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Abstract

We investigate the problem of reliably assessing group fairness when labeled
examples are few but unlabeled examples are plentiful. We propose a general
Bayesian framework that can augment labeled data with unlabeled data to produce
more accurate and lower-variance estimates compared to methods based on labeled
data alone. Our approach estimates calibrated scores for unlabeled examples in each
group using a hierarchical latent variable model conditioned on labeled examples.
This in turn allows for inference of posterior distributions with associated notions
of uncertainty for a variety of group fairness metrics. We demonstrate that our
approach leads to significant and consistent reductions in estimation error across
multiple well-known fairness datasets, sensitive attributes, and predictive models.
The results show the benefits of using both unlabeled data and Bayesian inference
in terms of assessing whether a prediction model is fair or not.

1 Introduction

Machine learning models are increasingly used to make important decisions about individuals. At
the same time it has become apparent that these models are susceptible to producing systematically
biased decisions with respect to sensitive attributes such as gender, ethnicity, and age [Angwin et al.}
2017, Berk et al., 2018, |Corbett-Davies and Goel, [2018, |Chen et al., 2019, Beutel et al., [2019]. This
has led to a significant amount of recent work in machine learning addressing these issues, including
research on both (i) definitions of fairness in a machine learning context (e.g., Dwork et al.[[2012]],
Chouldechoval[2017]), and (ii) design of fairness-aware learning algorithms that can mitigate issues
such as algorithmic bias (e.g.,|Calders and Verwer [2010]], Kamishima et al.|[2012], Feldman et al.
[2015]], Zafar et al.|[2017]], (Chzhen et al.| [2019]).

In this paper we focus on an important yet under-studied aspect of the fairness problem: reliably
assessing how fair a blackbox model is, given limited labeled data. In particular, we focus on
assessment of group fairness of binary classifiers. Group fairness is measured with respect to parity
in prediction performance between different demographic groups. Examples include differences in
performance for metrics such as true positive rates and false positive rates (also known as equalized
odds [Hardt et al., 2016])), accuracy [Chouldechova, 2017], false discovery/omission rates [Zafar
et al.,[2017]], and calibration and balance [Kleinberg et al.,[2016].

Despite the simplicity of these definitions, a significant challenge in assessment of group fairness is
high variance in estimates of these metrics based on small amounts of labeled data. To illustrate this
point, Figure[T|shows frequency-based estimates of group differences in true positive rates (TPRs)
for four real-world datasets. The boxplots clearly show the high variability for the estimated TPRs
relative to the true TPRs (shown in red) as a function of the number of labeled examples ny. In
many cases the estimates are two or three or more times larger than the true difference. In addition, a
relatively large percentage of the estimates have the opposite sign of the true difference, potentially
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Figure 1: Boxplots of frequency-based estimates of the difference in true positive rate (TPR) for four
fairness datasets and binary sensitive attributes, across 1000 randomly sampled sets of labeled test
examples of size n;, = 50, 100, 200. The horizontal red line is the TPR difference computed on the
full test dataset.

leading to mistaken conclusions. The variance of these estimates decreases relatively slowly, e.g.,
at a rate of approximately % for group differences in accuracy where n is the number of labels in

the smaller of the two groupsﬂ Imbalances in label distributions can further compound the problem,
for example for estimation of group differences in TPR or FPR. For example, consider a simple
simulation with two groups, where the underrepresented group makes up 20% of the whole dataset,
groupwise positive rates P(y = 1) are both 20%, and the true groupwise TPRs are 95% and 90%
(additional details in the Supplement). In order to ensure that there is a 95% chance that our estimate
of the true TPR difference (which is 0.05) lies in the range [0.04, 0.06] we need at least 96k labeled
instances. Yet for real-world datasets used in the fairness literature (e.g., Friedler et al.[[2019]]; see
also Tablemlater in the paper), test set sizes are often much smaller than this, and it is not uncommon
for the group and label distributions to be even more imbalanced.

The real-world and synthetic examples above show that frequentist assessment of group fairness
is unreliable unless the labeled dataset is unrealistically large. Acquiring large amounts of labeled
data can be difficult and time-consuming, particularly for the types of applications where fairness is
important, such as decision-making in medical or criminal justice contexts [Angwin et al., 2017, [Berk
et al., 2018} [Rajkomar et al.,|2018]]. This is in contrast to applications such as image classification
where approaches like Mechanical Turk can be used to readily generate large amounts of labeled
data.

To address this problem, we propose to augment labeled data with unlabeled data to generate more
accurate and lower-variance estimates compared to methods based on labeled data alone. In particular,
the three primary contributions of this paper are (1) a comprehensive Bayesian treatment of fairness
assessment that provides uncertainty about estimates of group fairness metrics; (2) a new Bayesian
methodology that uses calibration to leverage information from both unlabeled and labeled examples;
and, (3) systematic large-scale experiments across multiple datasets, models, and attributes that show
that using unlabeled data can reduce estimation error significantly.

2 Fairness Assessment with Bayesian Inference and Unlabeled Data

2.1 Notation and Problem Statement

Consider a trained binary classification model M, with inputs = and class labels y € {0,1}. The
model produces scoreﬂ s = Py(y = 1lz) € [0,1], where Py denotes the fact that this is the
model’s estimate of the probability that y = 1 conditioned on x. Under 0-1 loss the model predicts
g =1if s > 0.5 and § = 0 otherwise. The marginal accuracy of the classifier is P(§ = y) and the
accuracy conditioned on a particular value of the score s is P(§ = y|s). A classifier is calibrated
if P(y = y)|s) = s, e.g., if whenever the model produces a score of s = 0.9 then its prediction is
correct 90% of the time. For group fairness we are interested in potential differences in performance
metrics with respect to a sensitive attribute (such as gender or race) whose values g correspond to
different groups, g € {0,1,...,G — 1}. We will use 6, to denote a particular metric of interest, such

IStratified sampling by group could help with this issue (e.g., see|[Sawade et al. [2010]), but stratification
might not always be possible in practice, and the total variance will still converge slowly overall.

Note that the term “score" is sometimes defined differently in the calibration literature as the maximum
class probability for the model. Both definitions are equivalent mathematically for binary classification.



as accuracy, TPR, FPR, etc. for group g. We focus on group differences for two groups, defined
as A = 01 — 0y, e.g., the difference in a model’s predictive accuracy between females and males,

A=P{=ylg=1)—P(y=ylg=0).

We assume in general that the available data consists of both nz, labeled examples and ng; unlabeled
examples, where n;, < ny, which is a common situation in practice where far more unlabeled data
is available than labeled data. For the unlabeled examples, we do not have access to the true labels y;
but we do have the scores s; = Py (y; = 1|x;), j = 1,...,ny. For the labeled examples, we have
the true labels y; as well as the scores s;,7 = 1,...,ny. The examples (inputs x, scores s, and labels
y if available) are sampled IID from an underlying joint distribution P(x,y) (or equivalently P(s,y)
given that s is a deterministic function via M of x), where this underlying distribution represents
the population we wish to evaluate fairness with respect to. Note that in practice P(z, y) might very
well not be the same distribution the model was trained on. For unlabeled data D,, the corresponding
distributions are P(x) or P(s).

2.2 Beta-Binomial Estimation with Labeled Data

Consider initially the case with only labeled data Dy, (i.e., ny = 0) and for simplicity let the metric
of interest A be group difference in classification accuracy. Let [; = Ij,—,,,1 < i < ny,bea
binary indicator of whether each labeled example ¢ was classified correctly or not by the model.
The binomial likelihood for group accuracy 64, g = 0, 1, treats the I;’s as conditionally independent
draws from a true unknown accuracy 6, I; ~ Bernoulli(f,). We can perform Bayesian inference
on the §,’s by specifying conjugate Beta(c, 5,) priors for each 6,, combining these priors with
the binomial likelihoods, and obtaining posterior densities in the form of the beta densities on each
6,. From here we can get a posterior density on the group difference in accuracy, P(A|Dy,) where
A = 61 — 6. Since the density for the difference of two beta-distributed quantities (the 8’s) is not in
general in closed form, we use posterior simulation (e.g., Gelman et al.| [2013]]) to obtain posterior
samples of A by sampling 6’s from their posterior densities and taking the difference. For metrics
such as TPR we place beta priors on conditional quantities such as §, = P(y = 1|y = 1, g). In all of
the results in the paper we use weak uninformative priors for 8, with oy = 8, = 1. This general
idea of using Bayesian inference on classifier-related metrics has been noted before for metrics such
marginal accuracy [Benavoli et al.,[2017]], TPR [Johnson et al.,2019], and precision-recall [Goutte
and Gaussier, [2005]], but has not been developed or evaluated in the context of fairness assessment.

This beta-binomial approach above provides a useful, simple, and practical tool for understanding and
visualizing uncertainty about fairness-related metrics, conditioned on a set of n, labeled examples.
However, with weak uninformative priors, the posterior density for A will be relatively wide unless
ny, is very large, analogous to the high empirical variance for frequentist point estimates in Figure
1. As with the frequentist variance, the width of the posterior density on A will decrease relatively
slowly at a rate of approximately nl . This motivates the main goal of the paper: can we combine
unlabeled examples with labeled examples to make more accurate inferences about fairness metrics?

2.3 Leveraging Unlabeled Data with a Bayesian Calibration Model

Consider the situation where we have ny unlabeled examples, in addition to the ny, labeled ones. For
each unlabeled example j = 1,...,ny we can use the model M to generate a score, s; = Py (y; =
1|z;). If the model M is perfectly calibrated then the model’s score is the true probability that y = 1,
i.e., we have s; = Py (y; = 1|s;) and the accuracy equals s; if s; > 0.5 and 1 — s; otherwise.
Therefore, in the perfectly calibrated case, we could empirically estimate accuracy per group for the
unlabeled data using scores via 6, = (1/n4) D jeg Sid(sj 2 0.5) + (1 —s;)I(s; <0.5), where
ny,g is the number of unlabeled examples that belong to group g. Metrics other than accuracy could
also be estimated per group in a similar fashion.

In practice, however, many classification models, particularly complex ones such as deep learning
models, can be significantly miscalibrated (see, e.g.,/Guo et al.|[2017]], [Kull et al.|[2017]],[Kumar et al.
[2019]],|Ovadia et al.[[2019]]) and using the uncalibrated scores in such situations will lead to biased
estimates of the true accuracy per group. The key idea of our approach is to use the labeled data to
learn how to calibrate the scores such that the calibrated scores can contribute to less biased estimates
of accuracy. Let z; = E[I(§; = y;)] = P(y; = ¥;|s; ) be the true (unknown) accuracy of the model
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Figure 2: Hierarchical Bayesian calibration of two demographic groups across four dataset-group
pairs, with posterior means and 95% credible intervals per group. The z-axis is the model score s
for class y = 1, and the y-axis is the calibrated score. Instances in each group are binned into 5
equal-sized bins by model score, and blue and red points show the fraction of positive samples per
group for each bin.

given score s;. We treat each z;, 7 = 1,...,ny as a latent variable per example. The high-level steps
of the approach are as follows:

o We use the ny, labeled examples to estimate groupwise calibration functions with parameters
@4, that transform the (potentially) uncalibrated scores s of the model to calibrated scores.
More specifically, we perform Bayesian inference (see Section[2.4]below) to obtain posterior
samples from P(¢,|D,) for the groupwise calibration parameters @,.

e We then obtain posterior samples from Py, (z;|Dp, s;) for each unlabeled example j =
1,...,ny, conditioned on posterior samples of the ¢,’s.

o Finally, we use posterior samples from the z;’s, combined with the labeled data, to generate
estimates of the groupwise metrics 6, and the difference in metrics A.

Y *ny
by combining estimates of accuracies for the unlabeled examples with the observed outcomes for the

labeled instances:
1
o = — — I(y;, = vy;) + zt-) 1
= g (2 =+ 3 ™

1:11E€EQ J:j€g

We can compute a posterior sample for 87, given each set of posterior samples for ¢! and 21, . . ., 2}

where t = 1, ..., T is an index over 7' MCMC samples. These posterior samples in turn can be used
to generate an empirical posterior distribution {A!, ... AT} for A, where A? = 0% — 6§. Mean
posterior estimates can be obtained by averaging over samples, i.e. A= (1/7) Z? A'. Even with
very small amounts of labeled data (e.g., n;, = 10) we will demonstrate later in the paper that we can
make much more accurate inferences about fairness metrics via this Bayesian calibration approach,
compared to using only the labeled data directly.

2.4 Hierarchical Bayesian Calibration

Bayesian calibration is a key step in our approach above. We describe Bayesian inference below for
the beta calibration model specifically [Kull et al.,|2017] but other calibration models could also be
used. The beta calibration model maps a score from a binary classifier with scores s = Py (y =
1|z) € [0,1] to a recalibrated score according to:

1
1+ e—c—alogs+b log(1—s)

f(s;a,b,¢) = 2
where a, b, and c are calibration parameters with a,b > 0. This model can capture a wide variety
of miscalibration patterns, producing the identity mapping if s is already calibrated when a = b =
1,c = 0. Special cases of this model are the linear-log-odds (LLO) calibration model [Turner et al.,
2014] when a = b, and temperature scaling [|Guo et al.,2017] when a = b, ¢ = 0.

In our hierarchical Bayesian extension of the beta calibration model, we assume that each group (e.g.,
female, male) is associated with its own set of calibration parameters ¢, = {a,, by, ¢4} and therefore



each group can be miscalibrated in different ways (e.g., see Figure[2)). To apply this model to the
observed data, we assume that the true labels for the observed instances are sampled according to:

y; ~ Bernoulli(f(s; ag,, b, cg,))

where g; is the group associated with instance ¢, 1 < ¢ < ny. For any unlabeled example j =
1,...,ny, conditioned on calibration parameters ¢, for the group for j, we can compute the latent
variable z; = f(s;;...)I(s; > 0.5) + (1 — f(s;;...))I(s; < 0.5), i.e., the calibrated probability
that the model’s prediction on instance j is correct.

We assume that the parameters from each individual group are sampled from a shared distribution:
logag ~ N(pa,04),108bg ~ N(pp,0),¢q ~ N(pe, 0c) where m = {tq, 0q, fib; Ob, fie, ¢} 1S the
set of hyperparameters of the shared distributions. We complete the hierarchical model by placing
the following priors on the hyperparameters (TN is the truncated normal distribution):

fta ~ N(0,.4), iy ~ N(0, .4), st ~ N(0,2), 04 ~ TN(0,.15), o, ~ TN(0,.15), o, ~ TN(0,.75)

These priors were chosen to place reasonable bounds on the calibration parameters and allow for
diverse patterns of miscalibration (e.g., both over and under-confidence or a model) to be expressed a
priori. We use exactly these same prior settings in all our experiments across all datasets, all groups,
and all labeled and unlabeled dataset sizes, demonstrating the robustness of these settings across a
wide variety of contexts. In addition, the Supplement contains results of a sensitivity analysis for
the variance parameters in the prior, illustrating robustness across a broad range of settings of these
parameters.

The model was implemented as a graphical model (see Supplement) in JAGS, a common tool for
Bayesian inference with Markov chain Monte Carlo [Plummer, 2003[]. All of the results in this
paper are based on 4 chains, with 1500 burn-in iterations and 200 samples per chain, resulting in
T = 800 sample overall. These hyperparameters were determined based on a few simulation runs
across datasets, checking visually for lack of auto-correlation, with convergence assessed using the
standard measure of within-to-between-chain variability. Although MCMC can sometimes be slow
for high-dimensional problems, with 100 labeled data points (for example) and 10k unlabeled data
points the sampling procedure takes about 30 seconds (using non-optimized Python/JAGS code on a
standard desktop computer) demonstrating the practicality of this procedure.

Theoretical Considerations: Lemma[2.1]below relates potential error in the calibration mapping
(e.g., due to misspecification of the parametric form of the calibration function f(s;...)) to error in
the estimate of A itself.

Lemma 2.1. Given a prediction model M and score distribution P(s), let f4(s; ¢g4) : [0,1] — [0, 1]
denote the calibration model for group g; let f;(s) : [0,1] — [0, 1] be the optimal calibration

function which maps s = Py (§ = 1lg) to P(y = 1|g); and A* is the true value of the metric.
Then the absolute error of the expected estimate w.r.t. ¢ can be bounded as: |[E,A — A*| <

Ifo = falls +1IF1 = fi |l where fo(s) = Eg, fo(s: 69),¥s € [0,1], and || - |1 is the expected L1
distance w.r.t. P(s|g). (Proof provided in the Supplement).

Thus, reductions in the L1 calibration error directly reduce an upper bound on the L1 error in
estimating A. The results in Figure [2 suggest that even with the relatively simple parametric beta
calibration method, the error in calibration (difference between the fitted calibration functions) (blue
and red curves) and the empirical data (blue and red dots) is quite low across all 4 datasets. The
possibility of using more flexible calibration functions is an interesting direction for future work.

3 Datasets, Classification Models, and Illustrative Results

One of the main goals of our experiments is to assess the accuracy of different estimation methods,
using relatively limited amounts of labeled data, relative to the true value of the metric. By “true
value" we mean the value we could measure on an infinitely large test sample. Since such a sample is
not available, we use as a proxy the value of metric computed on all of the test set for each dataset in
our experiments.

We followed the experimental methods and used the code for preprocessing and training prediction
models from |Friedler et al.|[2019] who systematically compared fairness metrics and fairness-aware



Table 1: Datasets used in the paper. G is the sensitive attribute, P(g = 0) is the probability of
the privileged group, and P(y = 1) is the probability of the positive label for classification. The
privileged groups g = 0 are gender: male, age: senior or adult, and race: white or Caucasian.

Dataset Test Size G P(g=0) Py=1)
Adult 10054  gender, race 0.68, 0.86 0.25
Bank 13730 age 0.45 0.11

German 334 age, gender  0.79, 0.37 0.17

Compas-R 2056 gender, race 0.7, 0.85 0.69
Compas-VR 1337 gender, race 0.8, 0.34 0.47
Ricci 40 race 0.65 0.50

Adult, Gender Bank, Age German Age Compas-R, Gender
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Figure 3: Posterior density (samples) and frequentist estimates (dotted vertical blue lines) for the
difference in group accuracy A for 4 datasets with n;, = 20 random labeled examples for both
the BB (beta-binomial) and BC (Bayesian calibration) methods. Ground truth is a vertical black
line. The underlying model is an MLP. The 20 examples were randomly sampled 20 different times.
Upper plots show the histograms of posterior samples for the first sample, lower plots show the 95%
posterior credible intervals for all 20 runs, where the x-axis is A.

algorithms across a variety of datasets. Specifically, we use the Adult, German Credit, Ricci, and
Compas datasets (for recidivism and violent recidivism), all used in[Friedler et al.|[2019], as well as
the Bank Telemarketing dataset 2014]. Summary statistics for the datasets are shown in
Table[T} Classification models (logistic regression, multilayer perceptron (MLP) with a single hidden
layer, random forests, Gaussian Naive Bayes) were trained using standard default parameter settings
with the code provided by [Friedler et al.|[2019] and predictions generated on the test data. Sensitive
attributes are not included as inputs to the models. Unless a specific train/test split is provided in the
original dataset, we randomly sample 2/3 of the instances for training and 1/3 for test. Additional
details on models and datasets are provided in the Supplement.

Ilustrative Results: To illustrate our approach we compare the results of the frequentist, beta-
binomial (BB), and Bayesian calibration (BC) approaches for assessing group differences in accuracy
across 4 datasets, for a multilayer perceptron (MLP) binary classifier. We ran the methods on 20 runs
of randomly sampled sets of n;, = 20 labeled examples. The BC method was given access to the
remaining ny unlabeled test examples minus the 20 labeled examples for each run, as described in
Table[T] We define ground truth as the frequentist A value computed on all the labeled data in the test
set. Figure 3] shows the results across the 4 datasets. The top figure corresponds to the first run out of
20 runs, showing the histogram of 800 posterior samples from the BB (blue) and BC (red) methods.
The lower row of plots summarizes the results for all 20 runs, showing the 95% posterior credible
intervals (CIs) (red and blue horizontal lines for BC and BB respectively) along with posterior means
(red and blue marks).

Because of the relatively weak prior (Beta(1,1) on group accuracy) the posterior means of the BB
samples tend to be relatively close to the frequentist estimate (light and dark blue respectively) on
each run and both can be relatively far away from ground truth value for A (in black). Although
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Figure 4: Mean absolute error (MAE) of the difference between algorithm estimates and ground truth
for group difference in FPR, as a function of number of labeled instances, for 8 different dataset-group
pairs. Shading indicates 95% error bars for each method.

the BB method is an improvement over being frequentist, in that it provides posterior uncertainty
about A, it nonetheless has high variance (locations of the posterior means) as well as high posterior
uncertainty (relatively wide Cls). The BC method in contrast, by using the unlabeled data in addition
to the labeled data, produces posterior estimates where the mean tends to be much closer to ground
truth than BC.

The posterior information about A can be used to provide users with a summary report that includes
information about the direction of potential bias (e.g., P(A > 0|Dy,, Dy ), the degree of bias (e.g.,
via the MPE A), 95% posterior CIs on A, and the probability that the model is “practically fair"
(assessed via P(|A| < €|Dr, Dy ), e.g., see Benavoli et al|[2017])). For example with BC, given the
observed data, practitioners can conclude from the information in the upper row of Figure 3 and
with € = 0.02, that there is a 0.99 probability for the Adult data that the classifier is more accurate
for females than males; and with probability 0.87 that the classifier is practically fair with respect to
accuracy for junior and senior individuals in the Bank data.

4 Experiments and Results

In this section we systematically evaluate the quality of different estimation approaches by repeating
the same type of experiment as in Section [3|and Figure [3| across different amounts of labeled data
nr. In particular, for each value of ny we randomly sample sets of labeled datasets of size ny,
generate point estimates of a metric A of interest for each labeled dataset for each of the BB and
BC estimation methods, and compute the mean absolute error (MAE) between the point estimates
and the true value (computed on the full labeled test set). The frequency-based estimates are not
shown for clarity—they are almost always worse than both BB and BC. As an example, Figure ]
illustrates the quality of estimation where A is the FPR group difference A for the MLP classification
model, evaluated across 8 different dataset-group pairs. Each y-value is the average of 100 different
randomly sampled sets of ny, instances, where ny, is the corresponding x-axis value. The BC method
dominates BB across all datasets indicating that the calibrated scores are very effective at improving
the accuracy in estimating group FPR. This is particularly true for small amounts of labeled data (e.g.,
up to ny, = 100) where the BB Method can be highly inaccurate, e.g., MAEs on the order of 10 or
20% when the true value of A is often less than 10%.

In the Supplement we show that the trend of results shown in Figure ] namely that BC produces
significantly more accurate estimates of group fairness metrics A, is replicated across all 4 classifica-
tion models that we investigated, across FPR, TPR and Accuracy metrics, and across all datasets. To
summarize the full set of results we show a subset in tabular form, across all 4 classification models
and 10 dataset-group pairs, with ny, fixed: Table [2|for Accuracy with nz, = 10 and Table [3|for TPR
with ny, = 200. (We used larger ny, values for TPR and FPR than for accuracy in the results above
since TPR and FPR depend on estimating conditional probabilities that can have zero supporting
counts in the labeled data, causing a problem for frequentist estimators). The results above and in the



Table 2: MAE for A Accuracy Estimates, with n;, = 10, across 100 runs of labeled samples,
for 4 different trained models (groups of columns) and 10 different dataset-group combinations
(rows). Lowest error rate per row-col group in bold if the difference among methods are statistically
significant under Wilcoxon signed-rank test (p=0.05). Estimation methods are Freq (Frequentist),
BB, and BC. Freq and BB use only labeled samples, BC uses both labeled samples and unlabeled
data. Trained models are Multilayer Perceptron, Logistic Regression, Random Forests, and Gaussian
Naive Bayes.

Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes
Dataset, Attribute Freq BB BC Freq BB BC Freq BB BC Freq BB BC
Adult, Race 16.5 18.5 3.9 164 187 29 165 182 3.2 17.6 189 3.6
Adult, Gender 197 174 5.1 19.1 16.1 2.2 177 174 48 19.7 162 54
Bank, Age 159 139 2.5 139 13.0 1.4 11.8 11.1 1.0 155 137 1.7
German, Age 346 198 5.0 37.1 212 8.7 33.6 187 8.2 36.6 204 11.5
German, Gender 30.7 21.6 8.2 256 174 6.3 277 193 8.6 30.0 20.1 6.5
Compas-R, Race 31,5 21.0 4.2 31.7 204 4.8 293 203 24 335 232 8.4
Compas-R, Gender 337 21.6 5.0 343 219 38 363 233 44 40.5 255 13.7
Compas-VR, Race 187 17.1 4.0 185 156 44 182 158 24 26.6 19.8 6.5
Compas-VR, Gender 20.6 169 5.4 199 16.6 53 223 190 6.3 313 215 9.8
Ricci, Race 235 177 14.6 146 14.6 7.9 63 122 21 89 13.1 1.6

Table 3: MAE for A TPR Estimates, with n;, = 200. Same setup as for Table [2] Compas-VR
race and Ricci race are not included since there are no positive instances for some groups, and some
entries under Freq cannot be estimated for the same reason.

Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes
Dataset, Attribute Freq BB BC Freq BB BC Freq BB BC Freq BB BC
Adult, Race — 125 5.8 — 147 7.0 — 143 4.6 — 146 3.0
Adult, Gender 16.3 143 4.3 15.8 14.0 4.6 16.1 142 173 150 134 11.5
Bank, Age 16.8 15.0 4.8 17.7 159 4.2 16.6 149 3.1 17.3 157 2.3
German, Age 47 47 3.0 56 54 2.6 5.1 51 31 6.8 65 2.8
German, Gender 0.7 1.0 1.6 33 33 2.1 3.1 32 21 48 47 2.2
Compas-R, Race — 7.6 2.5 — 79 2.6 — 92 21 — 4.5 2.0
Compas-R, Gender 100 95 1.9 100 94 1.8 11.3 107 2.6 56 55 0.3
Compas-VR, Gender 149 122 29 89 10.7 2.0 146 105 72 125 10.0 1.3

Supplement demonstrate the significant gains in accuracy that can be achieved with the proposed
approach. We also evaluated the effect of using LLO calibration instead of beta calibration methods
and found little difference between the two methods (details in Supplement).

For concreteness we demonstrated our results with three popular fairness metrics (A accuracy, TPR,
and FPR) in the paper. However, we can directly extend this approach to handle metrics such as
calibration and balance [Kleinberg et al.l 2016] as well as ratio-based metrics. In particular, by
predicting the distribution of class labels y with the calibrated model scores, any fairness metric that
can be defined as a deterministic function of calibrated model scores s, labels y and groups g can
levarage unlabeled data to reduce variance using our proposed method.

Consideration of the bias-variance properties of the different methods reveals a fundamental tradeoff.
The labeled data contribute no bias to the estimate but can have high variance for small ny,, whereas
the unlabeled data (via their calibrated scores) contribute little variance but can have a persistent
bias due to potential misspecification in the parametric calibration model. An open question, that
is beyond the scope of this paper, is how to balance this bias-variance tradeoff in a more adaptive
fashion as a function of ny, and ny, to further improve the accuracy of estimates of fairness metrics
for arbitrary datasets. One potential option would be to a more flexible calibration method (e.g.,
Gaussian process calibration as proposed in [Wenger et al.|[2020]). Another option would be to
automatically quantify the calibration bias and tradeoff the contributions of labeled and unlabeled
data accordingly in estimating 6,’s and A.

We also found empirically that while the posterior credible intervals (CIs) for the BB method are
well-calibrated, those for BC tended to be overconfident as ny, increases (see Supplement for details).
This is likely due to misspecification in the parametric beta calibration model. An interesting and
important direction for future work is to develop methods that are better calibrated in terms of
posterior credible intervals (e.g., |Syring and Martin| [2019]]) and that can retain the low-variance
advantages of the BC approach we propose here.



5 Related Work

Our Bayesian calibration approach builds on the work of [Turner et al.|[2014] who used hierarchi-
cal Bayesian methods for calibration of human judgement data using the LLO calibration model.
Bayesian approaches to classifier calibration include marginalizing over binned model scores [Naeini
et al.l 2015]] and calibration based on Gaussian processes [Wenger et al., [2020]. The Bayesian
framework of [Welinder et al.| [2013]] in particular is close in spirit to our work in that unlabeled
examples are used to improve calibration, but differs in that a generative mixture model is used for
modeling of scores rather than direct calibration. None of this prior work on Bayesian calibration
addresses fairness assessment and none (apart from |Welinder et al.| [2013]]) leverages unlabeled data.

There has also been work on uncertainty-aware assessment of classifier performance such as the use
of Bayesian inference for classifier-related metrics such as marginal accuracy [Benavoli et al.| 2017]]
and precision-recall [Goutte and Gaussier, 2005]. Although these approaches share similarities with
our work, they do not make use of unlabeled data. In contrast, the Bayesian evaluation methods
proposed by [Johnson et al.|[[2019]] can use unlabeled data but makes strong prior assumptions that
are specific to the application domain of diagnostic testing. More broadly, other general approaches
have been proposed for label-efficient classifier assessment including stratified sampling [Sawade
et al., |2010]], importance sampling [Kumar and Raj, |2018]], and active assessment with Thompson
sampling [J1 et al.,2020]]. All of these ideas could in principle be used in conjunction with our
approach to further reduce estimation error.

In the literature on algorithmic fairness there has been little prior work on uncertainty-aware as-
sessment of fairness metrics—one exception is the proposed use of frequentist confidence interval
methods for groupwise fairness in Besse et al.|[2018]]. [Dimitrakakis et al.|[2019] proposed a frame-
work called “Bayesian fairness," but focused on decision-theoretic aspects of the problem rather
than estimation of metrics. [Foulds et al.|[2020] developed Bayesian approches for for parametric
smoothing across groups to improve the quality of estimation of intersectional fairness metrics.
However, none of this work makes use of unlabeled data to improve fairness assessment. And while
there is prior work in fairness on leveraging unlabeled data [Chzhen et al., 2019, [Noroozi et al., 2019}
Wick et al.,[2019, [Zhang et al., 2020]], the goal of that work has been to produce classifiers that are
fair, rather than to assess the fairness of existing classifiers.

Finally, there is recent concurrent work from a frequentist perspective that uses Bernstein inequalities
and knowledge of group proportions to upper bound the probability that the difference between
the frequentist estimate of A and the true A exceeds some value [Ethayarajh| [2020]. While this
work differs from our approach in that it does not explore the use of unlabeled data, the same broad
conclusion is reached, namely that there can be high uncertainty in empirical estimates of groupwise
fairness metrics, given the typical sizes of datasets used in machine learning.

6 Conclusions

To answer to the question “can I trust my fairness metric," we have stressed the importance of being
aware of uncertainty in fairness assessment, especially when test sizes are relatively small (as is
often the case in practice). To address this issue we propose a framework for combining labeled and
unlabeled data to reduce estimation variance, using Bayesian calibration of model scores on unlabeled
data. The results demonstrate that the proposed method can systematically produce significantly more
accurate estimates of fairness metrics, when compared to only using labeled data, across multiple
different classification models, datasets, and sensitive attributes. The framework is straightforward to
apply in practice and easy to extend to problems such as intersectional fairness (where estimation
uncertainty is likely a significant issue) and to evaluation of fairness-aware algorithms.



Broader Impacts

Machine learning classifiers are currently widely used to make decisions about individuals, across a
broad variety of societal contexts: education admissions, health insurance, medical diagnosis, court
decisions, marketing, face recognition, and more—and this trend is likely to continue to grow. It is
now well-recognized that these machine learning models are susceptible to built-in biases that can lead
to systematic discrimination against protected groups. The machine learning research community has
begun to recognize this important issue and in the past few years had devoted considerable research
resources towards developing principles, frameworks, and algorithmic solutions to address these
problems.

In this general context, this paper addresses the understudied problem of how to assess how fair or
unfair a model may be, and how much confidence we should have in this assessment given access to
a limited amount of labeled data. One particular example of how the proposed approach can be used
is in the increasingly common situation where the user of a blackbox classification model needs to
assess its performance from a fairness perspective, in a manner that is separate and independent from
the claims made by the entity that trained the model. For example, a hospital system or a university
might wish to evaluate the fairness characteristics of a pre-trained classification model in the specific
context of the population of patients or students in their institution. The methodology developed in
this paper is well-suited to such an application.

In terms of negative potential outcomes, although the proposed approach was shown to be robust
across multiple datasets and models relative to existing techniques, as with any machine learning
methodology there are nonetheless potential blind spots such as the impact of misspecification in
the calibration model on the accuracy of estimates of metrics and on posterior credible intervals. In
addition, there is also always the danger of miscommunication of the results of the type of estimation
methodology proposed here, in particular given the various challenges in communicating concepts
related to uncertainty to a non-expert audience (e.g.,\van der Bles et al.| [2019]).
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