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A B S T R A C T

People often learn categories through interaction with knowledgeable others who may use verbal expla-
nations, visual exemplars, or both, to share their knowledge. Verbal and nonverbal means of pedagogical
communication are commonly used in conjunction, but their respective roles are not fully understood. In
this work, we studied how well these modes of communication work with different category structures. We
conducted two experiments to investigate the effect of perceptual confusability and stimulus dimensionality on
the effectiveness of verbal, exemplar-based, and mixed communication. One group of participants – teachers –
learned a categorization rule and prepared learning materials for the students. Students studied the materials
prepared for them and then demonstrated their knowledge on test stimuli. All communication modes were
generally successful, but not equivalent, with mixed communication consistently showing best results. When
teachers were free to generate as many visual exemplars or words as they wish, verbal and exemplar-based
communication showed similar performance, although the verbal channel was slightly less reliable in situations
requiring high perceptual precision. At the same time, verbal communication was better suited to handling
high-dimensional stimuli when communication volume was restricted. We believe that our work serves as an
important step towards studying language as a means for pedagogical category leaning.
1. Introduction

One of the most striking features of the human mind is our ability
to share knowledge with each other. Learning from direct experience
takes time, effort, and might even be dangerous; learning through
communication is safer and more efficient, which provides numerous
benefits for humans as individuals and as a species (Bandura, 1977;
Tomasello, 1999; Vygotsky, 1978). From personal experience, we know
that knowledge communication can naturally be mediated through dif-
ferent (verbal and nonverbal) channels. For example, imagine a family
forest trip with parents teaching their children about poisonous and
edible mushrooms. It is easy to envision a parent instructing through
verbal explanations (e.g., not to collect pale, thin-legged mushrooms
with a flat cap since they are usually poisonous), thus providing a
definition of a concept that can be later reused. Another way to teach
the same concept is to give labeled examples: one may sort, together
with the child, through the mushrooms that the child collected, keeping
the good ones, and throwing away the bad ones. The key difference is
that the former involves a verbal explanation, while the latter relies
mostly on nonverbal (exemplar-based) pedagogical communication.

Similarly to the example above, in this paper, we focus on knowl-
edge communication in a category learning setting. Our ability to deter-
mine category membership based on past experience is a fundamental
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skill, involved in many aspects of human cognitive organization, and
used ubiquitously in a wide range of situations (see Ashby & Maddox,
2005; Ashby, Paul, & Maddox, 2011; Dubova & Goldstone, 2021; Seger
& Miller, 2010). At the same time, category learning is extremely con-
venient methodologically: one gets a clear way to define what exactly
is being learned, fully control the learning procedure, easily measure
learning outcomes, and, finally, easily instantiate the process into a
formal mathematical model. These features made category learning one
of the most common approaches for studying knowledge acquisition.
They also make category learning perfectly suitable for investigating
knowledge communication, although researchers have only recently
begun to explore this direction (e.g., Aodha, Su, Chen, Perona, & Yue,
2018; Chopra, Tessler, & Goodman, 2019; Moskvichev, Tikhonov, &
Steyvers, 2019). A notable exception is a pioneering study by Avra-
hami et al. (1997) who introduced a teaching-by-examples paradigm
and demonstrated that teacher-generated learning sequences result in
higher students’ performance than equivalent sets of stimuli presented
in random order. This paradigm was further extended by Shafto, Good-
man, and Griffiths (2014) who built a Bayesian computational model
providing insight into the methods of formally describing pedagogical
interaction in a category learning setting (discussed in more detail
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later). They, however, focused solely on communication via selecting
category examples and ignored language-based communication.

In this work, we investigate how people communicate perceptual
categories using different communication channels (verbal, exemplar-
based, or mixed). We have conducted two experiments, in which we
varied perceptual confusability and stimulus dimensionality to capture
fundamental differences between the verbal and exemplar channels of
communication. In Experiment 1, we investigated how varying cate-
gory structures affect communication efficiency of verbal, nonverbal
(exemplar-based), and mixed teaching formats. Experiment 2 comple-
mented our previous findings by limiting the number of examples
and words that teachers were able to use to communicate categories.
These constraints mitigated the variability in teachers’ communication
and allowed us to take a more nuanced look at the roles of different
channels of communication.

1.1. Category learning in a pedagogical setting

Pedagogical learning, i.e., learning from someone who intention-
ally chooses teaching materials, is qualitatively different from learn-
ing categories by observing random data samples, and its modeling
presents unique challenges. A solution to this problem was proposed
by Shafto et al. (2014). Following the rational analysis framework (An-
derson, 1990, 1991), the authors proposed and empirically validated
a computational model for the process of exemplar-based pedagogical
reasoning. The model is built upon the idea of mutual rationality
assumption: rational teachers choose materials that would maximize
a rational learners’ ability to infer the categorization rule and achieve
good performance. Rational learners, in turn, base their inferences by
assuming that teachers are behaving rationally and are being helpful.
Earlier, Avrahami et al. (1997) illustrated this ‘‘mutual rationality’’ idea
in a series of experiments using a ‘‘teaching-by-examples’’ paradigm.
The study revealed consistent and effective patterns of pedagogical
communication employed when teachers use a sequence of visual
examples to communicate their category knowledge. Similar findings
have been obtained in children, where it has been shown that their
decisions on what to teach are made in a way that maximizes learn-
ers’ rewards (Bridgers, Jara-Ettinger, & Gweon, 2020). Overall, formal
theoretical frameworks clearly demonstrate the uniqueness of the ped-
agogical setting in how it may affect category learning. And yet, even
though much of our communication (including category communica-
tion) is pedagogical in nature and involves both verbal and exemplar-
based modes of communication, the differences between these ways of
teaching have received little attention (but see Sumers, Ho, Hawkins,
and Griffiths (2023), for a recent example outside of category learning).

1.2. Category learning and language

Many theories of category learning agree that both verbal and
nonverbal processes are involved in categorization. There is still, how-
ever, an ongoing debate on whether the verbal-like and nonverbal
processes are performed by two different (Ashby et al., 1998; Ashby
& Maddox, 2005; Maddox & Ashby, 2004; Minda & Miles, 2010) or
only one (Keren & Schul, 2009; Newell, Dunn, & Kalish, 2011) cognitive
system. Weighing in on this long-standing debate is outside the scope
of our paper. Nevertheless, there is ample evidence that regardless of
whether one or two systems are involved, one of them must be able to
handle and utilize verbal knowledge.

Language is more than just a communication tool (see further in
Clark, 1998; Gentner, 2016; Lupyan, 2012), it can reshape and facilitate
category learning in many different ways. First, it can be used as a tool
for labeling dimensions: a number of recent studies demonstrated that
feature nameability (ease of finding verbal labels for relevant dimen-
sions) promotes categorization performance (Kotov & Kotova, 2018;
Zettersten & Lupyan, 2018, 2020). Second, language can be helpful in
directing attention to the most informative stimuli features (Sloutsky,
2

2010; Sloutsky et al., 2016). As a result, language can be especially
useful in learning categories consisting of objects with few relevant
dimensions and multiple independently varying irrelevant features —
i.e., statistically sparse categories as defined by Kloos and Sloutsky
(2008). Finally, language can be used to account for unobservable
characteristics of objects while categorizing them and forming nested
categories of different abstraction levels (Sloutsky, 2010). Even though
the importance of language-related processes is largely acknowledged,
there is very little research into studying the properties of language as
the primary means of pedagogical category communication.

1.3. Identifying factors that may differentially affect verbal and exemplar-
based communication

To the best of our knowledge, no studies of category communication
directly examined the factors that affect verbal and exemplar-based
pedagogical communication of categories. Because of that, when look-
ing for potential factors that might differentially affect verbal and
exemplar-based communication, we had to extrapolate from category
learning studies in individual settings.

We know from previous studies that categorization performance is
affected by category structure (Shepard, Hovland, & Jenkins, 1961):
some category structures (e.g., defined by a unidimensional rule) are
more easily learned through verbal means, while others (e.g., involving
a combination of multiple features or family resemblance categories)
rely on procedural memory and nonverbal processes (Ashby et al.,
1998; Maddox & Ashby, 2004). Overall, we believe that the latter type
is not well suited for investigating in a pedagogical setting, as these
categories are extremely difficult to verbalize and transfer to another
person. Therefore, in our study, we focus on the first type of categories.

Categories that follow the same rule type may vary in their dif-
ficulty, depending on the perceptual similarity/confusability of its
members. Perceptual similarity/confusability is usually operationalized
through within-category (Cohen, Nosofsky, & Zaki, 2001; Rips, 1989;
Smith & Sloman, 1994) and between-category variability. The larger
the within-category variability, the harder it is to rely on prototype
information when making judgments. At the same time, it may facilitate
rule abstraction since rule-based categorization strategy is the most
appropriate one for these categories (Kloos & Sloutsky, 2008). Between-
category similarity affects categorization performance by making it
difficult to determine the boundary between categories. Categories
with fuzzy boundaries (i.e., with many borderline examples of different
categories located close to each other) are naturally more challenging
to learn. Categorization difficulty is also related to the number of
irrelevant dimensions varied within a category. Stimuli with multiple
irrelevant dimensions require larger training samples or additional
efforts to direct attention to the relevant dimension while ignoring
the rest of the information (e.g., Vong, Hendrickson, Navarro, and
Perfors, 2019).

Kloos and Sloutsky (2008) combined perceptual similarity and di-
mensionality metrics to calculate statistical density of categories. Sta-
tistically dense categories are the ones that have multiple relevant
covarying features that determine category membership. They also
have lower within-category variability and higher between-categories
distinctiveness. Sparse categories, on the contrary, have multiple in-
dependently varying irrelevant dimensions and only few dimensions
that determine category membership. Statistically dense categories are
better learned in nonverbal manner — by mere observation of category
examples, while sparse categories require prior verbal instruction to
constrain learner’s hypothesis space and enable selective attention to
the relevant features (see also Aboody, Velez-Ginorio, Laurie, Santos,
and Jara-Ettinger, 2018).

Based on these prior results, we formulated a number of hypotheses.
First, we expected that the relative efficiency of teaching via verbal
explanations would increase with higher stimuli dimensionality (com-

pared to exemplar-based teaching). Second we expected that higher
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confusability would increase the relative efficiency of teaching via
visual exemplars (compared to verbal explanations). Lastly, we also
expected emergent effects when using two channels of communication
simultaneously; specifically, we hypothesized that communication of
categorical information will be more efficient (per communication
unit) if verbal explanations are combined with learning-by-examples
(compared to verbal explanations or examples alone).

Here, it is important to mention that these main hypotheses were
pre-registered before the pilot study (see Appendix B). The pilot study
strongly suggested that our original hypotheses, especially the one con-
cerning the mixed channel, were only likely to hold if re-formulated in
terms of effectiveness, as opposed to efficiency (accuracy per communi-
cation unit) which was used in the pre-registration. Based on the pilot,
it also became clear that accuracy per communication unit, as a metric,
is very sensitive to the choice of a conversion method between words
and examples. During the pilot, we, therefore, switched to separately
analyzing communication effectiveness as our main quantity of interest,
complementing it with a separate communication volume analysis. We
used the same approach in our main experiments.

1.4. Overview of the experiments

We conducted two experiments to investigate the effects of category
structure and communication channels on category communication
effectiveness and efficiency in a teacher–student format. In both experi-
ments, one group of participants (teachers) learned a categorization rule
and prepared learning materials for another group (students). Students
studied the materials prepared for them and then demonstrated their
knowledge on test stimuli. In Experiment 1, we varied perceptual
confusability (high vs. low) and stimulus dimensionality (two, three, or
four dimensions) to study the differences between three communication
formats (verbal explanations, visual exemplars, or a mixture of both).
In Experiment 2, we limited the amount of materials that teachers
were allowed to communicate to account for differences in teach-
ers’ efforts. We focused only on two communication channels (verbal
and exemplar-based) and excluded a three-dimensional condition as
uninformative. Communication was asynchronous in all experiments.
Students received learning materials prepared by teachers in advance,
and there were no other interactions between teachers and students.

2. Experiment 1

2.1. Method

2.1.1. Procedure
There were two groups of participants, teachers and students. For

teachers, the main part of the experiment consisted of three stages:
learning phase, test phase, and teaching phase (see Fig. 1). During
the learning phase, teachers learned a specific category through 30
randomly sampled labeled examples. Stimuli were presented simulta-
neously so that participants could easily infer a categorization rule by
observing examples at their own pace. Teachers were able to explore
each stimulus in detail by enlarging it and had no time constraints.
Examples of teachers’ learning materials are provided in Appendix A.

Every block of 30 training examples was followed by a test phase,
where teachers were tested on 30 new examples with no feedback. If
they achieved categorization accuracy of 85% or above, the teacher
proceeded to the teaching phase, otherwise, they returned to train-
ing. If a teacher failed to pass the test five times, the experiment
ended without transitioning to the teaching phase. We used this strict
accuracy threshold for teachers to minimize interference of teacher
learning performance with communication efficiency and effectiveness,
as well as the overall quality of their teaching materials. In other
words, we wanted to see how knowledgeable teachers communicate
their knowledge, and so we had to make sure that teachers master their
category knowledge in all conditions before proceeding to teaching.
3

v

During the teaching phase, teachers generated learning materials
for their future students in three different formats: verbal, exemplar-
based, and mixed. The verbal format required teachers to formulate
a written message with an explanation of how to distinguish between
members of two categories. In the exemplar-based format, teachers
generated labeled stimulus examples (separately for each of the cat-
egories) through an interface that allowed them to adjust stimulus
characteristics using sliders for different features. In the mixed format,
teachers were able to use a combination of exemplars and verbal
explanations (see Appendix A for details on the interface). The order
of teaching formats was randomized and teachers had no ability to get
back and copy previously created materials. Teachers were instructed
to make each set of instructions self-contained. That is, they knew that
each of their students would receive only one of these three teaching
materials.

For the students, the experiment was shorter. In the learning phase,
they observed the materials prepared for them by their teacher. Just
as with teachers, there was no time restriction on how long they took
to study the materials. When ready, they proceeded to the test stage
(containing 30 stimuli), where their mastery of the communicated
category was measured. See the details on the student interface in
Appendix A.

2.1.2. Design: independent variables
We used a 3 × 2 between-subject design. Teachers were assigned

nto one of six groups defined by the following category characteristics:
timulus dimensionality (two, three, or four varying dimensions), and
erceptual confusability (low or high).

timulus dimensionality. We varied the number of dimensions along
hich stimuli may change (i.e. two-dimensional stimuli have two vary-

ng features). We had two-, three-, and four-dimensional stimulus con-
itions.

erceptual confusability. Confusability was defined as a ratio of the gap
etween the categories to the variance within these categories (see
ig. 2). If the gap is large, compared to the within-category variation,
t is easy to distinguish between instances of different categories.
oreover, it is likely that there is going to be a specific label one may

se to indicate the threshold.

ommunication format. In addition to the between-subject independent
ariables listed above, we also manipulated communication format as
within-subject variable (for teachers only). Each teacher was required

o create teaching materials in three different formats: exemplars-only,
erbal-only, and mixed. They were instructed that their students will
ee only one of these three materials.

tudents. Each student was randomly assigned a teacher and learned
rom materials presented in one of three communication formats (ver-
al, exemplar-based, or mixed).

.1.3. Design: dependent variables
erformance metrics. First and foremost, we were interested in partic-
pants’ ability to communicate category knowledge in different con-
itions. To do so, we used student accuracy as the target variable.
o make sure that accuracy differences reflected differences in com-
unication effectiveness rather than differences in teachers’ initial

nowledge, we controlled for each student’s respective teacher’s accu-
acy (by including it as a covariate). When visualizing the data, we used
he difference between each teacher’s and their student’s accuracies, to

isually represent the amount of accuracy ‘‘lost in communication’’.

https://osf.io/s6zer
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Fig. 1. Experiment 1 procedure illustration. Note that every teacher generates three types of teaching materials (for different students), but each student only receives one type.
Fig. 2. Perceptual confusability illustration. The key feature in this case is how open
the mouth is. In the case of high confusability, the widest open mouth in category A is
close to the most narrowly open mouth in category B. In the case of low confusability,
there is a larger gap.

Communication volume metrics. Looking only at student accuracy is
limiting because two conditions may result in equal student perfor-
mance while requiring different amounts of communication to reach
that performance. Such a result would still be important, hence we also
looked at communication volume in different conditions. To quantify
communication volume, we stick to the most natural approach, namely
using the number of words and the number of examples for verbal and
exemplar-based channels respectively.

To create a single measure of communication volume for the mixed
condition, however, one would need to determine a conversion proce-
dure between examples and words. Choosing the most principled way
to do that opens a methodological can of worms, hence we decided
to avoid it. Instead, we focused on studying communication volume
within isolated channels; for the mixed channel, we only looked at the
typical proportion of communication volume of each modality (words
and examples) compared to isolated channels.

2.1.4. Materials
The stimuli were schematic images of fish with up to four indepen-

dently varying visual features (see a detailed description in Rosedahl
4

and Ashby (2018)): mouth angle, dorsal fin height, tail height, and belly
color. There were nine possible values within each of the dimensions.

We randomized over physical instantiations of stimulus dimensions
to control for potential effects of feature salience. For example, if the
task involves one relevant dimension (𝑑) and two irrelevant (𝑛1, 𝑛2), for
one participant, these dimensions may be ‘‘𝑑 – tail fin, 𝑛1 – belly color,
𝑛2 – mouth angle’’, while for another, they may be ‘‘𝑑 – dorsal fin, 𝑛1
– tail fin, 𝑛2 – belly color’’. These random assignments were kept fixed
between any given teacher and their students.

2.1.5. Participants
We recruited 123 teachers and 345 students via Amazon Mechan-

ical Turk. Teachers were compensated at a base rate of $1, with an
additional bonus of $1 if they reached and completed the teaching
stage. Students were compensated $0.25 with a bonus of $0.25 if
they reached an accuracy of 0.75. We excluded ten teachers: three
of them did not reach the accuracy criterion, seven more failed to
provide adequate verbal instructions. Importantly, here we do not refer
to poorly phrased or low-quality instructions, but rather (1) nonsensical
instructions (e.g.‘‘I think is good achieve goal’’), (2) instructions that
demonstrate fundamental misunderstanding of the task (e.g. when a
teacher clearly assumes that a student in the verbal condition would
also see examples along with their explanation: ‘‘Study the examples
and guess the rule’’), and (3) instructions that could not conceivably
teach how to perform the task (e.g. ‘‘guess correctly the answers’’).

We also excluded nine students that received materials from previ-
ously excluded teachers and 24 more students who had accuracy below
two standard deviations from the mean (lower than 32%). Such an
accuracy is substantially below chance, meaning that these students
had most likely misunderstood their teacher, learning a rule opposite
to the actual one. Six students who indicated that they have poor
knowledge of English or did not respond to the question were excluded
as well. The final sample consisted of 113 teachers and 316 students.

2.2. Results

Our main hypotheses are concerned with how well category com-
munication would work under different channels, and how this commu-
nication would be affected by confusability and dimensionality. These
main questions are considered in 2.2.1 and . Section 2.2.2 provides
supporting analysis, looking at the volume of teacher’s messages, in or-
der to better understand the mechanisms behind the main results. This
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additional analysis was not, however, exploratory, since our hypotheses
for these additional sections were directly informed by the results of
our pilot study (see Appendix B), and in Experiment 1, we aimed to
replicate these results, rather than find anything new.

2.2.1. Student performance
Student performance is, ultimately, the most important measure of

whether category communication was successful. Students’ accuracy
was relatively high across all experimental conditions, (Mdn = .833,
QR[.567, .975]1), showing that participants were generally able to
ommunicate category knowledge. Mixed communication showed best
esults (Mdn = .90, IQR[.683, 1.0]), outperforming both example-based
Mdn = .833, IQR[.567, .967]) and verbal (Mdn = .783, IQR[.533,
967]) channels, suggesting that combining different modes of commu-
ication gives an advantage in category communication. Additionally,
tudents in the low confusability condition (Mdn = .967, IQR[.567,
.0]) outperformed those in high confusability (Mdn = .80, IQR[.533,
900]).

Student accuracy, however, may reflect differences in teacher’s
ategory mastery rather than communication quality. To visualize com-
unication success across all conditions while accounting for this fact,
e used a simple ‘‘accuracy loss’’ metric, equal to the student’s accuracy

ubtracted from her corresponding teacher’s accuracy. Under perfect
ommunication, accuracy loss should be close to zero, while large
umbers would indicate failure to communicate knowledge. On Fig. 3,
e can clearly see that mixed condition results in lower accuracy loss.
dditionally, we can see that higher confusability was associated with
igher accuracy loss for all communication channels.

For statistical analysis, we regressed student accuracy onto learning
ormat (verbal, examples, mixed), confusability (low or high), and
timulus dimensionality (two, three, or four), using a binomial re-
ression model (that is, a GLM with a logistic link function and a
inomial random component), and doing statistical inference using ro-
ust variance estimation. To control for teacher performance, we added
logit of teacher accuracy as a predictor. Unless otherwise specified,

ommunication format was dummy-coded, using mixed communication
s the base level. The number of dimensions was coded as a linear
redictor. Lastly, confusability was dummy-coded with ‘‘high’’ as the
ase level. See Appendix C for additional information on our analysis
pproach.

We observed that low confusability led to better performance (𝛽 =
.46, 𝑝 = .007), and that the mixed channel outperformed both the
xemplar (𝛽 = −0.48, 𝑝 = .006) and the verbal (𝛽 = −0.55, 𝑝 = .002).
otably, if one of the isolated channels was re-coded as the base level,
o significant difference was obtained between verbal and exemplar
hannels (𝛽 = .07, 𝑝 = .248). Other predictors were not significant.
fter significant main effects were established, we used the effect-coded
ersion of the model above to test the interaction between confusabil-
ty and channel. None of the interaction coefficients were, however,
ignificant. For complete coefficient information, see Appendix G.

ayesian analysis. Statistical analysis approach used above is standard
or when accuracy is the target variable, but, as we can see on Fig. 3,
erformance distribution in every condition is noticeably bimodal,
hich makes this approach suboptimal. Since we were using robust
ariance estimation, this bimodality does not automatically render our
nferences invalid (the mean model may still be correct, despite the
isspecified variance), but the model certainly takes an oversimplified

iew of the data, potentially being unable to capture its key proper-
ies (one can find vastly different two-peaked distributions with the
ame overall mean; for the binomial GLM, these configurations are
ndistinguishable).

1 ‘‘IQR’’ stands for Interquartile Range, and is reported in the format [a, b],
here a is the 25th quantile, and b is the 75th quantile.
5

e

A likely explanation for why we see such a distribution is that a
student either succeeds in understanding the gist of the communicated
message and gets into the high-performing group (accuracy loss near
zero), or fails to understand anything and performs at chance (accu-
racy loss near 0.5). A Bayesian mixture model is a natural choice for
statistical analysis of such data.

We modeled student performance in each condition as a mixture of
two distributions: the high-performing subgroup and the communica-
tion failure subgroup (performing at chance). Thus, every condition had
two variables associated with it: (1) Probability of successful commu-
nication. (2) Accuracy in the successful subgroup, i.e. the probability
of giving a correct answer in the case of successful communication.
We then estimated the effect of each experimental variable on these
probabilities, separately for verbal and exemplar-based channels (see
further detail on the model in Appendix D).

Results are presented in Table 1. In accord with what can be
visually seen on Fig. 3, successful student subgroups in all conditions
were negatively affected by high confusability. That is, even when
communication was generally successful, high confusability made it
hard for students to reach mastery. At the same time, in the verbal
channel higher confusability also led to an increased risk of a complete
communication failure. This result agrees with our initial hypothesis
about verbal communication being less suitable for situations requiring
nuanced perceptual distinctions.

Student performance summary. Overall, this section presented key re-
sults of the first experiment, highlighting the differences between the
verbal, exemplar, and mixed communication channels and how they are
affected by our interventions. As we expected, mixed communication
led to better performance (although at the cost of substantially higher
volume, which we did not anticipate prior to the pilot experiment).
Additionally, while all channels were negatively affected by percep-
tual confusability, this was especially true for verbal communication.
At the same time, stimuli dimensionality did not significantly affect
performance, contrary to our expectations. The next section presents
an additional communication volume analysis that helps to interpret
these results. It should be seen as secondary (it was not, however,
exploratory, as all hypotheses tested there were directly informed by
our pilot study, see Appendix B).

2.2.2. Communication volume
Teachers were free to choose how many materials (words or exam-

ples) they generate, we refer to this as communication volume. Table 2
shows the median numbers of words and exemplars teachers created
when using isolated and mixed communication channels. Notably, in
the mixed channel, teachers communicated 77% as many words as in
the isolated verbal channel, and 100% as many examples2. Although
adding those numbers can only be done with caution since 100% of
verbal volume might, in subtle ways, not be exactly equivalent to 100%
of exemplar volume, it is clear that teachers generated much more
materials overall (nearly a sum of materials in isolated channels). This
suggests that either teachers are naturally more motivated to produce
diverse teaching materials, or that teachers believe that producing more
materials within isolated channels results in diminishing returns.

To see whether ‘‘more is better’’ when it comes to teaching materials
within isolated channels, we ran a subsample analysis, adding commu-
nication volume as a predictor, while still controlling for study con-
ditions. Thus, for the exemplar channel subsample, we regressed stu-
dent accuracy on confusability, dimensionality, teacher performance,
and the number of examples; for the verbal channel subsample, we
regressed student accuracy on confusability, dimensionality, teacher
performance, and the number of words; mixed subsample was excluded

2 Note, however, that although the quantiles for exemplar-based commu-
ication volume coincide, the average number of examples in the isolated
xamples channel (5.08) is higher than that in the mixed (4.2).
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Fig. 3. Accuracy loss (difference between teacher’s and student’s accuracies) for all conditions in Experiments 1 and 2. Low values indicate successful knowledge transmission.
High values indicate failure to communicate category knowledge. Values below zero mean that students outperform their teachers.
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Table 1
Credible intervals for the impact of conditions on student accuracy and on the probability of successful communication
in Experiment 1, split by communication channel.

Channel Independent variable Change in the
probability of
learning 95% c.i.

Change in accuracy 95% c.i.

Verbal Confusability (−0.819, −0.047)a (−0.198, −0.073)a

Dimensionality (−0.396, 0.378) (−0.092, 0.035)

Examples Confusability (−0.338, 0.406) (−0.235, −0.120)a

Dimensionality (−0.386, 0.354) (−0.064, 0.051)

Mixed Confusability (−0.574, 0.171) (−0.243, −0.120)a

Dimensionality (−0.183, 0.563) (−0.029, 0.093)

aStrong influence (two-sided 95% credible interval does not overlap with zero).
Table 2
Median (and IQR) number of words and exemplars communicated by teachers through different channels
in Experiment 1.

Communication channel

Verbal explanations Visual exemplars Mixed

Number of words 26 (17–42) – 20 (11–32)
Number of exemplars – 4 (2–6) 4 (2–6)
d

from this analysis. The number of words was not significantly asso-
ciated with student accuracy (𝛽 = 0.00, 𝑝 = .967), and the number
f examples was negatively associated with student accuracy (𝛽 =
0.04, 𝑝 = .005)3.

Overall, simply increasing communication volume within isolated
hannels does not lead to improved performance. Therefore, it seems
ikely that mixed communication has an advantage not because of sim-
le redundancy or participants’ higher motivation to generate diverse
aterials, but because verbal and example-based channels communi-

ate different aspects of category knowledge.
At the same time, as can be seen on Fig. 4, teachers generally

roduced more materials (words/examples) in more difficult conditions
high confusability, high dimensionality). To statistically test whether
imensionality and confusability affected communication volume, we
xcluded the mixed condition (since it involves both verbal and ex-
mplar communication which severely complicates total production
olume analysis) and separately analyzed the ‘‘verbal’’ and ‘‘exemplar’’
onditions using simple rank methods. In the exemplar channel, both
onfusability (Wilcoxon 𝑊 = 2017.5, 𝑝 = .012) and dimensionality
Kendall 𝜏 = 0.2, 𝑝 = .033) were significantly associated with a higher
umber of generated visual examples. In the verbal channel, higher
onfusability was only marginally significantly associated with a higher
umber of words (𝑊 = 1894, 𝑝 = .084), while the number of dimensions
ad no effect (𝜏 = −0.05, 𝑝 = .633).

Overall, our subsample analyses suggest that teachers adjusted com-
unication volume depending on condition difficulty, but that increas-

ng communication volume beyond some adequate level for a given
ondition does not result in improved performance.

.3. Experiment 1 summary

The primary goal of this experiment was to establish whether the
hoice of the communication channel (verbal, exemplar, or mixed), and
ategory structure (confusability and dimensionality) affected category
ommunication. We were especially interested in whether communi-
ation channels may be differentially affected by certain aspects of
ategory structure. In particular, we expected that verbal communi-
ation would be more severely affected by high confusability, while

3 This effect becomes non-significant if unusually high numbers of examples
more than 10) are clipped (𝛽 = −0.04, 𝑝 = .268) or excluded from the analysis

(𝛽 = 0.00, 𝑝 = .960). Importantly none of the strategies shows evidence for the
‘more is better’’ effect.
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exemplar channel would be more affected by changes in dimension-
ality. Additionally, we expected that the mixed channel will be more
efficient (per communication unit).

First, the data strongly suggest that the mixed channel is more ef-
fective (but not necessarily more efficient). Both in this experiment and
in our pilot study, mixed communication showed better results (higher
student performance) than isolated channels. At the same time, teachers
generated substantially more materials overall when using the mixed
channel. Therefore, we cannot say that the mixed channel is more
efficient per communication unit.4 That being said, communication
volume analysis 2.2.2 suggests that the increase in effectiveness of the
mixed channel is not due to sheer redundancy, but rather that verbal
and exemplar channels are focused on different aspects of category
knowledge.

Second, we found that category structure indeed affected category
communication. In particular, higher confusability made it harder to
communicate knowledge, and, in the case of verbal communication,
made complete communication failure (i.e. situations when students
learn nothing from their teachers and perform at chance) more likely.
This is in accord with our hypothesis that verbal communication will
be more dramatically affected by perceptual confusability. At the same
time, we found no effect of dimensionality.

3. Experiment 2

In our second experiment, we introduced strict limits on commu-
nication volume. By doing so, we hoped to highlight the differences
between communication channels. The rationale behind this hope was
twofold.

First, in our pilot experiment (Appendix B) and in Experiment 1,
teachers adjusted the volume of their messages to counteract the study
interventions, generating more materials in difficult conditions. Thus,
even in conditions where communication was difficult (as indicated
by higher communication volume), it was still effective (students were
able to achieve relatively high accuracy). With communication volume
restricted, teachers would not have the option to adaptively change
it and thus potentially counteract the effects of condition difficulty.
Second, in Experiment 1 and in the pilot, students often showed near-
ceiling performance, which might have masked some of the effects.
Limiting communication volume makes it more challenging and thus

4 It is important to note that using other metrics of efficiency can give
ifferent results. Specifically, in our experiment, students were noticeably
aster in the verbal condition. See Appendix F for details.
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Fig. 4. Communication volume (i.e., the number of visual exemplars and words produced by teachers) in Experiment 1 (for exemplar and verbal channels). Three cases with
exceptionally high numbers of exemplars (20 or more) were excluded to enhance plot readability.
can help avoid ceiling effects, increase meaningful variation in student
performance, and highlight the effects of our study interventions.

The procedure followed Experiment 1, except for the exclusion of
the mixed condition. Enforcing a limit on the total communication vol-
ume in the mixed condition would have involved explaining ‘‘example-
to-word’’ conversions to participants, severely complicating the proce-
dure. As in Experiment 1, we manipulated perceptual confusability and
stimulus dimensionality, but this time we only included extreme values
of the stimuli dimensions variable (two and four dimensions).

3.1. Method

3.1.1. Conditions
Teachers had two independent variables: confusability (high vs

low) and stimuli dimensionality (2 or 4). Students had one additional
independent variable (mode of learning): verbal or exemplar-based.

Communication volume was restricted to 2 examples and 10 words
in the exemplar-based and verbal conditions respectively. These num-
bers were chosen based on previous experiments. Specifically, we
looked at the easiest condition (low confusability, low dimensionality),
and picked the minimal number of words and examples that resulted in
successful communication as our communication volume limits. These
numbers were 2 examples and 10 words respectively.

It is worth mentioning that this scheme was slightly more restrictive
towards verbal communication. For verbal communication, 10 words
was an unusually small number (there was only one successful teacher
with such a short message). The 25th percentile for verbal message
length was at 15.75 words, while the median number was 21.5. At the
same time, for exemplar-based communication, using only 2 examples
was typical and coincided with the median number of examples.

3.1.2. Procedure
The procedure mirrored that in Experiment 1, with the only differ-

ence that during the teaching stage, there was a limit on the number of
words and examples that teachers were allowed to generate, and there
was no mixed condition.

3.1.3. Participants
We recruited 108 teachers and 311 students via Amazon Mechan-

ical Turk. Teachers were compensated at a base rate of $1, with an
additional bonus of $1 if they reached and completed the teaching
stage. Students were compensated $0.25 with a bonus of $0.25 if they
reached an accuracy of 0.75. Pre-defined accuracy criterion of 85% was
reached by 85 teachers, the rest were excluded from further analysis.
Fourteen teachers failed to provide adequate verbal instructions and
thus were excluded as well (using the same procedure as described in
2.1.5). We also excluded 20 students: 18 of them had categorization
accuracy below two standard deviations from the mean (below 20%)
and two students indicated poor knowledge of English. The final sample
of teachers consisted of 71 teachers and 291 students.
8

3.2. Results

3.2.1. Student performance
Despite the volume restrictions, category communication was, over-

all, successful: median student accuracy was .87 (IQR[.567, 1.0])5.
We, again, observed strong bimodality, and hence opted for a

Bayesian mixture model as our main analysis instrument. When we
apply this model, first, we see in Table 3 that confusability negatively
affected accuracy in successful subgroups (both in exemplar-based and
in verbal communication). Second, the probability of communication
(getting into the successful subgroup) in the exemplar-based condition
was negatively affected by both confusability and dimensionality. Both
effects are borderline on 0.95 two-sided level, but significant if a one-
sided interval is used.6 At the same time, the probability of successful
verbal communication is not significantly affected neither by confus-
ability nor by dimensionality, although in the case of confusability,
there seems to be a trend suggesting that a weaker effect is potentially
present, which is especially likely, considering the results of the first
experiment.

Overall, the second experiment shows that verbal communication
is more resilient in situations of restricted communication volume,
especially against high stimuli dimensionality. This resilience against
dimensionality is in line with our original hypothesis about the different
specializations of verbal and exemplar-based communication channels,
although initially, we expected it to be true universally, and not only
in restricted communication volume conditions.

One seemingly counterintuitive result warrants a separate mention:
increasing dimensionality positively affects accuracy within the suc-
cessful subgroup in the case of exemplar-based communication. A likely
explanation is that higher dimensionality makes it harder to commu-
nicate the concept, but does not severely affect concept application
if the communication is successful. Indeed, when one learns which
features to look for, other features can be easily ignored, but it might be
difficult to identify/communicate relevant vs irrelevant dimensions ini-
tially. Thus, if the communication is successful, dimensionality does not
dramatically affect performance. Naturally, in the high dimensionality
condition, only the more motivated or talented teacher–student pairs
make it to the successful subgroup. They show better results than a suc-
cessful subgroup in a low dimensionality condition, which, due to the
ease of communication in that condition, includes a mixture of students
of different levels of motivation and ability. In short, dimensionality
seems to affect learning the concept, not its application, hence the
‘‘communication success’’ group under high dimensionality condition is
formed by more talented/motivated participants, who perform slightly
better.

The effects of confusability, in contrast, do not exhibit such a pat-
tern. A likely reason is that confusability not only affects the difficulty

5 Note that, surprisingly, the median value is slightly higher than in
Experiment 1 (.833); we will return to this fact in general discussion.

6 If suspiciously fast students are removed from the dataset (see Ap-
pendix E), the effect of dimensionality strengthens and becomes significant,
while the effect of confusability weakens, losing even marginal significance.
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Table 3
Credible intervals for the impact of conditions on student accuracy and on the probability of successful
communication in Experiment 2, split by communication channel.

Channel Independent variable Change in the
probability of
learning 95% c.i.

Change in accuracy 95% c.i.

Verbal Confusability (−0.498, 0.110) (−0.211, −0.111)b

Dimensionality (−0.397, 0.213) (−0.036, 0.063)

Examples Confusability (−0.584, 0.041)a (−0.191, −0.096)b

Dimensionality (−0.611, 0.013)a ( 0.003, 0.097)b

aModerate influence (two-sided 95% credible interval overlaps with zero, but a one-sided does not).
bStrong influence (two-sided 95% credible interval does not overlap with zero).
a

f concept communication but also the difficulty in applying the con-
ept, even after it was successfully communicated. Hence the successful
ubgroup, although consisting of slightly more motivated individu-
ls, still experiences a drop in performance in the high confusability
ondition.

.2.2. Comparing performance in experiments 1 and 2
To see how volume restriction affected performance, we ran addi-

ional analysis by combining data from Experiments 1 and 2, filtering
ut the mixed condition, and adding the experiment indicator variable
with Experiment 1 as the base level) to our main GLM model (accuracy
s target, and confusability, communication channel, dimensionality,
nd logit of teacher accuracy as predictors). The overall effect of
xperiment was marginally significantly positive (𝛽 = 0.189, 𝑝 = 0.083),

meaning that restricted volume, paradoxically, led to better results.
Further examination revealed that the effect was entirely driven by
the verbal subgroup. In the example-based communication subgroup,
the effect went away (𝛽 = 0.01, 𝑝 = 0.949). In the verbal subgroup,
in contrast, the effect was strong and significant (𝛽 = 0.396, 𝑝 =
0.013). That being said, mixed communication in Experiment 1 still
outperformed both isolated channels in Experiment 2 (𝛽 = −0.33, 𝑝 =
0.031).

3.2.3. Communication volume
Most teachers used all or almost all available communication vol-

ume to communicate their knowledge. Exemplar-based communication
channel showed no variability at all, with all teachers using 2 examples
in all conditions. For the verbal channel, there was a marginal variation
with the median ranging from 9 to 10 across all conditions.

3.3. Summary

When the amount of communication is restricted, we see a quali-
tatively different pattern in how communication channels are affected
by confusability and dimensionality. Verbal communication was more
robust when it comes to ensuring that at least some useful infor-
mation was communicated. The most pronounced difference was the
way in which communication channels reacted to changes in stimu-
lus dimensionality: verbal communication was unaffected by this fac-
tor, while exemplar-based communication became problematic. Specif-
ically, under high stimulus dimensionality, there was a high risk that
exemplar-based communication will fail entirely.

This effect of dimensionality on communication effectiveness
presents an interesting contrast with the first experiment and the pilot.
Previously, stimuli dimensionality did not affect student accuracy but
affected communication volume. Now, when communication volume is
fixed, we see the effect on accuracy, which supports the idea that the
influence of irrelevant dimensions can be compensated by increasing
communication volume, at least in the context of exemplar-based
communication. We also see that under a restricted volume scenario,
stimuli dimensionality affects exemplar-based communication more
than verbal communication.
9
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4. Discussion

Real-world knowledge transmission is greatly aided by the use of
language, but there is little research on language as a means for category
communication. To bridge this gap, we conducted two experiments
studying verbal, exemplar-based, and mixed-channel category com-
munication. We were especially interested in the differences between
these modes of communication. In this discussion, we revisit the major
hypotheses of our study, discuss whether they were supported by data,
and consider the implications of our results.

The first universal result that we observed was directly tied to one
of the main hypotheses of our study. We expected that combining
different communication channels would be the most efficient (per unit
volume) way of transferring category knowledge. Indeed, both in our
pilot experiment and in Experiment 1, mixed communication (when
teachers were allowed to communicate both verbally and by generating
exemplars) led to superior student performance. At the same time, mixed
communication was also associated with dramatically higher commu-
nication volume. Therefore, while being the most effective, it was not
the most efficient way of communication,7 rendering the hypothesis
only partially confirmed (or partially disproved, depending on one’s
outlook).

We see two potential reasons for the effectiveness of mixed commu-
nication. On the one hand, it is possible that not all knowledge can be
reliably transferred via isolated channels, hence when communication
is restricted to a single channel (verbal or exemplar-based), some
information is lost. On the other hand, people generate more mate-
rials overall in the mixed condition (compared to isolated channels);
therefore, it may be that teachers communicate more successfully in
the mixed condition simply through redundancy. The latter seems less
likely for two reasons. First, we observed no evidence that higher com-
munication volume leads to higher student accuracy when controlling
for experimental conditions. That is, more materials were not always
better, and, therefore, simply providing redundant information in the
same channel would not allow to catch up with the effectiveness of
mixed communication. Second, communication volume in Experiment
1 was not restricted, i.e. teachers were free to generate more materials
in isolated channels, but apparently did not believe that doing so
would help their students. Overall, it seems more likely that mixed
communication is advantageous because verbal and exemplar-based
communication are tailored to different aspects of category knowledge.
In the context of existing literature, previously, it had been shown that
verbal descriptions can help category learning when explicitly linked
to specific regions/dimensions of the stimulus (Miyatsu, Gouravajhala,
Nosofsky, & McDaniel, 2019). We expand this result by showing that a
mixture of verbal and exemplar-based communication generally outper-
forms communication via isolated channels. More broadly, this result
shows that exemplar-based and verbal channels are not interchange-
able, which provides indirect support for theories that postulate that

7 It is important to note that we are specifically speaking about efficiency
s student accuracy per unit volume. Focusing on efficiency per unit time may
ive different results. See Appendix F for further discussion.
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language has a unique role in category learning (Ashby et al., 1998)
and more generally (Clark, 1998; Gentner, 2016; Lupyan, 2012), as
opposed to being viewed as an equivalent way to re-code perceptual
experiences.

Our next major hypothesis was that language should be particu-
larly effective when communicating categories with a high number
of irrelevant dimensions because it enables focusing attention on the
most informative characteristics of stimuli (Kloos & Sloutsky, 2008;
Sloutsky, 2010). However, in Experiment 1, we found no differences
in how verbal and exemplar-based communication performance was
affected by stimuli dimensionality. We suspected that the absence of
effect might be due to teachers’ adjustment of communication volume
according to the demands of specific conditions and due to ceiling
effects in student performance. In Experiment 2, we addressed these
issues by restricting the communication volume. In restricted volume
conditions, higher dimensionality indeed reduced the category commu-
nication effectiveness of the nonverbal channel while having no effect
on verbal communication. This result is consistent with the notion that
language may play a role in dimensionality reduction when teaching
categories.

The last major hypothesis was that we expected high confusability
to have a stronger negative impact on verbal communication, compared
to exemplar-based teaching. In Experiment 1, we saw that this was
indeed the case. While all modes of communication were negatively
affected by confusability, the effect was more prominent for verbal
communication. Specifically, only in the verbal communication chan-
nel, higher confusability significantly increased the risk of complete
communication failure. There is, however, a surprising caveat to this
observation: in Experiment 2, the effect got weaker (same direction, but
not significant). While it may be just random variation in our samples,
certain results suggest that something more insightful might be going
on. Specifically, the most surprising aspect of Experiment 2 was that
student accuracy went up, compared to Experiment 1, defying commu-
nication volume restrictions. Closer examination (see 3.2.2) revealed
that this marginally significant effect was entirely driven by the verbal
communication subgroup (for which it was significant at 𝑝 = 0.013). It
is possible that we see consequences of a metacognitive failure, where
teachers think that they help their students by providing longer verbal
instructions, while in fact, it is better to be forced to provide a concise
and short explanation. We believe that this unexpected result warrants
further exploration in future research.

We believe that in order to provide a deeper theoretical account
of the observed differences between verbal and exemplar-based com-
munication (and, hopefully, to formally explore the exact properties of
category structure they are best attuned to), it is necessary to develop
a computational model of the process. In this paper, we only aimed
to provide empirical support for the presence of qualitative differences
between the channels and gain a high-level understanding of what
these differences are. Although developing a computational model is
outside of the scope of this paper, we would like to mention a few
directions that could provide a starting point for such modeling. One
would be to build upon a prototype that was suggested in Moskvichev
et al. (2019); the authors expanded the model by Shafto et al. (2014)
by adding a high-level account of verbal communication. That model
aims to capture which categories, generally, are better suited for verbal
communication, but does not make any predictions about specific
words that participants might use. An alternative approach would be
to develop a more explicit model of category learning from language
that would be capable of learning categories from natural language
texts. Such prospects become realistic due to the advance of neural
Natural Language Processing architectures (Brown et al., 2020) that,
after pre-training on a large corpus, can be fine-tuned to novel tasks
with relatively small amounts of data (Malte & Ratadiya, 2019) and
can be adapted to model learning after the initial training stage is
over (Hutchins, Schlag, Wu, Dyer, & Neyshabur, 2022; Moskvichev &
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Liu, 2021).
Apart from the specific hypotheses covered above, it is important
to mention one prominent result present in all experiments: the general
robustness of category communication. Teachers were able to successfully
communicate their knowledge in all conditions, even when communi-
cation volume was severely restricted. This result expands two previous
lines of Cognitive Science research. On the one hand, Avrahami et al.
(1997) and Shafto et al. (2014) showed the benefits of learning cat-
egories through exemplars generated in a pedagogical, rather than
random fashion. At the same time, Chopra et al. (2019) showed that
verbal category communication can be effective (students get accuracy
close to that of their teachers), but provided no direct comparison
with exemplar-based communication. Our results are the first to di-
rectly compare exemplar-based and verbal category communication
and to establish that they result in similar (although not equivalent)
and generally high performance across a wide range of conditions.
One of the most important conclusions of our study is that verbal
communication provides a viable way of category learning but with
markedly different dynamics from that of learning by examples. Given
how common language-based category acquisition is in practice, we
hope that it becomes one of the standard ways of studying category
learning in laboratory settings, continuing the general trend towards
higher environmental validity of category learning studies (with realis-
tic stimuli now used more often (Nosofsky, Sanders, Gerdom, Douglas,
& McDaniel, 2017; Rosedahl & Ashby, 2018), and more attention paid
towards studying category in situations where the source of information
is not a neutral environment, but a knowledgeable ‘‘other’’ (Shafto
et al., 2014)).

Our study has a number of limitations that are important to men-
tion. The most substantial limitation is the narrow range of category
structures we considered; in our experiments, we focused on a family
of simple one-dimensional rules. In the pilot experiment, we also used
a two-dimensional rule, but again, with a very simple structure (a
conjunction of two one-dimensional rules). Such rules may be better
suited for language-based communication than, for example, infor-
mation integration category structures (Ashby et al., 1998; Ashby &
Maddox, 2005; Minda & Miles, 2010; Rosedahl, Serota, & Ashby, 2021).
Although such simplifications were necessary to keep the scope of
the study manageable, we believe that in the future, it is important
to expand the range of category structures. That will allow us to
better understand the benefits and limitations of different modes of
pedagogical communication in category learning.

Another limitation is that we do not collect field data on the
frequency of verbal category communication in real-life situations
(e.g. when a mother teaches a new concept to her child, or when a
teacher presents new material). We do see that when mixed (verbal
and exemplar-based) communication is allowed, teachers do use both
communication channels, showing that people often choose to commu-
nicate categories verbally, at least in a laboratory setting. Nevertheless,
we believe that collecting more naturalistic data on category teaching
behavior would be highly beneficial and should be done in the future.

5. Conclusion

There has been a push for studying category learning in situations
with more realistic and higher-dimensional stimuli, as well as in ped-
agogical (teacher–student) rather than neutral (environment-student)
scenarios. Building upon the previous results, our study makes the next
step by focusing on language-based category communication, which is
common in day-to-day category acquisition but is rarely studied.

Theoretically, we establish a number of ways in which exemplar-
based, verbal, and mixed communication differ from each other. Specif-
ically, we saw that mixed communication was the most effective,
and that verbal and exemplar-based communication may be tailored
towards slightly different situations. Verbal communication was better
suited for quick communication of the gist of the category knowl-

edge and being resilient against changes in stimuli dimensionality,
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while exemplar-based communication, in turn, was more robust in
situations with no restrictions on communication volume and when
high perceptual precision was required. Most importantly, these results
show that language provides a viable but not equivalent alternative
to exemplar-based category communication, with its own unique dy-
namics. It yields indirect support to theories that postulate a unique
role of language in category learning. Indeed, under theories that see
language as reducible to an equivalent way of receiving the same
information, or as the inevitable universal final step in knowledge rep-
resentation, we should expect no difference between exemplar-based
and language-based category communication.

On the practical side and outside of the scope of Cognitive Science,
our results provide a controlled illustration of the importance of using
both verbal explanations and examples in real-life teaching situations
(e.g. school or college). Additionally, our results might help in devel-
oping robotic and Human-Computer Interface systems. For example,
efforts on combining verbal and nonverbal instructions for artificial
intelligence systems, such as Yu and Mooney (2022) and Li et al.
(2019), might benefit from a deeper understanding of the advantages
and limitations of using language to transfer knowledge.

We hope that the methodology that we developed and the results
that we obtained will serve as a foundation for further research on the
role of language in category communication, and, more generally, in
understanding how humans share knowledge via language.
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Appendix A. Study interface detail

Exemplar-based learning phase interface is illustrated on Fig. 5. The
overall teaching interface is illustrated on Fig. 6, with the interactive
slider-based window for providing examples illustrated separately on
Fig. 7.
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Appendix B. Pilot study detail

In this section we describe our pilot study. It had a relatively large
sample, contributed a few important results regarding communication
volume, and informed the hypotheses tested in Experiment 1 (except
for the hypotheses that were pre-registered before the pilot).

The procedure was similar to Experiment 1, but with a few impor-
tant differences. First, in Experiment 1, we changed the operational-
ization of perceptual confusability, making between-category distance
lower than within-category variability, in the high-confusability sce-
nario, which was done to strengthen the intervention effect. In the
operationalization we used in the pilot study, high confusability only
affected stimuli which were close to the category boundary, while
a substantial number of exemplars were still easily classifiable. Sec-
ond, in Experiment 1, we only used one-dimensional rules, while in
the pilot, we also had a two-dimensional rule condition. The two-
dimensional rules were simple conjunctions of one-dimensional rules.
We removed this condition in Experiment 1, as it contributed to a
disproportionally high dropout, complicating the analysis. When it
comes to volume analysis, in the pilot experiment, we used a simple
conversion procedure between examples and words to calculate ‘‘total
communication volume’’ in the mixed condition, while in the first
experiment, we avoided this conversion, focusing on simpler channel-
specific analyses instead. The last difference was that, in contrast with
the first experiment, teacher bonus compensation was bound to their
student performance. We removed this dependency in Experiment 1
primarily due to technical and ethical reasons as sometimes students
might perform poorly even if the teacher did their best to ensure
reasonable performance; in the pilot experiment, we had to resolve a
large number of bonus assignment cases manually.

B.1. Design: independent variables

We used a three factor between-subject design. Teachers were as-
signed into one of twelve groups defined by the following category
characteristics: rule dimensionality (one- or two-dimensional rules),
stimulus dimensionality (two, three, or four varying dimensions), and
perceptual confusability (low or high).

Rule dimensionality. We had two levels of the rule dimensionality vari-
able. In the one-dimensional rule condition, we used rules in the form
‘‘if 𝑥 > 𝑐 then category A else category B’’, where 𝑥 is the numerical
value along a pre-specified stimulus dimension and 𝑐 is a threshold
constant. In the two-dimensional rule condition, we used a conjunction
of two one-dimensional rules, i.e. ‘‘if 𝑥 > 𝑐1 and 𝑦 > 𝑐2 then category A
else category B’’.

Note that we only used ‘‘rule-based’’ or ‘‘verbalizable’’ category
types in our experiments (according to the classification by Ashby
et al. (1998)). Due to the nature of information-integration (‘‘nonver-
balizable’’) rules, verbal communication of such rules is likely to fail
entirely. We, therefore, restricted ourselves to rule-based categories.
It is important to clarify that the name ‘‘verbalizable’’ only means
that such rules can conceivably be formulated verbally (Ashby et al.,
1998), and does not imply that all rules of this type are equally easy
to formulate or communicate verbally. As we will see, even simple
verbalizable rules provide a number of challenges and insights.

Other variables. All other variables (communication channel, percep-
tual confusability, stimulus dimensionality) coincided with those in
Experiment 1.

B.2. Participants

All participants were English speakers from the US, recruited through
Amazon Mechanical Turk. Teachers were compensated at a base rate of
$1, with an additional bonus of $1 if their students reached an accuracy

of 0.75. Students were compensated $0.25 with a bonus of $0.25 if they

https://osf.io/hjyu5/
https://osf.io/hjyu5/
https://osf.io/hjyu5/
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Fig. 5. Learning interface (study phase). All examples are presented at once (as seen for category A on the left), and participants are free to zoom into any given example to study
it in detail (right). For teachers, there are always 15 examples randomly sampled for each category, for students, the number of displayed examples and examples themselves are
generated by their respective teachers.

Fig. 6. Teaching phase interface for the case of mixed communication. In verbal and exemplar-based communication conditions, the interface was analogous, but with the
exemplar-based and verbal textbox removed, respectively. Text input is done via keyboard, while examples are added via an interactive interface, illustrated on Fig. 7.
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Fig. 7. Slider interface that teachers used to create examples for their students. Each slider controls one of the stimuli features (mouth size, dorsal fin size, tail fin size, belly
color). In the picture, feature 2 (dorsal fin) is set to its minimal value, hence the fin on the fish’s back is almost entirely gone.
reached an accuracy of 0.75. The initial sample consisted of 169 teach-
ers and 188 students. However, we excluded 40 teachers who did not
reach the predefined 85% accuracy threshold in five attempts to learn
the rule. Four more teachers did not finish the experiment and were
also excluded. Twenty-six teachers failed to provide adequate teaching
materials (13 of them created no examples or verbal instructions and 13
provided meaningless instructions). Importantly, here we do not refer
to poorly phrased or low-quality instructions, but rather (1) nonsensical
instructions (e.g.‘‘I think is good achieve goal’’), (2) instructions that
demonstrate fundamental misunderstanding of the task (e.g. when a
teacher clearly assumes that a student in verbal condition would also
see examples along with their explanation, e.g. ‘‘Study the examples
and guess the rule’’) and (3) could not conceivably teach how to
perform the task (e.g. ‘‘guess correctly the answers’’).

Most of the excluded teachers (𝑛 = 50) were from the two-
dimensional rule condition. Seven students with an accuracy below 2
standard deviations (37%) and nine students who received materials
from previously excluded teachers were excluded as well. One student
who indicated poor knowledge of English was excluded. Thus, the final
analysis included 99 teachers and 171 students. The majority of teach-
ers who were not included in the final analysis were excluded on the
basis of the predefined 85% accuracy criterion (40 out of 70 excluded
teachers). Students received teaching materials from a subsample of
60 teachers. Most of the students were in one-dimensional (𝑛 = 115)
condition. The number of people in low-confusability condition was
higher (𝑛 = 107), than in high-confusability condition (𝑛 = 65).

B.3. Results

B.3.1. Teacher performance
Although teacher performance is not the main focus of our hypothe-

ses, it was still important for us to see whether our conditions affected
teacher performance. First, it allowed us to test the intervention quality.
That is, if teachers were to perform exactly equally across the board,
it would have suggested that the category structures we consider are
not sufficiently different. On the other hand, if any differences are
discovered, we must account for them when analyzing student data.
Otherwise, a difference in student performance between two conditions
may simply be ‘‘inherited’’ from an analogous difference in teachers’
performance, as opposed to reflecting differences in communication
effectiveness.
13
As expected given our 85% accuracy threshold, median categoriza-
tion accuracy among teachers was high, 0.97 (IQR[0.93, 1]8). Nev-
ertheless, some discrepancies remained: we observed slightly lower
values in high confusability condition (Mdn = 0.97; IQR[0.9, 1]) and
higher values in low confusability condition (Mdn = 1; IQR[0.97, 1]).
Similarly, accuracy was slightly lower in the two-dimensional rule
condition (Mdn = 0.97; IQR[0.90, 1]) than in the one-dimensional
(Mdn = 0.97; IQR[0.97, Q3 = 1]).

Statistical analysis (binomial regression model with robust variance
estimation) showed that these discrepancies were indeed significant
(deviance = 24.949, 𝑑𝑓 = 3, 𝑝𝜒2 < 0.001). Among individual coefficients,
we observed a significant effect of one-dimensional rule type (𝛽 =
0.61, 𝑝 = .008) and low confusability (𝛽 = 0.87, 𝑝 < .001) on teachers’
categorization accuracy. The effect of stimulus dimensionality was not
statistically significant (𝛽 = −0.09, 𝑝 = .54). On the other hand, we
observed uneven teacher dropout (failure to reach the 85% accuracy
threshold) across different stimulus dimensionality values (18.75%,
20.37%, and 29.85% for 2, 3, and 4-dimensional stimuli respectively),
suggesting that stimulus dimensionality largely determined whether a
categorization rule would be learned at all, but did not significantly
affect the performance when the rule was successfully learned. Overall,
we see that despite the high 85% accuracy threshold, the variables of
interest still had an effect on teacher accuracy. On the one hand, it
confirmed that the category structures in the conditions we chose were
substantially different in the context of learning these categories. On
the other hand, we must account for differences in teacher performance
when analyzing and interpreting differences in student performance.

B.3.2. Teaching materials content analysis
To see whether teachers adjusted the content of their messages

in systematic ways depending on the condition they were put in, we
performed a manual content analysis. We identified seven common
message types present in teacher’s messages and then tagged all texts
according to these types (each message may belong to more than one
message type). Most messages (74%) included descriptions of typical
members of each category (‘‘Exemplars’’ message type). Dimensionality
Reduction (explicitly stating that certain stimuli dimensions are not
informative) was the second most common type at 39%. Other message
types were found in less than 20% of cases each (see Table 10).

8 ‘‘IQR’’ stands for Interquartile Range, and is reported in the format [a, b],
where a is the 25th quantile, and b is the 75th quantile.
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Table 4
Median (and interquartile range) number of words (converted to examples) and exemplars communicated by teachers
through different channels. The conversion rate was calculated as the median number of examples across all teachers
divided by the median number of words.

Communication volume

Words (converted to examples) Exemplars Total

Isolated channels 4.00 (2.50–5.56) 4.00 (4.00–6.00) 8.88 (6.44-11.94)
Mixed channel 3.12 (1.69–5.00) 4.00 (2.00–6.00) 8.00 (4.38-10.34)
Table 5
Median (and interquartile range) number of words and exemplars communicated by teachers separated by communication format and stimulus type in
the pilot experiment.

Stimulus type Communication format

Mixed

Verbal Exemplar-based Verbal Exemplar-based

Rule dimensionality
One-dimensional 23.0 (18.00–34.00) 4.0 (2.00–6.00) 17.0 (10.00–32.00) 4.0 (2.00–6.00)
Two-dimensional 42.5 (30.25–53.50) 4.0 (4.00–6.00) 34.5 (20.50–47.75) 4.0 (4.00–5.75)

Perceptual Confusability
Low 26.0 (18.50–44.00) 4.0 (3.00–6.00) 24.0 (13.00–36.00) 4.0 (2.00–5.00)
High 33.5 (23.00–45.00) 4.5 (4.00–6.50) 29.5 (14.75–42.50) 4.0 (2.00–6.00)

Stimulus Dimensionality
Two 26.0 (18.00–45.00) 4.0 (4.00–6.00) 18.0 (13.00–36.00) 4.0 (2.00–5.00)
Three 27.0 (19.00–45.00) 4.0 (4.00–6.00) 20.0 (8.00–38.00) 4.0 (2.00–6.00)
Four 34.0 (24.00–44.00) 4.0 (4.00–6.00) 32.0 (18.00–44.00) 4.0 (4.00–6.00)
.
c
(
i
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n
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Among the seven message types, we identified two that, we ex-
ected, will be used more or less depending on our interventions.
pecifically, we expected that higher stimulus dimensionality would
esult in a greater proportion of Dimensionality Reduction messages,
hile higher confusability would be associated with increased usage of
oundaries and Thresholds (to assist in distinguishing between border-

ine exemplars). Teachers were indeed less likely to use Boundaries and
hreshold messages in the low confusability condition (5% of cases)
han in the high confusability one (36%), 𝜒2(1, 𝑁 = 192) = 27.76, 𝑝 <
.001. However, the difference in Dimensionality Reduction between
two- (34%), three- (33%), and four-dimensional (46%) conditions was
not statistically significant, 𝜒2(2, 𝑁 = 192) = 2.8, 𝑝 = .246. The
key takeaway is that verbal messages that teachers generate differ in
systematic ways, depending on condition. In the context of the pilot
study, this conclusion should be treated as tentative, since we identified
the categories and performed statistical analysis on the same data.

B.3.3. Communication volume analysis
Generally (as seen in Table 4), teachers produced noticeably more

teaching materials in the mixed communication channel.
We also hypothesized that teachers changed communication volume

based on conditions (confusability, stimuli dimensionality, rule di-
mensionality). More specifically, that teachers might be counteracting
difficulties in communication in specific conditions by creating more
materials. Descriptive statistics corroborate this idea (see Table 5).
Specifically, we see that the volume of verbal communication responds
to all relevant variables, increasing as the difficulty of the condition
increases (i.e. when we go from one-dimensional to a two-dimensional
rule, from low to high confusability, or as we increase stimulus di-
mensionality from two to three to four). This effect is present both in
the isolated verbal channel and in the verbal component of the mixed
channel. At the same time, the number of generated examples is more
consistent, as the median remains exactly 4.0 in almost all conditions.
Nevertheless, in the overwhelming majority of cases, the quantiles
either stay the same or go up as condition difficulty increases, so it
seems that the effect remains, although, potentially, less prominent.

To test this hypothesis statistically, we created a ‘‘total volume’’
variable. To calculate the total volume, we used a simple procedure
for converting the number of communication units in one channel
into another (i.e. how many examples, on average, correspond to one
14

word). Specifically, we used a median (across all participants) number f
of examples in exemplar-based teaching materials and divided it by
the median number of words in verbal teaching materials, obtaining
a conversion constant 𝑐ex_per_word. This allowed us to calculate total
information: the amount of teaching material expressed in examples
(communication units). Thus, in the exemplar-based channel, the total
volume is simply equal to the number of examples. In the verbal
channel, the total volume is equal to 𝑛words ⋅ 𝑐ex_per_word. In the mixed
channel, total volume is equal to 𝑛words ⋅ 𝑐ex_per_word + 𝑛examples.

After the total information was calculated, we used a gaussian glm
with a log link function and robust variance estimation to evaluate
the effect of stimuli characteristics (rule type, confusability, stimulus
dimensionality) and teaching format (verbal, examples, mixed) on the
total amount of communicated information. The log link function was
chosen since the raw total information variable has a strong right
skew, while its log-transformed version is reasonably close to a normal
distribution. The overall model was significant (𝐹 (5, 296) = 19.03, 𝑝 <
001). Stimulus dimensionality (𝛽 = 0.09, 𝑧 = 2.03, 𝑝 = .043), low
onfusability (𝛽 = −0.2, 𝑧 = −2.36, 𝑝 = .018), and two-dimensional rule
𝛽 = 0.39, 𝑧 = 5.17, 𝑝 < .001) were all significant predictors of total
nformation. Exemplar-based (𝛽 = −0.44, 𝑧 = −3.93, 𝑝 < .001) and verbal

(𝛽 = −0.58, 𝑧 = −8.28, 𝑝 < .001) communication conditions were also
statistically significant, meaning that total communication volume was
higher in the mixed condition, compared to isolated exemplar-based
and verbal channels.

B.3.4. Student performance
The results in previous sections provide a general picture of teach-

ers’ communication strategies and their adaptations to different condi-
tions. However, we need to look at student performance to see whether
communication was successful.

Generally, students managed to learn categorization rules relatively
well, although usually not reaching their teacher’s performance. Me-
dian categorization accuracy was 93% (IQR[0.73, 1.00]) with highest
value in the mixed condition (Mdn = 0.97, IQR[0.80, 1.00]) and
exemplar-based condition (Mdn = 0.97, IQR[0.68, 1.00]) compared to
he verbal condition (Mdn = 0.90, IQR[0.68, Q3 = 1.00]). Accuracy was
oticeably lower in the two-dimensional rule condition (Mdn = 0.77,
QR[0.57, 0.93]) compared to the one-dimensional rule condition (Mdn

0.97, [0.87, 1.00]).
For statistical analysis, we regressed student accuracy onto learning
ormat (verbal, examples, mixed, dummy-coded with mixed as base),
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rule type (one- or two-dimensional, with one-dimensional as base), con-
fusability (low or high, with high as base), and stimulus dimensionality
(two, three, or four, coded as a linear predictor), using a binomial
regression model with robust variance estimation. The overall model
was statistically significant (deviance = 231.61, 𝑑𝑓 = 5, 𝑝𝜒2 < .001).

e first identified the significant main effects: low confusability (𝛽 =
.43, 𝑝 = .05) and one-dimensional rule (𝛽 = 1.14, 𝑝 < .001) both led to
mproved student performance. The effect of the number of irrelevant
imensions was not, however significant (𝛽 = 0.08, 𝑝 = .51). Verbal
ommunication was significantly worse than mixed (𝛽 = −0.5, 𝑝 = .04),
lthough exemplar-based communication (𝛽 = −0.46, 𝑝 = .09) was
nly marginally worse than mixed communication (using a two-sided
nterval).

The results above, however, do not allow to conclude that knowl-
dge communication is affected by intervention variables (rule-type,
onfusability, dimensionality). Instead, it may be that the differences
n student performance simply reflect analogous differences in teacher
erformance. To account for that, we also fit a regression controlling
or the effect of teacher performance, including a logit of the student’s
eacher accuracy as a predictor. The new model fit the data significantly
etter than the previous (deviance = 9.276, 𝑑𝑓 = 1, 𝑝𝜒2 = 0.002).
nder this new model, however, the weakly significant coefficients got

‘explained away’’ by teacher accuracy. Thus, only the effect of rule
ype remained significant (𝛽 = −1.082, 𝑝 < .001); the verbal channel (as
pposed to mixed) was marginally significant (𝛽 = −0.46, 𝑝 = .07), sim-
lar to the exemplar-based channel (𝛽 = −0.44, 𝑝 = .11), all other effects
ere not significant. Overall, when controlling for teachers accuracy,
e only see marginal beneficial effects of using mixed communication

as opposed to isolated channels), and the strong negative effect of a
wo-dimensional rule condition.

Lastly, it must be noted that interaction effects could not be reliably
ested on the obtained data. Specifically, adding interactions between
ommunication type and intervention variables results in unstable
odels, where conclusions highly depend on which interactions are

ncluded, while the natural choice of including all interactions of
nterest results in multicollinearity issues.

.3.5. Teachers’ subjective estimates of student performance
Teachers generally had a good grasp on how well their students

ere going to perform. Thus, the Kendall correlation between teacher’s
redictions about student performance and students actual accuracy is
ighly significant: 𝜏 = 0.352, 𝑝 < .001.

The estimate remains high for partial correlation controlling for
eachers’ accuracy (𝜏 = .296, 𝑝 < .001). This shows that the correlation
s not driven simply by teacher’s awareness of their own knowledge,
ather teachers are cognizant of difficulties of communicating knowl-
dge in different conditions and/or are meta-cognitively aware about
ow good their teaching skills are relative to other participants.

.4. Pilot experiment summary

First, teachers’ communication volume depended on condition (cat-
gory structure): teachers in more difficult conditions provided more
nformation. Nevertheless, this adjustment was not sufficient, in the
ense that all conditions still affected student performance (except for
timulus dimensionality which affects communication volume, but does
ot significantly affect student accuracy). Second, teachers adjusted not
nly the volume, but also the content of their messages in systematic
ays, reflecting the difference in the structure of communicated cate-
ories. Third, mixed communication format resulted in higher student
erformance (significantly for verbal compared to mixed, marginally
or exemplar-based compared to mixed). At the same time, teachers
enerally provided more information in the mixed condition. Thus, al-
hough mixed communication format was the most effective, it was not
he most efficient among the three (per unit volume). Lastly, teachers
emonstrated high awareness of the quality of their teaching materials.
15
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pecifically, teachers’ estimates of their students’ performance were
ignificantly correlated with actual students’ accuracies, even when
eachers’ mastery of category knowledge was controlled for.

Overall, the pilot experiment demonstrated the flexible nature of
edagogical category communication. Teachers, aware of the difficul-
ies their students are facing, used a variety of techniques to adapt their
essages to the category structure, changing both the volume and the

ontent of their messages. Despite those adaptations, however, using a
ixture of two different modes of communication was more effective

han relying on isolated channels.
At the same time, we observed no specificity in how different chan-

els are affected by confusability, dimensionality, or rule type. That is,
ur hypotheses stating that (a) verbal communication will be more ro-
ust to changes in stimuli dimensionality (b) exemplar communication
ill be more robust to confusibility, received no confirmation.

Although the results mentioned above are important on their own,
he key role of the pilot experiment was to inform the hypotheses tested
n Experiment 1.

ppendix C. Statistical analysis detail

In this section, we provide detailed specifications of the statistical
odels that we used for data analysis and give more detail for our

verall approach in data analysis.

.1. Main analyses with accuracy as target

As mentioned in our pre-registration (link), our main model in
xperiments 1 and in the pilot was a binomial regression (a generalized
inear model with a binomial random component and logistic link
unction), with inference done using robust (‘‘sandwich’’) variance esti-
ation. We used the R language glm function to fit the coefficients, and
e used custom-written code for the robust variance estimation-based

nference.9 We provide our analysis code along with the submission.
or main effects, unless noted otherwise, dimensionality was coded
s a linear predictor, while confusability and channel were dummy-
oded. We used ‘‘high’’ confusability and ‘‘mixed’’ communication as
he base level for these variables. So overall, unless otherwise noted, the
redictors were: confusability (dummy-coded), dimensionality (linear
redictor with values 2, 3, or 4), communication channel (dummy-
oded), teacher accuracy (logit-transformed). The latter is added to
dditionally control for teacher’s performance, since we are interested
n communication, not in potential differences in teacher’s skill. This
‘teacher accuracy’’ predictor was never significant, however.

For models with interaction, we used an effect-coded version of
he model above. Specifically, confusability and dimensionality were
enter-coded (+0.5, −0.5 for high and low values respectively). For
ommunication channel, the following orthogonal-centered system with
wo variables was used: hyp1=(−1/3 when ‘‘channel’’ is either verbal
r exemplar, and 2/3 for the mixed channel), hyp2=(1/2 for verbal, 0
or mixed, and −1/2 for exemplar).

We differed from our pre-registration in that we focused on predict-
ng accuracy rather than accuracy gain per communication unit, since
e realized the latter to be an extremely noisy measure.

The main model was chosen as the most robust, but not necessarily
he most sensitive/powerful, since it does not capitalize on potential
nter-dependencies between different data points (one teacher provided
nstructions for approximately three students). In our pre-registration
link), we mentioned that we planned to additionally use a generalized
stimating equations model. However, our attempts to fit it in the first
xperiment resulted either in convergence issues or in unrealistically

9 The code was written by Prof. Daniel Gillen and was provided as part of a
raduate course on statistical inference taught in the University of California,
rvine. We provide it along with our analysis code.

https://osf.io/s6zer
https://osf.io/s6zer
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optimistic estimates where almost all predictors became significant. We
attributed it to the relatively low number of students per teacher, and
relatively high noise, and decided to sacrifice potentially higher power
of that model to ensure higher robustness and reliability of our results.

All main results and coefficients reported in the paper come from
the binomial model with robust variance estimation. However, to en-
sure that the results we reported were not a consequence of a specific
model choice, we ran two additional models in each statistical test:
a beta-binomial model (using the betabin function from the aod R
package), and, as a simple baseline and a sanity check, a standard
binomial glm with naive (non-robust) inference (default inference in
the R statistical package).

As expected, our model of choice (binomial glm with robust vari-
ance estimation) was indeed the most conservative. Also, as expected,
vanilla (non-robust) glm shifted a few non-significant results into the
region of significance (showing how dangerous is the common practice
of using it as a default). Beta-binomial model coincides in its predictions
with the robust binomial glm almost everywhere, although adding
interactions in Experiment 1 did not change the significance of any
of the coefficients into marginal significance (as it happened with the
robust binomial model, see 2.2.1).

C.2. Additional analyses with integer targets

When the target was not accuracy, but an integer variable (as was
the case specifically with predicting the number of words or exem-
plars in the Communication Volume section Section 2.2.2), we at first
attempted to use a GLM with a log link and a Gaussian random com-
ponent as our main model, with robust variance estimation. However,
for the exemplar channel, we observed extreme differences between
robust and non-robust estimation approaches, as well as high sensitivity
to the choice of outlier treatment strategy (clipping vs removal) and
threshold.

Therefore, we switched to simple and more robust rank-based meth-
ods instead. Specifically, we used Wilcoxon’s rank-sum test to test
the effect of confusability on volume, and Kendall’s correlation to
analyze the relationship between dimensionality and volume (since
dimensionality has three levels, Wilcoxon’s rank-sum test was not
applicable).

C.3. Overall strategy

Overall, when the best model choice or variable coding was not
obvious, we erred on the side of caution, running the analysis both
ways, so that if the results are sensitive to the model choice or are
otherwise unstable, we can report so in the paper.

Appendix D. Bayesian model detail

Since the distribution of students’ accuracies in Experiment 2 (within
specific conditions) was bimodal, with one peak at about 0.5 and the
second peak higher, we needed to account for that when analyzing the
data. The binomial glm that we used in Experiment 1 and in the pilot is
unable to take advantage of such a structure, and can only capture the
most general trends. A likely explanation for such a distribution is that a
student either succeeds in understanding the gist of the communicated
message and gets into the high-performing subgroup group, or fails
to understand anything and performs at chance. A Bayesian mixture
model is a natural choice for statistical analysis of such data.

We modeled student performance in each condition as a mixture
of two distributions: the high-performing subgroup and the communi-
cation failure subgroup (performing at chance). Thus, every condition
had two variables associated with it: (1) Probability of successful
communication, denoted 𝑐. (2) Accuracy in the successful subgroup,
i.e. the probability of giving a correct answer in the case of successful
16

communication, denoted 𝑎.
To write the model formally, we are going to use the upper index
to indicate communication channel, the first lower index to specify
dimensionality (high or low), and the second lower index to specify
confusability (high or low). For example, 𝑎𝑣ℎ𝑙 denotes the accuracy
in the successful subgroup in the case of verbal communication with
high dimensionality and low confusability. To estimate the overall
effect of a given independent variable,10 we look at the total difference
between conditions corresponding to different levels of that variable.
For example, for the verbal channel, the effect of dimensionality on the
accuracy of the successful subgroup is measured as (𝑎𝑣ℎℎ−𝑎

𝑣
𝑙ℎ)+(𝑎

𝑣
ℎ𝑙−𝑎

𝑣
𝑙𝑙).

The unsuccessful subgroup accuracy was fixed to 0.5 in all con-
itions, the successful subgroup accuracy prior was uniform between
.5 and 1 for all conditions, and the probability of learning prior was
niform between 0 and 1.

The model was implemented in JAGS. The credible intervals re-
orted in the paper are based on 10000 MCMC iterations, with 4 chains
nd a 10000 burn-in period.

ccounting for teacher accuracy. As formulated above, the model does
not allow to control for teacher accuracy. We, therefore, also ran an
alternative model, in which the ‘‘accuracy in the successful subgroup’’
coefficient is changed to ‘‘communication proportion in the successful
subgroup’’, sampled uniformly from 0.6 to 1. The accuracy for a student
in is then determined as this coefficient times the accuracy of the
student’s teacher. The value of 0.6 is chosen so that under minimal
possible teacher accuracy (0.85), the resulting student accuracy is
at least 0.5. Otherwise, the subgroup interpretations would start to
overlap in highly undesirable ways.

We observed no qualitative differences in our results when this
model was applied. In the paper, we reported the numbers obtained
with the direct accuracy model since it is more standard and is easier
to interpret.

Appendix E. Time-on-task reanalysis

During the review process, a number of concerns were raised re-
garding the possibility that the data might be polluted by overly fast
students, who click through the experiment without engaging. To make
sure that such students do not skew our results, we have eliminated
them from the data and repeated our analyses.

E.1. Reanalysis procedure

There are different metrics of time-on-task that we could use to
filter out suspiciously fast students. We opted to rely on ‘‘the time
spent studying teaching materials’’, as opposed to the ‘‘median trial
time’’ (a natural alternative). The reasoning behind this choice was as
follows: if communication fails, i.e. if a student failed to understand the
message from their teacher, it seems perfectly reasonable for them to
click through the test examples. In other words, even participants who
acted in good faith and made a fair effort to understand their teacher’s
message might ‘‘click through’’ the test stimuli if, despite their best
effort, they failed to understand the message and do not know what
to do.

With the key variable selected, we used the following exclusion
strategy: in each experiment, we first identified the ‘‘minimal rea-
sonable time’’, i.e. the minimal time that, at least for some students,
was enough to succeed in the experiment. To do so, we found the
fastest among all ‘‘successful’’ students, where ‘‘success’’ was defined as
achieving an accuracy of 65% or above. The number 65 was initially
chosen since with 30 binary trials, the probability of achieving such
accuracy by chance is less than 5%, which seemed sufficiently low. By

10 Here, in Experiment 1, we grouped dimensionalities 3 and 4 into one
‘‘high dimensionality’’ group, for simplicity and to keep the number of
estimated coefficients down.
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Fig. 8. Relationship between Study Duration and Student Accuracy for Different Communication Channels (study duration values above 100 were removed to aid visualization).
Trend lines represent estimated linear relationships on the visualized data, and shaded areas indicate the 95% CIs. The top row corresponds to linear trend estimates, bottom row
— LOWESS. Left column (a, c) - full data, right column (b, d) - anomalously fast students removed. The apparent upward trend is only present if the anomalously fast students
are not removed from the visualization. Note that keeping or removing this group does not substantially affect any of our main results or conclusions (see Appendix E.).
Table 6
Summary statistics for time spent by students on studying teaching materials under different modes of communication in Experiment 1.

Communication channel q10 q25 median q75 q90 mean

Examples 13.51 28.5 45.61 70.9 89.68 73.76
Verbal 6.48 15.37 23.84 44.25 72.88 47.7
Mixed 14.29 23.06 40.65 77.12 186.24 71.41
coincidence, the two fastest successful students in both experiments
happened to have an accuracy of 83.33, so the exact value of the
‘‘success’’ threshold ended up not being important, i.e. our reanalysis
would yield exactly the same results with any ‘‘success’’ threshold under
83.33.

In Experiment 1, the fastest successful student studied their teaching
materials 8.985 s, and in Experiment 2, the number was 5.382. This
discrepancy may be due to the fact that teaching materials were gener-
ally much shorter and faster to study in Experiment 2, because of the
volume restrictions.

Lastly, we removed all students who spent less than 8.985 studying
teaching materials in Experiment 1, and students who spent less than
5.382 studying teaching materials in Experiment 2. With this filtered
dataset, we repeated our previous analyses.

E.1.1. Reanalysis results
In Experiment 1, out of 316 students previously included in the anal-

ysis, we excluded 27, which still left a large number of ‘‘unsuccessful’’
students (84).
17
The median study time for these remaining unsuccessful students
was 32.147, which again shows that failures to communicate did not
all cluster near abnormally low times.

For the second experiment, only three out of 291 participants were
removed.

When we repeated our previous analysis with this filtered data, most
results remained qualitatively unchanged in direction and significance,
with the following exceptions (all related to Bayesian analyses):

Changes in Bayesian analyses:

• Exp. 1: the negative influence of confusability on the probabil-
ity of learning in the verbal channel changed from significant
to marginally significant. New 95% credible interval: (−0.755,
0.065), old: (−0.819, −0.047).

• Exp. 2: the negative influence of dimensionality on the proba-
bility of learning in the example channel shifted from marginal
significance to significance (new 95% credible interval: (−0.647,
−0.107), old: (−0.611, 0.013)).
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Table 7
Experiment 1: Regressing student accuracy on experimental conditions, controlling for teacher’s accuracy
(values without such a control are given in parentheses). The overall model is significant (deviance =
167.81, 𝑑𝑓 = 5, 𝑝𝜒2 < .001).

𝛽 z-value 𝑝-value

Intercept∗∗ 1.39 (1.34) 3.48 (4.25) <.001 (<.001)
Low confusability∗∗ 0.46 (0.45) 2.69 (3.02) .007 (.003)
Dimensions 0.01 (0.01) 0.14 (0.12) .889 (.897)
Channel: exemplar (vs mixed baseline)∗∗ −0.48 (−0.48) −2.73 (−2.72) .006 (.006)
Channel: verbal (vs mixed baseline)∗∗ −0.55 (−0.55) −3.09 (−3.09) .002 (.002)
Logit of teacher accuracy −0.02 (–) −0.18 (–) .854 (–)
Table 8
Experiment 1: Using effect-coded model, regressing student accuracy on experimental conditions, controlling
for teacher’s accuracy (values without such control are given in parentheses). The overall model is significant
(deviance = 197.2, 𝑑𝑓 = 7, 𝑝𝜒2 < .001).

𝛽 z-value 𝑝-value

Intercept∗∗ 1.33 (1.26) 3.95 (16.8) <.001 (<.001)
Confusability∗∗ −0.48 (0.47) −3.04 (3.02) .005 (.002)
Dimensions 0.01 (0.01) 0.11 (0.09) .916 (.925)
Channel h1 (Mixed vs Rest)∗∗ 0.52 (0.52) 3.01 (3.01) .003 (.003)
Channel h2 (Verbal vs Exemplar) −0.02 (−0.02) −0.13 (−0.13) .9 (.9)
Logit of teacher accuracy −0.02 (–) −0.19 (–) .85 (–)
Interaction: h1 × Confusability −0.11 (−0.11) −0.33 (−0.33) .747 (−0.742)
Interaction: h2 × Confusability −0.62 (−0.62) −1.86 (−1.86) .063 (.063)
• Exp. 2: the negative influence of confusability on the probability
of learning in the example channel shifted from marginal signif-
icance to non-significance (new 95% credible interval: (−0.555,
0.078), old: (−0.584, 0.041)).

Overall, there were no dramatic changes in any of the key effects.
The advantage of mixed communication was completely unaffected. Of
the less important effects mentioned in the discussion, two were af-
fected. One shifted from marginal significance to significance, another
— the other way around.

The overall changes in the second experiment, if anything, made
its results more strongly aligned with our pre-registered hypotheses,
since we expected example-based communication to be resilient against
confusability and to be susceptible to changes in dimensionality.

That being said, we believe it is important not to overstate the
consequences of these shifts in significance, especially for marginal
effects, which are generally likely to wane in and out of significance
based even on random sample perturbations.

Overall, none of the effects dramatically changed in direction, mag-
nitude, or significance.

Appendix F. Time vs volume as the efficiency metric

In our experiments, we focused on studying efficiency as accuracy
achieved by students per communication volume unit (i.e. per word or
per example). It is important to mention that other efficiency metrics
are possible, with ‘‘accuracy per unit time’’ being one natural alterna-
tive. Although our experiment was not designed to address the question
of which channel was more efficient per unit time, we have observed
some patterns that are worth mentioning as they might guide further
investigation.

Table 6 presents the median study time for each condition in the
experiment. The data indicate that the median study time in the verbal
condition was considerably lower than in the mixed and exemplar
conditions. Although it is possible that this reflects faster information
comprehension via the verbal channel, we find it likely that this only re-
flects the user interface differences across conditions (see Appendix A).
In the exemplar condition, participants were encouraged to perform an
additional action by clicking on an exemplar to enlarge it and study it
in detail, which likely contributed to a longer study time compared to
the verbal condition.

At the same time, apart from the faster study time in the verbal
18

condition, the general time-on-task patterns largely accord with the
observations and conclusions we reached when analyzing communica-
tion volume (Section 2.2.2). As was mentioned in Appendix E, there
is a small anomalously fast and poorly performing group (which, if
excluded, does not substantially affect our results). Apart from it, as
can be seen on Fig. 8, similarly to communication volume results, there
is no general ‘‘more is better’’ effect when it comes to teaching mate-
rials study time (instead, each channel seems to have a ‘‘sweet spot’’
resulting in the best performance). Also, notably, mixed communication
performs better across a wide range of study times.

Appendix G. Additional experimental results

Please see Table 7 to see additional results for Experiment 1 (coef-
ficient estimates) for student performance regression. See Table 8 for
the effect-coded interaction model results.

Appendix H. Content analysis

It is important to note that, due to the subjective nature of identify-
ing the categories based on manual inspection, and since labeling was
done by authors, rather than independent experts, the results in this
section should be treated as illustrative.

H.1. Method

For all experiments, we analyzed the content of verbal messages
created by teachers, classifying it into a number of typical types of
messages. These types were identified based on the materials collected
during the pilot study.

Specifically, through manual inspection, we identified seven com-
mon types of communicated information. For example, the ‘‘Exemplars’’
message type included messages that verbally describe members or
prototypes of the categories being transferred, while the ‘‘Dimensional-
ity reduction’’ message type included messages that explicitly indicate
that certain dimensions are irrelevant (see Table 9 for definitions and
examples of all message types). We evaluated all teachers’ messages,
identifying which message types they contain. Judgments were made
by two authors independently solely based on teachers’ texts. No other
information was available during the evaluation to avoid possible
biases. All disagreements were later resolved through discussion on a

case-by-case basis.
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Table 9
Types of teachers’ verbal instructions and illustrative examples.

Instruction type & definition Examples

Exemplars
Listing specific feature values that fit the
category

‘‘Type A fish have no tail. Type B have tails.’’, ‘‘Type A fish
have their mouths either closed or slightly open, Type B fish
have their mouths open wide.’’

Relative Rule
Values of the target attribute relative to
another category

‘‘Type A have shorter top fins compared to type B’’, ‘‘Type A
tend to have darker colored undersides’’

Dimensionality Reduction
Explicit indication of relevant or
irrelevant dimensions

‘‘Look at the color on the bottom’’, ‘‘Ignore everything on
the fish except for the mouth’’

Distribution
Optional information about the
distribution of the exemplars along
relevant or irrelevant dimensions

‘‘There are ones with the spike on the head and then others
without the spike’’, ‘‘The belly color of fish type A is always
black’’, ‘‘tend to have’’, ‘‘usually has’’, ‘‘all have’’

Boundaries and Threshold
Upper and lower boundaries of the
category or a value that separates
categories along the key dimension

‘‘All else equal, look at the fins! Medium to long length is
type B, short to short-medium is type A’’, ‘‘The cutoff
between A and B is about midway between a triangle and a
square shaped tail’’

Strategies
Personal experience, heuristics, and
metacognitive strategies useful for the
task

‘‘When in doubt, if the top fin looks like a triangle rather
than a little stub, then it is likely type B’’, ‘‘It is the easiest
way to tell between the two fish’’, ‘‘you will need to pay
attention to how far open their mouths are’’

Other
Reminding instructions, introducing
definitions, and providing other
information to the students.

‘‘It is your goal to distinguish between two types of fish: A
and B’’, ‘‘dorsal fin (the topmost fin on the fish’s back)’’
Table 10
Frequency of different message types in teachers’ texts in all experiments.

Pilot experiment Experiment 1 Experiment 2

Exemplars 74% 73% 69%
Dimensionality Reduction 39% 44% 4%
Relative rule 17% 27% 27%
Distribution 12% 18% 11%
Boundaries and Threshold 18% 14% 11%
Strategies 19% 24% 1%
Other 7% 7% 4%
.
m
a
(

The overall goal of this analysis was to illustrate the content of the
essages in a systematic way and to assess the relationship between

timulus characteristics (dimensionality and confusability) and the fre-
uency of occurrence of different types of communicated information.
abeling of messages was not exclusive, as each teacher-generated
erbal instruction could fall under more than one message type11. After

all messages were labeled, we looked at distributions of these types of
messages across conditions.

H.2. Content analysis results: Experiment 1

We performed content analysis on teacher-generated texts to see
whether teachers adjusted the content of their messages in systematic
ways depending on the condition they were put in. In our pilot study
(see Appendix B), we identified seven common message types present
in teachers’ messages and then tagged all texts according to these
types (each message may belong to more than one message type).
See H.1 for detail on the approach. Most messages (73%) included
descriptions of typical members of each category (‘‘Exemplars’’ message

11 For example, consider ‘‘The difference between type A fish and type B
ish is the size of the dorsal fin (the topmost fin on the fish’s back). Type A
ish have a very short and small dorsal fin whereas type B fish have a much
aller dorsal fin. Mouth position (how open or closed it is) and rear fin size
an both vary between type A and type B fish and therefore are not useful
n distinguishing between the two’’. The ‘‘Type A fish have a very short and
mall dorsal fin’’ snippet belongs to the ‘‘Exemplars’’ category, while ‘‘type B
19

ish have a much taller dorsal fin’’ is a relative rule.
type). Dimensionality Reduction (explicitly stating that certain stimuli
dimensions are not informative) was the second most common type at
44%. All other message types were found in less than 30% of cases each
(see Table 10).

Among the seven message types, we identified two, that, we ex-
pected, would be used more or less depending on our interventions.
Specifically, we expected that higher stimulus dimensionality would
result in a greater proportion of Dimensionality Reduction messages,
while higher confusability would be associated with increased us-
age of Boundaries and Thresholds (to assist in distinguishing between
borderline exemplars).

Teachers were indeed less likely to use Boundaries and Thresh-
old messages in the low confusability condition (3% of cases) than
in the high confusability one (24%), 𝜒2(1, 𝑁 = 218) = 18.29, 𝑝 <
001. However, the effect of dimensionality on the frequency of Di-

ensionality Reduction messages between two- (39%), three- (55%),
nd four-dimensional (38%) conditions was only marginally significant
𝜒2(2, 𝑁 = 218) = 5.39, 𝑝 = .067). Given that it was also not monotone,

we believe that it should be interpreted with caution. These results
closely replicate those obtained in our pilot study (the only difference
— in the pilot, the Dimensionality Reduction result was not significant,
rather than marginally significant).

The key takeaway of this analysis is that the contents of verbal
messages that teachers generate differ in systematic ways, depending
on condition.

Message type distribution across all experiments is given in Ta-
ble 10. One can see that in the restricted volume condition (Experiment

2) some key message types such as ‘‘Exemplars’’ and ‘‘Relative rule’’
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remain as frequent as in the first two experiments. At the same time,
‘‘Dimensionality reduction’’ and ‘‘Strategies’’ message types experience
a precipitous drop. This shows that, although highly frequent in Experi-
ments 1 and 2, these types are secondary and are often sacrificed when
communication volume is restricted.

Category usefulness. To see whether any of the identified categories
ere particularly helpful (or, on the contrary, harmful) in category

ommunication, we ran an additional exploratory analysis. Specifically,
e added the indicator variables for each of the strategies to the main

egression predicting student accuracy. As before we used a binomial
lm with robust variance estimation. Other predictors we controlled
or were communication channel (in this case only mixed or verbal,
ince the categories are not applicable to the exemplar channel), con-
usability, dimensionality, and the logit of teacher accuracy. None of
he predictors were, however, significant.

.3. Content analysis results: Experiment 2

The content of teachers’ verbal messages mostly contained descrip-
ions of typical Exemplars and Relative Rules, as before. However,
he proportion of Dimensionality Reduction messages (4%) dropped
ubstantially compared to Experiment 1 (44%). A similar decline was
ound for the use of Strategies (1% compared to 24% in Experiment
). We attribute this to the word limits that were introduced in this
xperiment. As in the first experiment, high confusability increased
he use of Boundaries and Thresholds from 3 to 20%. This time,
owever, the effect was only marginally significant (𝜒2(1, 𝑁 = 71) =
.68, 𝑝 < .055). No statistically significant differences in Dimensionality
eduction were found between two- (6%) and four-dimensional (3%)
onditions (𝜒2(1, 𝑁 = 71) < 0.01, 𝑝 = .980).
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