condition-level hierarchy, and so we have no guide in
selecting single-stimulus βs when generating out-of-sample
predictions. As a remedy, we “pooled” all of the estimated
βis from run 1, and selected one at random when generating
each predictive distribution. Because the βis are pooled
and the experimental design is not used when generating
predictions for model 1, its predictions should remain fixed
regardless of stimulus type, subject, and ROI.

Once single-stimulus β predictions were sampled, they
were convolved with a canonical HRF to generate a mean
neural time series (i.e., Xβ in Eq. 5) to match the BOLD
response from the experiment. Because the residual noise
term σ in Eq. 5 was also estimated when fitting the
models to data, we could calculate the probability density
of observing the withheld data by evaluating the density of
the PPD at the location of each data point at each point
in time analytically. For every sampled posterior value, we
computed the density of the withheld data, and repeated this
process for every posterior sample acquired after burn-in:
18,000 samples per time point in model 1, and 9000 samples
per time point in models 2–5.

Results

Figure 12 shows the summary of log-transformed posterior
predictive densities (log PPDs) for each subject. Empty and
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Fig. 12 Validation analyses results. A scatterplot of log-transformed
posterior predictive densities (log PPDs) computed for the data of the
second (red) and third runs (blue) from each of the 11 participants.
Empty squares represent each ROI, while filled squares represent the

mean of log posterior predictive density. For each subject and exper-
imental run, ROIs with log PPDs of −∞ due to limited numerical
precision are separately plotted below the black dotted line and were
excluded when computing the mean of log density
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Fig. 13 Comparison of model predictions. 95% predictive intervals are shown for the corpus callosum of subject 9 for three different models:
model 1 (red), model 2 (green), and model 5 (blue). A black solid line represents the actual (withheld) BOLD response

filled points represent the log PPD from each ROI and
the average log PPD, respectively. Red circles and blue
squares refer to the result from the second and third runs,
respectively. In a few cases, some models were incapable
of predicting any density at the location of the withheld
data (e.g., subjects 3 and 5 for model 2). In these cases,
data points with “invalid” predictions were ignored and are
plotted separately under the black dotted line.

In general, predictions from model 1 show the lowest
log PPDs compared to predictions from models 2–5. This is
because the prediction of model 1 is too broadly distributed,
which results in relatively low log PPD. Figure 13 illustrates
an example from the data of the callosum from the ninth
participant. The 95% predictive interval from model 1 (red
dotted lines) covers a broad range of BOLD responses
and practically provides no information about what we can
expect based on the model fit from the first run. However,
the predictions from model 5 (blue dotted lines) are better
constrained and therefore offer informative predictions
about the neural signal from the second run.

Across almost every subject, it is difficult to differentiate
the prediction performance between models 3, 4, and 5
by the log PPD. Model 2 seems to suffer from a similar
problem as model 1, where its predictions are often too
under constrained to make consistently accurate predictions
for the entire time series (e.g., see the green lines in
Fig. 13). Together, these results suggest that models 3–5
have more flexibility when explaining unobserved data by
embedding individual- and ROI-level covariance structure.

Unfortunately, it does not appear as though our validation
analysis provides any justification for the additional ROI-
based constraint used in models 4 and 5. This suggests
that while ROIs are clearly correlated within the task1, the
information does not seem to provide additional constraints
that are generalizable to new data.

Discussion

We used hierarchical Bayesian modeling to improve the
constraint and generalizability of time series models of
fMRI data collected in a stop-signal task. First, we found
evidence that hierarchical Bayesian modeling improves
single-stimulus β estimates by reducing the variability of
their posterior distributions. Increasing the levels of the
hierarchy improved estimation of these parameters, both
at the hyper parameter level and the single-stimulus level.
However, we also found some contradictory results from
model 1. Of all the models, model 1 best fit the observed
neural time series data, but had the least constrained
single-stimulus β estimates by far. This is contradictory,
because the β estimates inform the neural predictions, so
we hypothesized that if the neural predictions are similar
to the real data (i.e., they are accurate), then β estimates

1We began our analysis by first examining pairwise functional
correlations of each time series across all ROIs. These analyses
revealed a potential need for ROI-based constraints, motivating the
development of models 4 and 5.
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would be constrained appropriately. These two aspects of
the parameter estimates for model 1 signify the hallmark
of overfitting: the parameters are weakly constrained by the
data, and so the model is too flexible.

To elucidate this property of the model, we performed
a validation analysis. We took the parameter estimates
from the first set of data (i.e., the first run) and used
them to generate predictions for two new time series of
the same task. Here, the models were only guided by the
information in the design matrix, i.e., the timing of the
stimulus presentation and the type of stimulus presented
(e.g., a go or stop signal). The results of the validation
analysis clarify the apparent contradiction found in the first
set of analyses. Model 1 focused on providing the best fit
to the neural data as no formal constraint was imposed to
single-stimulus βs. However, in the validation analyses, it
allowed an overly broad range of predictions for the new
time series data, making its predictions less accurate overall.
On the contrary, model 2 did not allow any variability in
the single-stimulus β estimates for different individuals or
ROIs, solely focusing on experimental conditions. As a
consequence, it was also unable to generalize well, although
its performance in the validation analysis was consistently
better than that of model 1.

This pattern of results can be viewed as symptomatic
of overfitting. Model 1 overfits the neural data (time-
series predictions) because the single-stimulus βs are freely
estimated for every stimulus presentation. This gives the
model practically unlimited ability to match the precise
shape of the neural time series. Meanwhile, model 2
tends to underfit the neural data because the condition-
level hierarchy, collapsing across individual or ROI-level
differences, does not allow for flexible predictions. While
both of these models fit the time series data well, they
were unable to generalize to new data well because they
did not learn features of the neural data that were consistent
from one scanning run to the next. By contrast, models
3–5 imposed several different constraints that made their
particular fit to neural data appear visually worse (compared
to models 1 and 2), yet they were able to generalize
well because of the neural features they learned in the
fitting process. To summarize, by applying the right type
of constraints (condition, subject, and ROI), better models
were developed that both provided adequate fits to data and
generalized well to new data.

Establishing Brain-Behavior Relations

While our analyses provide insight into neural dynamics,
they do not connect patterns of brain activation to behavioral

responses. To do this, one would have to sort estimates for
the neural activation parameter β not only by the type of
condition (e.g., go trials), but also by the type of behavior
that was observed. For example, with the stop trials, one
could manually divide the estimates for β into trials in
which the subject correctly inhibited their response as
instructed, and into another group where the subject failed
to do so. The distribution of βs across these two groups
could then reveal how the pattern of ROI activations was
different across the two response contingencies, and one
could subsequently speculate about the importance of each
ROI in successfully implementing executive control.

As mentioned in the introduction, there are several
computational models of executive control, designed
specifically for the stop-signal task (Logan and Cowan
1984; Logan et al. 2014; Matzke et al. 2013). These models
make strong commitments to particular theories about
control by instantiating theoretical assumptions within a
complete computational model. The advantage of using
a computational model is that the patterns of behavioral
data—both choice and response time—can be understood
through theoretically motivated mechanisms in the model.
As many authors have argued, including both choice and
response time can provide stringent tests of the suitability
of various mechanisms of such models (Ratcliff 1978; Luce
1986; Ratcliff and Rouder 1998; Ratcliff et al. 1999; Van
Zandt 2000; Molloy et al. in press). Furthermore, new tech-
niques have been established for linking the mechanisms
in these computational models to patterns of neural data,
providing even greater constraints on the model (Turner
et al. 2013, 2015, 2016, 2017, 2018). An important next
step will be to investigate the role that neural data play in
constraining computational models of the stop-signal task.

Limitations

Although the analyses presented here are suitable for
understanding complex patterns of brain activation, they
are not without their limitations. In our view, there are
four limitations that merit further consideration: handling
autocorrelation of the BOLD response, implementing
“boxcar” convolution, using JAGS as a sampler, and
performing voxel-based analyses. Below, we provide a
discussion of these limitations, as well as some strategies
for improving upon the models we have presented here.

Autocorrelation of BOLD Response

One potentially problematic assumption of the five models
we have discussed here is the assumption of independent,



208 Comput Brain Behav (2018) 1:184–213

identically distributed Gaussian noise surrounding the time
course of each time series. We made this assumption as it is
conventional in both frequentist and Bayesian applications
of the general linear model (GLM) to neural time series
data (Friston et al. 2002; Penny and Friston 2004). However,
BOLD responses measured in fMRI experiments are known
to have temporal autocorrelation due to task-irrelevant
factors such as thermal noises from the scanner, and
physiological noises from participants (Lindquist 2008).
Ignoring the temporal autocorrelation has been shown
to cause higher false-positive rates (Zarahn et al. 1997;
Purdon and Weisskoff 1998) and overestimation of power
(Mumford and Nichols 2008).

Fortunately, the autocorrelation of BOLD responses can
be accommodated by incorporating autoregressive error
models into the typical GLM structure (Purdon et al. 2001;
Lindquist 2008; Leonski et al. 2008). For example, a simple
autoregressive error model can be constructed such that
measurement noise at a given time point t is based on
(i.e., correlated with) measurement noise at time t − p.
These models are denoted AR(p), where p denotes the time
dependence in the noise process. More advanced models
use a combination of autoregressive structures and moving
averages to allow for known physical properties of fMRI
scanners, such as the so-called “scanner drift,” where the
average BOLD response gradually changes throughout the
duration of the experiment (Poldrack et al. 2011).

JAGS as a Sampler

One of the major goals of this paper is to present hierarchical
Bayesian modeling on time series data in an accessible way.
To achieve this, we used JAGS to perform the difficult
process of collecting posterior samples. While JAGS is user-
friendly and widely used, it is not without limitations. One
of the major limitations is that JAGS uses Gibbs sampling
which can sometimes produce large autocorrelations. JAGS
has built-in functions to plot or obtain a numerical estimate
of autocorrelation, as a check on the quality of the samples.
In cases where autocorrelation is too large, we recommend
using advanced techniques such as differential evolution
MCMC (DE-MCMC; ter Braak 2006; Turner et al. 2013), as
it is especially powerful in reducing autocorrelation among
posterior samples.

Another limitation in the results presented here was the
computational burden for the more complicated models.
Because of the size of the data and the variables being
estimated, we experienced limitations of memory on our
system, especially when we saved the mean activation and
posterior predictive samples for the raw BOLD responses.
Here, custom-built samplers have another advantage over

programs like JAGS because the user can define when
samples are stored, such as allocating them to memory or
writing them out to a file during the sampling procedure.
Finally, while JAGS is not directly parallelizable, a custom-
build function can dramatically increase the efficiency of
collecting posterior samples such as with the R package
snow or snowfall.

Voxel-based Versus ROI-based

A final limitation of the current analyses presented here is
the focus on ROIs rather than individual voxels. We decided
to focus on ROI-based analyses out of practical concerns.
While it is not impossible to perform voxel-based analyses,
it dramatically increases the computational burden. To
implement a voxel-based analysis, one simply needs to
replace the time series from a given ROI with the time series
data from each individual voxel. Unfortunately, JAGS has
memory limitations that make it difficult to store all of the
results from extensive estimation procedures. One approach
may be to model each voxel independently, although we
discourage this approach as it neglects important spatial
autocorrelations that exist between nearby voxels. An ideal
solution is to apply priors to the parameters governing
the time series of each voxel, where the priors reflect
information about the distance between voxels (Bowman
et al. 2008). To circumvent the memory capacity limitations
of JAGS, one could program up the sampler as we suggested
above. Although this approach is more difficult to program,
it allows the user to print out the samples from each
iteration, and so memory would only need to be allocated to
store the current position (i.e., within one iteration) of each
chain.

Conclusions

This article has illustrated the importance of including
appropriate constraints on models of BOLD time series
data. We found that applying no constraints allowed models
to be too flexible where they fit data well, but performed
poorly in validation analyses. On the other hand, imposing
constraints on the bases of only condition-level variables
masked important features of the data that prohibited the
model’s ability to capture data well and perform well
in validation analyses. The best constraints for our data
imposed structure that modulated parameters across both
condition and subject variables. While it is certainly true
that BOLD measurements from fMRI experiments are often
noisy, the results presented here reveal that the data can be
purified by applying appropriately constrained hierarchical
(Bayesian) models.



Comput Brain Behav (2018) 1:184–213 209

Appendix A: R Code for the canonical
hemodynamic response function

Appendix B: R Code for the boxcar function
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Appendix C: R Code for boxcar convolution
using discrete approximation
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Appendix D: JAGS Code for Model 3
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