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Appendix: Frequentist Estimation of Group Differences

Synthetic Example (in Section 1): In Section 1 in the main paper we described a simple illustrative
simulation to emphasize the point that large amounts of labeled data are often necessary to estimate
groupwise fairness metrics accurately. The simulation consists of simulated data from two groups,
where the underrepresented group makes up 20% of the whole dataset, groupwise positive rates
P (y = 1) are both 20%, and the true groupwise TPRs are 95% and 90% (i.e., the true ∆ is 0.05).
TPR for group g is defined as P (ŷ = 1|y = 1, g) (See Section 2.1 in the paper for more details on
notation). In Figure 1, we show in this simulation that a large number nL of labeled examples (at
least 96,000) is needed to ensure there is a 95% chance that our estimate of the true TPR difference
(which is 0.05) lies in the range [0.04, 0.06].
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Figure 1: Percentage of 10000 independent simulations whose estimates of ∆ TPR are in the range
[0.04, 0.06], as a function of the number of labeled examples nL.
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Appendix: Additional Details on Datasets and Classifiers

Datasets We performed experiments with six different real-world datasets. Summary statistics
(e.g., test set size) are provided in Table 3 in the main paper. Below we provide additional details
about these datasets in terms of background, relevant attributes, and how train and test splits were
created. For all datasets, we preprocessed the data using the code from Friedler et al. (2018)1. We
removed all instances that have missing data, and represented categorical variables with one-hot
encoding. As in Friedler (2018), for all datasets except Adult we randomly sampled 2/3 of the data
for training and use the remaining 1/3 for test. For the Adult data we re-split the training set of the
original data into train and test as in Friedler et al. (2018).

• Adult: The Adult dataset2 from the UCI Repository of Machine Learning Databases is based
on 1994 U.S. census income data. This dataset consists of 14 demographic attributes for
individuals. Instances are labeled according to whether their income exceeds $50,000 per
year. In our experiments, “race" and “gender" are considered sensitive attributes. Instances
are grouped into “Amer-Indian-Inuit," “Asian-Pac-Islander," “Black," “Other" and “White"
by race, and “Female" and “Male" by gender. “White" and “Male" are the privileged groups.

• Bank: The Bank dataset3 contains information about individual collected from a Portuguese
banking institution. There are 20 attributes for each individuals, including marital status,
education, and type of job. The sensitive attribute we use is “age," binarized by whether
a individual’s age is above 40 or not. The senior group is considered to be privileged.
Instances are labeled by whether the individual has subscribed to a term deposit account or
not.

• German: The German Credit dataset4 from the UCI Repository of Machine Learning
Databases describes individuals with 20 attributes including type of housing, credit history
status, and employment status. Each instance is labeled as being a good or bad credit risk.
The sensitive attributes used are “gender" and “age" (age at least 25 years old) and the
privileged groups are defined as “male" and “adult."

• Compas-R: The ProPublica dataset5 contains information about the use of the COMPAS
(Correctional Offender Management Profiling for Alternative Sanctions) risk assessment
tool applied to 6,167 individuals in Broward County, Florida. Each individual is labeled
by whether they were rearrested within two years after the first arrest. Sensitive attributees
are “gender" and “race." By “gender", individuals are grouped into “Male" and “Female";
by “race", individuals are grouped into “Caucasian." “Asian," “Native-American," “African-
American," “Hispanic" and “Others." The privileged groups are defined to be “Male" and
“Caucasian."
• Compas-VR: This is the violent recidivism version6 of the ProPublica data (Compas-R

above), where the predicted outcome is a re-arrest for a violent crime.
• Ricci: The Ricci dataset7 is from the case of Ricci v. DeStefano from the Supreme Court of

the United States (2009). It contains 118 instances and 5 attributes, including the sensitive
attribute “race." The privileged group was defined to be “White." Each instance is labeled
by a promotion decision for each individual.

Classification Models We used the following classification models in our experiments: logistic
regression, multilayer perceptron (MLP) with a single hidden layer of size 10, random forests (the
number of trees in the forest is set to 100), Gaussian Naive Bayes. The models were trained using
standard default parameter settings and using the code provided by Friedler et al. (2018). Predictions
from the trained models were generated on the test data. Sensitive attributes were not included as
inputs to the models during training or test.

1https://github.com/algofairness/fairness-comparison/blob/master/fairness/
preprocess.py

2https://archive.ics.uci.edu/ml/machine-learning-databases/adult
3http://archive.ics.uci.edu/ml/datasets/Bank+Marketing
4https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german
5https://github.com/propublica/compas-analysis
6https://github.com/propublica/compas-analysis
7https://ww2.amstat.org/publications/jse/v18n3/RicciData.csv
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Appendix: Complete Experimental Results

In Figure 4 and in Tables 2 and 3 in the main paper we reported summary results of systematic
comparisons between the frequentist method, the beta-binomial model (BB) method, and the Bayesian
calibration (BC) method, in terms of the mean absolute estimation error as a function of the number
of labeled examples nL.

In this section we provide complete tables and graphs for these results. In the tables the lowest error
rate per row-column group is in bold if the difference among methods is statistically significant
under a Wilcoxon signed-rank test (p=0.05). As in the results in the main paper, the results below
demonstrate that BC produces significantly more accurate estimates of group fairness metrics ∆ than
the BB or frequentist estimates, across all 4 classification models that we investigated, across FPR,
TPR and Accuracy metrics, and across all datasets8

Table 1: MAE for ∆ Accuracy Estimates, with different nL. Mean absolute error between estimates
and true ∆ across 100 runs of labeled samples of different sizes nL for different trained models
(groups of columns) and 10 different dataset-group combinations (groups of rows). Estimation
methods are Freq (frequentist), BB (beta-binomial), and BC (Bayesian-calibration). Freq and BB
use only labeled samples, BC uses both labeled samples and unlabeled data. Trained models are
Multilayer Perceptron, Logistic Regression, Random Forests, and Gaussian NaiveBayes.

Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes

Group n Freq BB BC Freq BB BC Freq BB BC Freq BB BC

Adult 10 16.5 18.5 3.9 16.4 18.7 2.9 16.5 18.2 3.2 17.6 18.9 3.6
Race 100 8.2 8.5 3.5 7.3 9.1 3.2 7.6 9.0 3.1 8.2 9.5 2.8

1000 2.5 2.5 1.6 2.1 2.3 1.7 2.0 2.1 1.4 2.3 2.3 1.4
Adult 10 19.7 17.4 5.1 19.1 16.1 2.2 17.7 17.4 4.8 19.7 16.2 5.4

Gender 100 5.5 5.4 4.4 5.6 5.5 1.9 5.9 5.9 4.1 6.2 6.0 2.7
1000 1.9 1.9 1.6 1.7 1.7 1.1 1.6 1.5 2.0 1.6 1.5 1.1

Bank 10 15.9 13.9 2.5 13.9 13.0 1.4 11.8 11.1 1.0 15.5 13.7 1.7
Age 100 4.4 4.3 2.0 4.3 4.3 1.2 4.3 4.2 0.9 5.0 5.0 1.1

1000 1.5 1.5 1.1 1.6 1.6 0.7 1.4 1.4 0.5 1.7 1.7 0.8
German 10 34.6 19.8 5.0 37.1 21.2 8.7 33.6 18.7 8.2 36.6 20.4 11.5

age 100 8.5 8.0 3.9 8.2 7.6 3.8 8.8 8.2 4.3 9.7 9.1 4.2
200 4.4 4.2 3.1 4.5 4.4 3.3 4.9 4.8 3.3 4.8 4.7 3.5

German 10 30.7 21.6 8.2 25.6 17.4 6.3 27.7 19.3 8.6 30.0 20.1 6.5
Gender 100 7.3 7.1 5.4 7.1 6.9 3.7 7.2 7.0 4.8 6.0 5.9 2.8

200 3.2 3.2 3.0 4.0 3.9 2.9 3.6 3.5 2.9 4.0 4.0 2.2
Compas-R 10 31.5 21.0 4.2 31.7 20.4 4.8 29.3 20.3 2.4 33.5 23.2 8.4

Race 100 6.8 6.8 2.8 7.4 7.4 3.4 8.7 8.5 1.8 8.2 7.9 6.0
1000 2.0 2.0 1.6 1.9 1.9 1.6 1.9 2.0 1.2 2.0 1.9 1.8

Compas-R 10 33.7 21.6 5.0 34.3 21.9 3.8 36.3 23.3 4.4 40.5 25.5 13.7
Gender 100 9.3 8.8 3.3 9.5 9.0 2.6 8.8 8.5 2.7 10.2 9.7 8.0

1000 2.1 2.0 1.4 2.2 2.2 1.3 2.4 2.4 1.4 1.9 1.9 1.8
Compas-VR 10 18.7 17.1 4.0 18.5 15.6 4.4 18.2 15.8 2.4 26.6 19.8 6.5

Race 100 5.5 5.6 3.1 5.1 5.1 3.4 6.0 6.3 2.0 6.8 6.6 3.7
1000 0.9 0.9 0.8 0.9 0.9 0.8 0.9 0.9 0.8 1.1 1.1 0.9

Compas-VR 10 20.6 16.9 5.4 19.9 16.6 5.3 22.3 19.0 6.3 31.3 21.5 9.8
Gender 100 6.4 6.3 3.4 6.1 6.0 3.1 6.3 6.3 4.4 7.3 7.1 4.5

1000 1.0 1.0 0.9 1.0 1.0 0.9 0.9 0.9 1.0 1.4 1.4 0.9
Ricci 10 23.5 17.7 14.6 14.6 14.6 7.9 6.3 12.2 2.1 8.9 13.1 1.6
Race 20 12.9 11.1 9.8 8.4 9.3 7.1 3.9 8.5 1.5 3.8 9.4 2.1

30 8.5 7.5 6.5 4.9 5.7 4.6 2.0 6.0 1.1 2.8 6.5 2.0

8“—” in Tables 2 and 3 there are entries where the frequentist estimates of TPR or FPR do not exist.
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Table 2: MAE for ∆ TPR Estimates, with different nL. Mean absolute error between estimates and
true ∆ across 100 runs of labeled samples of different sizes nL for different trained models (groups
of columns) and 8 different dataset-group combinations (groups of rows). Estimation methods are
Freq (Frequentist), BB (beta-binomial), and BC (Bayesian-calibration). Freq and BB use only labeled
samples, BC uses both labeled samples and unlabeled data. Trained models are Multilayer Perceptron,
Logistic Regression, Random Forests, and Gaussian NaiveBayes.

Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes

Group n Freq BB BC Freq BB BC Freq BB BC Freq BB BC

Adult 40 — 16.3 7.0 — 16.7 9.3 — 17.9 6.2 — 23.6 4.5
Race 100 — 15.3 6.4 — 16.1 8.4 — 14.9 5.6 — 20.7 3.9

200 — 12.5 5.8 — 14.7 7.0 — 14.3 4.6 — 14.6 3.0
Adult 40 — 21.8 5.5 — 22.8 5.8 — 20.9 8.4 — 21.1 11.7

Gender 100 — 17.8 5.1 — 18.9 5.7 — 18.6 8.4 — 17.7 11.4
200 16.3 14.3 4.3 15.8 14.0 4.6 16.1 14.2 7.3 15.0 13.4 11.5

Bank 40 — 24.2 6.1 — 25.4 3.8 — 25.2 2.7 — 23.0 3.6
Age 100 25.9 20.0 5.0 25.7 20.4 4.0 20.9 16.6 2.8 24.9 19.6 2.6

200 16.8 15.0 4.8 17.7 15.9 4.2 16.6 14.9 3.1 17.3 15.7 2.3
German 40 — 15.0 3.9 — 18.4 3.0 — 11.3 3.6 — 16.7 6.3

age 100 8.9 8.0 3.5 10.7 9.7 3.1 8.0 7.1 3.5 12.9 11.5 3.3
200 4.7 4.7 3.0 5.6 5.4 2.6 5.1 5.1 3.1 6.8 6.5 2.8

German 40 2.6 4.5 2.3 11.8 10.0 2.4 9.4 8.1 2.4 15.0 13.1 3.8
Gender 100 1.4 2.1 2.0 6.5 6.3 2.1 5.9 5.8 2.3 7.7 7.4 3.1

200 0.7 1.0 1.6 3.3 3.3 2.1 3.1 3.2 2.1 4.8 4.7 2.2
Compas-R 40 — 15.2 3.4 — 16.3 3.4 — 14.8 3.2 — 10.1 2.2

Race 100 — 11.5 2.9 — 11.5 3.1 — 10.6 2.5 — 6.7 2.1
200 — 7.6 2.5 — 7.9 2.6 — 9.2 2.1 — 4.5 2.0

Compas-R 40 — 19.3 2.7 — 21.8 2.5 — 19.3 3.4 — 14.0 0.1
Gender 100 15.9 13.7 2.4 17.6 15.1 2.1 14.3 12.5 3.2 8.7 8.0 0.2

200 10.0 9.5 1.9 10.0 9.4 1.8 11.3 10.7 2.6 5.6 5.5 0.3
Compas-VR 40 — 23.0 3.8 — 27.0 2.2 — 20.9 9.0 — 21.1 1.2

Gender 100 — 18.0 3.2 — 19.7 2.1 — 16.3 8.1 — 14.9 1.2
200 14.9 12.2 2.9 8.9 10.7 2.0 14.6 10.5 7.2 12.5 10.0 1.3

Table 3: MAE for ∆ FPR Estimates, with different nL. Same setup as Table 2.
Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes

Group n Freq BB BC Freq BB BC Freq BB BC Freq BB BC

Adult 40 — 16.1 1.5 — 16.6 1.5 — 16.7 1.8 — 16.5 2.9
Race 100 — 9.6 1.2 — 10.1 1.5 — 10.5 1.7 — 10.7 2.8

200 — 5.7 1.2 — 6.3 1.6 — 6.4 1.8 — 6.6 3.4
Adult 40 7.1 6.9 2.6 7.2 7.1 2.6 8.3 8.1 3.7 10.3 9.8 5.1

Gender 100 4.4 4.3 2.3 4.3 4.1 2.2 5.2 5.1 3.5 6.6 6.4 4.7
200 3.2 3.3 2.5 3.2 3.2 2.3 3.7 3.7 3.4 4.7 4.6 4.6

Bank 40 2.4 2.5 0.5 3.6 3.7 0.6 4.1 4.2 0.7 8.5 7.9 1.3
Age 100 1.9 1.8 0.5 2.4 2.4 0.6 3.3 3.3 0.7 5.3 5.2 1.3

200 1.5 1.5 0.5 2.1 2.0 0.6 2.1 2.1 0.7 3.6 3.6 1.3
German 40 — 19.7 9.8 — 18.4 8.7 — 18.7 9.1 — 17.6 13.2

age 100 16.6 14.3 7.4 13.6 11.9 6.3 13.7 11.7 6.3 14.9 12.5 12.0
200 8.6 8.0 5.6 7.7 7.2 5.7 7.2 6.8 5.4 8.4 7.7 8.3

German 40 15.6 13.2 6.8 27.3 21.5 5.3 23.1 18.6 8.4 20.3 16.1 4.4
Gender 100 9.2 9.0 5.7 14.4 13.2 5.9 13.3 12.4 7.4 12.6 11.7 5.6

200 4.9 4.9 3.8 7.3 7.0 5.2 6.8 6.6 5.0 5.9 5.7 4.6
Compas-R 40 — 15.1 3.7 — 13.2 3.3 — 14.5 5.6 — 10.8 6.2

Race 100 — 8.4 2.7 — 8.5 2.4 — 10.0 4.6 — 7.3 4.4
200 — 6.8 2.1 — 5.9 1.9 — 6.7 3.7 — 4.9 3.4

Compas-R 40 — 13.5 3.4 — 15.0 2.4 — 16.2 4.9 — 10.9 4.2
Gender 100 7.7 7.4 3.2 8.5 8.3 2.4 11.5 11.0 5.0 7.4 6.9 5.3

200 5.3 5.2 2.7 6.1 6.1 2.0 8.5 8.4 4.4 5.1 5.0 5.6

Compas-VR 40 5.6 6.6 0.7 3.3 5.6 0.4 5.5 7.5 1.9 12.8 11.7 4.4
Gender 100 4.0 4.3 0.6 2.4 2.8 0.4 3.9 4.4 1.5 6.3 6.3 4.8

200 2.5 2.6 0.5 1.8 1.8 0.4 2.5 2.6 1.2 5.1 4.9 4.1
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Figure 2: MAE for Accuracy: Mean absolute error (MAE) of the difference between algorithm
estimates and ground truth for group difference in accuracy across 100 runs, as a function of number
of labeled instances, for 10 different dataset-group pairs and 4 classifiers. Shading indicates 95%
error bars for each method (not shown for the frequentist curve to avoid overplotting). Upper right
corner shows the ground truth ∆ between the unprivileged group and the privileged group.
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Figure 3: MAE for TPR: Mean absolute error (MAE) of the difference between algorithm estimates
and ground truth for group difference in TPR across 100 runs. Compas-VR race and Ricci race are
not included since there are no positive instances for some groups. Same setup as Figure 2.
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Figure 4: MAE for FPR: Mean absolute error (MAE) of the difference between algorithm estimates
and ground truth for groupwise difference in FPR across 100 runs. Same setup as Figure 3.
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Appendix: Calibration Coverage of Posterior Credible Intervals

We can generate posterior credible intervals on ∆ (as shown in red in Figure 3 in the main paper) for
both the BB and BC methods by computing upper and lower percentiles from posterior samples for
∆. Below in Table 4 we show the coverage of 95% credible intervals for both the BB (beta-bernoulli)
and BC (Bayesian-calibration) methods, for the multi-layer perceptron model. Coverage is defined as
the percentage of credible intervals (across multiple different labeled datasets of size nL) that contain
the true value: a perfectly calibrated 95% credible interval would have 95% coverage. Table 4 shows
that while the coverage for both methods is generally not far from 95% there is room for improvement
(as discussed in the main paper). For example, for small values of nL the coverage of both methods is
often too high (above 95%), with some evidence of coverage decreasing as nL increasing. Generating
accurate posterior credible intervals is a known issue in Bayesian analysis in the presence of model
misspecification (e.g., Syring and Martin (2019)) and is an interesting direction for future work on
Bayesian analysis of fairness metrics.

Table 4: Calibration Coverage of Posterior Credible Intervals Comparison, across 1000 runs of
labeled samples of different sizes nL for 10 different dataset-group combinations (rows). Estimation
methods are BC (Bayesian-Calibration) and BB (beta-bernoulli). Trained model is Multilayer
Perceptron.

nL = 10 nL = 20 nL = 40 nL = 100

Group BC BB BC BB BC BB BC BB

Adult, Race 99.9 97.7 98.6 93.5 96.2 93.2 92.3 95.3
Adult, Gender 100.0 96.4 99.7 95.5 99.2 94.9 96.8 95.5

Bank, Age 99.4 98.7 98.8 98.5 98.0 96.4 93.7 95.3
German, age 99.9 98.8 99.6 98.1 99.0 98.3 96.9 98.3

German, Gender 99.1 97.4 99.1 97.4 97.7 96.4 94.6 97.8
Compas-R, Race 99.3 98.8 99.4 97.2 99.1 96.7 99.3 96.6

Compas-R, Gender 99.3 97.7 99.3 97.0 98.6 95.9 97.6 96.5
Compas-VR, Race 99.6 100.0 98.6 97.8 97.9 95.2 97.5 93.1

Compas-VR, Gender 96.3 97.2 94.3 96.5 95.4 96.1 95.8 97.1
Ricci, Race 93.2 99.7 91.4 99.7 — — — —
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Appendix: Graphical Model for Hierarchical Beta Calibration

Figure 5: Graphical model for hierarchical beta calibration as described in Section 2.4 of the main
paper. Γ is the hyperprior on π, representing the fixed parameters for the normal and truncated normal
hyperpriors described in Section 2.4 in the main paper.
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Appendix: Error Results with Non-Hierarchical Bayesian Calibration

In our Hierarchical Bayesian calibration model we allows different groups to share statistical strength
via a hierarchical structure. In this section, we compare our proposed Bayesian calibration model
(BC) that uses this hierarchy with a non-hierarchical Bayesian calibration (NHBC) approach. Table 5
compares the mean absolute error (MAE) rate for both approaches in estimating differences in
accuracy between groups (same setup as Tables 2 and 3 in the main paper in terms of how MAE is
computed). The results show that (1) both BC and NHBC significantly improve MAE compared
to BB; (2) BC and NHBC are comparable in most cases, but with the hierarchical structure the BC
method avoids occasional catastrophic errors that NHBC can make, e.g. when assessing ∆ Accuracy
of a Gaussian Naive Bayes model on Compas-R Gender and Compas-VR Gender.
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Table 5: MAE for ∆ Accuracy Estimates, with different nL. Mean absolute error between estimates
and true ∆ across 100 runs of labeled samples of different sizes nL for different trained models
(groups of columns) and 10 different dataset-group combinations (groups of rows). Estimation
methods are BB (beta-binomial), and NHBC (non-hierarchical Bayesian-calibration), BC (Bayesian-
Calibration). BB uses only labeled samples, NHBC and BC use both labeled samples and unlabeled
data. Trained models are Multilayer Perceptron, Logistic Regression, Random Forests, and Gaussian
NaiveBayes.

Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes

Group n BB NHBC BC BB NHBC BC BB NHBC BC BB NHBC BC

Adult 10 18.4 3.2 3.9 18.8 2.7 2.9 18.1 2.8 3.2 18.9 4.5 3.6
Race 20 16.1 3.3 4.4 16.7 2.9 3.4 16.3 3.0 3.7 16.8 4.1 3.7

40 13.1 2.8 4.5 14.0 2.9 3.7 14.4 2.9 3.8 14.4 3.7 3.3
100 8.6 2.7 3.5 9.2 3.0 3.2 9.0 2.6 3.1 9.6 2.4 2.8

1000 2.5 1.4 1.6 2.3 2.1 1.7 2.1 0.7 1.4 2.3 1.8 1.4
Adult 10 17.4 4.1 5.1 16.3 2.6 2.2 17.3 5.3 4.8 16.3 7.2 5.4

Gender 20 12.9 4.4 5.1 12.2 2.6 2.2 12.4 5.3 4.9 11.6 6.7 4.5
40 9.0 4.1 4.9 9.2 2.5 2.1 9.6 5.1 4.5 9.7 6.3 3.9

100 5.4 3.1 4.4 5.5 2.0 2.0 5.9 4.7 4.1 6.0 4.8 2.7
1000 1.9 1.4 1.6 1.7 1.0 1.1 1.5 1.8 2.0 1.5 0.9 1.0

Bank 10 14.0 1.7 2.5 12.8 1.5 1.4 11.2 1.1 1.0 13.7 1.4 1.7
Age 20 11.6 2.3 2.9 10.9 1.9 1.7 8.8 1.4 1.2 10.3 1.6 1.7

40 8.0 2.3 2.6 7.3 1.7 1.4 6.5 1.5 1.1 7.5 1.7 1.5
100 4.3 2.2 2.0 4.3 1.4 1.2 4.2 1.2 0.9 4.9 1.3 1.1

1000 1.5 1.2 1.1 1.6 0.8 0.7 1.4 0.6 0.5 1.7 0.7 0.8

German 10 19.7 5.6 5.0 21.3 10.3 8.7 19.1 8.2 8.2 20.4 14.2 11.5
age 20 18.1 6.0 4.4 18.6 6.7 6.4 16.7 7.0 7.0 18.8 9.9 9.0

40 15.9 6.7 4.8 15.0 5.6 4.9 11.7 6.6 5.8 14.9 6.4 6.9
100 7.9 5.8 3.9 7.5 5.5 3.8 8.2 6.5 4.3 9.1 4.4 4.2
200 4.2 3.7 3.1 4.4 4.1 3.3 4.7 4.1 3.3 4.7 3.8 3.5

German 10 21.5 10.5 8.2 17.6 7.0 6.3 19.4 8.5 8.6 20.0 5.9 6.5
Gender 20 16.2 10.0 7.8 13.2 7.1 5.1 14.1 8.4 7.8 15.4 5.9 4.9

40 11.6 9.2 6.6 11.4 8.4 4.5 11.1 7.7 5.9 11.1 6.1 3.8
100 7.1 6.5 5.4 6.9 6.6 3.7 7.0 6.1 4.8 5.9 6.4 2.8
200 3.2 3.3 3.0 4.0 4.0 2.9 3.6 3.4 2.9 4.0 4.0 2.2

Compas-R 10 21.1 2.9 4.2 20.7 4.0 4.8 20.3 1.4 2.4 23.1 6.6 8.4
Race 20 14.8 2.8 3.3 15.2 3.9 3.8 15.8 2.0 2.5 16.6 7.8 8.0

40 11.7 3.0 3.0 12.1 3.9 3.6 11.6 2.0 2.0 10.9 9.9 8.1
100 6.8 2.9 2.8 7.4 3.7 3.4 8.5 2.1 1.8 7.9 7.7 6.0

1000 2.0 1.5 1.6 1.9 1.6 1.7 1.9 1.3 1.2 1.9 1.9 1.8
Compas-R 10 21.3 3.8 5.0 22.0 3.4 3.8 23.4 3.5 4.4 25.4 19.1 13.7

Gender 20 18.5 3.8 5.1 18.4 3.3 4.0 17.4 3.3 4.6 21.4 23.8 12.3
40 12.2 3.4 4.0 13.0 3.0 3.3 13.7 2.8 3.6 15.0 23.8 9.5

100 8.8 3.2 3.3 9.1 2.7 2.6 8.5 2.1 2.7 9.8 15.5 8.0
1000 2.0 1.7 1.4 2.2 1.4 1.3 2.4 1.6 1.4 1.9 1.9 1.8

Compas-VR 10 17.4 4.0 4.0 15.6 4.4 4.4 15.7 2.6 2.4 19.7 6.1 6.5
Race 20 13.5 4.7 4.3 13.7 5.0 4.8 13.6 3.3 2.9 15.9 10.7 6.5

40 9.6 4.5 3.8 9.6 4.5 3.9 9.9 3.1 2.4 11.1 8.8 5.5
100 5.6 3.6 3.1 5.2 3.8 3.4 6.2 2.6 2.0 6.6 6.8 3.7

1000 0.9 0.8 0.8 0.9 0.8 0.8 0.9 0.8 0.8 1.1 1.2 0.9
Compas-VR 10 17.2 5.6 5.4 16.8 5.7 5.3 19.0 5.8 6.3 21.3 18.9 9.8

Gender 20 13.3 5.4 5.1 14.1 5.4 4.9 14.0 5.7 6.2 16.0 28.2 8.7
40 9.3 5.1 4.7 9.7 4.9 4.5 10.5 5.3 5.7 12.4 30.9 6.9

100 6.4 3.7 3.4 5.9 3.5 3.1 6.3 4.2 4.4 7.1 18.5 4.5
1000 1.0 0.8 0.9 1.0 0.9 0.9 0.9 0.9 1.0 1.4 0.9 0.9

Ricci 10 17.7 16.1 14.6 14.4 7.5 7.9 12.2 1.9 2.1 13.1 1.7 1.6
Race 20 11.2 11.8 9.8 9.3 7.2 7.1 8.5 1.5 1.5 9.5 2.0 2.1

30 7.4 7.7 6.5 5.8 5.1 4.6 6.0 1.1 1.1 6.4 1.9 2.0
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Appendix: Sensitivity Analysis for Calibration Priors

As described in Section 2.4, we use the beta calibration model to recalibrate a model score s for the
g-th group according to

f(s; ag, bg, cg) =
1

1 + e−cg−ag log s+bg log(1−s)

where ag, bg, and cg are calibration parameters with ag, bg ≥ 0. With ag = 1, bg = 1, cg = 0,
f(·; 1, 1, 0) is an identity function. We assume that the parameters from each individual group are
sampled from a shared distribution:

log ag ∼ N(µa, σa), log bg ∼ N(µb, σb), cg ∼ N(µc, σc)

where π = {µa, σa, µb, σb, µc, σc} is the set of hyperparameters of the shared distributions. As
discussed in the main paper, in our experiments we set the hyperparameters as

µa ∼ N(0, .4), µb ∼ N(0, .4), µc ∼ N(0, 2), σa ∼ TN(0, .15), σb ∼ TN(0, .15), σc ∼ TN(0, .75)

These prior distributions encode a weak prior belief that the model scores are calibrated by placing
the mode of ag, bg and cg at 1, 1, and 0 respectively. We used exactly these prior settings in all our
experiments across all datasets, all groups, and all labeled and unlabeled dataset sizes, which already
demonstrates to a certain extent the robustness of these settings.

In this Appendix we describe the results of a sensitivity analysis with respect to the variances in
the prior above. We evaluate our proposed methodology over a range of settings for the variances,
multiplying the default values with different values of α, i.e.

µa ∼ N(0, .4α), σa ∼ TN(0, .15α)

µb ∼ N(0, .4α), σb ∼ TN(0, .15α)

µc ∼ N(0, 2α), σc ∼ TN(0, .75α)

with α ranging from 0.1 to 10. We reran our analysis, using the different variance settings, for the
specific case of estimating the change ∆ in accuracy estimates for the Adult dataset grouped by the
attribute “race," for each of the four classification models in our study and with different amounts of
labeled data.

Table 6 shows the resulting MAE values as α is varied. The results show that the Bayesian calibration
(BC) model is robust to the settings of prior variances. Specifically, as α varies from 0.1 to 10 the
MAE values with BC are almost always smaller than the ones obtained with BB, and there is a
broad range of values α where the MAE values are close to their minimum The results also show
that the BC method has less sensitivity to α when the number of labeled examples nL is large, e.g.
nL = 1000.
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Table 6: MAE for ∆ Accuracy Estimates of the adult data grouped by attribute “race," with different
values of nL. Shown are mean absolute error (MAE) values between estimates and true ∆ across
100 runs of labeled samples of different sizes nL for different trained models (groups of columns).
Estimation methods are BB (beta-binomial) and BC (Bayesian-calibration) with different values of α
(rows). BB uses only labeled samples, and BC use both labeled samples and unlabeled data.

Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes

Method 10 100 1000 10 100 1000 10 100 1000 10 100 1000

BB 18.52 8.48 2.46 18.74 9.14 2.30 18.24 9.00 2.12 18.88 9.54 2.32
BC, α=0.1 2.63 2.60 2.27 2.46 2.49 2.13 2.87 2.84 2.43 4.67 4.51 0.78
BC, α=0.2 2.63 2.56 2.08 2.46 2.51 2.06 2.85 2.83 2.09 4.63 3.95 0.82
BC, α=0.3 2.60 2.52 1.88 2.42 2.51 1.95 2.85 2.79 1.86 4.44 3.36 0.97
BC, α=0.4 2.49 2.46 1.74 2.41 2.57 1.90 2.74 2.82 1.70 4.25 3.06 1.11
BC, α=0.5 2.49 2.38 1.71 2.44 2.60 1.82 2.82 2.77 1.65 4.01 2.86 1.43
BC, α=0.6 2.47 2.37 1.62 2.55 2.62 1.75 2.82 2.88 1.60 3.81 2.79 1.46
BC, α=0.7 2.61 2.48 1.51 2.36 2.63 1.70 2.90 2.86 1.54 3.54 2.80 1.50
BC, α=0.8 2.86 2.30 1.47 2.52 2.73 1.63 2.87 2.86 1.46 3.51 2.77 1.60
BC, α=0.9 2.93 2.27 1.43 2.44 2.82 1.64 2.87 2.90 1.46 3.14 2.91 1.58
BC, α=1.0 3.05 2.31 1.50 2.71 2.74 1.57 2.99 2.96 1.42 3.31 2.85 1.68
BC, α=1.1 3.14 2.37 1.45 2.65 2.86 1.55 2.90 3.10 1.40 3.25 3.03 1.65
BC, α=1.2 3.11 2.19 1.49 2.73 2.80 1.52 3.27 3.01 1.39 3.20 3.03 1.68
BC, α=1.3 3.48 2.30 1.51 2.91 2.94 1.54 3.11 3.21 1.39 3.15 2.96 1.71
BC, α=1.4 3.76 2.28 1.47 3.17 3.01 1.51 3.26 3.21 1.30 3.48 3.21 1.75
BC, α=1.5 3.67 2.20 1.49 3.12 2.94 1.51 3.46 3.05 1.34 3.23 3.19 1.66
BC, α=1.6 4.06 2.24 1.45 3.26 2.93 1.47 3.56 3.13 1.33 3.48 3.17 1.69
BC, α=1.7 4.02 2.27 1.46 3.46 3.15 1.46 3.75 3.10 1.27 3.43 3.19 1.74
BC, α=1.8 4.35 2.14 1.42 3.36 3.09 1.50 3.76 3.26 1.29 3.67 3.22 1.81
BC, α=1.9 4.35 2.30 1.48 3.48 2.94 1.42 3.54 3.30 1.28 3.82 3.35 1.84
BC, α=2.0 4.69 2.16 1.44 3.87 2.99 1.54 3.91 3.46 1.21 3.83 3.18 1.81
BC, α=5.0 8.11 2.54 1.63 6.31 3.32 1.53 5.32 4.13 1.31 5.25 3.82 2.13

BC, α=10.0 10.39 2.63 1.63 7.18 3.83 1.70 7.19 4.41 1.42 6.32 4.08 2.33
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Appendix: Error Results with LLO Calibration

Our hierarchical Bayesian calibration approach can be adapted to use other parametric calibration
methods. In addition to the beta calibration method described in the main paper, we also experimented
with LLO (linear in log odds) calibration.

Table 7 below shows a direct comparison of the mean absolute error (MAE) rate for estimation
of differences in accuracy between groups (same setup as Tables 2 and 3 in the main paper in
terms of how MAE is computed). The results show that in general the MAE of the two calibration
methods tends to be very similar (relative to the size of the BB and frequentist MAEs) across different
dataset-attribute combinations. different prediction models, and different nL values.

Table 7: MAE for ∆ Accuracy Estimates of LLO and BC, with different nL. Mean absolute error
between estimates and true ∆ across 100 runs of labeled samples of different sizes nL for different
trained models (groups of columns) and 10 different dataset-group combinations (groups of rows).
Estimation methods are BC (Bayesian-Calibration) and LLO (Linear in Log Odds Calibration). Both
methods use both labeled samples and unlabeled data. Trained models are Multilayer Perceptron,
Logistic Regression, Random Forests, and Gaussian NaiveBayes.

Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes

Group n BC LLO BC LLO BC LLO BC LLO

Adult 10 3.9 3.8 2.9 2.8 3.2 3.2 3.6 3.5
Race 100 3.5 3.4 3.2 3.1 3.1 2.9 2.8 2.4

1000 1.6 2.3 1.7 2.0 1.4 1.5 1.4 1.6

Adult 10 5.1 5.1 2.2 2.3 4.8 4.7 5.4 5.0
Gender 100 4.4 4.3 1.9 2.0 4.1 3.7 2.7 2.7

1000 1.6 2.2 1.1 1.0 2.0 1.5 1.1 1.1

Bank 10 2.5 2.3 1.4 1.2 1.0 0.9 1.7 1.7
Age 100 2.0 2.0 1.2 1.2 0.9 0.9 1.1 1.2

1000 1.1 1.2 0.7 0.7 0.5 0.5 0.8 0.9

German 10 5.0 4.6 8.7 8.0 8.2 7.5 11.5 10.7
age 100 3.9 4.1 3.8 4.7 4.3 4.0 4.2 6.0

200 3.1 3.9 3.3 4.2 3.3 3.1 3.5 6.0

German 10 8.2 6.4 6.3 5.0 8.6 6.9 6.5 5.3
Gender 100 5.4 5.1 3.7 3.6 4.8 4.5 2.8 3.1

200 3.0 3.4 2.9 2.8 2.9 3.1 2.2 2.9

Compas-R 10 4.2 4.6 4.8 5.2 2.4 2.5 8.4 8.2
Race 100 2.8 4.4 3.4 4.8 1.8 1.4 6.0 5.6

1000 1.6 5.0 1.6 4.4 1.2 1.1 1.8 2.9

Compas-R 10 5.0 4.3 3.8 3.9 4.4 4.1 13.7 13.0
Gender 100 3.3 2.7 2.6 2.3 2.7 2.8 8.0 7.4

1000 1.4 2.1 1.3 1.3 1.4 3.0 1.8 2.4

Compas-VR 10 4.0 3.9 4.4 4.7 2.4 2.9 6.5 6.4
Race 100 3.1 2.8 3.4 3.3 2.0 2.1 3.7 3.6

1000 0.8 1.5 0.8 0.8 0.8 2.5 0.9 1.8

Compas-VR 10 5.4 4.8 5.3 5.2 6.3 8.2 9.8 9.0
Gender 100 3.4 3.0 3.1 3.3 4.4 5.4 4.5 4.2

1000 0.9 1.2 0.9 1.5 1.0 1.7 0.9 0.9

Ricci 10 14.6 14.2 7.9 8.1 2.1 2.0 1.6 2.1
Race 20 9.8 13.6 7.1 6.6 1.5 1.6 2.1 2.5

30 6.5 12.1 4.6 4.2 1.1 1.4 2.0 2.3
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Appendix: Proof of Lemma 2.1

Lemma 2.1. Given a prediction model M and score distribution P (s), let fg(s;φg) : [0, 1]→ [0, 1]
denote the calibration model for group g; let f∗g (s) : [0, 1] → [0, 1] be the optimal calibration
function which maps s = PM (ŷ = 1|g) to P (y = 1|g); and ∆∗ is the true value of the metric.
Then the absolute value of expected estimation error w.r.t. φ can be bounded as: |Eφ∆ −∆∗| ≤
‖f̄0 − f∗0 ‖1 + ‖f̄1 − f∗1 ‖1, where f̄g(s) = Eφgfg(s;φg),∀s ∈ [0, 1], and ‖ · ‖1 is the expected L1

distance w.r.t. P (s|g).

Proof.

|Eφ∆−∆∗| = |(Eφ1
θ1 − Eφ0

θ0)− (θ∗1 − θ∗0)|
≤ |Eφ0

θ0 − θ∗0 |+ |Eφ1
θ1 − θ∗1 | (triangle inequality)

= ‖f̄0 − f∗0 ‖1 + ‖f̄1 − f∗1 ‖1 (Lemma 2.2)

Lemma 2.2. Given a prediction model M and score distribution P (s), let fg(s;φg) : [0, 1]→ [0, 1]
denote the calibration model for group g; let f∗g (s) : [0, 1] → [0, 1] be the optimal calibration
function which maps s = PM (ŷ = 1|g) to P (y = 1|g); and θ∗ is the true value of the accuracy. Then
the absolute value of expected estimation error w.r.t. φ can be bounded as: |Eφθg−θ∗g | ≤ ‖f̄g−f∗g ‖1,
where f̄g(s) = Eφgfg(s;φg),∀s ∈ [0, 1], and ‖ · ‖1 is the expected L1 distance w.r.t. P (s|g).

Proof.

θ∗g = P (y = 0, ŷ = 0|g) + P (y = 1, ŷ = 1|g)

=

∫
s<0.5

P (y = 0|s)P (s|g)ds+

∫
s>=0.5

P (y = 1|s)P (s|g)ds

=

∫
s<0.5

(1− f∗(s))P (s|g)ds+

∫
s>=0.5

f∗(s)P (s|g)ds

Similarly, our method makes prediction about groupwise accuracy with calibrated scores given P(φ):

Eφgθg = Eφg

∫
s<0.5

(1− fg(s;φ))P (s|g)ds+

∫
s≥0.5

fg(s;φ)P (s|g)ds

=

∫
s<0.5

(1− Eφfg(s;φ))P (s|g)ds+

∫
s>=0.5

Eφfg(s;φ)P (s|g)ds

=

∫
s<0.5

(1− f̄g(s))P (s|g)ds+

∫
s>=0.5

f̄g(s)P (s|g)ds

Then the absolute estimation bias of estimator Eφ∈Φθφ is:

|Eφθg − θ∗g | = |
∫
s<0.5

(f̄(s)− f∗(s))P (s|g)ds+

∫
s>=0.5

(f∗(s)− f̄(s))P (s|g)ds|

≤
∫
s<0.5

|f̄(s)− f∗(s)|P (s|g)ds+

∫
s>=0.5

|f∗(s)− f̄(s)|P (s|g)ds

=

∫
s

|f̄(s)− f∗(s)|P (s|g)ds

= ‖f̄ − f∗‖1
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