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a b s t r a c t

A growing synergy between the fields of cognitive neuroscience and mathematical psychology has
sparked the development of several unique statistical approaches exploiting the benefits of both disci-
plines (Turner, Forstmann et al., 2017). One approach in particular, called joint modeling, attempts to
model the covariation between the parameters of ‘‘submodels’’ intended to capture important patterns
in each stream of data. Joint models present an interesting opportunity to transcend conventional levels
of analyses (e.g., Marr’s hierarchy; Marr, 1982) by providing fully integrative models (Love, 2015). In
this manuscript, we provide a tutorial of two flavors of joint models — the Directed and Covariance
approaches. Computational procedures have been developed to apply these approaches to a number of
cognitive tasks, yet neither have been made accessible to a wider audience. Here, we provide a step-
by-step walkthrough on how to develop submodels of each stream of data, as well as how to link the
importantmodel parameters to form one cohesivemodel. For convenience, we provide code that uses the
Just Another Gibbs Sampler (Plummer, 2003) software to perform estimation of the model parameters.
We close with a demonstration of the approach applied to actual data from a contrast discrimination task
where activation parameters of early visual areas are directly mapped to the drift rate parameter in a
simplified version of the diffusion decision model (Ratcliff, 1978).

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The evolution of technology for measuring brain signals, such
as electroencephalography (EEG) and functional magnetic reso-
nance imaging (fMRI), has provided exciting new opportunities for
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//osf.io/qh7xr/?view_only=aafea8d894e74ee38ec67b7cc3b55780).
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studyingmental processes. Today, scientists interested in studying
cognition are facedwithmany options for relating experimentally-
derived variables to the dynamics underlying a cognitive process of
interest. While conceptually the presence of these new ‘‘modali-
ties’’ of cognitive measures could have immediately spawned an
interesting new integrative discipline, the emergence of such a
field has been slow relative to the rapid advancements made in
these new technologies. Until a little over a decade ago,muchof our
understanding of cognition had been advanced by two dominant
but virtually non-interacting groups. The largest group, cognitive
neuroscientists, relies on statistical models to understand patterns
of neural activity brought forth by the new technologies. The
models used by cognitive neuroscientists are typically data-mining
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techniques, and these models often disregard the computational
mechanisms thatmight detail a cognitive process. The other group,
mathematical psychologists, is strongly motivated by theoretical
accounts of cognitive processes, and instantiates these theories by
developing formal mathematical models of cognition. The models
often assume a system of computations and equations intended to
characterize the processes assumed to take place in the brain. As a
formal test of their theory,mathematical psychologists usually rely
on their model’s ability to fit and predict behavioral data relative
to the model’s complexity.

Although both groups are concerned with explaining behavior,
cognitive neuroscientists and mathematical psychologists tend
to approach the challenge from different vantage points. To ap-
preciate the distinction between the fields, we can use Marr’s
(1982) levels of analysis, where our understanding of the mind
can be advanced by considering a computational, algorithmic, and
implementational level. At the computational level, our goal is to
understand what a system does, and more importantly, why the
system does what it does. At the algorithmic level, our goal is to
understand exactly how a system does what it does, specifically
what types of representations are used to perform the task. At
the implementational level, our goal is to understand how the
system can be physically realized, or how the representations in
the algorithmic level could be created given biological constraints.
Mathematical psychologists tend to focus on the computational
and algorithmic levels, whereas cognitive neuroscientists tend to
focus on the implementation level. Although progress can bemade
bymaintaining a tight focus on one level,many important opportu-
nities are lost (Love, 2015). For example, without an overarching
theory explaining how the mind generally solves problems, such
as a theory that might be developed at the computational level, it
can be difficult to aggregate neuroscientific results from various
experimental paradigms that focus on the implementational or
algorithmic levels (cf. Coltheart, 2006).

As a remedy, new work has endeavored to integrate the lev-
els of analysis in an effort to relate mechanisms assumed by
mathematical models to the neural computations supporting task-
specific behavior within the brain. However, integrating the two
fields is made difficult by the fact that mechanisms in math-
ematical models are often necessarily abstract, whereas neu-
rophysiological measures are physical realizations of cognitive
processes (Turner, 2015). The importance of solving the in-
tegration problem has created several entirely new statistical
modeling approaches developed through collaborations between
mathematical psychologists and cognitive neuroscientists, collec-
tively forming a new field often referred to as ‘‘model-based cog-
nitive neuroscience’’ (e.g., Boehm, Van Maanen, Forstmann, & Van
Rijn, 2014;Daw&Doya, 2006;Daw,Niv, &Dayan, 2005; Forstmann
&Wagenmakers, 2014; Forstmann,Wagenmakers, Eichele, Brown,
& Serences, 2011; Frank, Seeberger, & O’Reilly, 2004; Love, 2015;
Mack, Preston, & Love, 2013; Palmeri, Schall, & Logan, 2015; Turner,
Forstmann et al., 2013; Turner, Van Maanen, & Forstmann, 2015;
van Maanen et al., 2011).

At this point, there are several approaches for integrating neu-
ral and behavioral measures via cognitive models, and these ap-
proaches are neither restricted to any particular kind of neural or
behavioral measure, nor to any particular cognitive model (see
de Hollander, Forstmann, & Brown, 2016; Turner, Forstmann, Love,
Palmeri, & VanMaanen, 2017 for reviews). A convenient taxonomy
for organizing these approaches can be built from considering a
researcher’s goals in relating themeasures to one another (Turner,
Forstmann et al., 2017). One goal might be to use the neural data
to constrain a behavioral model. Another goal might be to identify
patterns of neural data that are consistent with specific computa-
tions carried out in the behavioral model. The final goal, which is
the focus of the current article, is to enforce statistically reciprocal

relationships between the neural measures and the parameters of
a behavioral model by modeling these random variables simulta-
neously (see Forstmann et al., 2011 for some motivation).

One successful method of performing simultaneous modeling
has been the ‘‘joint modeling’’ approach (Cassey, Gaut, Steyvers, &
Brown, 2016; Turner, 2015; Turner, Forstmann, et al., 2013; Turner,
Rodriguez, Norcia, Steyvers, & McClure, 2016; Turner et al., 2015;
Turner, Wang, & Merkel, 2017). Joint models were developed as
an alternative to the ‘‘two-stage’’ correlation approaches, where
parameters of a fitted cognitive model were simply correlated
with a neural measure of interest. While a two-stage correlation
approach does give insight into how parameters of a cognitive
model are related to brain data, this approach misses an oppor-
tunity to enforce a constraint on the model parameters based on
the random variation in the neural data. In other words, if one
treats the neural data as a covariate, the estimates of the behavioral
model parameters can be better informed. This simple covari-
ate approach gives joint models some advantages in articulating
brain-behavior relationships. Specifically, joint models are better
equipped to (1) handle mismatching (i.e., when the size of the
neural data is different from the size of the behavioral data) and
missing data, (2) perform inference on the magnitude of brain-
behavior relationships (i.e., they are not subject to Type I errors as
in the two-stage approach), (3) compare different brain-behavior
relationships across models, and (4) make predictions about either
neural or behavioral data.

At their highest level, joint models simply require an expres-
sion specifying the joint distribution of the measures N obtained
by using cognitive neuroscience techniques (e.g., EEG, fMRI) to
measures of behavior B (e.g., choice, response time). Given this
intentionally vague definition, there are many ‘‘classes’’ of joint
models that vary in the way N is structurally related to B. For the
purposes of this article, we narrow our focus to three types of
jointmodels: Integrative, Directed, and Covariance. Asmany of our
research efforts havemodeled the covariation betweenN and B via
the Covariance approach, we may have given the impression that
joint models are inherently structured in a specific way, but this
is not the case. Here, we present a more comprehensive account
of different types of models that we collectively refer to as ‘‘joint
models’’. Three types of joint models are illustrated in Fig. 1 via
graphical diagrams, where observed variables (e.g., N and B) are
shown as filled square nodes, and parameters are shown as empty
circles. Paths between the nodes in the graph indicate dependency
among the nodes, where an arrow pointing from one node to an-
other indicates a ‘‘parent-to-child’’ ancestry (Pearl, 1988). In other
words, the node being pointed at depends on the node fromwhich
the arrow originates. Although the three types of joint models
can be illustrated with similar graphical diagrams, the structures
introduce different constraints, which have major implications for
a joint model’s complexity relative to the observed data. We now
discuss each of the three classes of joint models in Fig. 1.

1.1. Integrative approach

The first joint modeling approach we will focus on is the In-
tegrative approach, where a single cognitive model is developed
to predict neural and behavioral measures simultaneously. The
Integrative approach is depicted on the left side of Fig. 1. Here,
the neural data N and the behavioral data B are explained together
through a single set of parameters θ , indicated by the connections
from θ to both N and B. Alternatively, Integrative joint models
can use a set of modulators to transform an internal state of
a model into a prediction about the precise functional form of
the neural measures. For example, different modulators would
be necessary to make predictions for a blood oxygenated level
dependent (BOLD) response in an fMRI study versus predictions for
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Fig. 1. An illustration of the three joint modeling approaches for linking neural and behavioral data. N represents the neural data, B represents the behavioral data, and θ , δ,
and Ω represent model parameters.

an event-related potential (ERP) in an EEG study, simply because
the distributions of these neural measures are quite different.

The biggest strength of the Integrative approach is that it re-
quires strong commitments to both what underlying cognitive
processes are involved and where these processes arise in the
brain. By requiring these types of commitments, a researcher who
wishes to create a cognitive model using the Integrative approach
must make clear and explicit assumptions about the cognitive
processes of interest. However, requiring these commitments is
also a weakness of the approach as it can be incredibly difficult to
develop a model using the Integrative approach.

In addition to aforementioned theoretical issues, several tech-
nical hurdles often arise when modeling random variables with
different temporal properties. For example, neural measures
(e.g., BOLD activation) are typically measured on a moment-by-
moment basis over the length of a trial. Behavioral data (e.g., reac-
tion times), on the other hand, are typically measured at the end of
a trial. Thus, to instantiate a cognitive theorywithin the Integrative
framework, one needs a moment-by-moment prediction of the
neural data and a trial-by-trial prediction of the behavioral data,
usually assumed to arise due to a series of latent processes. Given
this unique structure, sophisticated techniques such as Hidden
Markov Models (Anderson, 2012; Anderson, Betts, Ferris, & Fin-
cham, 2010), or Bayesian change point analyses (Mohammad-
Djafari & Féron, 2006) are often required to properly fit these
models to data, which can be difficult to implement and compu-
tationally intensive. Thus, the Integrative approach, while strong
statistically, lacks approachability.

1.2. Directed approach

The middle panel of Fig. 1 illustrates the second type of joint
model we discuss in this article, an approach we refer to as ‘‘Di-
rected’’ (e.g., Cavanagh et al., 2011; Frank et al., 2015; Nunez,
Srinivasan, & Vandekerckhove, 2015; Nunez, Vandekerckhove, &
Srinivasan, 2017). Whereas the Integrative approach relies on a set
of parameters θ to describe how both the neural and behavioral
data come about, the Directed approach uses a set of parameters δ
to describe the functional properties of the neural data N through
some statistical model and also modulate the behavioral model
parameters θ through a linking function M, such that

θ = M(δ). (1)

Usually, this linking function M will consist of a set of variables
that allow for flexibility in the mapping from δ to θ . This is espe-
cially beneficial when the behavioral and neural data are on differ-
ent scales, allowing the Directed approach to escape the technical
hurdles that plague the Integrative approach.

The distinction between the Integrative and Directed ap-
proaches is a subtle one. The differences lie in the way the model

parameters are used to describe the variables N and B. In the
Integrative approach, a single set of model parameters jointly
explain bothmanifest variables, whereas in the Directed approach,
the parameters describing one set of variables (e.g., δ) are used to
modulate another set of variables (e.g., θ ). In other words, when
the connection between the two streams of data ismade at a single
parent node, the approach is Integrative. If the connection between
the two streams is made from one set of parameters to another
(e.g., from δ to θ ), the approach is Directed.

While Fig. 1 illustrates how the parameters δ modulate the
parameters θ , other models assume the reverse influence, where
the behavioral parameters θ inform the neural parameters δ. As a
concrete example, van Ravenzwaaij, Provost, and Brown (2017)
used a Directed joint model to account for data from a mental
rotation task. To accomplish this, they used the Linear Ballistic Ac-
cumulator (LBA)model (Brown &Heathcote, 2008) to describe the
behavioral data, where the drift rate parameter (i.e., corresponding
to θ ) – combined with some modulating parameters – was used
to describe the mean of an EEG signal (i.e., corresponding to δ in
Fig. 1).

1.3. Covariance approach

The final joint modeling approach we will discuss is the
Covariance approach (Turner, 2015; Turner, Forstmann et al.,
2013; Turner et al., 2015, 2016; Turner, Wang et al., 2017), which
is illustrated in the right panel of Fig. 1. The Covariance approach is
conceptually similar to theDirected approach as they bothdescribe
the joint distribution of the behavioralmodel parameters θ and the
neural model parameters δ through a statistical constraint. How-
ever, the two approaches diverge in how they link the parameters
θ and δ. In the Directed approach, θ and δ are related through an
equality statement, meaning that one set of parameters is just a
transformation of another set of model parameters. However, the
Covariance approach assumes that θ and δ are related through a
probability distribution.

To facilitate the linking between the model parameters, the
Covariance approach assumes an overarching distribution gov-
erned by parameters Ω , which is used to describe the patterns
present in the joint distribution of (θ, δ) across the levels to which
they are applied. The connection enforced by the overarching
distribution Ω is concrete: one must make a specific assumption
about the relationship between θ and δ when considering the
underlying cognitive processes involved. In other words, when
specifying a Covariance joint model, one must explicitly specify
how θ and δ are related through the linking function M with
parameters Ω:

(θ, δ) ∼ M(Ω). (2)

Here, note that Eq. (2) expresses the joint distribution of θ and δ
through a probability distribution, and so neither θ nor δ appear
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on the right side of the equation, in contrast to Eq. (1). While we
will discuss the linking function in more detail later, one example
of a linking function M that could be used to connect neural
and behavioral data is the multivariate normal distribution. When
assuming the linking function is multivariate normal, Ω consists
of the hyper mean vector and the hyper variance–covariance ma-
trix. In an analogous way to the Directed approach above, the
Covariance approach would also allow the information contained
in the neural data N to automatically inform the behavioral model
parameters and vice versa.

One considerable advantage the Covariance approach main-
tains over the Directed approach is in how it treats the parameters
θ and δ. Whereas the Directed approach assumes that θ are either
a transformation of the neural parameters δ or some aspect of
the neural data N , the Covariance approach assumes that these
parameters are instead latent (i.e., not directly observable). This
is especially advantageous when dealing with potential problems
like outliers or missing observations (Turner et al., 2016). In the
Directed approach, if we assume that we are using the neural
parameters δ to describe both how the neural data N come about
and how θ are specified, then any outliers that are present in N
may lead to an unreasonable mapping of δ to θ . However, in a
Covariance approach, if outliers are observed in the neural data N ,
the largest impact will be in the variability terms in the overar-
ching distribution Ω , and the effect on the predictions about the
behavioral data Bwill be lessened across the rest of the behavioral
data.

While the Covariance approach has certain advantages over the
Integrative and Directed approach, it is not without its disadvan-
tages. One of themost prominent disadvantages is that the use of a
probability distribution makes the model complex, and as a result,
it often requires computationally intensive methods to sample
from the desired posterior distributions of the model parameters.
This complexity, while surmountable, causes the Covariance ap-
proach to be less approachable than other modeling approaches.
Additionally, the complexity also limits the influence the data can
have on the joint posterior distributions. As models based on a
Covariance approach often feature multiple levels and numerous
parameters, it requires a large amount of data for trial-level effects
to be noticeable. Thus, there is a strong tradeoff between model
complexity and model flexibility that accompanies the use of a
Covariance joint model.

1.4. Plan of the tutorial

Having discussed the various joint modeling approaches at a
high level, the rest of the tutorial focuses on specific implemen-
tations of two approaches. We chose against providing a tutorial
on the Integrative approach as its most accessible implementation
can be viewed simply as a Directed approach. The more complex
forms of Integrative models require enough additional theoretical
overhead that they are outside the scope of this tutorial (but see
Borst &Anderson, 2017 for a tutorial usingACT-R). First,wepresent
a Directed joint model in Section 2 where parameters describing
the neural data directly affect a simple computational model’s
predictions about behavioral data. Here, we use a simple work-
ing example to make the application accessible. In addition, we
provide code and a step-by-step walkthrough using JAGS (Plum-
mer, 2003) software to carry out the parameter estimation. The
operation of each line in the code is briefly described, and where
possible, the code is related to the equations describing the model
details. Second, we present a Covariance joint model in Section 3.
Here, we build on the same example used in the Directed joint
model section (i.e., Section 2) so that the reader can ascertain the
differences between these approaches via the implementation. Fi-
nally, we provide amore realistic example using experimental data

relating measures obtained in an fMRI experiment to parameters
of a simplified diffusion decision model (DDM; Ratcliff, 1978).
While the details of both the neural and behavioral submodels
are more complex than the simple working examples provided
in the Directed and Covariance joint model sections, the example
is more realistic – it comes from a research study in our own
laboratory – with the hope that readers can connect the example
to their own research.We closewith a discussion about limitations
of our approach, as well as some theoretical considerations.

2. A directed joint model

As previously discussed, there are several ways to express the
covariation between the neural and behavioralmodels, all ofwhich
fall under the umbrella class labeled ‘‘joint models’’. In this sec-
tion, we will provide a walkthrough of how to apply the Directed
approach to hypothetical data from a recognition memory experi-
ment. In this section of the tutorial, we first describe the generative
model that serves as the basis for each modeling approach and
generate simulated data from the model. These simulated data are
then used to fit the model, so that the accuracy of the parameter
estimates can be assessed.

2.1. Generative model

The example we will focus on throughout this tutorial is a
classic recognition memory experiment from the area of episodic
memory. In this experiment, subjects are given a list of items
(e.g., words) and are asked to commit these items to memory. In
recognition memory literature, this is operationally defined as the
‘‘study phase’’. Following the study phase, subjects are presented
with a second list of items of the same kind (e.g., words), one at a
time, and their task is to determine if the presented item had been
included on the list in the study phase – an ‘‘old’’ response – or
if it is novel — a ‘‘new’’ response. By presenting each subject with
a mixture of previously presented (i.e., old) and novel items and
examining their responses, we can examine howwell each subject
encoded the study items into memory.

Although calculating the proportions of ‘‘old’’ and ‘‘new’’ re-
sponses for each item type allows us to measure memory per-
formance experimentally, it provides little insight into the mental
processes involved in the task such as encoding and retrieval, as
these processes are latent. Additionally, the behavioral data we
measure from such a task can only take on one of two values, and
we observe only one response per item at test. As such, our ability
to speak directly to how each item is stored in memory is limited,
and we must look to other sources, such as neural data, to help
guide our inferences.

In this tutorial, we hope to use hypothetical neural data to
enhance a simple cognitive model of trial-by-trial item encoding.
In line with episodic memory literature, we start with two basic
assumptions: (1) there are some areas of the brain that are related
to the formation of episodicmemories, and (2) neural activations in
these areas are positively related to the probability ofmemory for-
mation for a studied item. Although this is a hypothetical example,
some potential brain areas that have been linked to encoding are
typically located in themedial temporal lobe such as the perirhinal
cortex (Ranganath et al., 2004) and the hippocampus (Eldridge,
Knowlton, Furmanski, Bookheimer, & Engel, 2000; Ranganath et al.,
2004). As an illustrative example, greater activation of these areas
might represent an increased chance of memory formation of the
studied items, and it could be used to understand how ‘‘old’’ and
‘‘new’’ responses are formed at test.

2.1.1. Neural submodel
Suppose we implement our experimental design and obtain

neural data in the form of a BOLD responses from each subject on
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every trial i and at five points in time t . Suppose further that the
scanning times consist of the set T = {0, 1, 2, 3, 4}, which might
represent the number of seconds after the presentation of a study
item in a sequence. LettingNi,t,k denote the neural data at time t on
trial i for the kth region of interest (ROI), Ni,t,k might describe the
degree of activation of the ROI on a specific trial at a specific time.

While there are many ways to characterize how the brain ac-
tivity could evolve over time, we chose to employ a simple linear
ramping function of the form

Ni,t,k = Ttδi,k, (3)

where δi,k is the ramping rate parameter on trial i for the kth
ROI, which controls the neuronal firing rate across time. The linear
ramping function, while simple, is sometimes used to characterize
the ramping of activity in neuronal firing (e.g., Purcell et al., 2010;
van Ravenzwaaij et al., 2017). Eq. (3) indicates that the rate of ROI
activation over timedepends on the value of δ. Fig. 2 illustrates how
δ interacts with ROI activation for three hypothetical values: as δ
increases, the ROI activation grows at a faster rate (i.e., the BOLD
response grows faster per unit interval of time). In this illustrative
example, δ may represent the latent neural activation of one of the
brain areas mentioned above, such as the hippocampus.

We chose the linear ramping function as it is a simple way to
describe how the mean predicted BOLD response changes over
time. However, it is unlikely that we would actually observe a
linear increase in brain activity over time in practice. Instead, we
will assume when simulating hypothetical data that the observed
BOLD responses Ni,t,k are perturbed by some random observation
error ϵ, such that

Ni,t,k = Ttδi,k + ϵi,t,k. (4)

Further, we assume the errors ϵi,t,k are independent and identically
distributed according to a normal distribution:

ϵi,t,k ∼ N (0, σ ),

where N (0, σ ) denotes a normal distribution with mean zero and
standard deviation σ . As these errors are assumed to arise form a
normal distribution, the distribution of the neural data N is also
normal in form. Hence, we can equivalently write

Ni,t,k ∼ N (Ttδi,k, σ ). (5)

When σ is small, we do not expect significant differences be-
tween the estimated and observed BOLD responses. However, for
nontrivial values of σ , we can expect the observed BOLD responses
Ni,t,k to depart from the model’s predicted BOLD response of Ttδi,k
substantially. For example, the left panel in Fig. 2 shows three
sets of random realizations of neural activation on trial i at time
t as dots along with the predicted BOLD response from the model
as lines with coordinating colors. While σ is estimable (e.g., see
the experimental application), to keep the model simple, we will
assume σ = 0.5. This value of σ is small relative to the range of
BOLD responses and as a result, the dots in Fig. 2 are closely aligned
with the predicted BOLD response.

Neural likelihood. We can use Eq. (4) to simulate neural data N
from our model with the model parameter δ. However, to deter-
mine the likelihood of observing a particular Ni,t,k given δi,k, we
can use Eq. (5) to define the probability density function for Ni,t,k
as

p(Ni,t,k|δi,k) =
1

√
2πσ 2

exp

([
Ni,t,k − Ttδi,k

]2
2σ 2

)
. (6)

Because we are assuming that σ = 0.5 (i.e., a known quantity),
we do not need to include it in our inference procedure, and so
we do not include it in the statement p(Ni,t,k|δi,k). From Eq. (6),

we can derive the likelihood function L(δ|N), which will tell us the
likelihood that the single-trial neural parameters δ generated the
data N for a given vector of δs and a matrix of neural data N . To
define the likelihood function, we take the product of the densities
in Eq. (6) evaluated at each data point Ni,t,k:

L(δ|N) =

∏
t

∏
i

∏
k

p(Ni,t,k|δi,k)

=

(
1

√
2πσ 2

)n∗t∗k∗

×

∏
t

∏
i

∏
k

exp

([
Ni,t,k − Ttδi,k

]2
2σ 2

)
, (7)

where n∗, t∗, and k∗ denote the number of trials, time points, and
ROIs, respectively.

2.1.2. Behavioral submodel
While several theories have been postulated to explain how in-

dividuals encode and retrieve items (Dennis & Humphreys, 2001;
Osth & Dennis, 2015; Shiffrin & Steyvers, 1997), we will assume a
more statistical (and less mechanistic) relationship between items
and the observed responses. Here, we assume that the degree of
‘‘familiarity’’ for the ith test item is represented by a parameter θi,
and that the θ parameters share amonotonic relationship with the
probability of responding ‘‘old’’ to a given test item. By virtue of the
study phase, we should expect that θ is larger for studied items
than for non-studied items, but we impose no such restriction in
our model, as our goal is to infer the level of familiarity for each
item. Mechanistic models of the same task should provide some
theoretical overhead forwhy familiarity increaseswith study (e.g.,
Shiffrin & Steyvers, 1997), but we avoid doing so in our application
for the purposes of illustration.

To convert the item familiarities θi to a probability of respond-
ing ‘‘old’’ (i.e., the probability of remembering that the item was
on the previously studied list), we assume a logistic function that
maps θi onto p(‘‘old’’), such that

p(‘‘old’’ | Item i) = logit−1(θi).

The logit function is convenient for transforming variables with
infinite support to variables bounded by [0, 1], which puts the
variable on the probability scale. The logit function is

logit(x) = log
(

x
1 − x

)
,

and the inverse logit function is

logit−1(x) = log
(

1
1 + exp(−x)

)
.

The next step is to connect the probability of an ‘‘old’’ response
to the observed behavioral variable Bi. To do this, we assume
that each Bi is a Bernoulli random deviate drawn with probability
p(‘‘old’’ | Item i), such that

Bi ∼ Bernoulli (p(‘‘old’’ | Item i)) . (8)

It is important to note that this submodel is kept simplistic in
nature for illustrative purposes, and therefore, it is not expected to
fit data particularly well, nor does it have any explicit mechanisms
built in to describe why the behavioral submodel parameters θ

vary from one item to the next.

Behavioral likelihood. As with our neural submodel, we need a
statement describing the relationship between the single-trial be-
havioral parameters θ and the behavioral data to form the likeli-
hood function. Using Eq. (8), which describes howwe can generate
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Fig. 2. Three realizations of data simulated from the model. Once θ and δ have been simulated, they can be used to generate predictions for the observed variables B and
N , respectively. The left panel shows three ramping functions predicted by the model (lines) along with random draws obtained by simulating the model (dots) with three
levels of δ. The right panel shows the corresponding values for θ (x-axis) that are converted into probabilities of memory formation (y-axis) according to a logistic model. As
a general rule, larger ramping functions (δ) produce larger probabilities of memory formation (θ ) because θ and δ are positively correlated (i.e., ρ = 0.6). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

behavioral data using the single-trial behavioral parameters, we
can define the conditional probability distribution p(Bi|θi) as

p(Bi|θi) =
(
logit−1(θi)

)Bi(1 − logit−1(θi)
)1−Bi

.

From here, we invert this conditional relationship to form the
likelihood function (as in the neural submodel above):

L(θ |B) =

∏
i

p(Bi|θi)

=

∏
i

(
logit−1(θi)

)Bi(1 − logit−1(θi)
)1−Bi

. (9)

2.1.3. Linking equations
As we discussed in the opening sections, there are many ways

to express the covariation of neural submodel parameters δ and
behavioral submodel parameters θ , and these ways comprise the
set of models we consider to be ‘‘joint’’ models. Although most
of our applications have expressed the relationship between the
submodel parameters via amultivariate normal distribution, other
more restrictive expressions naturally follow from the generic
linking function specified in Turner, Forstmann et al. (2013).

As an example, maintaining that our behavioral and neural data
can still be described via the submodels specified by Eqs. (7) and
(9), suppose we wish to fit a joint model like the one presented
in Fig. 3. Here, the hyperparameters φ and Σ no longer detail the
statistical structure between θ and δ, but instead describe the trial-
to-trial fluctuations observed only in δ. For example, we might
assume

δi,k ∼ Np(φ, Σ),

where p denotes the number of ROIs and the dimensionality of
the multivariate normal distribution. Here, φ and Σ describe how
the parameters on the ith trial relate to say the jth trial across all
ROIs, a model that is more realistic for problems we often face in
neuroscience. Note that in Fig. 3, the plate representing different
ROIs is not shown to keep the graphical model simplistic.

With an expression for the neural covariates in hand, we can
specify how they might be used to constrain the latent parameters
θ for the behavioral data B. For example, a simple linear model is

θi =

∑
k

δi,kβk, (10)

where βk are regression parameters relating each of the ROIs to the
behavioral parameter θi. Here, θi is completely determined by the
regression parameters β and the set of neural covariates δ, so the
node corresponding to θ in Fig. 3 has a double border to express
that it is not freely estimated.

2.1.4. Priors on hyperparameters
The final step in setting up a fully integrative joint model is to

specify priors for the hyperparameters φ and Σ . For simplicity, we
can specify a conjugate prior on Ω = (φ, Σ), such that

p(Ω) = p (φ, Σ) = p(φ)p(Σ).

Conjugacy is a term used to describe the relationship between the
prior distribution and the resulting posterior distribution. If a prior
canbe specified such that the posterior andprior distributions have
the same functional form (albeit different shapes), the selected
prior is said to be conjugate to the likelihood function (Gelman,
Carlin, Stern, & Rubin, 2004). Conjugacy is a desirable goal as it
can make the conditional distributions of the model parameters
analytically tractable, and as a result, easy to sample from in aGibbs
sampler such as the onewepresent in the next section. To establish
conjugacy for this model (see Turner, 2015 for details), we can
specify amultivariate normal prior for p(φ) and an inverseWishart
prior on p(Σ) of the form

φ ∼ Np (φ0, s0) , and

Σ ∼ W−1(I0, n0), (11)

where W−1(a, b) denotes the inverse Wishart distribution with
dispersion matrix a and degrees of freedom b.

2.2. Fitting a directed joint model to data

2.2.1. Installing JAGS
Before we can begin fitting the model to data, we must first

install two software packages. The first is the JAGS software (Plum-
mer, 2003), which can be installed by visiting http://mcmc-jags.
sourceforge.net/ and downloading the version of JAGS that corre-
sponds to the operating system installed on your computer. Once
JAGS has been downloaded, follow the steps from the JAGSwebsite
tomake sure that program is properly installed.When this process
is complete, open R or the R interface of your choice and enter the
following commands into the console:

http://mcmc-jags.sourceforge.net/
http://mcmc-jags.sourceforge.net/
http://mcmc-jags.sourceforge.net/


26 J.J. Palestro et al. / Journal of Mathematical Psychology 84 (2018) 20–48

Fig. 3. Graphical diagram for a Directed joint model. Each node represents a variable in the model, where gray nodes correspond to observed variables, white nodes
correspond to latent variables, and double-bordered nodes correspond to deterministic nodes (that are not estimated). Paths indicate direct relationships between the
variables and plates indicate replications across dimensions (e.g., trials or time). Note that the plate corresponding to multiple neural measures is not shown for visual
clarity.

1 install.packages( " rjags " )
2 require( " rjags " )

After completing these steps, the JAGS software will be available
for use within R. This additional step is not essential for fitting
the model with JAGS, but as the tutorial uses R to simulate data
from the model (i.e., see Appendix A) and analyze the resulting
posteriors, we recommend using R to interface with JAGS. For a
more detailed explanation of the rjags package in R, please visit
https://cran.r-project.org/web/packages/rjags/index.html.

2.2.2. JAGS code
Details and code describing how to generate behavioral and

neural data from our recognition memory task can be found in
Appendix A. Assuming we have this hypothetical data in hand, the
final thing we must do before sampling from the joint posterior
distribution is to specify the Directed joint model within the JAGS
framework. The goal of constructing and sampling from thismodel
in JAGS is to estimate both the neural and behavioralmodel param-
eters, whichwill provide uswith information about the underlying
mechanisms involved in completing our recognitionmemory task.
To do so, we will specify priors on the parameters, and use JAGS
to compute the posterior distribution from the hypothetical data.
Once we have done this, we can sample from the joint posterior
distributions to estimate the model parameters and use these
estimates in our analyses.

There are twoways this process can be done: (1) you can specify
the model directly in R or (2) you can create a separate text file
(with a .txt extension) using the text editor of your choosing
and call the text file in R when specifying the sampler. For this
tutorial, we decided to create a separate text file for our model
called ‘‘model_directional.txt’’, and we will call this file into
R using the code in Section 2.2.3. The JAGS code specifying the
model is split into two parts: the first part (lines 6–17) defines the
likelihoods for the neural and behavioral data, and the second part
(lines 19–32) establishes priors for our model parameters.

1 # JAGS code, file named ‘‘model_directional.txt "
2 model {
3 # convert sig to tau for convenience
4 tau <- pow(sig, -2)
5
6 # loop through trials to define likelihood
7 for (i in 1:n){
8 for (t in 1:Nt){
9 for(k in 1:Nroi){

10 # likelihood for neural data
11 N[i,t,k] ~ dnorm(Delta[i,k]*ts[t],tau)

;
12 }
13 }

14 theta[i] <- Delta[i,] # likelihood
for behavioral data

15 B[i] ~ dbin(1/(1+exp(-theta[i])),1);
16 }
17
18 # loop through trials to define prior on

delta
19 for(i in 1:n){
20 Delta[i,1:Nroi] ~ dmnorm(phi,Omega);
21 }
22
23 # priors on hyperparameters
24 phi ~ dmnorm(phi0,s0);
25 Omega ~ dwish(I0, n0);
26 # convert Omega to Sigma for convenience
27 Sigma <- inverse(Omega);
28 # prior on regression parameters
29 for(k in 1:Nroi){
30 beta[k] ~ dnorm(0,.001)
31 }
32 }

For convenience,we begin by converting the standard deviation
variable sig into the precision variable tau in lines 3–4. This is
not necessary, but as JAGS parameterizes the normal distribution
in terms of the mean and precision (as opposed to the mean and
standard deviation as in R), this transformation will become use-
ful when using functions associated with the normal distribution
(e.g., the dnorm function). Prior to discussing how the likelihoods
for the neural and behavior data are calculated, we will first jump
to lines 19–22where thematrix Delta, which contains the single-
trial neural parameters δ, is specified. Here, we model δ according
to our hyperparameters φ and Σ , which have multivariate normal
and inverse Wishart priors, respectively (see lines 24–28, and
Eq. (11)).

With Delta calculated, we can use this matrix to calculate
both the likelihood of the neural data on line 11 and the single-
trial behavioral parameters on line 14. The single-trial behavioral
parameters are then used in conjunction with the priors specified
for the regression parameters on lines 29–32 to calculate the likeli-
hood of the behavioral data (line 16). These priors are drawn from
a normal distribution with mean equal to 0 and precision equal to
0.001, which are set in our list of data above.

2.2.3. R Handler code
If the JAGS software has been properly installed and loaded into

R, we should be able to run the JAGS codewithin R using the rjags
package. The stepswehave performedup to this point have laid the
groundwork for using ourmodel to sample from the joint posterior.
However, to complete the sampling procedure, we must do four
things: (1) establish the model, (2) adapt the sampler, (3) update
the chains, and (4) collect the generated samples. The following
block of code performs these four steps:

https://cran.r-project.org/web/packages/rjags/index.html
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1 # specify the jags model:
2 # locate the JAGS code, pass variables , setup

sampler
3 jags <- jags.model(’model_directional.txt’,
4 data = dat,
5 n.chains = 4,
6 n.adapt = 1000)
7
8 # continue adapting the sampler to optimize

sampling efficiency
9 adapt(jags, 1000, end.adaptation=TRUE);

10
11 # continue sampling to ensure convergence
12 update(jags, 1000)
13
14 # draw final samples, and monitor important

variables
15 out=jags.samples(jags,
16 c(’phi’, ’Sigma’, ’beta’),
17 1000)

Lines 2–6 specify the JAGS sampler and store the JAGS object
in the variable jags. For our purposes, the jags.model function
takes four arguments, which are broken up into four separate lines.
Line 3 calls the text file specifying the Directed joint model that
is to be used for the sampling process. Line 4 loads the list of
data that we specified earlier into the sampler. Finally, the variable
n.chains (Line 5) tells JAGS how many chains to sample with
and n.adapt (Line 6) tells the software how many adaption
iterations to run in the initialization stage.

Now that the sampler is defined and initialized, we can con-
tinue the adaptation stage of the sampling process to further im-
prove sampling efficiency. This is shown in lines 8–9. Here, as we
have set the argument end.adaption to ‘‘TRUE’’, it will return a
TRUE/FALSE statement letting you knowwhether the adaptation is
complete (TRUE) or not (FALSE). Once the sampler is appropriately
adapted, we can finally sample from the posterior. To do this, we
make use of JAGS update function in lines 11–12, which runs the
updating process for 1000 iterations for each chain.

The last step is to extract the posterior samples from the jags
object for use in our analyses. To do so, we use the function
jags.samples in lines 14–17 and specify our three variables
of interest – phi, Sigma, and beta – to store as output in the
out variable. The function jags.samples draws random samples
from the posterior distribution of any variable or variables of
interest in our model. In the case above, we are drawing 1000
random samples from the posterior distributions of the variables
phi, Sigma, and beta and storing them as output in the variable
out. In other words, what we now have stored in the variable
out are 1000 random posterior samples for each chain for each
parameter. Extracting these variablesmakes them available for use
in data analysis and plotting.

2.3. Recovery analysis

There are several things we can do with our parameter esti-
mates in hand. However, probably the simplest of these is to assess
the accuracy of the estimates by comparing them to the true values
used to generate the data in R. This is known as a parameter recov-
ery analysis, and it is shown in Fig. 4 with the regression parame-
ters β . Each panel of Fig. 4 shows the corresponding β parameter
estimate for each neural covariate. In both panels, the histograms
are composed of the random posterior estimates collected by the
jags.samples function. The red vertical line in each panel is the
true value used to generate the data. The priors for β1 and β2
are also plotted in each panel, but as they are so diffuse relative
to the posterior, they are barely visible. Near perfect recovery of
the model’s parameters would cause the red line and the peak of
the histogram to align. However, what we find is that, while the

posterior estimates and the true value do not align perfectly, the
true value is encompassed in the posterior estimates. This suggests
that the regression parameters have been recovered accurately.

2.4. Summary

In this section, we showed how to implement a Directed joint
model using the JAGS software, as well as general recommenda-
tions on how to assess the recovery of the model parameters. If
the linking function has been selected appropriately, Directed joint
models are powerful in that they provide a great deal of constraint
on a model in capturing behavioral data. The assumption that
neural data necessarily give rise to mechanisms in a cognitive
model is a strong one. For example, it is not always the case that
such a clear mapping from neural to behavioral data exists, and
it is certainly rare to have accurate assumptions when perform-
ing initial explorations of brain-behavior relations (Schall, 2004;
Teller, 1984). Because there are often properties of the linking
function that are not perfectly explained in a Directed joint model,
Covariance joint models were proposed to assess the degree of
association between the random variables specifying the neural
and behavioral submodels. In the next section, we show how to
fit such a model to data, while using the same working example
shown in this section so that the technical differences between the
two approaches can be appreciated.

3. A covariance joint model

This section of this tutorial focuses on the Covariance joint
model, which is illustrated in the right panel of Fig. 1. As with the
other approaches, there are three main components: the neural
submodel, the behavioral submodel, and the linking function. We
have discussed the neural and behavioral submodels at length in
the previous sections, so the only component that differs from the
Directed joint model above is the way in which the parameters of
the two submodels are connected. In this section, we first describe
the generativemodel and then discuss the linking function. Finally,
we showhow to fit themodel to simulated data, and assess param-
eter recovery.

3.1. Generative model

Fig. 5 shows a graphical diagram of a Covariance joint model.
Here, we see that Covariance joint models are not that different
from Directed joint models, with the exception of the middle area
in the figure. Specifically, the relationship between θ and δ are
defined by parent nodes or hyperparameters φ and Σ , a feature
that is in contrast to the Directed joint model in Section 2. Unlike
the Directed joint model, the path of influence does not go from
neural data to behavioral data, nor does it go from behavioral data
to neural data. Instead, the path of dependence starts with the
hyperparameters φ and Σ , then trickles down to the submodel
parameters θ and δ.

In its most general form, θ and δ are connected through some
linking function M, dictated by a set of hyperparameters Ω , such
that

(θ, δ) ∼ M(Ω). (12)

In the original presentation, this linking function was purposefully
left generic so that one could ‘‘plug-in’’ a number of different
linking functions to constrain the estimates of θ and δ (Schall,
2004; Teller, 1984; Turner, Forstmann et al., 2017). However, for
the purposes of this tutorial, we must specify this linking function
so thatwe can fit themodel to data. Our choice of a linking function
will fall in line with previous applications (Turner, Forstmann et
al., 2013; Turner et al., 2015, 2016), and we will use a multivariate
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Fig. 4. Estimated regression parameters. The left and right panels show histograms of the estimated posterior distributions for β1 and β2 , corresponding to the first and
second ROI respectively. The true value of the parameter used to generate the data is shown as the vertical red line.

Fig. 5. Graphical diagram for the joint model presented in this section. Each node represents a variable in the model, where gray nodes correspond to observed variables,
white nodes correspond to latent variables, and double-bordered nodes correspond to deterministic nodes (that are not estimated). Paths indicate direct relationships
between the variables and plates indicate replications across dimensions (e.g., trials or time).

normal distribution with mean vector φ and variance–covariance
matrix Σ , where Ω = {φ, Σ}. Concretely, this linking function
takes the form

(θ, δ) ∼ Np(φ, Σ), (13)

where p is the sum of the length of θ and the length of δ, in other
words the dimensionality of the linking function.

We have picked the multivariate normal for several reasons.
First, themean vectorφ conveniently characterizes the central ten-
dency of each parameter θ and δ. Second, the variance–covariance
matrix Σ expresses the degree of relatedness between each pair-
wise combination of θ and δ, which allows us to assess how well
our model relates to brain activity across a set of ROIs. Third, as
we will discuss below, with the appropriate prior selection for φ

andΣ , we can establish a conjugate relationship between the prior
and posterior, which facilitates efficient estimation of the model
parameters (Turner et al., 2015).

The properties of the hyperparameters will depend on how
the lower-level parameters θ and δ are used. For example, θ and
δ could represent subject-specific parameters meaning that Ω

would describe the distribution of the model parameters between
subjects in the group. For example, Turner et al. (2016) recently
used this type of linking structure to combine neural measures
like EEG and fMRI to the drift rate parameter in the LBA model.
By contrast, θ and δ could also represent trial-specific param-
eters meaning that Ω would be a set of condition- or subject-
specific parameters. Turner et al. (2015) used this structure to
relate trial-to-trial fluctuations in the BOLD response directly to

trial-to-trial parameters of the diffusion decision model. Regard-
less of the characterization of the model parameters, the hyper
mean vector φ can be divided into the set of mean parameters for
the neural submodel (δµ) and the behavioral submodel (θµ), such
that φ = {δµ, θµ}. Similarly, the variance–covariancematrixΣ can
be partitioned as

Σ =

[
δ2σ ρδσ θσ

(ρδσ θσ )T θ2
σ

]
, (14)

where δσ is the standard deviation of the neural submodel pa-
rameters, θσ is the standard deviation of the behavioral submodel
parameters, and ρ is the correlation between the submodel pa-
rameters. Eq. (14) consists of matrices that characterize various
dispersions of the model parameters, where the element ρδσ θσ

uses the parameter matrix ρ to model the correlation between
submodel parameters. Specifying the model in this way allows
us to directly infer the degree to which behavioral submodel pa-
rameters are related to which neural submodel parameters. To
reduce the number of model parameters, we can also constrain
elements of this partition to be equal to zero. For example, if
we were uninterested in correlations that might exist from one
parameter in the behavioral model to another, we could impose
a constraint on θ2

σ to make the off-diagonal elements equal to zero.
Or, if we had a specific brain-to-mechanism hypothesis wewanted
to investigate, we could selectively estimate specific elements of
ρ (Turner et al., 2016). Such constraints are particularly useful
when the intention of one’s research is confirmatory rather than
exploratory (cf. Turner, Forstmann et al., 2017).
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3.1.1. Linking equations
The multivariate linking function in Eq. (13) describes how

the neural and behavioral parameters can be randomly simulated
across trials in an experiment. Using this equation, we can describe
the probability distribution p(θi, δi) of a particular zi = (θi, δi) with
the equation

p(θi, δi|φ, Σ) =
1

√
2π |Σ |

exp
(

−
1
2
[φ − zi]TΣ−1 [φ − zi]

)
, (15)

where |Σ | is the determinant of Σ . Eq. (15) describes the joint
distribution of θ and δ in such a way that they are both informed
by their respective streams of data B and N and constrained by the
hyperparameters φ and Σ . As such, one can surmise that Eq. (15)
serves as a prior distribution of θ and δ.

With the model framework in place and our linking function
appropriately specified, we can now work toward estimating the
parameters of themodel. To do so, wemust generate samples from
the joint posterior distribution of the model parameters condi-
tional on the observed data, written

p(θ, δ, φ, Σ |N, B) ∝ L(θ |B)L(δ|N)p(θ, δ|φ, Σ)p(φ|Σ)p(Σ)

where each function on the right side is given by the equations
listed above.

3.2. Fitting a covariance joint model to data

3.2.1. JAGS code
As with the Directed joint model, the first thing we must do

is to specify our Covariance joint model in JAGS. The code will
again be split into two parts: the first part will define the likeli-
hood function, and the second part will define the priors for the
parameters of the model. Again, for the purposes of the tutorial,
we choose to specify the JAGS code into a separate text file called
‘‘model_covariance.txt’’ that will later be called into R.

1 # JAGS code, file named ‘‘model_covariance.txt "
2 model {
3 # convert sig to tau for convenience
4 tau <- pow(sig, -2)
5
6 # loop through trials to define likelihood
7 for (i in 1:n){
8 for (t in 1:Nt){
9 # likelihood for neural data

10 N[i,t] ~ dnorm(DeltaTheta[i,1]*ts[t],
tau);

11 }
12 # likelihood for behavioral data
13 B[i] ~ dbin(1/(1+exp(-DeltaTheta[i,2])),1)

;
14 }
15
16 # loop through trials to define prior on (

delta, theta)
17 for(i in 1:n){
18 DeltaTheta[i,1:2] ~ dmnorm(phi,Omega);
19 }
20
21 # priors on hyperparameters
22 phi ~ dmnorm(phi0,s0);
23 Omega ~ dwish(I0,n0);
24 # convert Omega to Sigma for convenience
25 Sigma <- inverse(Omega);
26 }

The model code for the Covariance joint model is similar to the
code for the Directed joint model above. The key difference in this
code, however, is that the parametermatrix used in the calculation
of theneural andbehavioral likelihoods contains estimates for both
the neural parameters δ and the behavioral parameters θ . This is
shown in lines 16–19, where we define the priors on both θ and δ

(i.e., the linking function) as opposed to just δ in the Directed joint
model. Other than the different linking function, the structure of
the code is virtually identical. Lines 6–14 calculate the likelihoods
for the behavioral and neural data using Eq. (7) (line 10) and Eq. (9)
(line 13). Lines 21–23 specify the priors on the hyperparameters.
Finally, lines 3–4 and 24–25 conveniently convert sig to tau and
Omega to Sigma, respectively.

3.2.2. R Handler code
The R code used to sample from the posterior with our Covari-

ance model is similar to that used to sample with the Directed
model, so we will not go into great detail. However, it is important
to note that when drawing samples from the posterior and storing
them as output, we must properly specify which variables are to
be stored. Here, phi and sigma remain the same, but rather than
storing output from the Delta parameter matrix as we did with
the Directed model, we must specify that we want to store output
from the new DeltaThetamatrix.

1 # specify the jags model:
2 # locate the JAGS code, pass variables , setup

sampler
3 jags <- jags.model(’model_covariance.txt’,
4 data = dat,
5 n.chains = 4,
6 n.adapt = 1000)
7
8 # continue adapting the sampler to optimize

sampling efficiency
9 adapt(jags, 1000, end.adaptation=TRUE);

10
11 # continue sampling to ensure convergence
12 update(jags, 1000)
13
14 # draw final samples, and monitor important

variables
15 out=jags.samples(jags,
16 c(’phi’, ’Sigma’, ’DeltaTheta’),
17 1000)

3.3. Recovery analysis

To assess how accurate the model’s estimates are, we can cal-
culate the posterior means (PMs) of the model’s parameters and
compare these to the values used to generate the data. To do this
in R, we simply take the average across both dimensions of our
estimated parameter matrix DeltaTheta using the following code:

1 # calculate the mean of the posteriors
2 pms=apply(out$DeltaTheta ,c(1,2),mean)
3 # delta is the first column, theta is the second

column
4 delta=pms[,1]
5 theta=pms[,2]

Line 2 creates a new variable pms that stores the mean of each
dimension. Lines 4–5 create the variables delta and theta, which
correspond to the neural node δ and the behavioral node θ in Fig. 5,
respectively. We can then use these PM estimates to assess how
closely the model’s estimates are to the values used to simulate
data from the model.

The results of the recovery analysis are illustrated in Fig. 6.
Here, the left and right panels plot the estimatedmodel parameters
on the y-axis against the true values of the model parameters on
the x-axis for θ and δ, respectively. In addition, the correlation
coefficient is displayed in the bottom right corner, with higher
values of R suggesting a greater correspondence between the true
and estimated values. Focusing on the left panel of Fig. 6, we
see that model provided accurate estimates for the δ parameters.
However, in right panel of Fig. 6, which focuses on the single trial
behavioral parameters θ , the recovery of the model parameters
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Fig. 6. Recovery of the single-trial model parameters. The posterior mean (PM) (y-axis) is plotted against the true model parameter (x-axis) for the neural model parameters
δ (left panel) and the behavioral model parameters θ (right panel). Within each plot, the correlations between parameter estimates and true values of the parameters are
reported.

was good albeit poorer. One potential explanation for the poorer
recovery is the differences in the number of observations between
the neural parameters δ and the behavioral parameters θ . Typi-
cally, a model’s ability to accurately estimate the posterior of a
parameter is positively related to the amount of data available
per model parameter, with more data available leading to more
accurate posterior estimates. As there was substantially less data
available for the θ parameters as compared to the δ parameters –
one data point per θ parameter vs five data (i.e., time) points per δ
parameter – a poorer fit is expected.

In addition to assessing recovery at the parameter level, we can
also assess recovery at the hyper level for the hyperparameters φ
and Σ . Rather than plotting estimates against the true parameter
values, we can instead visualize the recovery of the posterior
distributions using violin plots. In Fig. 7, the estimated posterior
distribution of each hyperparameter are illustrated using a violin
plot with the corresponding true parameter value illustrated as a
black ‘‘X’’. To assess accuracy, we can look at two things: (1) the
shape of the distribution and (2) its location relative to the true
parameter value (i.e., the black X). Amore accurate recoverywould
result in narrower (i.e. less variance) posterior distributions that
encompass the X, and poorer recovery would result in wider and
more varied distributions and/or the X falling outside of the violin
plot.

The left panel of Fig. 7 shows that both hyper mean parameters
for φ were accurately recovered, with φ1 for the neural data having
substantially less variance relative to φ2. The right panel of Fig. 7
shows the estimated posterior distributions of the components
of the matrix Σ: the standard deviation of the neural model pa-
rameters σ1 (left), the standard deviation of the behavioral model
parameters σ2 (middle), and the correlation between the single-
trial parameters ρ (right). The violin plots suggest that all the
components of Σ were accurately recovered, with the neural
subcomponent σ1 showing more accurate recovery relative to the
behavioral subcomponent.

3.4. Summary

In this section, we described how to adapt the Directed joint
model from the first application tomake it suitable for a Covariance
joint model. The main difference between these approaches is in
the way the parameters of the neural and behavioral submodels
are connected. In the Directed approach, one set of model param-
eters is a deterministic function of another set. In the Covariance
approach, both sets of parameters are conditionally independent,
although they are mutually constrained via the prior structure in
the model’s hierarchy. The difference between the two types of

architectures has some interesting implications regarding model
flexibility and constraint, which is a comparison we will save until
the General Discussion. Here, we have shown that despite the
complexity of the Covariance approach, the parameters can still
be recovered accurately with JAGS. Of course, the analyses in this
section were simulation-based, meaning that the true parameter
estimates were known all along. In the next section, we transi-
tion to a more realistic scenario where the true data generating
mechanism is not known; instead, it is inferred directly from
experimental data.

4. An application to experimental data

So far, the applications in this tutorial have been simplistic and
idealized as a way to introduce the concepts of joint modeling. The
worked examples above begin by first simulating data from the
model and using JAGS to recover the model parameters. However,
in practice, fitting real behavioral and neural data with a joint
model can be messy and complicated. Thus, in this section, we
showhow to construct and fit a jointmodel to real-world data from
an fMRI experiment. Below, we use both Directed and Covariance
joint models to examine how neural data can be related to the
parameters of a simplified DDM. The structure will be similar to
that of the preceding sections: we first describe the experiment
and data collection procedure, then we describe the neural and
behavioral submodels that comprise the Directed joint model.
Finally, we provide JAGS and R handler code to fit the model and
evaluate the accuracy of the estimated parameters.

4.1. Experiment

For our experimental application, we conducted a pilot study
that consisted of one fMRI session with one healthy subject. The
subject was asked to complete a contrast discrimination task, the
structure of which is illustrated in Fig. 8. For each trial, the subject
was presented with two grating contrast stimuli flickering at 2 Hz,
each at different contrast levels, for 8 s (i.e., each stimulus turned
on and off every 250 ms) with a mean interstimulus interval of
eight seconds. In this task, the higher contrast stimulus had clearer
boundaries between the white and black grating columns. After
presenting the two grating stimuli, a cue was provided (i.e., a ‘‘×’’
symbol) to elicit a response from the subject about which of the
two stimuli had the higher contrast level.

One run of the contrast discrimination task was conducted
with 20 trials per run. The grating stimuli could take on one of
five contrast levels ranging between 0 and 1 (0.01, 0.03, 0.1, 0.3,
1) in a 5 × 5 factorial design; however, the five stimulus pairs
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Fig. 7. Recovery of the hyperparameters in the joint model. In each panel, the estimated posterior distributions are illustrated with a violin plot and the true value of the
model parameters are shown as the black ‘‘X’’. The estimates corresponding to the parameters φ are shown in the left panel, whereas the parameters corresponding to the
elements within Σ are shown on the right panel.

Fig. 8. Structure of the contrast discrimination task. Subjects were asked to determine which of two presented stimuli were of highest contrast.

consisting of the same contrast level were excluded from the task
(e.g., 0.3 and 0.3). Each run lasted a total of 704 s, with 12 s fixation
periods in the beginning and the end of each run. The fixation
period was necessary for the BOLD response to return to baseline,
which helps to mitigate the potential overlap in neural activity
that may arise from the previous trial or other effects such as the
presentation of task instructions. Functional data were recorded
every two seconds.

For simplicity, we will assume that preprocessing of the func-
tional images has already been performed. Using the anatomy-
based standard ROIs in the Montreal Neurological Institute (MNI)
space, we constrained the ROI to early visual area, namely V1 from
both hemispheres. The ‘‘mask’’ was used to identify the target
voxels that comprised the ROI, and themean time series data of the
voxelswithin this ROI during the contrast discrimination taskwere
used as the neuralmeasures in our data analysis. More information
about how the region of interest (ROI) was defined is available in
Appendix C.

4.2. Mathematical details

4.2.1. Neural submodel
Previous studies have demonstrated that the visual cortex

shows greater activation as the contrast level increases (e.g.,
Boynton, Demb, Glover, & Heeger, 1999). With this in mind, we

assumed that the activation level in the visual cortex for each
grating stimulus drives the contrast discrimination process and
subsequent behavioral responses in our experiment. To this end,
the neural submodel should detail the neural activation in the
visual cortex for each of the two presented stimuli. The goal then, is
to use the activation levels from the neural submodel (described in
this section) as away to derive a decision variable in the behavioral
submodel (described in the next section). As the experimental
application presented here is more complicated than the hypo-
thetical applications discussed above, we must first describe the
details of the neural data to justify the choices wemade about how
to quantify the neural activation corresponding to each stimulus
presentation.

BOLD signal and the hemodynamic response function. In fMRI ex-
periments, we typically measure what is known as the blood-
oxygenation-level dependent (BOLD) signal, which is assumed
to reflect the neural activation evoked by a stimulus. This as-
sumption is based on the idea that the oxygen level in blood is
strongly affected by hemodynamic activities in the blood flow,
which typically features a delayed increase to the peak activation
level, followed by a temporary undershoot of the baseline level of
activity. Based on characteristics of the hemodynamic activities,
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Fig. 9. A canonical form of a hemodynamic response function. The double-gamma model in Eq. (16) was used in our analysis with the following shape parameters: a1 = 6,
a2 = 16, b1 = 1, b2 = 1, and c = 1/6. For illustrative purposes, we set the activation parameter β = 1.

severalmodels of hemodynamic responses have been proposed for
describing and analyzing fMRI data.1

One of themost common and successfulmodels of the hemody-
namic response function (HRF) is a canonical form of the double-
gamma model implemented in SPM 12 (http://www.fil.ion.ucl.ac.
uk/spm/software/spm12/):

h(t) = βh0(t)

= β

(
ta1−1b1a1 exp(−b1t)

Γ (a1)
− c

ta2−1b2a2 exp(−b2t)
Γ (a2)

)
, (16)

where t represents time, β is the amplitude of the response, and
Γ (x) = (x − 1)! is the gamma function. The shape parameters a,
b, and c are conventionally assumed to have fixed values: a1 = 6,
a2 = 16, b1 = 1, b2 = 1, and c = 1/6. Therefore, β , which scales
the peakedness of the function h0(t), is the only free parameter to
be estimated. Fig. 9 shows the form of the canonical HRF defined
in Eq. (16). Here, all shape parameters are set to their conventional
values, and the amplitude parameter β is set to one. Fig. 9 shows
that the double-gamma HRF produces both the steady increase
in activation as well as the ‘‘post-stimulus dip’’ that are typically
observed in real experiments.

Linear time-invariant property and convolution. Although Fig. 9 and
Eq. (16) describe the neural activation that ensues following a
single stimulus presentation, in nearly all experiments, we are con-
cerned with modeling the effects of many stimulus presentations
over time. As the shape of the HRF in Fig. 9 shows, a problem
occurs when stimuli are presented within 20 or 30 s from one
another. Namely, the effects of a single stimulus presentation can
linger for up to 30 s, and these effects can alter the observed
BOLD response of subsequent stimuli from what is predicted by
a canonical HRF. Given this, in realistic applications (i.e., unlike the
working examples in the first two sections), we must consider the
neural measures on every trial to be realizations of a long time
series of events starting from the first stimulus presentation and
lasting up until the current point in time.

Fortunately, the hemodynamic response itself is known to
have a linear time-invariant (LTI) property than can be exploited
when modeling the BOLD time series data from our experiment
(Boynton, Engel, Glover, & Heeger 1996). The LTI property can
be described in two pieces. First, the time-invariance portion of
the LTI means that if neural activation is delayed by t seconds,
then the hemodynamic response evoked by the neural activity is

1 At this point,wedirect the reader tomore extensive books detailing fMRI design
and analysis, such as Poldrack, Mumford, and Nichols (2011).

also delayed by the same amount of time. As experimenters, we
typically control the time at which stimuli are presented, which
implies thatwe knowatwhat point in timewe should expect to see
neural activation. Hence, we can simply assume that each stimulus
presentation has a corresponding HRF function, and these HRF
functions begin at the time t when a given stimuluswas presented.

Second, despite the hemodynamic response function being
nonlinear with respect to time (see Fig. 9), the amplitude β of
the hemodynamic response is known to be linearly related to the
strength of neural activation in a given region. As a consequence,
the amplitude parameters can be evaluated in relative terms across
subjects, conditions, or even individual stimuli. Furthermore, the
amplitude parameters themselves can be treated as blocking vari-
ables that correspond to the levels of an independent variable
central to our experiment. For example, if one area of the brain
responded to the contrast of a stimulus, we would expect greater
activation in this area when higher-contrast stimuli are presented.
If we were to treat the contrast level as an independent variable in
our experiment, we might choose to discretize the contrast space,
say on a zero to one scale, while choosing five contrast levels to
present to subjects in the experiment. In this scenario, it would be
sensible to assume that the estimates of the amplitude parameters
could be constrained by knowing to which contrast condition a
given stimulus belonged.

As an illustration, Fig. 10 shows how the LTI property can be
used to model the BOLD time series data. The left column shows
how one would model two stimulus presentations that are only
different in the time at which they were presented, whereas the
right column shows how one would model two stimulus pre-
sentations that differ in both time and neural response. The top
row shows what is known as a ‘‘design’’ matrix, where stimulus
presentations are represented as spikes at different points in time
(x-axis). In this figure, the presentations of the stimuli occur at
t = 0 and t = 7 s. However, the presentations of the stimuli might
evoke different neural responses, depending on the properties of
the stimuli such as in the hypothetical contrast example discussed
above. For example, in the top left panel, two stimuli are presented
that evoke the same neural response (i.e., β = 1), whereas the
top right panel shows two stimuli that evoke different neural re-
sponses (i.e., β = 1 and β = 2). The bottom panel shows the HRFs
corresponding to the spikes in the top row. Here, the individual
HRFs are clearly separated in a way defined by the design matrix
above. Furthermore, the amplitude of the HRFs is determined by
the design matrix, illustrated by the heights of the spikes in the
top row.

Mathematically, we can specify how the HRFs should be shifted
and amplified through a process known as convolution. Using h(t)

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Fig. 10. Convolution of the hemodynamic function (HRF). The plots in the first row show the timing and strength of neural activation. In both columns, stimuli are presented
at t = 0 and t = 7 s. In the left column the activations for both stimuli are β = 1, whereas the activations in the right column are β = 1 and β = 2, respectively. The
bottom row shows the canonical form of the double-gamma HRF with the same shape parameters in Fig. 9 (a dotted line) and a convolved HRF according to the activation
setting (a bold line) from the top row. In all panels, either a gray or red triangle specifies the timing of the neural activation. Compared to the canonical HRF, it is observed
that convolved HRFs show temporal shift by the same amount of the activation time and amplification which is proportional to the strength of the activation in the top row.

to denote the double-gammaHRF fromEq. (16),we can also specify
a boxcar function f (t) that details the time at which stimuli are
presented. In other words, the function f (t) takes on the value of
one at the values of t that a stimulus was presented, but is zero
otherwise. Then, to convolve our individual HRFs with f (t), we
evaluate the following equation:

(f ∗ h)(t) =

∫
∞

−∞

f (τ )h(t − τ )dτ

=

∫
∞

−∞

h(τ )f (t − τ )dτ (commutativity). (17)

While Eq. (17) may seem complicated, it is at least conceptually
easy to understand from Fig. 10 in that it centers and scales the
double-gamma HRF from Eq. (16) at each point in time that a
stimulus was presented.

While Fig. 10 makes clear our goal of formally shifting and
scaling separate HRFs for each stimulus presentation, we have not
yet addressed how the individual HRFs may affect one another,
depending on how far apart they are separated in time. Essentially,
when stimulus presentations occur close in time, the effects that
one stimulus has on the obtained BOLD response may carry over
into the BOLD response observed after the second stimulus has
been presented. To decouple the effects underlying the obtained
BOLD signal, we must have a way of integrating the individual
HRFs into a single convolvedHRF. One conventionalway to achieve
this is setting individual regressors for each trial in the design in
the general linear model framework, which is sometimes called
beta-series regression (Mumford, Turner, Ashby, & Poldrack, 2012;
Rissman, Gazzaley, & D’Esposito, 2004) in the context of multi-
voxel analysis.

Suppose in an interval of T units of time (i.e., seconds, millisec-
onds), we present R stimuli of various levels of the independent
variable. We can let the vector β contain the degrees of neural
activation of each of the R stimuli (i.e., βi, where i ∈ {1, . . . , R}),
plus one baseline activation level parameter β0, such that

β =

⎡⎢⎢⎢⎢⎢⎢⎣

β0
β1
β2
β3
...

βR

⎤⎥⎥⎥⎥⎥⎥⎦ . (18)

These βs are the parameters governing the amplitude of the HRFs,
and are to be estimated from the data. The top row of Fig. 11 illus-
trates an example of what the β vector might look like for various
stimulus presentations at different times. The times themselves are
given by the function f (t) described above, but here, the activation
levels (i.e., the y-axis) correspond to the values contained in β,
where β0 = 0.

Corresponding to each stimulus presentation is an HRF, and the
collection of HRFs can be assembled into amatrixX. Like the vector
β, theHRFmatrixX contains a vector corresponding to the baseline
activation of the BOLD response, similar to a y-intercept term. As
we will see below, a column within X contains elements equal to
one to capture the baseline activation of the BOLD response once it
ismultiplied byβ. Beyond the baseline activation, theHRFmatrixX
contains R HRF time-series vectors for each stimulus presentation,
shifted by the onset time as the columns. Given this, a value for
each HRF must be specified at each unit of time t ∈ {1, 2, . . . , T }.
If for example, a stimulus is presented at t = 3 s and the units of
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Fig. 11. Convolution of the hemodynamic function (HRF) withmultiple times of neural activation. The three rows show how a BOLD response acquired from an fMRI scanner
can be considered as a linear combination of individual hemodynamic responses evoked by each stimulus presentation. The first row shows the timing and strength of the
neural activation. The middle row shows the individual hemodynamic responses (dotted lines) that correspond to the activation settings specified in the upper plot. The
bottom row shows the convolution process across all stimulus presentations (bold line) along with the individual hemodynamic responses (dashed lines). The green line
illustrates how the convolved HRF (filled circle) is a linear sum of the individual HRFs (empty circles) at that particular time. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

time are in seconds, then the first two rows corresponding to that
HRF’s columnwould have zero values because the stimulus has yet
to be presented. Given these specifications, we can define the HRF
matrix as2

X =

⎡⎢⎢⎣
1 h0,1(1) h0,2(1) h0,3(1) · · · h0,R(1)
1 h0,1(2) h0,2(2) h0,3(2) · · · h0,R(2)
...

...
...

...
. . .

...

1 h0,1(T ) h0,2(T ) h0,3(T ) · · · h0,R(T )

⎤⎥⎥⎦ . (19)

The middle row of Fig. 11 shows an example of what the HRF
matrix could look like once its columns have been scaled by the
elements of β from the top row. Here, each stimulus presentation
is marked by a red triangle, and the figure shows differences in
the amplitude of the HRFs in proportion to the values of β from
the top row. At this point, the middle row shows the individual
HRFs together, shifted in time and scaled according to their neural
activation according to the convolution operation in Eq. (17), but
they have not been combined to form a prediction about the
obtained BOLD response over the T = 60 units of time.

To produce the final predicted BOLD response, we simply sum
up the neural activation from each of the individual HRFs shown
in the middle row of Fig. 11. Given our definitions above, the
linear summation operation can be simply expressed as Xβ, and
the final convolved HRF is shown as the solid black line in the
bottom row of Fig. 11. The green vertical line shows how the

2 Note that the design matrix X does not define columns representing signal
drifts for practical purposes. Signal drifts refer to systematic patterns of the signal
irrelevant to the task, and it is common to take them into consideration in the design
matrix to statistically control exogenous effects. However, we decided to exclude
them in this example for approachability.

convolved HRF (filled circle) is constructed by summing up the
individual HRFs (empty circle). Alongside the convolved HRF in
the bottom panel are the individual HRFs so that one can see how
individual stimulus presentations can have unexpected effects on
the obtained BOLD response. For example, the convolved HRF has
several modalities and undulations, some of which are produced
by stronger neural activations (i.e., when β is large) and some of
which are produced by more frequent stimulus presentations. In
summary, Fig. 11 shows how the obtained BOLD response can be
deconstructed when the stimulus presentation times are known,
and the HRF amplitude parameters can be estimated.

Neural likelihood. Based on the LTI property of the hemodynamic
response, the expected BOLD response (i.e., model prediction)
is defined by the convolution of the time-series vector of the
canonical HRF and the onset-time vector. Equivalently, it can be
calculated by the sum of the individual time-series vectors h(t),
which are shifted by their onset time and scaled by the amplitude
vectorβ. In addition, we assume that the observed BOLD responses
are perturbed by some statistical error ϵ(t), that captures random
properties of the time series data that are not predicted by the
model. Taken together, we can denote the neural response vector
as

N(t) = β0 +

R∑
i=1

hi(t) + ϵ(t)

= β0 +

R∑
i=1

βih0,i(t) + ϵ(t),

where t = 1, 2, . . ., T represents a given time point, β0 is the base-
line activation level, and R is the number of stimulus presentations.
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The only free parameters are the amplitudes of the individual HRFs
βi, which will be estimated using a general linear model analysis.

To assess howwell the set of model parameters capture the ob-
served patterns in the data, we must assume a distribution for the
error term ϵ(t). Conventionally, ϵ(t) is assumed to be distributed
according to a normal distribution centered at zero with variance
σ 2, such that

ϵ(t) ∼ N (0, σ 2).

Given our definitions of β and X, we can conveniently express the
neural data probabilistically, such that

N ∼ NT (Xβ, σ 2IT ), (20)

where N is the BOLD time-series vector and IT is a T × T identity
matrix. Hence, letting Nt denote the BOLD response at time t , the
likelihood for the neural activation parameters β and the noise
term σ is

L(β, σ |N) =

T∏
t=1

1
√
2σ 2

exp

⎡⎢⎣−

{
Nt −

(
β0 +

∑R
i=1 βih0,i(t)

)}2
2σ 2

⎤⎥⎦ .

(21)

4.2.2. Behavioral submodel
While numerous theories have been postulated to explain and

understand how humans make decisions in a two-alternative
forced choice task, perhaps the most successful attempts involve
sequential sampling theory. In their most basic form, models
that embody sequential sampling theory assume that upon the
presentation of a stimulus, an observer stochastically accumu-
lates evidence until the level of evidence crosses a predetermined
‘‘threshold’’ amount, often referred to as a ‘‘boundary’’. In some
model architectures, multiple boundaries exist that correspond to
the two alternatives, whereas in other model architectures, mul-
tiple accumulators race toward a common boundary, where the
accumulators correspond to the alternatives. Either way, once an
accumulator reaches a boundary, a decision is made to correspond
to the result of the stochastic process, and the outcome (i.e., the
amount of time it took to reach the boundary and the boundary
that was reached) corresponds to a predicted decision among the
choice alternatives.

Within the sequential sampling family, the diffusion decision
model (DDM; Ratcliff, 1978; Ratcliff & Rouder, 1998), has been
especially successful in accounting for data from simple two-
choice decision making tasks. The basic framework of the DDM
is similar to the two-boundary models described above. However,
what sets the DDM apart from other sequential samplingmodels is
that evidence in the DDM is accumulated continuously over time
rather than evidence arriving at discrete time steps (e.g., Merkle
& Van Zandt, 2006; Ratcliff, Van Zandt, & McKoon, 1999; Smith &
Van Zandt, 2000).

While the DDM has been incredibly successful since its incep-
tion in accounting for a variety of choice reaction time data, it
has evolved significantly in that time. The original DDM (Ratcliff,
1978) included two sources of variability: within-trial variability
in the rate of accumulation (i.e., the drift rate) and between-trial
variability in both drift rate and nondecision time. These sources
of variability were essential for the model to account for a variety
of empirical benchmarks that early sequential sampling models
could not produce (Ratcliff & McKoon, 2008; Ratcliff & Tuerlinckx,
2002).The modern DDM (Ratcliff & Rouder, 1998) includes an ad-
ditional source of variability – between-trial variability in starting
point – that allows it account for situations where error responses
are faster than correct responses (i.e., fast errors). With the in-
clusion of this additional source of variability, the DDM has been

able to account for a plethora of data from decision-making tasks
spanning many domains and disciplines (e.g., Ratcliff, Thapar, &
McKoon, 2006; Starns & Ratcliff, 2010; White, Ratcliff, Vasey, &
McKoon, 2009).

For the purposes of this application, we chose to implement a
simplified version of the DDM, which we refer to as the Wiener
diffusion process (see Smith, 2000; Stone, 1960 for a detailed
overview). The basic framework of the Wiener diffusion process
typically involves four parameters representing response thresh-
old, relative bias, nondecision time, and drift rate. The response
threshold parameter α determines the amount of evidence needed
to reach a decision. The relative bias parameter ω is often a repa-
rameterization of the starting point z0 relative to the response
threshold:

ω =
z0
α

(22)

(Navarro & Fuss, 2009; Turner et al., 2015; Vandekerckhove, Tuer-
linckx, & Lee, 2008). The relative bias is intended to reflect an
observer’s initial bias toward one alternative that is not based on
the properties of the stimulus per se. The drift rate ξ , represents
the mean rate of evidence accumulation. Finally, the nondecision
time parameter τ is the summation of encoding time and motor
execution time. Although these times are not typically interesting
froma cognitive perspective, a nondecision timeparameter is often
used to allow the model to shift its predictions to be in line with
observed data, much like an intercept term in regression mod-
els. With this set of parameters, the probability density function
describing the distribution of finishing times (i.e., the times such
that the accumulator reached a boundary) for theWiener diffusion
process – known as the ‘‘first passage of time’’ – is

f (t|α, ω, ξi, τ ) =
π

α2 exp
(

−ξiαω −
ξ 2
i (t − τ)

2

)
×

∞∑
k=1

k exp
(

−
k2π2(t − τ )

2α2

)
sin (kπω) (23)

(Feller, 1968; Navarro & Fuss, 2009; Tuerlinckx, 2004). Eq. (23) only
describes the times for the accumulator to reach a single boundary.
To describe the times associatedwith the accumulator reaching the
other boundary, we simply replace the drift rate ξi in Eq. (23) with
−ξi (because we are assuming no response bias in our model).

Much like the behavioral submodel used in the generative
model in the tutorial above, this simplifiedWiener diffusionmodel
was chosen based on its simplicity, and it is not expected to fit data
particularly well. However, as mentioned, diffusion models have a
long standing history of success when fitting behavioral data from
simple decision-making tasks, so it is a convenient choice for fitting
behavioral data from a task such as ours. In practice, it is likely
that a more complex form of diffusion model, such as one that
includes several sources of variability (i.e., the ‘‘modern’’ DDM),
would provide a more detailed account of these data.

Behavioral likelihood. With the probability density function for the
upper and lower boundary given by Eq. (23), we can derive the
likelihood function relating the model parameters to the data. In
a two-alternative forced choice task, we obtain both a choice and
a response time. Denoting the choice and response time on Trial i
as ci and ti, respectively, the likelihood function is

L(θ |c, t) =

N∏
i=1

f (ti|α, ω, (−1)ci−1ξi, τ ). (24)
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4.2.3. Linking equations
The final step in the model specification is to describe how

the neural parameters δ inform the behavioral parameters θ . In
our experiment, we present the subject with two different grating
stimuli per trial, and the subject is asked to determine which of
the two stimuli have the highest contrast. The neural submodel
provides estimates of the amplitude parameterβ of theHRF,which
represents the strength of neural activity evoked by a stimulus. Fol-
lowing the LTI property of the HRF, a larger amplitude corresponds
to greater neural activity. If we assume that each stimulus evokes a
separate and distinct BOLD response, we can also assume that the
amplitude of these BOLD responses could be related to the decision
variable. For example, if the first stimulus is of high contrast and
the second stimulus is of low contrast, we could compare the
estimated β parameters for the two stimuli. As a general rule, we
might expect that larger β values for the first stimuli relative to the
β value of the second stimuli would produce larger probabilities of
the subject declaring that the first stimulus was of higher contrast.
Hence, comparing the magnitudes of the two β estimates should
provide a reasonable proxy to the decision variable used by human
observers.

Directed joint model. To map the neural activation parameters to
the decision variable in the Wiener diffusion model in a Directed
joint modeling framework, we simply assumed that the drift rate
parameter on a given trial was given by the difference between the
neural activations produced by the two stimuli. Specifically, letting
β2,i and β1,i correspond to the neural activations following the
presentations of the second and first grating stimuli, respectively,
we set

ξi = β2,i − β1,i, (25)

where ξi represents the drift rate parameter for Trial i. From the
logic discussed above, it follows that ξi will tend to be larger
when the second stimulus is of higher contrast relative to the first,
which should produce a larger probability of choosing the second
alternative relative to the first. In addition, the Wiener diffusion
model makes strong predictions about the speed of each choice,
such that larger ξi are associatedwith faster decisions. Both of these
dynamics, the choice and response time, should provide strong
constraints when mapping the neural activations to the decisions
observed in the experiment.

Covariance joint model. To map the neural activation parameters
to the decision variable in the Wiener diffusion model in a Co-
variance framework, we must specify the linking function M that
connects the neural activations β2,i and β1,i on each trial i to the
trial-specific drift rate ξi, as predicted by the behavioral submodel.
Here, we choose to define the covariance structure in a similar
manner as Turner et al. (2015), who used single-trial neural mea-
sures (i.e., the BOLD response) to inform the behavioral parameters
of the DDM, creating the Neural Diffusion DecisionModel (NDDM;
Turner et al., 2015). Much like the NDDM, we assume that the
single-trial drift rates ξi from theWiener diffusion process and the
difference between neural activations from the two contrast stim-
uli on each trial ζi = β2,i − β1,i come from a common distribution.
Specifically we assumed that the linking function wasmultivariate
normal (see Section 1.3 for a more detailed explanation), such
that

(ζi, ξi) ∼ N2(φ, Σ). (26)

As the neural element of the hypermodel is defined as the differ-
ence between β2,i and β1,i, we must also estimate one of the two β
parameters. Without loss of generality, we assumed

β1,i ∼ N (0,
√
1000

2
), and

β2,i = ζi + β1,i.

Hence, ζi and β1,i are freely estimated, whereas β2,i is determinis-
tic. This transformation is only necessary due to syntax constraints
within JAGS, and our intention of relating a single neural activation
parameter ζi to the drift rate parameter ξi in the Covariance joint
model.

4.3. Fitting the model to data

To fit the Directed and Covariance joint models to data, four
steps must be completed. First, the JAGS Wiener module must
be installed so that Eq. (23) can be evaluated within JAGS (see
Wabersich & Vandekerckhove, 2014 for details). Second, we must
import the data from our experiment, so that the model can be
fit to it. Third, JAGS code must be specified for the Directed and
Covariance models, and finally we must use R to call and handle
the sampling algorithms performed in JAGS. We now discuss each
of these four steps in turn.

4.3.1. Installing the JAGS Wiener module
To implement the Wiener diffusion model in the joint model-

ing framework using JAGS, we must first install the JAGS Wiener
Module (JWM; Wabersich & Vandekerckhove, 2014). To begin,
it is important to verify that JAGS is installed and updated to
the most recent version. With JAGS properly installed, the JWM
can be installed by downloading the associated files from https:
//sourceforge.net/projects/jags-wiener/files/ and following the in-
structions described in Wabersich and Vandekerckhove (2014) for
your operating system.

4.3.2. Importing data
Neural and behavioral data from our experiment are provided

in the R data set application_dataset.Rdata.3 This file will
load six vectors into R: (1) a BOLD response vector preprocessed as
percent signal change; (2) an onset-timing vector for the 40 inde-
pendent stimuli; (3) a stimulus vector that provides the contrast
values of the 40 stimuli, (4) a vector containing the response times
for each trial; (5) a response vector, where responses are coded as
0 if the participant responded that the first stimulus had a higher
contrast level, and a 1 if the participant responded that the second
stimulus had a higher contrast; and (6) an accuracy vector coded
as 1 for a correct response and 0 for an incorrect response. Note
that no missing data exists in this data set. The following block
of code will load the data files, apply appropriate transformations
of the behavioral data, and construct a list object of the data for
transmission to JAGS:

1 # Load required packages and modules
2 require( " rjags " )
3 load.module( " wiener " )
4
5 # Load the data set
6 load( " application_dataset.Rdata " )
7
8 # Recode data
9 rt[temp.resp==0]=rt[temp.resp==0]*-1

10
11 # For the hypermodel
12 R = diag(rep(1, 2))
13
14 # Data
15 TR = 2
16 lenS = length(onset) # total number of stimuli

presented in the block
17
18 dat = list(N = N, lenN = length(N), TR = TR, t =

rt,

3 All files used in this tutorial can be downloaded from a repository on the Open
Science Framework website: https://osf.io/qh7xr/?view_only=aafea8d894e74ee38
ec67b7cc3b55780.
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19 n.trials = length(rt), onset = onset,
lenS = lenS,

20 a1 = 6, a2 = 16, b1 = 1, b2 = 1, c = 1
/6)

Lines 1–3 load the packages and modules needed to sample
from the posterior. The rjags package allows for JAGS software
to be run in R, and the wiener package allows JAGS to use the
functions associated with the JAGS wiener module (JWM). Lines
5–6 load the data set. Lines 8–9 recode the data so that responses
to one stimulus in our two-alternative-forced-choice task have
positive response times (RTs) and responses to the other stimulus
have negative RTs. This is necessary as the first passage of time
distribution, as specified in the JWM, is implemented as a univari-
ate distribution. As such, to use the distribution, response times
for responses associated with the lower (i.e., negative) boundary
need to recoded as negative (Wabersich &Vandekerckhove, 2014).
Lines 11–12declare amatrix for storage to be usedwhen specifying
the hyper-prior. Finally, lines 14–20 extract the data relevant to
our analyses and stores it in a list to be passed to JAGS. The
vector N contains the BOLD responses from the ROI processed as
percent signal change. The objects lenN, n.trials, and lenS are
scalar values denoting the total number of BOLD measurements,
trials, and stimuli, respectively. Thesewill become important in our
JAGS model code for calculating the likelihoods of the neural data
and behavioral data and estimating the hemodynamic response
function. Finally, the data list also contains the repetition time of
the fMRI pulse sequence in TR, the onset times of each stimulus in
the vector onset, and the shape parameters of the double-gamma
function (a1, a2, b1, b2, and c).

4.3.3. JAGS code
In the previous sections, we have specified the model within

JAGS in a separate text file; however, this is not essential to the
implementation thanks to the additional flexibility afforded by the
rjags package. For instance, the following block of code can be
pasted into an R script and loaded into the workspace by simply
running it:

1 model.double.gamma.wiener = "
2 model{
3 # Likelihood
4 ## The neural submodel
5 for (i in 1:lenN) {
6 N[i] ~ dnorm(muN[i], inv.sigma.sq)
7 Npred[i] ~ dnorm(muN[i], inv.sigma.sq)
8 muN[i] = beta0 + inprod(beta[], X[i, ])
9 }

10
11 ### Define a design matrix using a double-gamma

HRF
12 for (i in 1:lenS){
13 for (j in 1:lenN){
14 temp[j,i] = (j-1) * TR - onset[i]
15 Xt[j,i] = ifelse(temp[j,i] >= 0, temp[j,i],

0)
16 X[j,i] = (Xt[j,i]^(a1-1) * (b1)^(a1) * exp

(-b1*Xt[j,i]) / exp(loggam(a1))) - c * (Xt[j,
i]^(a2-1) * (b2)^(a2) * exp(-b2*Xt[j,i]) /
exp(loggam(a2)))

17 }
18 }
19
20 ## The behavioral submodel
21 for (i in 1:n.trials){
22 xi[i] = beta[2*i] - beta[2*i-1]
23 t[i] ~ dwiener(alpha, tau, omega, xi[i])
24 }
25
26 # Prior
27 ## The neural submodel
28 inv.sigma.sq ~ dgamma(.001, .001)
29 sigma.sq = 1/inv.sigma.sq # Variance = 1/

Precision

30 beta0 ~ dnorm(0, 0.001)
31 for (j in 1:lenS){
32 beta[j] ~ dnorm(0, 0.001)
33 }
34 ## The behavioral submodel
35 alpha ~ dunif(0.0001, 10)
36 tau ~ dunif(0, 0.04)
37 omega = 0.5
38 }
39 "

Lines 1–18 define the likelihood function for the neural sub-
model as described in Eq. (20). On line 7 of this snippet of code,
we also declare the object Npred to collect samples from the
posterior predictive distribution. These samples will be used in
Section 4.4.1 to calculate the 95% credible interval of the poste-
rior predictive distribution, which will allow us to examine how
well the joint model will generalize to new and unseen data.
Lines 11–18 define a design matrix where the columns are single
HRFs with default-level activation amplitudes for each stimulus.
Although convolution could be implemented by usingmatrix mul-
tiplication or a dot product in JAGS, a simpler way to define regres-
sors is to manually define the HRFs for each stimulus shifted by
their onset time. To do this, we first shift the timeline by the onset
time (line 4). On line 15, any cells with negative value are replaced
with 0 to avoid potential problems with negative inputs that may
distort the HRF.4 On line 6, we finally construct the HRFs for
each individual stimulus in each column by inputting the timeline
to the template HRF function. Note that as JAGS does not have
a gamma function defined on a linear scale, we must implement
the gamma function in the double-gamma HRF by exponentiating
a log-transformed gamma function loggam(x). Lines 20–24 cal-
culate the Wiener first passage of time distribution from Eq. (23)
using the JWM. On lines 26–37, we specify the prior distributions
for the parameters in both the neural and behavioral submodels.
In this example, we chose diffuse priors for all parameters except
the response threshold parameter α and the nondecision time
parameter τ , asαmust bepositive and τ must be boundedbetween
zero and the fastest response time.

To specify the Covariance joint model in JAGS, we simply re-
place lines 20–37 in the Directed joint model code above with:

1 # Hypermodel
2 for (i in 1:n.trials){
3 beta[2*i] = zeta[i] + beta[(2*i-1)]
4 t[i] ~ dwiener(alpha, tau, omega, xi[i])
5 zeta[i] = drift[i,1]
6 xi[i] = drift[i,2]
7 drift[i,1:2] ~ dmnorm(hyper.Mu, hyper.inv.Sigma)
8 }
9

10 # Prior: Hypermodel
11 for (j in 1:2){
12 hyper.Mu[j] ~ dnorm(0, 0.001)
13 }
14 hyper.inv.Sigma[1:2, 1:2] ~ dwish(R[1:2, 1:2], 2)
15 # Convert hyper.inv.Sigma to hyper.Sigma for

convenience
16 hyper.Sigma = inverse(hyper.inv.Sigma)
17
18 # Prior: For other parameters
19 inv.sigma.sq ~ dgamma(.001, .001)
20 sigma.sq = 1/inv.sigma.sq
21 beta0 ~ dnorm(0, 0.001)
22 alpha ~ dunif(0.0001, 10)
23 tau ~ dunif(0, 0.04)
24 omega = 0.5
25

4 When using JAGS to shift the onset time to the stimulus presentation, negative
values are produced as they are calculated relative to the presentation time. Because
of this complication in JAGS,we replace negative valueswith zeros in the onset time
matrix.
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26 for (i in 1:n.trials){
27 beta[(2*i-1)] ~ dnorm(0, 0.001)
28 }

In this block of code, lines 1–8 specify the hyper-structure of
the Covariance model. Here, the difference between the neural
activation from the two stimuli ζ on each trial and the draft rate
parameter ξ are sampled from a multivariate normal distribution
with mean hyper.mu and standard deviation hyper.inv.Sigma
and stored in the matrix drift (line 7; see Eq. (26)). On lines 5–6,
we store ζ in the variable zeta, which is then used to calculate
the second neural activation β2,i on line 3, and ξ in the variable
xi, which is used to calculate the Wiener first passage of time
distribution on line 4.

The remaining code specifies priors on the parameters in the
neural and behavioral submodels and the linking function. Lines
10–14 specify the priors on the hyperparameters, where we spec-
ify a normal prior for hyper.mu and an invert Wishart prior on
hyper.inv.Sigma. These priors establish conjugacy between the
prior distribution and the posterior distribution,while still remain-
ing uninformative. Lines 15–16 convert the precision matrix hy-
per.inv.Sigma to a covariance matrix hyper.Sigma by taking
its inverse. Lines 18–24 specify diffuse priors for all the remaining
neural and behavioral parameters except for the nondecision time
parameter τ and the response thresholdα, which are sampled from
the same priors as in the Directed joint model above. Finally, lines
26–28 specify the prior for the first neural activation on each trial.

4.3.4. R Handler code
The final step is using R to interface with the JAGS software

by using the commands internal to the rjags package. In paral-
lel with our examples above, we first construct the JAGS model,
generate some initial burn-in samples, and then sample from the
desired posterior distribution. The following code samples from
the Directed joint model:

1 # Initialization
2 model.dgw = jags.model(textConnection(model.

double.gamma.wiener), data = dat, n.chains =
3, n.adapt = 2000)

3
4 # Burn-in
5 update(model.dgw, n.iter = 4000, progress.bar = "

text " )
6
7 # Posterior sampling
8 dgw.out = coda.samples(model = model.dgw,

variable.names = c( " beta0 " , " beta " , " sigma.sq
" , " Npred " , " alpha " , " tau " , " xi " ), n.iter =
6000)

9
10 dgw.summary = summary(dgw.out)

Here, Lines 1–2 start the initialization process, lines 4–5 serve as
a burn-in period, and lines 7–8 sample from the posterior using the
Directed jointmodel and store the parameters of interest – namely
the neural parameters beta0 and beta and the behavioral param-
eters sigma.sq, alpha, tau, and xi – in the variable dgw.out.
On line 10, the function summary will provide information about
statistics such as mean, posterior standard deviation, and quan-
tiles.

To sample from the Covariance joint model, simply replace the
model code as described in Section 4.3.3 and add ‘‘zeta’’ and
‘‘beta’’ to the list of variables on line 9.

4.4. Results

To assess the model’s performance, we present the results in
two parts. First, we assess the degree to which the BOLD time
series was properly recovered by showing predictions from each
model against the observed data. Second, we evaluate the fidelity
of the mapping hypothesis linking the parameters of the neural
submodel to the observed behavioral data.

4.4.1. BOLD recovery
Beforewe examine the estimated posterior distributions for the

model parameters, it is important to first look at how well each
model fits the data. To assess how well each joint model captures
the important trends in the neural data, we can compare each
model’s predictions for the BOLD response against the observed
BOLD data. Fig. 12 shows the recovered BOLD response from each
model estimates (solid line), alongwith the 95% credible interval of
the posterior predictive distribution (dashed line), superimposed
onto a plot of the observed BOLD data (dots). The prediction and
95% credible interval from the Directed joint model is illustrated
in red, and the prediction and 95% credible interval from the Co-
variance joint model is illustrated in blue. The posterior predictive
distribution allows us to determine how well the model would
account for new and hypothetical data that may be observed from
the same or a similar task. In other words, the posterior predictive
distribution allowsus to test for howwell themodelwill generalize
to new data, should it be collected. If the model is fitting the
data appropriately, we should expect to see the solid line follow
the pattern of the dots closely, and the majority of the observed
data points should fall within the range of the posterior predictive
distribution.

Fig. 12 shows that while eachmodel did not capture the pattern
of observed data perfectly, the predicted BOLD response from
these models is aligned reasonably well with the majority of the
fluctuations in the observed data. Furthermore, the majority of
the observed data points fall within the 95% predicted credible
set. Comparing across models, it appears that the Covariance joint
model captures fluctuations in the time series slightly better at
certain time points, but the overall patterns tend to be similar.
Together, these evaluations suggest that each joint model provides
a reasonable account of the neural data.

4.4.2. Linking hypothesis
Another important evaluation of joint models is in their char-

acterization of the relationship between the two sets of variables.
In our model, we have assumed that the differences in the neural
activation is related to the parameters of the DDM in two different
ways, and so we can compare whether these twomodel structures
reveal any interesting differences. The top panel of Fig. 13 shows
the differences in the neural activation parameters ξi (i.e., y-axis)
against the response times (i.e., x-axis) for the Directed jointmodel
(left panel) and the Covariance joint model (right panel). Here,
trials in which the first stimulus was chosen as having the higher
contrast value are represented as filled circles, whereas trials in
which the second stimulus was chosen are represented as filled
squares. The lines running through each point represent the length
of the 95% credible interval of the posterior distribution.

Recall that ξi in the Directed joint model is the difference be-
tween the neural activation in response to the second stimulus
minus the neural activation in response to the first stimulus (see
Eq. (25)). If we assume that contrast levels and neural activa-
tion share a positive relationship, where a greater contrast level
produces stronger neural activity, then we should see that larger
values of ξi are associated with more frequent ‘‘second’’ stimulus
responses, a pattern that is clearly observed in the left panel of
Fig. 13. Additionally, the ξi parameters should be related to the
response time. Specifically, larger values of ξi should reflect larger
strengths of evidence toward one of the alternatives. Because
larger strengths of evidence tend to produce faster response times
in the Wiener diffusion process, we should see a negative correla-
tion with the absolute value of the drift rate ξi and the response
time, such that larger ξis (i.e., in an absolute sense) are associated
with faster response times. The left panel of Fig. 13 affirms that
this relationship exists for ξi and the response times in the Directed
joint model.
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Fig. 12. A recovered BOLD response from the model estimates of the Directed and Covariance joint models. Each model’s prediction of the BOLD response (bold line) and
its 95% credible interval of the posterior predictive distribution (dotted line) were generated from the estimates of β0 , βi (i = 1, . . . , 40), and σ . The black dots represent
the BOLD data observed in the experiment. The prediction for the BOLD response and 95% credible interval of the posterior predictive distribution from the Directed joint
model is illustrated in blue, whereas the prediction for the BOLD response and 95% credible interval of the posterior predictive distribution from the Covariance joint model
is illustrated in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Comparison of the behavioral submodel parameters between the Directed and Covariance joint models. The top left and top right panels describe associations
between neural activation and the behavioral variables in the Directed and Covariance joint models. The predicted differences between the neural activation following the
second and first stimulus presentations are shown (y-axis) against the response times (x-axis) for each of the 20 trials. Trials in which the first stimulus was chosen as the
higher contrast stimulus are represented as filled circles, whereas trials in which the second stimulus was chosen are represented as filled squares. The bottom left panel
illustrates the correlation between the difference in neural activations ζ and the drift rate parameter ξ in the Wiener diffusion model. The bottom right panel presents a
contour plot of the joint posterior distribution of the nondecision time parameter τ and the response threshold α. The joint distribution from the Directed joint model is
presented as blue contours, whereas the joint distribution from the Covariance model is presented as red contours.
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In the Covariance joint model, the trial-specific difference be-
tween the neural activations ζ and the drift rate parameter ξ
are sampled from a multivariate normal distribution. Under this
parameterization, ξi is not directly defined by neural activation,
but rather shares a common constraint with it. Because we assume
that the difference in neural activations is mapped to the drift rate
in the DDM, ζi and ξi should be positively correlated. As such, ξi
and the choice response times should show a similar relationship
to that of the Directed joint model, where ξi should be positively
related to the probability of selecting the second stimulus, and
larger deviations from zero should result in faster response times.
The left panel of Fig. 13 supports the expected trends.

The top panel of Fig. 13 shows that the range of drift rates in
the Covariance joint model is much smaller than the range of drift
rates in theDirected jointmodel. This difference occurs because the
Covariance joint model enforces a probabilistic constraint in the
form of the prior, rather than a direct mapping as in the Directed
joint model. In this analysis, the two different types of constrain
impacted the scaling of the single-trial drift rate parameters, and
this effect propagated to other model parameters as well. For
example, the bottom right panel of Fig. 13 illustrates the joint
posterior distribution of the nondecision time parameter τ and
the response threshold α as two-dimensional contour plot. Here,
the joint posterior distribution from the Directed joint model is
illustrated in blue, and the joint posterior distribution from the
Covariance joint model is illustrated in red. Because ξ is specified
differently within the two joint models, the estimates of α and τ
must adjust to still fit the behavioral data. Specifically, because
the range of ξ in the Directed joint model is larger, the response
threshold parameter α must increase to keep the overall signal-to-
noise ratio similar in the accumulation process.

Finally, the bottom left panel of Fig. 13 displays the correlation
between the difference in neural activations ζ and the drift rate
parameter ξ , obtained in the Covariance jointmodel. In detail, pos-
terior samples of the covariance matrix obtained at each sampling
step were converted into a correlation coefficient by dividing the
covariance term by the product of the standard deviation of ζ and
ξ . In R, you can use the function cov2cor as a shortcut for this
computation.

The bottom left panel of Fig. 13 reveals that ζ and ξ show a
strong positive relationship, indicating that when the difference
between the trial-specific neural activations increase, the drift rate
parameter also increases. This correlation estimate is interesting
because it provides some assurance that the direct linear mapping
assumption used in the Directed joint model is a reasonable con-
straint. While the Directed and Covariance joint models were fit
for illustrative purposes, because these two parameters show such
a strong relationship in the Covariance joint model, in practice it
seems reasonable to assume that the additional complexity added
by the covariance structure in the Covariance jointmodel is unnec-
essary, and so one could forgo the Covariance model in favor of the
simpler Directed model.

5. General discussion

In this tutorial, our goal was to provide an overview of the
two main types of joint models – Directed and Covariance – and
demonstrate that these models could be specified and fit to data
using existing Bayesian software packages such as JAGS. To do
so, we fit different joint models to both simulated and real data
using JAGS, and determined that the models produced reasonable
parameter estimates while capturing the essential trends present
in the data to which it was fit.

In our experimental application, we fit both Directed and Co-
variance joint models to fMRI data from a contrast discrimination
task. In both the Directed and Covariance models, the neural sub-
model used the double-gamma function to estimate the amplitude

of the BOLD response for each grating stimulus presentation. The
two models differed in the linking of the neural parameters δ to
the behavioral parameters θ . Whereas the Directed joint model
linked the two submodels by taking the difference between the
estimated BOLD amplitudes for each pair of stimuli and used this
value as the drift rate in a Wiener diffusion model to predict the
choice response time data, the Covariancemodel assumed that the
amplitude of each trial-specific neural activation and drift rate of
the Wiener diffusion model were connected through an overarch-
ing multivariate normal distribution. To determine whether each
model could account for the neural data, we compared themodel’s
predicted BOLD response to the observed BOLDdata and found that
each joint model accounted for the data relatively well, with the
covariance structure capturing the fluctuations in the BOLD data
slightly better.

5.1. Why use a joint model?

In the introduction, we briefly listed a few benefits of modeling
behavioral and neural data simultaneously. This list acknowledged
that joint models are superior at (1) handling mismatched and
missing data, (2) making predictions about either neural or be-
havioral data (3) characterizing the brain-behavior relationship,
and (4) comparing different brain-behavior relationships across
models. We will now discuss each of these in turn. We will also
provide additional benefits and commentary on when one should
consider using a joint model over a traditional unimodal model.

5.1.1. Mismatched, missing, and predicting data
Turner, Forstmann et al. (2013) demonstrated the utility of joint

modeling, namely a Covariance joint model, when dealing with
missing or mismatched neural or behavioral data by describing
how a covariance structure can make predictions for missing data
using only the relationship among the parameters after fitting the
model. In the original paper, the authors demonstrated that, if
presented with only one mode of a subject’s data (i.e., only neural
or behavioral data), fitting a joint model to the single mode can
generate a predictive distribution for the missing data based on
the relationship between the behavioral and neural submodels. In
another application, Turner et al. (2016) showed that this covari-
ance structure could be exploited to combine information across
subjects who either provided EEG data, fMRI data, or both. Central
to this modeling approach was that these subjects all provided
behavioral data, and so a cognitive model was used to enforce a
three way covariance structure between EEG, fMRI, and behavioral
data.

5.1.2. Exploring the brain-behavior relationship
In the introduction, we briefly discussed that joint modeling

wasmotivated by a desire to bridge the gap betweenMarr’s (1982)
levels of analysis and bring together the work of two relatively
independent groups – cognitive neuroscientists and mathematical
psychologists. By providing a framework that combined the work
of both groups, joint modeling creates the ability to examine the
physical properties of the brain to the higher-level cognitivemech-
anisms assumed by theoretical accounts of cognition (i.e., cognitive
models). By linking the two levels of analysis, joint models can
provide more complete and constrained theoretical accounts of
cognition by exploiting brain-behavior relationships that are not
possible with unimodal models. Perhaps more interesting is that
the linking function can be specified in different ways, allowing
researchers to use an explorative approach (e.g., the Covariance
joint model), or a confirmatory approach (e.g., the Directed and
Integrative joint models).



J.J. Palestro et al. / Journal of Mathematical Psychology 84 (2018) 20–48 41

5.1.3. Flexibility
Another attractive feature of the joint modeling framework is

that it does not restrict the choice of neural or behavioral sub-
models. In other words, the joint modeling framework allows any
combination of neural and behavioral models, so those wishing
to use a joint modeling framework can implement any behav-
ioral and neural model they choose, given they can construct an
appropriate and effective linking function. This provides us with
unlimited freedom in modeling the joint distribution of data, and
provides accessible methods for model comparison. By ‘‘plugging
in’’ different cognitive models with a single neural model, one can
compare joint relationships within the cognitive theory across the
models (Turner, 2015).

5.2. Good modeling practices

The tutorial focused largely on the construction of each of
the submodels and how these models could be specified and fit
using JAGSwhile omitting other important aspects of themodeling
procedure. In practice, however, there are a variety of ‘‘checks’’
one can do to evaluate a model and its fit to data. These checks
include examining the efficacy of the sampling algorithm using
chain diagnostics, performing recovery analyses, performing out-
of-sample cross validation tests, and assessing model fits using fit
statistics. JAGS provides theDIC valuewith its output, so evaluating
relative fits using fit statistics is incredibly easy, and so we will
avoid discussing this further. We now discuss a few of these good
practices.

5.2.1. Chain diagnostics
One important component of assessing the accuracy of the

model is assessing the sampling procedure itself. JAGS implements
a standard MCMC sampling algorithm known as Gibbs sampling.
While more advanced sampling algorithms exist, Gibbs sampling
can sample ‘‘chains’’ of values from the posterior of interest of rel-
atively simple models without issue, which suggests it is adequate
for the models of interest in the current tutorial. Still, in practice,
it is important to determine if the sampling procedure is drawing
samples from the desired posterior distribution. If not, then the
ability of the model to explain and account for data cannot be
assessed accurately.

In addition to the parameter recovery analysis discussed in
Sections 2.3 and 3.3, a simple way to assess the accuracy of the
sampling algorithm is check for convergence and autocorrelation
among the chains. These can be done informally by plotting the
chains and performing a visual examination and/or more formally
by calculating statistics such as the Gelman–Rubin diagnostic
R̂ (Gelman & Rubin, 1992).

Convergence. It is important that each chain moves from its start-
ing point to a stationary distribution. This is know as convergence,
and it is important because chains that have converged to a sta-
tionary distribution are no longer under the influence of their
initial values. A quick and informal check for convergence is to
look at the traceplot of each chain (using the traceplot function
in JAGS). If the chains have converged, one should see what is
commonly referred to as a ‘‘fuzzy caterpillar’’, where the chains are
mixing properly and virtually indistinguishable from each other.
Additionally, themean of the chains should be relatively stationary
and devoid of large movements in either direction (up or down). If
the traceplot has these properties, one can assume that the chains
have converged. If the chains are notmixing properly and themean
of the chains are moving up or down across iterations, then the
sampling procedure should be rerun more iterations and/or the
burn-in period should be rerun.

There are also more formal checks of convergence built into
JAGS, such as the Gelman–Rubin (Gelman & Rubin, 1992) diagnos-
tic, which determines if there is a significant difference between
the within-chain variance and the between-chain variance. If the
chains have converged, these variances should be equal. To cal-
culate the Gelman–Rubin diagnostic in JAGS, one can simply use
the function gelman.diag. This will provide you with a R̂ point
estimate for each parameter of interest and an upper confidence
interval value. To assess convergence, the R̂ point estimate should
be close to R̂ = 1.00 (suggesting equal variance), with a general
rule of thumb that they be less than R̂ = 1.1 (Lee &Wagenmakers,
2013). Anything larger than R̂ = 1.1 suggests the chains have not
converged, and the sampler should be run with more iterations.

Autocorrelation. Another issue regarding the sampling procedure
surrounds the idea of autocorrelation, where the current sample
in a chain is highly dependent on the previous sample. If the
chains are highly autocorrelated, the posterior estimates are highly
correlated, and a substantial amount of information about the
posterior distribution is potentially lost (i.e., the samples do not
accurately represent the true posterior distribution). Checking for
autocorrelation in JAGS can be done visually using the plotting
functions acfplot or autocorr.plot or numerically using the
function autocorr. These methods will calculate the autocorre-
lation function for each MCMC chain at each lag. The lag values
will provide you with information about the autocorrelation value
if the chains were ‘‘thinned’’ to various degrees, which means
that only a certain number of samples are kept from every chain.
Thinning the chains can be done using the n.thin argument in the
sampling function. However, we should mention that the practice
of thinning has recently been called into question, with opponents
suggesting that thinning may reduce the efficiency of the sampler
and result in a loss of information (Link & Eaton, 2012). When
autocorrelation is a concern, running the chains for many more
iterations may also help mitigate the effects of autocorrelation.

5.2.2. Parameter recovery analyses
In Sections 2.3 and 3.3, we performed a ‘‘recovery analysis’’

where we compared the predictions made by the joint model to
the ‘‘ground truth’’, or the value used to generate the data. Here,
we determined that because the true value of the parameters
of interest was encompassed in the posterior distribution of the
model, the parameters were accurately recovered. While this is
considered a recovery analysis in its most basic form, in prac-
tice, recovery analyses simulate data from the model of interest
thousands of times and across many different parameter values
to ensure accuracy (Heathcote, Brown, & Wagemakers, 2015).
Parameter recovery analyses should be performed regularly to
provide assurance that the results of the model fitting procedure
are not only valid, but also interpretable and generalizable.

5.3. Software alternatives

For the purposes of the current tutorial, JAGS was chosen based
on its approachability, ease of use, and popularity among both
novice and veteran cognitive modelers. However, there are a va-
riety of other Bayesian software packages, such as Stan (Carpenter
et al., 2016), that could have been used instead. Fortunately, the
code provided here could be easily adapted to programs such as
WinBUGS, OpenBUGS, or Stan, so the choice of software package
is largely contingent on (1) the user’s operating system, (2) the
complexity of the joint model, or (3) the preference of the user.
Regarding operating systems, Windows users have access to all
the aforementioned software packages, so they are free to choose
among these based on their needs. However, Mac and Linux users
are encouraged to forgo WinBugs and use JAGS or Stan, as these
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software packages do not require the use of an emulator to run.
Regarding complexity, the current paper demonstrates that the
MCMC samplers built into these existing Bayesian software pack-
ages are adequate for sampling from the posterior of the jointmod-
els under consideration. However, programs such as Stan include
more advanced sampling algorithms, such as the Hamiltonian
Monte Carlo sampling algorithm, that can fit more complicated
models or models featuring parameters that are highly correlated,
such as the DDM. For the purposes of this tutorial, the Weiner
first passage of time distribution has also been implemented in
Stan (Carpenter et al., 2016), so the Directed and Covariance joint
models in the experimental application could be adapted.

Of course, one could also use other sampling methods, such as
DE-MCMC (ter Braak, 2006; Turner, Sederberg, Brown, & Steyvers,
2013) by writing their own posterior sampling code. With these
methods, one would gain more control with the sampling proce-
dure and not be limited to the algorithms built into the Bayesian
software packages. This could be a compelling advantage if the
neural submodel requires a finer design matrix that the one used
in the code above, or if the behavioral submodel has a compli-
cated mathematical form (Palestro, Sederberg, Osth, Van Zandt, &
Turner, 2018; Turner, Dennis, & Van Zandt, 2013; Turner, Schley,
Muller, & Tsetsos, 2017; Turner & Van Zandt, 2012). However,
please note that these algorithms tend to be complex, especially
for novice modelers, so we recommend this option only if one has
prior programming knowledge.

5.4. Joint modeling limitations

To this point, the tutorial has demonstrated the utility of joint
models as a way to comprehensively understand data by bridging
levels of analysis. However, no tutorial would be completewithout
discussing potential limitations of our approach.We now discuss a
few such limitations.

5.4.1. Preprocessing and extracting the neural signal
The first issue surrounds the preprocessing and extraction of

neural signals. When processing the neural data for our experi-
mental example, we decided to perform a region of interest (ROI)
analysis and focus solely on the time-series vectors associatedwith
the voxels of pre-specified regions in the brain. One alternative
choice would have been to extend these analyses to the rest of the
brain and perform a whole-brain analysis, which does not assume
any predefined region of interest. In this approach, the time series
data within each voxel across the entire brain during the contrast
discrimination task could be used as the neural measures in the
data analysis. With this time series data, we could assume the neu-
ral activation for each stimulus presentation on each trial in each
voxel using the neural submodel and use the difference between
these as the drift rate parameter in the behavioral submodel (as in
Directed joint model), or assume that this difference and the drift
rate parameter are sampled from a common distribution (as in the
Covariance joint Model). An issue with this type of analysis is that
ignores any potential spatial relationship between the voxels one is
analyzing (but see Harrison, Penny, Ashburner, Trujillo-Barreto, &
Friston, 2007; Penny, Trujillo-Barreto, & Friston, 2005; Woolrich,
Jenkinson, Brady, & Smith, 2004). More pragmatically, it would
require a significant increase in computation time as many more
analyses would be performed.

5.4.2. Measurements and experiment design
The second issue is the use of stimulus-level or trial-level neural

measures. As previously discussed, the joint modeling framework
relies heavily on these measures. However, extracting signals at
these levels, depending on the type of measure (e.g., EEG, fMRI
hemodynamic responses) and/or the experimental design, can be

incredibly difficult and computationally intensive. For example, in
the experimental example, we estimated the amplitude of the neu-
ral signal at the stimulus-level from the convolved hemodynamic
responses. However, due to the natural temporal dragging effect of
the hemodynamic response, estimating stimulus-level amplitudes
is increasingly difficult with increasing stimulus presentations.

The experimental design can also play a role in how easy or
difficult it is to process and analyze the neural data. If an exper-
imental design features a relatively short stimulus presentation
time and interstimulus intervals, the estimation of the neural
amplitudes can also be complicated. In our running example, the
experiment is based on a rapid event-related design with a short
stimulus presentation of 250ms and amean interstimulus interval
of four seconds. As a result, the hemodynamic response overlaps
considerably,which causes the estimation process to lose precision
and may be the cause of the large posterior standard deviations in
ξi that we observed in the experimental application.

For experimental designs that have a similar structure, there are
several things that one can do to deal with the overlapping stimu-
lus issue and produce more precise measurements. The first thing,
as we have demonstrated, is to use a joint modeling framework.
While the specific circumstances of the utility of joint modeling
have recently been challenged (Hawkins, Mittner, Forstmann,
& Heathcote, 2017), the additional constraint introduced by in-
cluding the behavioral and neural measures into one framework
may help mitigate potential problems introduced by experimental
design andmay lead to more accurate (i.e., more precise) posterior
estimates (Turner, Forstmann et al., 2013; Turner et al., 2015;
Turner, Wang et al., 2017). Additionally, one can use a sampling
method that takes into account potential correlations among the
parameters of the model used, such as DE-MCMC (ter Braak,
2006; Turner, Sederberg et al., 2013), which can automatically tune
itself to the shape of the posterior and increase precision. Finally,
one can simply change the experimental design by increasing the
stimulus presentation time and interstimulus interval, making the
estimation of the neural activation at the stimulus-level much
easier.

5.4.3. Model specification
The third issue is that, in the Directed joint model in the ex-

perimental example, the choice of neural submodel used to esti-
mate the hemodynamic response can have a large impact on the
interpretation of the behavioral parameters. In our analysis of the
experimental data above, we found that the posterior standard
deviation of the behavioral submodel parameters differed substan-
tially from a model that ignored the neural data completely. How-
ever, this effectwas driven by the fact that the Directed jointmodel
had larger drift rates than a behavioral-data only model, which
in turn resulted in larger estimates for the threshold parameter α
relative to the behavioral-data only model. Because Directed joint
models rely so heavily on the transformation of neural submodel
parameters to set the behavioral submodel parameters, the struc-
ture of the model can sometimes lead to a misinterpretation of
model parameters as the effect on the behavioral submodel param-
eters is purely a statistical artifact and not an innate characteristic
of the model.

To demonstrate the effect of neural model specification on the
behavioral model parameters in a Directed framework, we can
compare the impact of different HRF models on the posterior es-
timates of the behavioral parameters α and τ . Here, we fit another
HRF model (Li, Lu, Tjan, Dosher, & Chu, 2008) defined as

h(t) = β
1

max(h0(t))
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Fig. 14. TwoHRF submodels and the associated posterior distributions ofα and τ . The upper plot shows two different HRFmodelswith β = 1. The lower plots are histograms
of the posterior distributions of α and τ estimatedwith the two HRFmodels. The normalized HRFmodel results in different posterior distributions of bothmodel parameters
relative to the unnormalized HRF model.

where t represents time and β is the amplitude of the response.
Shape parameters are assumed to have fixed values: a1 = 6,
a2 = 16, b1 = 1, b2 = 1, and c = 1/6 with the constraint
of d1 = a1b1, d2 = a2b2. In this new model, the default-level
activation amplitude of the new HRF is higher than that of the
canonical HRF model we used in the experimental example.

Fig. 14 shows the effect of different HRF models on the inter-
pretation of behavioral model parameters: the threshold α and the
nondecision time τ . Fig. 14 shows that the posterior distributions
of α and τ show differences in both location and dispersion be-
cause the posterior estimates of the drift rate parameters ξi are
scaled differently across the two neural submodels. Recall that
we specified in Eq. (25) that on each trial, ξi should be directly
related to the difference between the neural activation parameters
β2,i and β1,i. However, the mean and standard deviation of the
difference variable may have very different properties compared
to what is typically observed for drift rates in diffusion models.
As a remedy, we could include parameters that standardize the
difference, making ξi simply proportional to the difference:

ξi =
β2,i − β1,i

σβ

,

where σβ could be a free parameter in the model. A model with
this linking function would clearly have an effect on the estimates
of the threshold parameter α, following the same logic illustrated

in Fig. 14. From the comparison of the two HRFs in Fig. 14, it is
evident that when using a Directed joint model, one must pay
close attention to the specification of the neural submodel and the
potential effects that it can have on the behavioral submodel (and
vice versa) to avoid any misinterpretation of the estimates of the
model parameters.

It is also important to note that the ability of the joint model
to account for the data is contingent on the neural and behav-
ioral submodels chosen. In both the simulation study and the
experimental data example, the models used in the joint modeling
framework were chosen based on simplicity (and for illustrative
purposes) than for their ability to account for data. For example,
theWiener diffusionmodel used in the behavioral submodel of the
experimental data example is a simple case of the diffusion model
that is often used to account for choice response time data from a
two-alternative forced-choice task. However, this simplifiedmodel
lacks certain sources of variability (i.e., within- and between-trial
variability in drift, between-trial variability in nondecision time,
and between-trial variability in starting point) included in more
modern variants of sequential sampling models. These additional
trial-to-trial parameters have proven important in allowing off-
the-shelf sequential sampling models to account for a much wider
range of choice response time data (e.g., Ratcliff & Rouder, 1998).
As a result, our simplified joint model may not account for the
behavioral and neural data as well as a joint model that includes
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a more complex specification of trial-to-trial dependencies, such
as those made by modern variants (Turner et al., 2015). So, even
though the joint modeling framework offers additional constraints
that can lead to more precise estimates, these benefits can only be
enjoyed if the behavioral and neural models are properly specified
and appropriate for explaining the neural activity or behavior of
interest.

5.4.4. The linking function
Finally, as the neural measures obtained from an experiment

are typically high-dimensional, great care must be taken to reduce
the complexity of the linking function relating the neuralmeasures
to model parameters. In the simple experiment presented here,
we had well-defined hypotheses about which brain areas should
be related to the decision variables, and so specifying the linking
function was straightforward. However, understanding how the
brain relates to decision variables in other tasks can be quite
complicated, and even subject to individual differences. In these
contexts, a good approach is to specify generic linking functions
that relate all voxels to the decision variables at hand, where the
strength of the brain-behavior relationship can be inferred from
the data. Recently, Turner, Wang et al. (2017) have shown that
factor analytic linking functions can be an effective way to sieve
through high-dimensional data in the search for key neural signals
of interest. Turner et al. showed that factor analytic linking func-
tions scale linearly with the complexity of neural data, whereas
linking functions such as the multivariate normal distribution in
Section 3 scale quadratically with the same complexity. In their
analyses, not only were factor analytic linking functions more
parsimonious, but they also performed better in cross-validation
tests on the predictive performance of missing behavioral data.

5.5. Conclusions

Joint models provide an interesting opportunity for researchers
who wish to enforce constraints on computational models from
neurophysiology. However, until now, joint models have been
unapproachable, as there was not a convenient way to apply them
to data without extensive training or background in programming
and statistics. The tutorial has demonstrated that developing and
fitting joint models to data can be quite feasible through the use of
general sampling algorithms such as those provided within JAGS.

Thinking in terms of Marr’s levels of analyses, the measures
obtained via cognitive neuroscience techniques provide exquisite
details about the implementational level of analysis, whereas the
mathematical model makes specific assumptions about the algo-
rithms involved when completing the task (i.e., details about both
the algorithmic and computational levels). By formally specifying
a model of the neural measures and connecting the neural sub-
model’s parameters to those assumed in the mathematical model,
we can create new models that span all three of Marr’s levels of
analyses. Ultimately, we hope that our tutorial demonstrates how
easily jointmodels can be implemented, making themmore acces-
sible in the emerging field of model-based cognitive neuroscience.

Appendix A. Generating data from the directed model

We will first provide R code that can be used to generate data
from the Directed model described in Section 2. For the Directed
model, the neural and behavioral data are characterized by the
single-trial parameters δ and θ respectively, and φ and Σ control
the distribution of trial-to-trial fluctuations observed in the neural
activation parameter δ. To begin data generation within R, we
must first specify the number of trials n and choose values for the
elements of the vectorphi and thematrixsigma, corresponding to
φ and Σ in our model. These values will then be used to simulate
the single-trial neural activation matrix Delta corresponding to

δ in our model. To instantiate this in R, we can run the following
code:

1 require( " rjags " )
2 require( " mvtnorm " )
3
4 # need both logit and logit^{-1} functions
5 logit=function(x)log(x/(1-x))
6 invlogit=function(x){1/(1+exp(-x))}
7
8 # set up model specification
9 n <- 500 # total number of trials

10
11 # establish the hyperparameters for delta
12 sig1 <- .5 # std. dev. of single-trial BOLD

responses , ROI 1
13 sig2 <- .6 # std. dev. of single-trial BOLD

responses , ROI 2
14 rho <- .4 # cor b/n brain activations
15
16 # set up hyper variance--covariance matrix Sigma
17 sigma <- matrix(c(sig1^2, # element [1,1]
18 sig1*sig2*rho, # element [1,2]
19 sig1*sig2*rho, # element [2,1]
20 sig2^2), # element [2,2]
21 2,2,byrow=TRUE)
22
23 # set up hyper mean vector phi
24 phi <- c(1.5,2)
25
26 # simulate single-trial delta matrix
27 Delta <- rmvnorm(n,phi,sigma)

In this block of code, lines 1–2 load two packages that are
necessary to complete the steps in the tutorial. The first package,
rjags, has been discussed previously and should already be in-
stalled on your machine. The second package, mtvnorm, may need
to be installed using the install.packages() command. This
package allows for the use of the multivariate normal distribution
in both simulation and evaluations of the probability density func-
tion. Lines 5–6 declare two functions that will be necessary to map
the parameters of the neural submodel to the parameters of the
behavioral submodel. Lines 11–14 specify the individual elements
of sigma (lines 17–21), which are then used in conjunction with
phi (lines 23–24) to describe how the neural activation changes
across trials inDelta (line 27). Here,Delta is amatrix ofn random
draws from a multivariate normal distribution with mean vector
equal to phi and variance–covariance matrix equal to sigma.

With the neural parameters Delta generated, we can use
the Delta matrix to (1) randomly generate the neural data N,
(2) specify the behavioral parameters theta, and (3) then use
theta to generate the behavioral data B. For a set of two regions
of interest (i.e., Nroi=2), these three steps can be performed using
the following code:

1 # generate observed variable nodes
2 ts <- seq(0,4,1) # set of five scan times

{0,1,2,3,4}
3 sig <- .5 # the standard deviation of

BOLD responses
4
5 Nroi <- 2 # total number of ROIs
6
7 # declare some storage objects
8 N=array(NA,c(n,length(ts),Nroi))
9 B=numeric(n)

10 theta=numeric(n)
11
12 # set up regression parameters
13 beta <- c(.5,.3) # one beta parameter for each

ROI
14
15 # loop over trials
16 for(i in 1:n){
17 for(k in 1:Nroi){



J.J. Palestro et al. / Journal of Mathematical Psychology 84 (2018) 20–48 45

18 # N is a normal deviate with mean controlled by
delta

19 N[i,,k]=rnorm(length(ts),Delta[i,k]*ts,sig)
20 }
21 # theta[i] is the single-trial behavioral

parameter
22 theta[i] <- Delta[i,] # B is a Bernoulli

deviate with probability controlled by theta
23 B[i]=rbinom(1,1,invlogit(theta[i]))
24 }
25
26 # combine the generated data into a list to pass

to JAGS
27 dat = list(’n’=n,
28 ’B’=B,
29 ’N’=N,
30 ’ts’=ts,
31 ’Nt’=length(ts),
32 ’sig’=sig,
33 ’I0’=diag(2),
34 ’n0’=2,
35 ’phi0’=rep(0,2),
36 ’s0’=diag(2)),

This code produces the neural data for a set of ROIs, which
in our experiment is limited to two (i.e., Nroi=2). Lines 7–10
declare objects for storage. N is defined an array with dimensions
500× 5× 2 (number of trials by number of time points by number
of ROIs).B andtheta are vectors of length 500. Lines 12–13 specify
the regression parametersbeta thatwill be used tomap the neural
parameters in Delta to the behavioral parameters theta. This
mapping process actually takes place on lines 15–25. Here, we
start by looping over both trials (line 16) and ROIs (line 17) to
generate the neural data. More concretely, for every trial and ROI,
we need to generate a BOLD response value for each time point
in the variable ts (line 2), which corresponds to T in Eq. (3). This
is shown in lines 18–19 where five random values for the BOLD
response are generated from a normal distribution with mean
controlled by Delta and standard deviation sig – corresponding
to σ in our model – that we specified in line 3. On lines 21–22, we
generate the single-trial behavioral parameter theta usingmatrix
multiplication for each of then = 500 trials. Finally, on lines 23–24,
we generate the behavioral data node B for each trial by drawing a
single random value from a binomial distribution with probability
given by the inverse logit transformation of the trial-specific value
of theta.

The final step in the data generation process is to combine all of
the variables into a single list to pass to JAGS. This is done in lines
27–37. This step can also be done directly in the JAGS code when
specifying the JAGS sampler in Section 2.2.3. However, whether
you specify it here or in the JAGS sampler code is a simply matter
of preference.

As an aside, in our other applications we have used differential
evolution with Markov chain Monte Carlo (DE-MCMC; ter Braak,
2006; Turner, Sederberg et al., 2013) to sample from the joint
posterior (Turner, Forstmann et al., 2013; Turner et al., 2015,
2016). DE-MCMC is incredibly useful when the parameters of a
model are highly correlated, such as the parameters of the DDM
discussed below.WhenusingDE-MCMConmodelswith correlated
parameters, the algorithm can automatically tune itself to approx-
imate the shape of the posterior during the sampling procedure.
However, as the purpose of this tutorial is to show how joint
modeling can be performed in existing Bayesian software packages
such as JAGS, we will use the sampling procedures built into this
program instead of advanced algorithms like DE-MCMC. With this
is mind, the next section describes how to fit the Directed joint
model using the JAGS software package. We first describe the JAGS
code for specifying the Directed joint model, and then show how
to integrate the JAGS code with the R program for convenience.

Appendix B. Generating data from the Covariance model

To simulate data from the Covariance joint model in Section 3,
we can make use of code similar to that used to generate data
from the Directed joint model, but with a few differences. Much
like the Directed joint model, the neural and behavioral data are
characterized by the single-trial parameters δ and θ , respectively.
However, whereas φ andΣ represent the trial-to-trial fluctuations
observed in the neural parameters δ in the Directed joint model, φ
and Σ in the Covariance joint model describe how the neural and
behavioral parameters fluctuate together from trial to trial. When
generating data from the model in the code below, line 20 carries
out the random sampling of the joint distribution of θ and δ.

To generate data from the model, we must first pick values
for phi and sigma in order to produce the DeltaTheta matrix
containing the single-trial parameters (δ, θ ). Here, we assume that
the Covariance joint model characterizes the data for one subject,
so the rows of the DeltaTheta matrix represent values for (δ, θ )
on individual trials. As such, wemust also specify the total number
of trials, which will determine the total number of rows in the
DeltaThetamatrix. To generate data from themodel, we can run
the following block of code:

1 # set up model specification
2 n <- 500 # total number of trials
3
4 # establish the hyperparameters
5 sig1 <- .5 # std. dev. of single-trial BOLD

responses
6 sig2 <- 1 # std. dev. of item memory strength

(logit scale)
7 rho <- .6 # cor b/n brain activation and

memory strength
8
9 # set up hyper variance--covariance matrix Sigma

10 sigma <- matrix(c(sig1^2, # element [1,1]
11 sig1*sig2*rho, # element [1,2]
12 sig1*sig2*rho, # element [2,1]
13 sig2^2), # element

[2,2]
14 2,2,byrow=TRUE)
15
16 # set up hyper mean vector phi
17 phi <- c(2,0)
18
19 # simulate single-trial delta and theta matrix
20 DeltaTheta <- rmvnorm(n,phi,sigma)

As this code is virtually identical to the code used to generate
data from the Directed joint model, we will not go into further
details. However, we will point out that the single-trial neural
activation matrix δ in the Directed joint model code is replaced by
the single-trial neural and behavioral parameter matrix (δi, θi) on
line 20. For amore detailed explanation of this block of code, please
refer to Appendix A.

With the single-trial neural and behavioral parameters gener-
ated, we can now simulate the neural and behavioral data N and
B. The following block of code deviates quite significantly from the
code used to simulate data from the Directed joint model, so we
will explain it in greater depth:

1 # generate observed variable nodes
2 ts <- seq(0,4,1) # scan times
3 sig <- .5 # the std. dev. of BOLD

responses
4
5 # declare some storage objects
6 N <- matrix(NA,n,length(ts))
7 B <- numeric(n)
8
9 # loop over trials

10 for(i in 1:n){
11 # N is a normal deviate with mean controlled by

delta
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Fig. C.15. Region of interest (from left to right: coronal slice, sagittal slice, and axial slice).

12 N[i,]=rnorm(length(ts),DeltaTheta[i,1]*ts,sig)
13 # B is a Bernoulli deviate with probability

controlled by theta
14 B[i]=rbinom(1,1,invlogit(DeltaTheta[i,2]))
15 }
16
17 # combine the generated data into a list to pass

to JAGS
18 dat = list(’n’=n,
19 ’B’=B,
20 ’N’=N,
21 ’ts’=ts,
22 ’Nt’=length(ts),
23 ’sig’=sig,
24 ’I0’=diag(2),
25 ’n0’=2,
26 ’phi0’=rep(0,2),
27 ’s0’=diag(2))

On line 2, we first define a set of time points in the object
ts, which represents the set of scan times for which the neural
activation is measured. Line 3 specifies the standard deviation of
the BOLD signal over time, and lines 5–7 declare the objects N
and B for storage. On lines 9–15, we generate the observed neural
(line 12) and behavioral (line 14) data by looping over the total
number of trials specified in the code above. Here, the neural data
N is generated by randomly sampling five values (one for each
time point in ts) from a normal distribution with mean equal
the trial-specific δ value in the first column of the DeltaTheta
matrix and standard deviation equal to sig. The behavioral data B
is generated by randomly sampling from a binomial distribution
with probability equal to the inverse logit of the trial-specific θ

value in the second column of the DeltaThetamatrix. Finally, we
combine the data in one list on lines 17–27 that will be passed to
JAGS when we specify the Covariance joint model in the JAGS code
below.

Appendix C. Definition of ROI

To locate the regions activated by the grating annulus used in
the main task, we conducted a general linear model analysis using
FSL (Smith et al., 2004). First, we defined a regressor as a time-
series vector featuring the onset times of the each grating stimulus,
regardless of contrast level. Then the contrast between the regres-
sor and baseline was computed by FSL FEAT. Spatial smoothing
was employed with the Full Width at Half Maximum (FWHM) of
5 mm. Highpass temporal filtering was applied simultaneously.
Based on the z-statistics, any voxels with z > 3.5 were selected as
potential target regions associated with completing the main task.

This was done to help constrain the number of potential regions in
the analysis.

The regions associated with the grating stimulus are broadly
distributed over visual cortex. However, as it is known that am-
plitude of hemodynamic responses evoked by different contrast
levels could differ across early visual areas (Li et al., 2008), we
decided to limit the region of interest to V1. Standard masks of
Brodmann Area (BA) 17 of both hemispheres are defined in Jülich
Histological Atlas and were used to help locate V1 in a standard
MNI space (Amunts, Malikovic, Mohlberg, Schormann, & Zilles,
2000; Eickhoff et al., 2005). After transforming the masks to a
subject space, we defined our region of interest as any region with
a significant activation level that showed overlap between BA17
and the target regions associated with completing the main task
(see Fig. C.15).
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