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Recent debates in the psychological literature have raised questions about the assumptions that underpin
Bayesian models of cognition and what inferences they license about human cognition. In this paper we
revisit this topic, arguing that there are 2 qualitatively different ways in which a Bayesian model could
be constructed. The most common approach uses a Bayesian model as a normative standard upon which
to license a claim about optimality. In the alternative approach, a descriptive Bayesian model need not
correspond to any claim that the underlying cognition is optimal or rational, and is used solely as a tool
for instantiating a substantive psychological theory. We present 3 case studies in which these 2
perspectives lead to different computational models and license different conclusions about human
cognition. We demonstrate how the descriptive Bayesian approach can be used to answer different sorts
of questions than the optimal approach, especially when combined with principled tools for model
evaluation and model selection. More generally we argue for the importance of making a clear distinction
between the 2 perspectives. Considerable confusion results when descriptive models and optimal models
are conflated, and if Bayesians are to avoid contributing to this confusion it is important to avoid making
normative claims when none are intended.

Keywords: Bayesian cognitive models, rational models, inductive reasoning, generalization, optimal
predictions

Over the last two decades, Bayesian models have emerged as a
powerful tool for understanding human cognition. Taking inspira-
tion from Marr’s (1982) notion of computational level models and
Anderson’s (1990) outline of a rational analysis, the key idea is to
take a top-down view of model construction. Within this program,
human cognition is viewed in terms of the solution to a computa-
tional problem posed by the environment in which humans oper-
ate. This approach to cognitive modeling has been successfully
applied to a wide range of problems in concept learning (Tenen-
baum, 1999), reasoning (Oaksford & Chater, 1994), causal infer-
ence (Griffiths & Tenenbaum, 2005), perception (Knill & Rich-
ards, 1996; Shen & Ma, 2016), motor control (Körding & Wolpert,
2004a), social cognition (Baker, Saxe, & Tenenbaum, 2009), de-
cision making (Vul, Goodman, Griffiths, & Tenenbaum, 2014),
language acquisition (Perfors, Tenenbaum, & Regier, 2011), and
many more besides. In general, computational-level analyses can
take many forms. The existing literature includes analyses that rely

on information theory (e.g., Navarro & Perfors, 2011), reinforce-
ment learning (e.g., Navarro, Newell, & Schulze, 2016), algorith-
mic complexity theory (e.g., Chater & Vitányi, 2003), and statis-
tical decision theory (e.g., Vul et al., 2014), among others.
However, the majority of computational-level analyses are framed
in Bayesian terms.

Bayesian analyses typically approach human learning and rea-
soning by assuming that the learner’s task is to infer which
hypothesis h among many possibilities best characterizes the
world. The collection of possible hypotheses H is referred to as the
hypothesis space, and the learner’s preexisting beliefs are captured
by a prior distribution P(h). Upon encountering data x, the learner
updates her beliefs to a posterior distribution P(h|x) via Bayes’
rule:

P(h |x) � P(x |h)P(h)

�h��H P(x |h�)P(h�)
(1)

This belief updating rule relies heavily on the likelihood func-
tion P(x |h), which describes the probability that the learner would
have observed data x if hypothesis h were true. The likelihood
function is what allows the learner to make inductive leaps, trans-
forming her prior beliefs P(h) into posterior beliefs P(h |x) that
have been informed by data. One of the distinctive characteristics
of the Bayesian framework for cognitive modeling is the fact that
belief revision via Bayes’ rule is often described as a uniquely
coherent way to reason rationally from data (e.g., Jaynes, 2003), a
virtue that is reflected in the growing psychological literature on
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Bayesian data analysis (e.g., Kruschke, 2010; Lee & Wagenmak-
ers, 2014; Rouder, Morey, Speckman, & Province, 2012).

Highlighting the success of the framework, there are now a
number of tutorial articles (Perfors, Tenenbaum, Griffiths, & Xu,
2011) and overviews (Tenenbaum, Griffiths, & Kemp, 2006), as
well as a number of papers articulating concerns and disagree-
ments with the Bayesian approach (Bowers & Davis, 2012a;
Cassey, Hawkins, Donkin, & Brown, in press; Jones & Love,
2011a; Marcus & Davis, 2013), defenses of the paradigm (Chater
et al., 2011; Goodman et al., 2015; Griffiths, Chater, Norris, &
Pouget, 2012), and responses to those defenses (Bowers & Davis,
2012b; Jones & Love, 2011b; Marcus & Davis, 2015). The scope
of this debate is broad, but two concerns in particular stand out in
these discussions. First, critics of the Bayesian approach frequently
take issue with substantive claims about the optimality of human
cognition. Second, a common criticism is that Bayesian models are
too unconstrained, and that virtually any pattern of behavior can be
accommodated by a suitably formulated Bayesian model. The two
criticisms combine to produce the worry that Bayesian models of
cognition make a central claim about optimality that is unfalsifi-
able: that it is always possible to “prove” that humans are rational
by judicious choice of priors and likelihoods. If this were true, the
result would be a modeling framework that is not only vacuous,
but also does not make an interesting claim about human
psychology.

This critique exposes a degree of tension in how Bayesian
models are constructed and the scientific inferences they license
about human cognition. Our claim is that there are two quite
different ways of thinking about Bayesian cognitive models: A
model might act as a normative standard against which human
cognition is measured, or it might serve as a descriptive tool used
to instantiate theories about human cognition (see, e.g., McKenzie,
2003). In this paper we argue that the differences between these
two perspectives can lead researchers to construct models with
very different characteristics. With this in mind, we suggest that it
would be useful to make a clear distinction between optimal
Bayesian cognitive models that specify normative standards and
license claims about the rationality of human cognition, and de-
scriptive Bayesian cognitive models that may serve other theoret-
ical goals but do not necessarily have much to say about whether
human cognition is rational.

One reason for introducing the distinction between optimal and
descriptive models is that it is not always obvious when a Bayesian
model is intended to imply a normative claim and when it is not:
The same terminology is used to describe Bayesian models no
matter what implications those models might have for the opti-
mality of human cognition. A second reason for doing so is that it
motivates an examination of what role a Bayesian model can play
when it is used as a purely descriptive tool, rather than serving as
a vehicle for arguments over whether people are “rational.” By
deliberately setting aside any claims to optimality, a descriptive
Bayesian approach shifts the research focus away from questions
about rationality or optimality, and onto more traditional psycho-
logical questions. What biases and beliefs do people bring to a
task? (questions about priors) How do people update their knowl-
edge in light of new data? (questions about likelihoods) What
representations do people have? (questions about hypothesis
spaces) Within the descriptive framework it is possible to learn
about these questions by performing inference on those aspects of

the model directly, rather than indirectly and in a more ad hoc way
by setting them and examining model fit. The descriptive approach
offers a vision for Bayesian cognitive modeling that disentangles
the formal apparatus of Bayesian models (with their use of priors,
likelihoods, and hypothesis spaces, all of which we want to keep)
with the claims about rationality which, although an important
foundation of the optimal Bayesian approach, are not required in
the descriptive approach.

Our goal in this paper is not to argue for the superiority of either
kind of Bayesian model—normative standards and descriptive
models are both useful tools for cognitive scientists—but to try to
highlight the importance of maintaining a clear distinction. This
distinction is theoretical more so than methodological: Although
the descriptive approach is much more flexible—and therefore
allows for a wider range of methodological approaches to param-
eter estimation and model selection—this flexibility is the result of
letting go of optimal interpretations and the constraints that come
with them.

With this in mind, we present three illustrative case studies, each
chosen to highlight different ways in which the descriptive ap-
proach can enable modelers to ask different questions than a
Bayesian model that focuses on questions of optimality. Our
examples show that a descriptive approach allows the researcher to
use empirical data to robustly learn the mental representations that
underpin human performance. We demonstrate how it can be used
to investigate the biases and mental representations that shape
human judgments as well as the learning rules that people use to
change those beliefs. We examine how individual differences in
cognition can be explored within the data-driven, descriptive
Bayesian approach. Finally, our examples show that the insights
obtained with a descriptive approach can be compared and con-
trasted with the findings of an optimal model—sometimes lending
support and sometimes standing in opposition—or that they can
stand alone without consideration to questions of optimality.

What Makes a Bayesian Model Optimal?

A natural place to begin the discussion is with a consideration of
why Bayesian models are often claimed to represent rational or
optimal inference. Critics of the Bayesian framework have some-
times assumed that Bayesian cognitive models exist to support
normative claims about the optimality or rationality of human
cognition (Bowers & Davis, 2012a; Marcus & Davis, 2013), citing
as their justification the fact that Bayesians very frequently do talk
in precisely these terms (see Bowers & Davis, 2012b, for exam-
ples). Yet, as defenders of the Bayesian approach have noted in
their commentaries, considerable care is required when making
any claim about optimal performance (e.g., Griffiths et al., 2012).
Arguments for the optimality of Bayesian reasoning in general do
not imply that every Bayesian model will make good predictions
solely by virtue of being Bayesian: The optimality of any partic-
ular Bayesian model is contingent on it adopting priors, likeli-
hoods and hypothesis spaces that are appropriate to the inferential
problem at hand. A Bayesian reasoner that relies on badly chosen
assumptions might satisfy some abstract desiderata for rationality,
but that will do nothing to prevent the reasoner from making very
poor inferences in practice.

To highlight the importance of this point, consider the manner in
which Dutch book arguments are often used as evidence for
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Bayesian reasoning. A Dutch book refers to a set of gambles that
should appear reasonable to a gambler (in the sense that all have
positive expected value) but will in fact ensure that the gambler
loses money to the bookie no matter what outcome occurs. Early
Dutch book arguments demonstrated that if an agent holds beliefs
that violate the probability axioms, it is always possible to con-
struct a Dutch book against them—though these arguments did not
necessarily require that those beliefs be revised using Bayes’ rule
(De Finetti, 1980). However, later versions of the argument
(Teller, 1973) demonstrated that if the bookie is allowed to offer
bets at multiple time points, a gambler must use Bayes’ rule to
govern belief revision if they wish to avoid vulnerability to a
Dutch book.

One of the philosophically appealing features of Dutch book
arguments is the fact that this coherence of Bayesian belief revi-
sion is an inherent property of Bayes’ rule, and not something that
is specific to any particular Bayesian model. It is by virtue of this
universality that one might argue that all Bayesian models describe
a form of rational reasoning, and in one sense it is true. However,
it is not at all clear that this kind of rationality is desirable on its
own: a Bayesian reasoner whose priors and likelihoods are grossly
miscalibrated will find that coherence provides very little protec-
tion against losing their money to a better informed agent. In some
respects this observation is trite and uninteresting—Teller (1973,
p. 224) argues that “exploitation by dint of such greater knowledge
or keener powers of observation shows nothing derogatory about
the agent’s plan for change of belief.” In real life, however, few of
us would take comfort in such assurances when our incorrect
theories about the world lead us to be exploited by others.

As obvious as this point is, we think it ties naturally to the
tension that exists in the cognitive science literature. If a Bayesian
reasoner applies priors and likelihoods that are well-matched to the
world, they are not merely immune to sure losses via a Dutch
book, they also enjoy a practical advantage over their less well-
calibrated peers in that they are less likely to be exploited by other
agents who happen to have better knowledge. This is highlighted
in Figure 1 which shows the outcomes of a gambling competition
between three Bayesian agents. The competition works as follows:
a deck of cards consists of black and white cards with some
unknown proportion of black cards (the base rate), and cards are
turned over one at a time. Each agent offers what they perceive to

be fair bets to the others, and each agent places a $1 stake on any
bet they perceive to be favorable. So if an agent believes that the
probability of black to be 0.25 they offer 3:1 odds on black, and
place a $1 bet with any agent offering better than 3:1 odds. The
true proportion of black cards is chosen uniformly at random at the
beginning of the game, and the cards are perfectly shuffled so that
outcomes of successive trials are essentially independent. The
veridical Bayesian agent adopts a prior and likelihood that match
this scenario perfectly. The misinformed Bayesian agent uses the
correct likelihood (independent events) but incorrectly believes
that the scenario has a bias toward black cards. In contrast the
miscalibrated Bayesian agent has the correct prior beliefs about
base rates, but incorrectly believes that the deck of cards has not
been properly shuffled and thinks that the cards are likely to show
a “hot hand” effect in which repetitions are much more common
than alternation (Gilovich, Vallone, & Tversky, 1985). This set up
is illustrated on the left hand side of Figure 1, and the formal
details are outlined in Appendix A. On the right hand of Figure 1
we plot the results of simulating a large number of gambling
competitions among these three agents. Not surprisingly, although
all three are Bayesian models—and hence “optimal” in the sense
implied by the diachronic Dutch book argument—they do not
perform equally well in these contests. Early on in the gambling
contests, the Bayesian models with the correct prior (veridical and
miscalibrated) both tend to win money from the misinformed
model because it tends to provide overly generous payouts for a
bet on white. As the contest continues, the veridical model starts to
win money from the miscalibrated model—because the miscali-
brated model incorrectly believes that a hot hand effect applies it
offers and places bad bets reflecting its belief that streaks will tend
to continue. Although each of these three agents represents an
optimal solution to some inference problem, only one of them
provides a normative standard for gambling behavior in this spe-
cific contest. To our mind, good performance on the actual infer-
ence problem at hand seems a very important element of what
optimality means in the real world, and it is obvious that the mere
fact of being Bayesian is not sufficient to guarantee good perfor-
mance in any satisfactory sense. To be rational, one must do more
than just be Bayesian—one must be the right kind of Bayesian.

The point of this discussion to argue that an optimal Bayesian
model is, in practice and for very good reasons, assumed to be

Figure 1. Three Bayesians betting on binary outcomes, where the true success rate � is generated randomly
from the unit interval. The veridical Bayesian employs priors and likelihoods that are exactly matched to this
task, whereas the misinformed Bayesian uses the wrong prior and the miscalibrated Bayesian uses the wrong
likelihood. The veridical Bayes outperforms either of the other two models.
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something more than just a model with Bayes’ rule in it. At the
very least, it refers to a Bayesian model in which the priors and
likelihoods are well suited to the experimental task or to a real
world problem that the agent needs to solve. It suggests that the
builders of such models are obligated to constrain their models by
making reference to some external standard that justifies the
choice of priors and likelihoods.1 For example, the learner’s prior
might be veridical in the sense of being the correct prior for the
task given to participants (as per the toy example above). Alter-
natively, a prior might be ecologically justified in the sense that it
is well matched to the tasks that people have to solve in their
everyday lives. These two need not be identical, and if people
apply ecologically justifiable priors in an experimental task for
which they are not appropriate, one might argue that the cognition
is optimally tuned to the real world problem but not the experi-
mental one. The key point is that if one’s Bayesian model is
intended to be an optimal Bayesian model, the researcher is not
free to choose priors and likelihoods purely on the basis of their
own intuitions. Indeed, part of the substantive theoretical claim
that Bayesian models are often used to make is about the nature of
those priors and likelihoods.

Distinguishing Optimality Claims From
Descriptive Claims

The idea that human cognition might be optimal or rational is a
powerful thought (Cosmides & Tooby, 1996), and there seems
little disagreement with the suggestion that there would be con-
siderable scientific value to a demonstration that humans closely
mimic the behavior of a genuinely optimal Bayesian model, even
if that optimality is defined with respect to constraints on factors
like sensory abilities or attentional or memory limitations. Much of
the excitement about (Anderson & Schooler, 1991; Chater, Tenen-
baum, & Yuille, 2006; Griffiths & Tenenbaum, 2006; Körding &
Wolpert, 2004a) and criticism of (Bowers & Davis, 2012a; Mozer,
Pashler, & Homaei, 2008) Bayesian theories revolves around the
plausibility of this vision, but few would argue that the idea would
be boring if true. The dispute arises simply because many cogni-
tive scientists strongly disagree with any claim of human optimal-
ity (e.g., Bowers & Davis, 2012a, p. 393), noting that in many
tasks human performance appears to be markedly suboptimal (see
also Marcus & Davis, 2013, p. 2353) when compared with a model
that makes the best possible inferences given the structure of the
task.

Perhaps surprisingly, some recent defenses of the Bayesian
framework (e.g., Goodman et al., 2015; Griffiths et al., 2012)
against these criticism have been entirely willing to concede that
point. If prominent Bayesian cognitive scientists are prompted to
argue that “the hypothesis that people are optimal is not something
that even the most fervent Bayesian believes” (Griffiths et al.,
2012, p. 421), why is there so much confusion in the literature
surrounding it? A large part of the problem is that the very
structure of Bayesian models—because they require the modeler
to stipulate and justify the choice of priors and likelihoods—
encourages an optimal interpretation, even on the part of modelers
who did not set out with that goal. Indeed, we would suggest that
this characteristic that may have given rise to many of the opti-
mality claims that Bowers and Davis (2012b) highlighted and
found so problematic. In contrast, our descriptive Bayesian models

provide a vision that explicitly, as part of its structure, rejects
assumptions or interpretations of optimality.

If a particular Bayesian model is not intended to constitute a
normative claim about what people should do to be deemed
rational, what purpose does it serve? In our experience, many
researchers who develop Bayesian models are quite uninterested in
making normative claims. Instead, the goal is to merely use the
Bayesian framework as a language in which to specify a theory
about the learner’s mental representations (hypothesis spaces), the
beliefs defined using these representations (the priors), and the
learning rules that describe how beliefs are revised (the likeli-
hoods). From this perspective Bayesian cognitive models need not
correspond to a strong claim about the optimality or rationality of
human behavior. Rather, they serve a descriptive goal based on the
conditional claim that if a learner adopted this prior and that
likelihood, then it would be sensible for them to produce that
behavior. Viewed in this way it is still critical that Bayesian
models be coherent—and Dutch book arguments are still some-
what pertinent—because without such coherence even this condi-
tional claim becomes untenable. However, a learner’s prior need
not capture the “correct” environmental statistics for some prob-
lem nor does it need to be veridical for a specific task; it need only
capture some beliefs that the learner might bring to the task (e.g.,
Hemmer, Tauber, & Steyvers, 2014; Huszár, Noppeney, &
Lengyel, 2010). Similarly, a likelihood need not describe the
“true” model in which observations are generated and might not
even map onto a particularly sensible one; it need only describe
how the learner thinks the observations were generated (e.g.,
Navarro, Dry, & Lee, 2012). The hypotheses considered by the
learner need not include the best or most appropriate hypothesis in
some objective sense; they need only include some cognitively
plausible set of options a learner might consider. Such a model
makes sense on its own terms and serve a useful purpose in
illustrating psychological principles, but if the priors or likelihoods
are especially mismatched to the task, it is somewhat misleading to
refer to such a model as “rational” and highly inappropriate to refer
to it as “optimal.”

We refer to models constructed in this fashion as descriptive
Bayesian models.2 Within the descriptive approach, human cog-
nition need not be perfectly matched to the statistics of the envi-
ronment, people’s learning might not make optimal use of the
information inherent in the problem, and individual participants
might differ quite substantially in their choice of priors and like-
lihoods. If human behavior matches the predictions made by a
model specified in this manner, this is evidence that the model
provides a good description of the behavior—which suggests that

1 Arguably, a Bayesian who wants to make the strongest possible claim
about optimality of cognition has an even stronger obligation, namely to
show that human behavior matches the predictions of the optimal Bayesian
model because that behavior is optimal. This issue is discussed by Danks
(2008).

2 Sometimes the term ‘descriptive’ is used to capture models that seek to
more clearly characterize data (as in, for instance, signal detection or
diffusion models) as opposed to models whose aim is to explain the
underlying processes or causal relationships. That is not the distinction we
are making here. Rather, we use the term to make the distinction between
models that seek to describe the priors and likelihoods people actually use,
rather than prescribing them a priori and justifying them as being well-
suited to the problem.
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the model’s assumptions may be consistent the assumptions people
make in that situation. Critically, good fit of a descriptive model to
human behavior does not imply that the behavior is rational. It is
evaluated and interpreted in much the same way as any other
probabilistic model of cognition, on a par with models like signal
detection theory (Macmillan & Creelman, 2004), sequential sam-
pling theory (Ratcliff & Smith, 2004), multinomial processing
trees (Batchelder & Riefer, 1990), and so on.

Put another way, the fundamental difference between descrip-
tive Bayesian models and optimal Bayesian models is that within
the descriptive Bayesian framework, questions of optimality are
simply irrelevant. This distinction is especially clear when com-
paring descriptive Bayesian models with models of constrained
optimality. The two have sometimes been confused with one
another, but they are fundamentally distinct. Models that acknowl-
edge that all optimality occurs within constraints (e.g., investigat-
ing whether some behavior is optimal given the existence of
certain capacity limitations or filters on the kind of sensory input
available) are still optimal models: they still justify the modeling
choices by reference to some notion of optimality. That is, the
choices of priors, likelihoods, hypotheses, or characteristics are
justified by arguing that they are well-matched to the task or in
some other way ecologically valid, given the constraints the or-
ganism is operating within. A descriptive approach, by contrast,
simply doesn’t care whether the choices are justified. The central
question of interest is discovering what choices best account for
human performance.

This raises the question: if the descriptive approach liberates
Bayesian models from the requirement that they be “rational” or
“optimal,” why should a researcher adopt such an approach? What
are the virtues of Bayesian models if they no longer represent
optimal inference or produce rational behavior? It might appear
that we are discarding the core virtue of Bayesian models. Yet this
is far from the case. Much of the appeal of Bayes’ rule lies in the
fact that it represents a method for writing down models in a
transparent way. To build a Bayesian model, the researcher is
forced to specify what form the mental representation might take
(the hypothesis space), what biases the learner brings to the prob-
lem (the prior), and the rules by which the learner can be influ-
enced by data (the likelihood). Because the researcher cannot write
down a Bayesian model without making these things clear, the
assumptions of the theory are always out in the open. Such a model
tries to explain human behavior in much the same way any other
model does: If the learner possesses these beliefs and reasons in
this way, it would be reasonable to expect them to produce that
behavior.

How, then, are descriptive Bayesian models different from
modeling more generally? In one sense they are just one of many
options in our toolbox; which approach should be used depends on
the research question. But the particular research questions a
descriptive approach are well-suited for are exactly the kinds of
questions that often arise in cognitive science. What is the nature
of the hypotheses people are evaluating when they learn? How
exactly do people update their beliefs in response to the data they
see, and what assumptions do they make about how that data was
generated? What priors do people bring to a learning situation?
These questions are more naturally answered within a descriptive
framework than an optimal one, and the explicitness of the Bayes-
ian machinery means that for those kinds of questions it can offers

advantages of explicitness and precision over other modeling
frameworks as well.

A Formal Statement of the Descriptive
Bayesian Approach

Relaxing the requirement that Bayesian models describe optimal
cognition opens up the possibilities for investigation considerably.
In an optimal Bayesian model, the learner’s inferences are de-
scribed via the application of Bayes’ rule:

P(h |x) � P(x |h)P(h |H)

�h��H P(x |h�)P(h� |H)
(2)

where x represents the data available to the learner, h is a hypoth-
esis about the origins of the data, and H represents the set of
hypotheses available to the learner. To satisfy some version of the
optimality claim, the priors and likelihoods need to be constrained
in an a priori fashion.

The descriptive view rejects the idea that priors and likelihoods
should be constrained by anything beyond the researcher’s theory
of the task. The learner’s prior should not be viewed as fixed by the
structure of the environment, nor should it necessarily correspond
to a sensible expectation about the world. Similarly, the likeli-
hoods that govern people’s learning need not correspond to any
realistic model of how observations are generated. As such, the
behavior produced by the model need not be rational or even
particularly sensible. Formally, if there are multiple possible
choices of prior (parameterized by �) and likelihoods (parameter-
ized by �), then the learner’s inferences are conditioned on these
parameters:

P(h |x, �, �) � P(x |h, �)P(h |�, H)

�h��H
P(x |h�, �)P(h� |�, H)

(3)

In one sense the difference between these two expressions is
purely cosmetic: Equation 2 suppresses the dependence on the
parameters � and �, whereas Equation 3 makes the dependence
explicit. However, this distinction is central to the manner in which
a descriptive Bayesian model differs from a traditional rational
analysis. If the purpose of a Bayesian model is to make claims
about optimality, the parameters � and � are nuisance variables
that (ideally) should be fixed by reference to some external stan-
dard. However, if the purpose of a Bayesian model is to help us
develop good descriptions of human cognition, the core goal is
now to learn what priors and likelihoods people rely on. Inferring
the priors � and likelihoods � from the empirical data is now the
aim.3

We can illustrate the difference between a descriptive and
optimal model with a simple category learning example. If the
researcher is operating within an optimal Bayesian framework,
when they specify their model they should consider what kinds of
category-learning priors would be optimal: for instance, they might
incorporate a prior that favors more coherent categories (Rosch,
1978) on the grounds that such a category system is sensible

3 It should be noted that this is a slight oversimplification. For instance,
in some situations (e.g., our case Study 3) the goal is to infer the hypothesis
space H. The notation could be expanded to express this but for exposi-
tional simplicity we suppress this for now.
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(Navarro & Perfors, 2011). They should also consider what kinds
of likelihood models an optimal learner should entertain: perhaps
one that assumes strong sampling and follows the size principle on
the grounds that it is statistically appropriate if one assumes that
data is drawn directly from the category itself (Tenenbaum &
Griffiths, 2001). The key point is that an optimal Bayesian modeler
needs to not only make choices about the prior and likelihood, but
they should be able to justify those choices as optimal for some
reason. By contrast, a descriptive Bayesian modeler need not do
this. Instead, they perform inference over the priors and likeli-
hoods4 of each participant and discover which ones best account
for their performance. Perhaps some people use strong sampling,
while others do not; perhaps everybody, or nobody, or a few
people do not have particularly strong a priori beliefs about the
coherence of categories. The descriptive approach allows research-
ers to discover this.

The descriptive approach to Bayesian cognitive modeling al-
lows the researcher a lot of freedom in how the model can be built
and parameterized, so it becomes critical to consider how the
model parameters should be estimated and how rival models
should be compared. Fortunately, these are well-studied problems
and many principled solutions exist for model selection (see, e.g.,
Browne, 2000; Chandramouli & Shiffrin, in press; I. J. Myung,
2000; J. I. Myung, Navarro, & Pitt, 2006; Pitt, Kim, Navarro, &
Myung, 2006; Pitt, Myung, & Zhang, 2002; Shiffrin & Chan-
dramouli, 2016; Shiffrin, Chandramouli, & Grunwald, in press;
Wasserman, 2000), and perhaps the most elegant approach to
parameter estimation is Bayesian data analysis (e.g., Gelman,
Carlin, Stern, & Rubin, 2014; Kruschke, 2010; Lee & Wagenmak-
ers, 2014), in which the researcher also acts as a Bayesian rea-
soner. Before running any experiment, the researcher themselves
has some priors P(�, �) that captures their beliefs about which
priors and which likelihoods are plausible. After running the
experiment she obtains a collection of responses r from the par-
ticipant, from which she infers a posterior distribution P(�, � |r).
This distribution captures everything the researcher has learned
about the participant using her model and the data from her
experiment. The inference by the researcher can also be described
using Bayes’ rule:

P(�, � |r) � P(r |x, �, �)P(�, �)

� P(r |x, ��, ��)P(��, ��) d(��, ��)
(4)

In this expression, we use the notation P(r |x, �, �) to indicate
that the participant responses r depend on both the parameters (�,
�), and on the information x that the experiment presents to the
participant. To do so, the researcher needs to specify two things.
First, as noted above, she needs to specify the prior distribution
over model parameters, P(�, �). Second, she needs to specify a
data analysis model that links the learner’s posterior distribution
over hypotheses P(h |x, �, �) to the researcher’s likelihood func-
tion for the data, P(r |x, �, �). Specifying the data analysis model
requires the researcher to make substantive choices. For instance,
one might assume that people generate their response by sampling
from the posterior (e.g., Vul et al., 2014), but other possibilities
exist. Several simple possibilities are listed by Marcus and Davis
(2013), but there is no reason why a complex theory of the
response generation process could not be supplied (see, e.g., the
Appendix in Navarro et al., 2012). The important point is that if

the researcher does specify a clear measurement model that links
the learner’s posterior P(h |x) to the observed responses r, then all
of the statistical machinery of Bayesian data analysis and other
approaches to model selection now become available.

Summary

The descriptive approach to Bayesian cognitive modeling has
many fundamental differences from a view in which Bayesian
models are treated as optimal, normative standards for human
cognition. First, the descriptive approach treats the cognitive
model as a tool to make inferences about participants. When
building a model, the researcher is not obligated to have a theory
that precisely states what priors and likelihoods a learner should
use. Instead, they can propose a broad family of possible Bayesian
models and use the experimental data to infer which of those
models best matches human behavior. Second, it provides a natural
mechanism for expressing individual differences, as it allows each
participant to have different priors � and likelihoods � without
obligating the researcher to suppose that each person’s idiosyn-
cratic prior and likelihood is fully justified given their idiosyn-
cratic experiences. Third, because the descriptive framework em-
phasizes the importance of treating the Bayesian cognitive model
as a genuine statistical model for the data (i.e., ideally, it assigns
probabilities to people’s responses at a trial to trial level), we can
use a number of model selection approaches, including methods
from Bayesian statistics, to compare between models of different
sorts (even if some of those models are non-Bayesian).

The primary goal in this paper is to highlight the importance of
making a clear distinction between an optimal Bayesian model and
a descriptive one, and the rest of the paper is devoted to illustrating
why this distinction matters. To that end we present three case
studies. Our first case study presents an example in which an
optimal Bayesian model fails to account for human behavior,
whereas a descriptive Bayesian model performs better—by drop-
ping the presumption of optimality and allowing for individual
differences—and yields novel insights into how people solve a
simple inductive problem. The second case study presents an
example in which the comparison between an optimal Bayesian
model, a descriptive Bayesian model, and a non-Bayesian model
explores how close people actually are to optimal in some cases.
This case study illustrates that even when people’s behavior is
actually close to optimal, the descriptive framework is still useful.
Not only does it provide a framework for making the comparison,
but it also constitutes better evidence for optimality than an opti-
mal model alone would: the priors and likelihoods that correspond
to the normative solution are rigorously shown to provide the best
account of the data, rather than being simply stipulated by the
modeler. Finally, our third case study highlights the fact that
descriptive Bayesian models can still be useful in situations where
exploring whether or not people are optimal is irrelevant to the
research question.

4 As we describe in more detail below, it is of course impossible to
perform inference without setting some hyper-prior on the priors and
likelihoods themselves. Yet these hyper-priors can be loose enough to
permit a large range of variation in the actual priors and likelihoods
entertained by the model. As such, they themselves need to be justified on
optimality grounds, and they allow the researcher to truly do inference
about which parameters best describe human performance.
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These examples are intended to be illustrative, not exhaustive.
We aim to highlight the potential power of the descriptive ap-
proach, not to catalog all possible uses of the framework. Although
there are a number of important technical details to consider when
applying Bayesian data analysis to a Bayesian cognitive model, we
have aimed to keep these technical details to a minimum in the
main paper, but more fully elaborated in the Appendixes. Finally,
we should note that although our examples are chosen to illustrate
why it can be useful to build descriptive Bayesian models, we
believe that there is a place for both kinds of Bayesian models in
the literature. For instance, optimal Bayesian models are quite
appropriate in cases where the modeler has independent substan-
tive justification for the choice of likelihoods and priors; in such a
situation, the extra machinery of the descriptive approach may be
unnecessary.

Case Study 1: Focusing on Optimality Does Not
Always Lead to the Best Understanding of

Human Behavior

Our first case study revisits the Bayesian theory of coincidences
and discoveries developed by Griffiths and Tenenbaum (2007,
henceforth GT1). The central goal in that paper was to develop a
Bayesian account of how people decide whether a pattern of
observations is a mere coincidence (a chance occurrence) and
when it represents a meaningful discovery. The paper uses Bayes-
ian models to make normative claims. For instance, the abstract of
the paper argues “that people can accurately assess the strength of
coincidences, suggesting that irrational conclusions drawn from
coincidences are the consequence of overestimation of the plausi-
bility of novel causal forces,” and on page 218 the authors argue
that “human irrationality concerning coincidences [can] be local-
ized in miscalibrated prior odds” (emphasis ours). The normative
claims are clear: To agree with this model is to be accurate and
rational, and disagreements with the model are irrational. More-
over, to the extent that discussion of the Bayesian theory focuses
on such claims, the purpose of constructing the Bayesian model
appears to be that it licenses these normative claims.

In this case study we focus on two problems that sometimes
arise when applying the optimal Bayesian approach. First, dem-
onstrating that aggregated response curves match those produced
by an optimal model may not provide sufficient evidence that
people’s behavior is optimal if individual responses deviate from
the optimal norm. Second, when behavior cannot reasonably be
considered to be optimal, this type of model loses its explanatory
power and provides limited psychological insights. We address
these issues by including a descriptive Bayesian model in our
analysis—one that best describes human behavior and drops any
normative claims about the rationality of human cognition—and
show that this leads to additional insights about human psychol-
ogy, including a more nuanced understanding of how people’s
behavior deviates from optimality.

Of Genetics and Psychokinetics: Inference From
Binary Data

The original GT1 paper discusses several different inference
problems and develops a Bayesian model for each one, but for our
purposes it will be sufficient to consider the simplest case. In their

first experiment, they presented people with descriptions of ficti-
tious scientific experiments in which the observed outcomes were
binary, and the question people had to answer was whether the true
base rate of the outcomes was 50%. There were two versions of the
task. People in the genetics condition were given the following
cover story:

A group of scientists investigating genetic engineering have con-
ducted a series of experiments testing drugs that influence the devel-
opment of rat fetuses. All of these drugs are supposed to affect the sex
chromosome: they are intended to affect whether rats are born male or
female. The scientists tested this claim by producing 100 baby rats
from mothers treated with the drugs. Under normal circumstances,
male and female rats are equally likely to be born. The results of these
experiments are shown below: The identities of the drugs are con-
cealed with numbers, but you are given the number of times male or
female rats were produced by mothers treated with each drug.

After being told that (say) 70 of the 100 baby rats were male,
participants were asked to assess the probability that the drug was
effective. In a classical null hypothesis test, the inferences that one
makes in this scenario depend only on the raw data (i.e., number
of males and number of females). However, GT1 argue that people
should treat this as Bayesian inference problem and use the cover
story to impose some prior bias. To that end, a second group of
participants (in the psychokinesis condition) saw this cover story:

A group of scientists investigating paranormal phenomena have con-
ducted a series of experiments testing people who claim to possess
psychic powers. All of these people say that they have psychokinetic
abilities: They believe that they can influence the outcome of a coin
toss. The scientists tested this claim by flipping a fair coin 100 times
in front of each person as they focus their psychic energies. Under
normal circumstances, a fair coin produces heads and tails with equal
probability. The results of these experiments are shown below: The
identities of the people are concealed with subject numbers, but you
are given the number of times the coin came up heads or tails while
that person was focusing their psychic energies.

Participants were then shown the outcomes of a series of these
experiments—the number of male rats or the number of heads out
100 trials—and had to judge the probability that the drug affected
the sex of rats, or that the person had psychic powers. To examine
how people’s beliefs are the strength of evidence in the data, they
asked people to judge the probability that the drug/psychokinesis
was effective in 8 different situations: when the number of males/
heads was 47, 51, 55, 59, 63, 70, 87, 99 and 100.

An Optimal Bayesian Model

How should an optimal reasoner behave when solving this
problem? GT1 present the following rational analysis of the task.
There are two hypotheses that need to be discriminated: According
to the “null” hypothesis h0, the true probability of male/heads is
fixed at 50%, but according to the “alternative” hypothesis h1 the
true probability is an unknown value � that could be anywhere
between 0 and 1. This framing of the problem seems entirely
reasonable and in fact this exact model is sometimes used as a
simple data analysis tool (e.g., Wagenmakers, 2007). Formally, if
n denotes the number of observations and k denotes the number of
successes, then the strength of evidence provided by the data is
provided by the Bayes factor:
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P(x |h1)
P(x |h0)

� 2n

�nk �(n � 1)
(5)

The further that the proportion k/n deviates from 0.5, the stron-
ger the evidence for the alternative model. However, there are
good reasons to think that people would be more skeptical of a
claim about psychic powers than a claim about genetic engineer-
ing, and so GT1 argue that people should employ different priors
in the two conditions. This also seems sensible, and similar claims
about the importance of adapting the prior to suite the problem
have been made in the Bayesian data analysis literature (Wagen-
makers, Wetzels, Borsboom, & Van Der Maas, 2011). Multiplying
the Bayes factor by the prior odds P(h1)/P(h0) gives us the poste-
rior Odds ratio,

P(h1 |x)
P(h0 |x) �

P(x |h1)
P(x |h0)

�
P(h1)
P(h0)

(6)

which reflects the relative strength of belief that the learner has in
the two hypotheses after the data have been observed.

The optimal model developed by GT1 is elegant, simple and
makes very clear predictions about how different experimental
manipulations should change people’s judgments. The cover story
manipulation should shape people’s priors P(h), the number of
observed cases should affect the likelihood P(x |h), and these two

factors should be integrated via Bayes’ rule. In light of the way in
which they constructed their task and presented it to participants,
we would strongly agree with their claim that this model does
make sense as a normative standard for this task.

Successes and Failures of the Optimal Model:
A Replication of the GT1 Study

How plausible is the claim that people are optimal at this task?
To evaluate the optimal Bayesian model as a theory of human
behavior, we conducted a replication of the GT1 experiment using
102 participants recruited through Amazon Mechanical Turk. Par-
ticipants were paid $0.40 for completing the study. The only
difference between our study and the original one is that we used
a slightly different dependent measure: We asked people to judge
the probability that a real effect was observed. Following GT1, we
excluded participants who appeared to have reversed the response
scale (i.e., showed decreasing confidence in an effect as k in-
creased), leaving 89 participants. The results of the original study
and our replication are shown as the solid lines in in Figure 2. As
is immediately clear from inspection of the figure, the empirical
result from GT1 replicates.

In addition to replicating the experiment itself, we replicated the
data analysis reported by GT1. When considering the application
of the optimal model to empirical data, GT1 quite sensibly ac-

47 51 55 59 63 70 87 99
0

2

4
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8

10

Number of heads (males)

H
ow

 li
ke

ly
?

Figure 2. Aggregated fits of the original Bayesian coincidences model. Panel a is a reproduction of Figure 3
from Griffiths and Tenenbaum (2007), whereas panel b shows the results from our replication of the experiment
and model fitting procedure from the original paper. Error bars in panel b are standard errors. While there are
some differences between the two panels, and some disagreements between the Bayesian model and human
performance, the overall qualitative agreement is reasonable.
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knowledge that their Bayesian model allows room for some indi-
vidual differences. As they note, it is reasonable to think that
different people could read the same cover story and apply some-
what different priors. To accommodate this, they estimate a single
free parameter (the prior odds) for each participant, and then
reported the averaged responses for both model and humans.5

These aggregated curves are plotted in Figure 2 and it is again
clear that our replication of the data analysis is in agreement with
the results in GT1. In both figures it is clear that the averaged
model fits are a reasonable approximation to the averaged data,
though clearly there are some fairly noticeable deviations too.

A Closer Look at the Individual Differences

Figure 2 presents a single clean picture, one in which there is
one pattern of performance produced by humans, and another
single pattern produced by an optimal Bayesian reasoner. The fact
that these two curves are in agreement (at least qualitatively) does
make it look like people are doing optimal inference. Yet one is
compelled to wonder: Do the responses of individual subjects look
anything like these aggregated curves? Do individual subjects rely
on a likelihood function based on independent Bernoulli trials?
Should we call their reasoning be “irrational” if they do not?

Viewed in this fashion, it is difficult to assess GT1’s proposal
that people behave optimally with respect to their prior: Their
analysis acknowledges that individual differences might exist and
estimates model parameters at the individual subject level, yet
ultimately the model performance is assessed only in terms of the
aggregated data.6 In light of these concerns, Figure 3 plots the
responses at an individual subject level (right panel), and contrasts
these individual subject curves with the response curves produced
by the optimal Bayesian model under different choices of the prior
odds parameter (left panel). As is immediately obvious from
inspection, there is a major mismatch between the two. The curves
produced by the Bayesian model are extremely steep,7 whereas
almost all the empirical curves are quite shallow. Even before
attempting to quantify model performance (see below), it is clear
the optimal Bayesian model does not provide a good account of
human behavior at an individual subject level. Absent any evi-
dence that human behavior matches the model predictions, it is
difficult to substantiate any claim about the optimality of human
performance in this task. On the contrary, when measured against
the standard that GT1 proposed—optimal belief revision with
respect to a prior that can vary from person to person—human
cognition appears to be decidedly suboptimal.

A Descriptive Approach to the Problem

Given that the normative model proposed by GT1 does not
provide a good account of the data, one might be tempted to
conclude that we have exhausted the value of Bayesian cognitive
models of this problem. Having shown that human performance is
not optimal, perhaps we are now obligated to discard the Bayesian
approach and turn to non-Bayesian accounts of human perfor-
mance? We argue that this need not be true. In this section we
present a descriptive Bayesian account of the same inference
problem, and show that this approach sheds light on human per-
formance even though we cannot use this model to justify any
claim that the behavior it describes is rational, optimal or even
appropriate.

To construct our model, we begin by dropping GT1s claim that
people integrate prior knowledge and statistical evidence in an
“appropriate” fashion. Instead of requiring that our model use the
Bernoulli likelihood function that a statistician might use to ana-
lyze scientific experiments, we allow specify a broad family of
likelihood functions and seek to learn which ones produce human-
like behavior. These likelihood functions may be appropriate to
some real world problem that people have to solve, or they may
not. Our initial goal is exploratory: Instead of using the Bayesian
analysis as a tool to make claims about the optimality or appro-
priateness of people’s responses, we treat it as a descriptive tool
that helps us interpret the experimental data. From this descriptive
perspective, it seems natural to want to explore the nature of
individual differences and give them more prominence in the data
analysis.

With these goals in mind, we extend the model from GT1 in the
following ways. Like GT1, we assume that people might have
different priors. Letting � � log P(h1)/P(h0) denote the prior log
odds, we approach the statistical inference problem as Bayesian
data analysts and place a prior over �. More importantly, because
we are giving up on the claim that people are necessarily adhering
to an easily definable standard of “optimality,” we can take line of
reasoning one step further. Why should people differ in their priors
but not also their likelihoods? Assuming that everyone has the
same likelihood function, as expressed in Equation 5, makes sense
if all people update their beliefs “optimally” (i.e., based on the
assumption that each observation is the result of an independent
Bernoulli trial). This is indeed what statistical models for binary
data typically assume, but that does not mean that people make the
same assumption. In many tasks people appear to update their
beliefs conservatively (Phillips & Edwards, 1966), increasing their
confidence in a proposition more slowly than the statistical evi-
dence would warrant.

Incorporating conservatism into the GT1 model is not techni-
cally difficult. For example, a simple way to behave conservatively
in this task is for the learner to apply Equation 5 to a smaller
“effective” sample size than the one actually observed. Formally,
we let � denote the effective value of a single datum (ranging from
0 to 1), where each value of � corresponds to a different likelihood
function, and we obtain the original model from GT1 when � � 1

5 A minor point on the model fitting exercise: the GT1 paper does not
state what procedure was used to estimate parameters, though when fitting
the data from our replication we found that minimizing sum squared error
worked well. There is also a slight ambiguity in the way in which GT1
describe their procedure, insofar as the text refers to “fitting the sigmoid
function” (their Equation 6), but also state that the parameters of the
relevant sigmoid were fixed to have gain 1 and bias 0. On our reading of
the text, it appears that this is intended to mean that the only free parameter
in the model is the prior P(h1), and that the sigmoid referred to in the
relevant passage is intended only to ensure that P(effect |x) � P(h1 | x).

6 We do not intend to single out these particular authors on this point.
Averaging is a common practice that has often been criticized in the data
analysis literature (e.g., Lee & Webb, 2005; Navarro, Griffiths, Steyvers, &
Lee, 2006), and there are many well-documented examples in which
averaging systematically distorts the structure of the data (e.g., Estes, 1956;
Heathcote, Brown, & Mewhort, 2000). It is not a failing unique to Bayesian
cognitive models.

7 It is worth noting that the shallower curves produced by the model at
an aggregate level (i.e., in Figure 2) are purely an averaging artifact. The
original Bayesian analysis reported by GT1 cannot produce shallow re-
sponse curves for individual subjects.
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(see also Navarro et al., 2012; Ransom, Perfors, & Navarro, in
press). Then, in the same way that we assume that people can have
different priors �, we allow the possibility that each person has
their own likelihood function defined by �. Then, adopting a
Bayesian data analysis perspective, we as researchers specify our
priors over the model parameters � and � and allow the empirical
data to teach us something about our participants (see Appendix A
for details).

An important point to recognize is that although our expanded
model is clearly Bayesian, it is difficult to characterize as an
optimal model for the task that people were asked to solve. If
participants do turn out to be conservative in their inferences, for
instance, it is not at all obvious whether this conservatism has any
normative justification. It is of course possible to construct post
hoc stories about why it might be justified: One might argue that
real world data are messy and autocorrelated, and as such it would
be rational to display some conservatism if people transfer those
expectations to the GT1 task. But even if this explanation were
correct, how much conservatism would real-world messiness jus-
tify? It is not clear that there is a unique solution to this question.
If our scientific goal is to judge whether people are doing the “right
thing” or the “wrong thing,” adding conservatism to the model
seems to do nothing but muddy the waters. On the other hand, if
we adopt the more exploratory goal of trying to find the statistical
model that best describes human behavior, the focus shifts to
empirical questions. What likelihoods and priors produce human-
like behavior? Do they differ from person to person? Do they
differ from context to context? These are questions we can inves-
tigate within the descriptive Bayesian framework, using the model
as a tool, without being obligated to endorse any claim that the
behavior that the model describes is optimal in any interesting
sense of the word.

Results

The descriptive Bayesian model captures individual re-
sponse curves. Figure 4 plots the raw data for 12 participants. In
these plots, the dashed line shows the best fitting response curves
for the original Bayesian model proposed by GT1, and the solid

lines show the curves produced by the descriptive model. As is
evident from inspection, there are some subjects who produce
response curves that are in close agreement with the optimal
Bayesian model. However, it is also evident that the optimal model
only captures one possible human-like response pattern. In con-
trast, our expanded model provides reasonably good fits to all
participants shown in Figure 4. For those participants who produce
steep response curves, our model agrees with the original GT1
model. But the descriptive model can capture the behavior of
people who produce shallower curves. As a result, by virtue of
allowing a wider range of likelihood functions, our model passes
a basic test of descriptive adequacy that the GT1 model fails. This
is reflected in the average sum squared error between the model
fits and the human data at the individual subject level: For the GT1
model it was 0.41 (SD � 0.45), whereas for the descriptive model
it was 0.10 (SD � 0.14).

The effect of the cover story manipulation. The merits of
the descriptive approach become more apparent once we revisit the
original question that GT1 sought to answer using their experi-
ment. In the original paper, they concluded that the cover story
influenced people’s priors. In our reanalysis using the descriptive
model we replicate this finding, and in fact are able to extend it
slightly by quantifying the magnitude of the effect: In the genetics
condition, the average prior � used by subjects corresponded to a
4:1 prior bias in favor of the null hypothesis (i.e., no effect),
whereas in the psychokinesis condition the bias to prefer the null
was 51:1 on average. The 95% credible intervals for these are [2.3,
6.8] and [21, 140] respectively, which do not overlap: This indi-
cates that the effect is almost certainly genuine. Individual subject
distributions over the prior odds are plotted in Figure 5. In essence,
these results replicate the findings reported by GT1, though they
are somewhat more detailed.

However, in addition to being more detailed, our analysis de-
parts from GT1 in a more fundamental way: The descriptive
framework allows us to consider the possibility that the cover story
manipulation also affects the choice of likelihood function. As
discussed previously, there is no reason why the prior is the only
way people might change their behavior in response to a change in

Figure 3. Systematic failures of the optimal Bayesian model for the coincidences task. The left panel plots the
response curves predicted by the Bayesian model across a range of possible prior odds. For all choices of priors,
the response curves are extremely steep, much more so than the averaged curves plotted in Figure 2. In contrast,
the right panel shows the response curves produced by 20 individual subjects, almost all of which are much
shallower.
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cover story. People may simply be more distrustful of evidence
in the psychokinesis condition, leading to a shift in the likeli-
hood as well as the prior (e.g., Welsh & Navarro, 2012). In fact,
when we investigate this with the descriptive model, it is
precisely what we find: In both conditions participants tend to
be conservative, downgrading the evidentiary value of an ob-

servation relative to the behavior of the optimal model. In the
genetics condition the average subjective value of an observa-
tions is inferred to be 43% of that assumed by the original
Bayesian analysis (i.e., average � � .43), with a 95% credible
interval of [.33, .53]. In the psychokinesis condition this drops
to 23% (95% credible interval [.16, .33]). As before, the disjoint

Figure 4. Individual differences in the coincidences task. Each panel plots the responses from a single
participant (dots). The top six panels show participants assigned to the genetics condition and the bottom six
panels show participants in the psychokinesis condition. Solid lines show the posterior predictive mean for the
descriptive Bayesian model. Dotted lines show the fitted values for the original, optimal Bayesian model. It is
clear that although the original model produces reasonable fits in some cases, in others (e.g., panels 1, 2, 8, 9,
and 10) it performs much more poorly than the descriptive model. This is because it does not allow for any
flexibility in the likelihood function, predicting a very steep rise as a function of the input.
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credible intervals imply strong evidence for an effect. The
individual subject distributions are plotted in Figure 6.

Discussion

The original paper by GT1 develops an elegant Bayesian theory
about how people integrate prior knowledge with statistical evi-
dence to discriminate mere coincidences from meaningful discov-
eries, one that is not restricted to the particular special case that we
reanalyze here. There is much to like about the theory, not least of
which is the demonstration that people do integrate prior knowl-
edge with statistical evidence when evaluating data. Even so, the
original rational analysis makes theoretical claims that go beyond
the assertion that people integrate background knowledge with
statistical evidence: GT1 claim that the manner in which people do
so is “appropriate,” and that the only source of “irrationality” that

people bring to these tasks is via miscalibrated priors. In retrospect
it appears that these claims are not justified when we look at
individual subject data. Absent any compelling justification why
people ought to have used likelihoods that no statistician would
ever apply to the results of a genetic engineering study, it is not at
all clear that we should conclude that people integrate prior knowl-
edge with statistical evidence in an appropriate fashion, much less
an optimal one. Normative claims about human cognition do not
seem to be licensed by these data.

Although it turns out that people’s behavior systematically
deviates from the normative standard set by the optimal Bayesian
model, those deviations turn out to be interesting in a way that is
naturally captured by the descriptive Bayesian model. In other
words, the successes of the descriptive model go beyond mere data
fitting: At the end of our analysis we arrived at a nuanced psy-

Figure 5. The cover story has a strong influence on the prior probability of an effect. Individual subject
distributions over the prior odds vary with condition, with people who saw the genetics cover story giving much
higher prior odds of a real effect. Even within condition, however, people vary a great deal in their prior beliefs.

Figure 6. The cover story has an influence on the likelihood. Individual subject distributions over the
likelihood also vary with condition, suggesting that people were more distrustful of the evidence in the
psychokinetic condition: The average subjective value of an observation is 43% in the genetics condition but
only 23% in the psychokinetic condition. In both conditions, people acted far more conservatively than the
“optimal” Bayesian model would predict.
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chological understanding of the task that was not possible with the
optimal model alone. As experimenters, we did not know a priori
whether different likelihood functions would be needed to capture
individual differences in human judgments, but we were able to
learn the answer from participant responses (they are). We did not
know whether individual subjects would be consistent with our
model (mostly yes), nor whether they would be consistent with the
original model (sometimes yes). We suspected that background
knowledge would affect people’s prior biases (it did), but we did
not know whether it would also shape people’s willingness to have
those initial beliefs modified by evidence (it did). Overall, the
descriptive approach yields a more detailed and nuanced descrip-
tion of how people evaluate evidence. We can no longer conclude,
as did GT1, that people reason optimally but bring different priors
to different situations; it now appears that people not only have
different preexisting beliefs, but they also update their beliefs
conservatively (and that the extent of this conservatism is sensitive
to the situation). This finding opens up many psychologically
interesting questions about why and when people do (or should)
conservatively update their beliefs—questions that are not easily
explored with a rational Bayesian analysis.

As a final point, it is important to clarify that we are not
claiming that GT1 simply failed to look at individual differences.
Rather, we argue that focusing on questions about optimality tends
to discourage researchers from reporting or discussing them. When
people differ in substantive ways from one another, it is always
possible to imagine that each person is responding in a fashion that
is optimal conditional on the particular experiences a person has
had, but it is very difficult to provide evidence for such a claim.8

Indeed, if the researcher’s theory supplies only a single notion of
optimality, then the mere existence of individual differences is at
odds with the claim that human behavior on the task is optimal. As
a consequence, although it is not impossible to reconcile individual
differences with an optimality claim, in practice it can be awkward
to do so. As such Bayesian optimal modeling imposes a theoretical
straightjacket that discourages consideration of individual differ-
ences. By making the theoretical shift to a descriptive Bayesian
approach, the exploration of individual differences becomes pos-
sible because the constraints imposed by claims of optimality are
removed. Taking these various considerations together, it is clear
that in this instance a descriptive approach to Bayesian cognitive
modeling provides a better account of human performance than an
optimal model, and sheds more light on how people solve the
underlying inference problem.

Case Study 2: Using Descriptive Models to
Complement Optimal Ones

The previous case study presented a situation in which an
optimal Bayesian model a descriptive model ended up in conflict:
The optimal model was inconsistent with the empirical data, and it
was the descriptive model that shed light on how people ap-
proached the task. This is perhaps to be expected whenever human
cognition genuinely departs from a normative standard. However,
the interaction between these two perspectives need not always be
antagonistic, and our second case study illustrates a situation
where a descriptive Bayesian approach is complementary to the
optimal Bayesian approach, and ultimately reinforces the conclu-
sions that an optimal model produces.

Optimal Predictions in Everyday Cognition

Our second case study focuses on work by Griffiths and Tenen-
baum (2006, henceforth GT2) focusing on the question of whether
human predictions in very simple inductive problems are genu-
inely optimal. To investigate this question, they gave people prob-
lems similar to the following one:

If you were assessing the prospects of a 60-year-old man, how much
longer would you expect him to live?

This problem can be characterized as form of Bayesian infer-
ence in which it is possible to rely on external sources to specify
a veridical prior. For instance, actuarial statistics can be consulted
to estimate P(t), the prior probability that a randomly selected
(American) man will die at age t; all of the problems considered by
GT2 (movie grosses, poem lengths etc.) had this property. More-
over, the evidence x specified in the problem (i.e., the fact that this
man has reached age 60) is not especially complicated, and sug-
gests a very simple likelihood function. If the learner assumes that
they have encountered this person at a randomly chosen moment in
their life, then the probability that a person who lives to age t will
be encountered at age x is simply

P(x | t) � �1 ⁄ t if x� t
0 otherwise

(7)

To determine the eventual life span for someone observed to be
alive at age x, we apply Bayes’ rule. The posterior probability that
the person lives to age t is given by P(t |x) � P(x | t)P(t). As noted
by GT2, the optimal answer to the prediction problem is to report
the median of the posterior distribution over t, but in light of more
recent work arguing that people can make near-optimal decisions
by taking a small number of samples from the posterior (Vul et al.,
2014) we use a probabilistic version of the GT2 model that
generates responses by sampling t from the posterior P(t |x).

The critical theoretical point that GT2 made was that this model
can be used as a genuine normative standard for human cognition,
since it uses veridical priors and well-motivated likelihoods. It
therefore involves no free parameters that need to be estimated
from the data. To the extent that human performance matches the
predictions of this model, a strong case can be made that it is
genuinely optimal.

A Descriptive but Nonoptimal Bayesian Model

The model proposed by GT2 represents one of the best devel-
oped examples of a Bayesian model that genuinely meets the
requirements of an optimal model. It is therefore worth contrasting
the GT2 model with a descriptive Bayesian model that explicitly
avoids making any claim that people have veridical prior knowl-

8 It is also worth noting that one could apply a notion of constrained
optimality to look at individual differences—but only to the extent that
those individual differences can be tied to the constraints. For instance, if
researchers were trying to argue that are optimal on some task conditional
on their limited memory, it would be natural to measure people’s memory
and determine if differences in performance on that task were related to
their memory capacity. But GT1 were not making any claims like this; they
were investigating the issue of whether people in general were optimal on
this task—and with that viewpoint, it was natural to not even think of
investigating individual differences.
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edge and instead aims merely to describe the empirical data. As
with our previous example, we start from a position of researcher
uncertainty: Instead of assuming that people’s priors match the
veridical ones, we treat people’s subjective priors as unknown
variables and seek to infer them from the empirical data.

There are three attractive features to this approach. First, it
seems plausible to think that at least some participants will have
little knowledge of the statistics of the environment, and when
asked to solve a prediction problem they will substitute some other
distribution P(t) in place of the true one. Second, by specifying the
model in a less restrictive way, we can use it as a tool to learn
something the prior distributions people use to solve simple infer-
ence problems. Third, it expands the range of prediction problems
that we can present to participants: There are many problems for
which people seem to be able to give sensible sounding answers
where no veridical prior distribution exists (e.g., how long will
people live in the year 2100?). By treating the participant prior as
a quantity to be learned rather than prespecified by the researcher,
we can use the Bayesian model as a tool to explore people’s beliefs
about these scenarios.

The model we use is identical to the probabilistic version of the
optimal predictions model described above in all respects except
for the prior.9 In the original GT2 model, the prior was constrained
to be veridical. In the descriptive version we adopt an exploratory,
data driven approach and consider a broad family of possible prior
distributions that people might have relied upon when making
judgments. There are a number of ways that we could go about
this. For instance, we could adopt a nonparametric Bayesian ap-
proach (e.g., Griffiths, Sanborn, Canini, & Navarro, 2008) and
specify a very broad family of priors. However, as GT2 noted, for
most of the problems of interest the veridical prior could be
captured by a normal, Erlang or Pareto distribution. With that in
mind our model assumes that for any given prediction problem,
each participants relies on one of these three distributions.10 Un-
like GT2, we do not prespecify which distributions are used to
solve which problems, nor do we make strong assumptions about
the parameter values that describe the priors. The technical details
are discussed in Appendix B. What is important is that (a) our
model does not assume that people make optimal predictions
because it does not assume that people rely on veridical priors and
(b) our model is more statistically complex than the one developed
by GT2 because there are many possible priors that are consistent
with this model. Because we did not place very strong constraints
on what priors participants might have used, any analyses con-
ducted using it are more exploratory and data-driven.

A Non-Bayesian Alternative: The Mink Heuristic

So far we have considered two Bayesian models: the optimal
predictions model of GT2 and our descriptive alternative. However
there are of course other possibilities. One such possibility is the
Mink heuristic, which was proposed by Mozer et al. (2008) as an
alternative non-Bayesian account of the prediction task. The model
assumes that people not only have limited knowledge (analogous
to the subjective priors of our descriptive model). It also assumes
that people apply non-Bayesian decision rules to make their judg-
ments. Specifically, it proposes that for each phenomenon, people
have a small number (k) of exemplars in memory. The idea is that
these exemplars represent a set of recalled events that are sampled

from the prior, but this impoverished representation is the only
knowledge that people have to guide their judgments.

The Mink model also specifies a deterministic response rule for
predicting the extent or duration of an event: respond with the
smallest of the k exemplars that is larger than the probe value x. If
the probe is larger than all of the exemplars, then respond with a
value that is larger than t by a constant proportion g. If e denotes
the values of the set of stored examples, then the Mink model
predicts the following:

t � �x(1 � g) if x�maxe
min{y � e |y �x} otherwise

(8)

In our applications, we follow Mozer et al. (2008) and adopt the
version of the model in which the exemplar set e consists of only
k � 2 items sampled from the true prior distribution. However, to
make the model comparable to the two Bayesian models described
above (both of which assume people respond probabilistically) we
developed a variant of the model that we refer to as the “Noisy
Mink” model that introduces response error and also assumes that
the exemplars e and multiplier g are unknown quantities to be
inferred from data (rather than a value fixed at 3). Again, the
technical details are discussed in Appendix B.

Replicating and Extending the GT2 Study

To compare the three models we ran a replication and extension
of the GT2 study, in which we asked participants the same ques-
tions used in the GT2 study as well as a counterfactual question for
which no true environmental statistics exist. Participants were 25
undergraduates from the University of California, Irvine who were
compensated with partial course credit. Questions were presented
to participants through a Web based survey. There were eight
different question types and five variations of each question; each
person saw all 40 questions in a random order. Each variation
corresponded to one of five possible values of x. Only one question
was presented on-screen at a time and participants entered their
answer in a text-entry box before moving to the next question.

The survey instructions and seven of the questions were iden-
tical to those used by GT2. For the unabbreviated questions and
survey instructions, refer to Griffiths and Tenenbaum (2006).

9 We could also naturally perform inference over people’s likelihoods as
we did in case Study 1, and a full descriptive Bayesian model would do so.
We choose not to here for expository purposes, because the purpose of the
case study is to focus on comparing models and demonstrating the utility
of making inferences about the priors specifically.

10 By limiting the space of priors in our model to normal, Erlang, and
Pareto we are bringing in our priors (as researchers) about the family of
distributions that describe people’s priors based on what we previously
learned in GT2. This allows us to do a more constrained learning about
people’s priors and serves to simplify our analysis somewhat. As men-
tioned in the main text, we could have used a much more flexible non-
parametric prior but this would have reflected a researcher prior suggesting
that people’s knowledge about events was equally likely to take any
number of more complex forms. A case could be made for this more
flexible approach — particularly if we had included other phenomena such
as GT2’s cake baking times which are multimodal. For our purposes,
however, we chose a more constrained model because it still allowed us to
answer the psychological questions of interest while remaining relatively
simple to understand — the nonparametric approach would introduce a
level of technical complexity to our model that would distract from the
important points of the case study.
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Below are abbreviated examples of each of the questions with all
five of the possible values included:

Lifespans. Predict the age a man will live to if he is currently
(18, 39, 61, 83, 96) years old.

Movie grosses. Predict what the total box-office intake for a
movie that has taken in ($1, $6, $10, $40, $100) million so far.

Movie runtimes. Predict the length of a movie that has al-
ready been playing for (30, 60, 80, 95, 110) minutes.

Poem lengths. Predict the total length of a poem from which
you were just quoted line (2, 5, 12, 32, 67).

Pharaohs’ reigns. Predict the total time a pharaoh will be in
power if he had already reigned for (1, 3, 7, 11, 23) years in 4,000
BCE.

Representatives’ terms. Predict the total years that a (1, 3, 7,
15, 31) year member of the U.S. House will serve.

Waiting times. Predict how long you will be on hold if you
have already been holding on the phone for (1, 3, 7, 11, 23)
minutes.

The counterfactual question that was not part of GT2’s study
was as follows:

Future lifespans. Suppose it is the year 2075 and medical
science has advanced significantly. You meet a man that is (18, 39,
61, 83, 96) years old. To what age will this man live?

Responses from each participant were considered for exclusion
based on each question type: If any of a person’s responses for one

of the eight question types were below the value of x that was
presented in the question, then all five of that participant’s re-
sponses for that question type were excluded for analysis. How-
ever, their responses for other question types were still included.
The number of participants that were included in the analysis for
each question type were: 24 for life spans; 23 for box office intake;
23 for movie duration; 25 for poem lengths; 24 for pharaohs’
reigns; 20 for U.S. representatives’ terms; and 25 for future
lifespans.

Results

Descriptive adequacy. When evaluating the models, a com-
mon approach is to plot model predictions against human data and
assess whether the model captures the qualitative pattern of human
responses. A model that cannot reproduce the basic patterns ob-
served in empirical data can be ruled out as a plausible theory of
human behavior. However, as shown in Figure 7, all three models
meet this basic criterion of descriptive adequacy. To determine
which model fits best, we follow Mozer et al. (2008) and use the
normalized root mean squared error (NRMSE) between the me-
dian predictions of each model and the median human responses.
The model fits are reported in Table 1 and agree with the visual
inspection: The Noisy Mink model fits the data better than either
of the Bayesian models, although all fit reasonably well.

Figure 7. Replication of the optimal predictions study from GT2. Square markers plot the median empirical
response to every question, with error bars plotting bootstrapped 95% confidence intervals. The dashed lines
show the posterior median value of t predicted using the optimal predictions model, solid lines show the median
posterior predictive responses from the Noisy Mink model, and the dotted lines represent the median posterior
predictive responses by the data-driven Bayesian model. All models show good qualitative predictions, with the
Noisy Mink fitting the data better than the two Bayesian models.
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Generalizability to new data. The problem with using de-
scriptive adequacy as the sole measure of model performance is
that it is unable to detect overly elaborate models (e.g., I. J.
Myung, 2000). Attempts to correct for model complexity by count-
ing the number of free parameters such as Akaike information
criterion (AIC) or Bayesian information criterion (BIC) improve
on this a little, but not much. The optimal predictions model
produces parameter-free predictions, the Noisy Mink model uses
four parameters, and the descriptive Bayesian model uses five. If
model evaluations could be safely made by looking only at the
number of parameters and the goodness of the data fit, we ought to
be able to safely rule out the descriptive Bayesian model: it has
more parameters than Noisy Mink and yet produces a worse fit. As
it turns out, this intuition is wrong.

To understand why this intuition is incorrect, we consider an
alternate method of quantitative comparison known as cross-vali-
dation—a standard technique from the model selection literature
(Browne, 2000)—although other options are available such as
Bayes factors (Wasserman, 2000) or approaches specifically
geared toward evaluating optimal models using information theory
(Shen & Ma, 2016). The central goal in model selection is gener-
ally assumed to be to pick the model that will make the best
predictions about out-of-sample data, and cross-validation aims to
approximate this by estimating parameters on one subset of the
empirical data and evaluating performance by measuring how well
the model fits capture the held-out data.

To see how all three models generalize to new data, we trained
using only a subset of our empirical data, and then tested the
models by assessing how well the inferred priors allowed the
models to generalize to the withheld data. Specifically, we used
k-fold cross-validation with k � 25, which involves partitioning
the original data set into 25 similarly sized subsamples Gelman,
Carlin, Stern, & Rubin, 2014,11 and treating each sample once as
the unobserved data and the other 24 as the training data. This
provides a robust estimate of how each model generalizes to
unobserved data.

The results are shown in Table 2. The descriptive Bayesian
model has the best overall performance, outperforming the optimal
Bayesian model and Noisy Mink in every case. Moreover, al-
though the qualitative comparison in the previous section sug-

gested that Noisy Mink provided a reasonable fit to the data, it
performed very poorly in cross-validation, far worse than either of
the Bayesian models. Despite the apparent simplicity of the Noisy
Mink heuristic, it actually corresponds to an overly flexible statis-
tical model for the data. The Noisy Mink model overfits the
training data and generalizes poorly to new observations. In con-
trast, the apparent complexity of the optimal Bayesian model as a
psychological theory hides the fact that when viewed as a statis-
tical model for empirical data it is insufficiently flexible, and ends
up underfitting the data. The descriptive Bayesian model outper-
forms them both.

Comparing subjective priors to optimal ones. So far we
have seen that, although the descriptive Bayesian framework led us
to specify a flexible, statistically complex model, this complexity
was justified insofar as this model generalizes to new data better
than either the original Bayesian model or the Noisy Mink heuris-
tic. This suggests that there are sound statistical justifications for
preferring the descriptive Bayesian model.

However, from a theoretical and psychological perspective, it is
not sufficient merely to show that a model is statistically superior
to its competitors: A good model should also explain why people
behave the way they do. In this respect it is the contrast between
the optimal priors in the GT2 model and the inferred priors
extracted by our model that is especially useful. This comparison
is shown in Figure 8, and is instructive both in terms of the
similarities and the differences in reveals. Inspection of this figure
suggests that although people’s subjective priors are similar to the
true environmental distributions, there are systematic deviations in
most cases: People’s prior expectations about movie run times and
representative term lengths both seem to be too long, and their
beliefs about life span distributions seem to underestimate infant

11 For each repetition of the process, between 3 and 5 data points were
withheld, with a maximum of one response from a single individual per
repetition. The repetitions were balanced so that each data point was
withheld exactly once in the entire cross-validation procedure.

Table 1
Quantitative Measures of Model Fit to the Replication of GT2,
Using Normalized Root Mean Squared Error (NRMSE)

Question

NRMSE

Optimal
Bayes

Noisy
Mink

Descriptive
Bayes

Movie grosses .20 .15 .46
Poem lengths .55 .10 .19
Lifespans .20 .10 .66
Pharaohs’ reigns .47 .63 .29
Movie runtimes .78 .61 .92
Representatives .24 .10 .08

Note. The Noisy Mink model consistently has the lowest NRMSE scores:
Assessed solely in terms of the ability to mimic the empirical data it
outperforms both of the Bayesian models. The scores with the best results
for each question are shown in bold. NRMSE � normalized root mean
squared error.

Table 2
Cross Validation Model Comparisons

Question

Cross validation score

Optimal
Bayes

Descriptive
Bayes Noisy Mink

Movie grosses �713 �150 �100886
Poem lengths �118 �116 �3762
Lifespans �526 �187 �2327
Pharaohs’ reigns �132 �103 �2380
Movie runtimes �258 �153 �6786
Representatives �174 �97 �511
Future lifespans — �188 —
Waiting times — �91 —
Average �320 �135 �19442

Note. In all domains, the data-driven Bayesian model generalizes to new
data better than either of the other two models. Higher scores (lower
absolute values) indicate better generalization. The best score in each row
is shown in bold. Long dashes indicate score could not be computed
because empirical distribution was unavailable for the question. The bot-
tom row shows the average score for each model across question types. To
be comparable with the other models, the average score for the data driven
Bayesian model is based on the first six rows only.
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and child mortality rates.12 The distribution of future lifespans
does not have a veridical value, but the descriptive model infers
something that seems sensible: It has a similar form to the sub-
jective prior for actual life spans, but is shifted to the right with an
average life span of 105. That said, in spite of the minor differ-
ences the overall degree of agreement between the two Bayesian
models is remarkable, especially given that the built in assump-
tions about participant priors in the descriptive model were fairly
weak.

Discussion

Whereas the take-home point from the first case study was that
descriptive Bayesian models can be psychologically revealing
even when optimal Bayesian models are wrong, the second case
study tells a very different story, one in which the exploratory and
data-driven analysis based on descriptive Bayesian models com-
plements the original optimal Bayesian model. Although the op-
timal predictions model from GT2 is not the best performing
model either in terms of the data fit (Noisy Mink is best) or
generalizability (descriptive Bayes is best), we found it almost
impossible avoid the conclusion that the original rational analysis
was remarkably successful. It is true that the estimated priors
plotted in Figure 8 do show systematic differences from the
optimal ones, which explains why the optimal predictions model
does not win in the model selection exercise. These deviations,
which we would not have known about without the descriptive
Bayesian model, are cognitively interesting; but even so, the
similarities between the estimated priors and the veridical ones are
much more striking than the differences.

In this instance, the descriptive Bayesian approach reinforces
the conclusions from the original rational analysis. Indeed, because
of the descriptive Bayesian approach, we feel far more confident in
drawing conclusions about (near-)optimality than we did based on
the optimal model only: The descriptive model was afforded the
freedom to choose whatever prior distribution (from a very broad
family) best accommodated the empirical data, but the end result
was a collection priors that are only very slightly different to the
veridical ones used by GT2. In our view this provides much

stronger evidence for optimality than the original analysis, which
showed a qualitative agreement between the optimal model and
empirical data but did not include any formal model comparisons.

When contrasting the descriptive and optimal Bayesian ap-
proaches, it is worth noting that any choices made by researchers
are going to incorporate biases of some sort. After all, we have to
make some assumptions about the family of priors people might
have, or the type of likelihood functions, and so forth. For exam-
ple, the assumptions that we built in to the descriptive model were
shaped by previous research and our own goals as researchers. We
are not arguing that the descriptive approach cannot fall prey to
these problems; they are an inevitable part of doing science within
any modeling framework. However, the descriptive Bayesian ap-
proach (a) allows us to build in fewer assumptions—for example,
a family of distributions allows for many more possibilities than a
single one—and (b) more importantly, does not require that those
assumptions be justified on the basis of optimality. GT2 were
forced by the straightjacket of optimal Bayesian modeling to have
to claim that the distributions they chose were justified on the basis
that they were well-matched to the real world. We were forced to
make no such claim; we simply chose a family of distributions
based on what was sensible and then observed which of those best
fit the pattern of human performance.

Of course, some cautionary notes should be attached to these
results. For instance, to avoid covering the same ground as the first
case study we have not developed a Bayesian model that accounts
for individual differences. Similarly, our discussion of the Noisy
Mink model in this section has been more cursory than the model
deserves purely because our focus is on different kinds of Bayesian
models. As an example, our data analysis automatically produces
estimates of the multiplier parameter g as well as specific exem-
plars that the Noisy Mink model uses to generate responses. Other
variations on Noisy Mink might perform better, and we do not

12 Note that the latter may be partly attributable to the limitations of the
experimental design and the model, given that the model does not make it
easy to estimate negatively skewed distributions and the experiment does
not ask questions that tease apart people’s beliefs about infant mortality.

Figure 8. Estimates of people’s subjective prior beliefs (histograms) compared with the environmental
distributions collected by GT2 (lines). In most cases the estimates are similar to the true distributions, although
people often underestimate the frequency of events at lower numbers. There was no environmental data available
for future lifespans and waiting times.
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think strong conclusions about the relative merits of Bayesian and
heuristic models should be drawn from these analyses. Even so,
the model comparisons here highlight the manner in which it is
possible to make sensible comparisons between optimal Bayesian
models, nonoptimal heuristic models, and descriptive Bayesian
models, so long as good statistical procedures are used to guide the
comparison.

Case Study 3: A Descriptive Approach Can Be
Relevant Even When Questions About

Optimality Are Not

The first two case studies differed in several respects and led us
to different theoretical conclusions about the optimality of human
reasoning in the two problems considered, but one attribute they
share is the very fact that optimal models and descriptive models
are both applicable to the problem. This is not always the case. In
many situations a Bayesian model serves a useful purpose even
when no clear notion of “optimality” seems to apply. Probabilistic
topic models (Steyvers & Griffiths, 2007), for instance, are often
used as tools for exploring human semantic knowledge, but the
scientific utility of these models is not generally taken to justify
any claim about human optimality. In such situations it may be
convenient to use a Bayesian model, but the primary intention is to
use the model as a tool. Applying a Bayesian model in this fashion
aligns naturally with the descriptive Bayesian framework, because
the researcher merely claims that the Bayesian model produces
similar behavior to humans and does not use a good model fit to
justify an optimality claim.

Our third case study presents one such example, using an
existing Bayesian model of inductive generalization as a tool to
explore the hypotheses that might guide people’s intuitions in
simple reasoning problems. The goal here is to highlight the fact
that very often researchers can use descriptive Bayesian models
productively, even in situations where questions about the “opti-
mality” of human cognition do not seem especially relevant to the
research question.

Inductive Generalization as Bayesian Reasoning

The Bayesian theory of generalization developed by Tenenbaum
and Griffiths (2001; henceforth TG1) formalized the problem of
inductive generalization in the following way. Suppose a learner is
told that some set of entities X � {x1, . . . , xn} all possess some
property P, and is asked to infer whether a new entity y also shares
that property. Suppose also that the learner is equipped with some
hypothesis space H that consists of all hypotheses h that the
learner considers for the extension of the property P, and a prior
P(h) over these hypotheses that describes how plausible the learner
considers each hypothesis to be before any data are observed.
When told that the entities X possess property P, the learner
updates their beliefs via Bayes’ rule:

P(h |X) 	 P(h)�
i

P(xi |h)

where P(xi |h) describes the probability that the entity xi would be
observed to have property P if hypothesis h describes the true
extension of that property. Given this posterior distribution the
probability that the property extends to the novel entity y is

computed by summing the posterior probabilities of all hypotheses
h that assert that y possesses P:

P(y |X) � �
h:y�h

P(h |X). (9)

The central feature of the Bayesian generalization model devel-
oped by TG1 is the choice of likelihood function, which they
referred to as strong sampling, and assumes that the observed
entities are sampled from the set of entities that possess property P.
In particular, if observations are sampled randomly from this set,
then the probability of observing any specific item x given that the
true extension of P is described by hypothesis h is given by

P(x |h) �� 1
|h | if x � h,

0 otherwise.
(10)

where |h | is the size of the hypothesis h, and for hypotheses h that
consist of only a finite number of entities the size of the hypothesis
corresponds to the number of entities that it contains.

When introducing the model, TG1 noted that this strong sam-
pling model is the central feature of the theory. There are other
Bayesian induction models that rely on different sampling models
(Heit, 1998; Navarro et al., 2012; Voorspoels, Navarro, Perfors,
Ransom, & Storms, 2015) and there are empirical results suggest-
ing that people can change their sampling assumptions to suit the
context (Gweon, Tenenbaum, & Schulz, 2010; Ransom et al., in
press; Voorspoels et al., 2015). Nevertheless, there is considerable
evidence that it works well as a default model for inductive
generalization (Sanjana & Tenenbaum, 2003).

The Hypothesis Space Problem

The biggest practical difficulty that arises when applying the
Bayesian generalization model is the fact that—although it pro-
vides an unambiguous specification of the likelihood function
P(x |h)—it places few if any constraints on the choice of hypoth-
esis space H or the prior distribution P(h) defined over that space.
The original work by Shepard (1987) assumed that hypotheses
corresponded to connected regions within a suitably formulated
psychological space (and estimated by multidimensional scaling or
similar methods: Torgerson, 1958; Borg & Groenen, 2005). How-
ever, TG1 proposed that the Bayesian generalization model could
be applied more widely than this, including in cases where the
stimuli are defined in terms of a set of discrete features (estimated
using additive clustering or similar methods: Lee, 2002; Navarro &
Griffiths, 2008; Shepard & Arabie, 1979).

This extension of the model is one of the more innovative
elements to the TG1 work, but introduces a problem for the
researcher. If the goal is to study how people generalize from
stimuli, what hypothesis space should we assume they use to guide
their inferences and what priors over those hypotheses are sensi-
ble? The original TG1 paper notes this issue, but does not propose
a solution. In applications of the model researchers have tended to
fall back on the traditional solution of trying to infer mental
representations (and by extension hypothesis spaces) from a set of
similarity judgments. For instance, Sanjana and Tenenbaum
(2003) used a hierarchical clustering method to infer a taxonomic
tree for a set of animals, whereas Ransom et al. (in press) used a
variation of additive clustering to infer a set of hypotheses that
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allowed for cross-cutting categories. In both cases, the authors
relied heavily on the assumption that a set of similarity judgments
produced by different participants in a different experiment can be
relied upon to constrain the Bayesian generalization model.

An alternative approach to the problem is to estimate a hypoth-
esis space H from the generalization judgments themselves. Mul-
tidimensional scaling and additive clustering are statistical tech-
niques that rely upon psychological theories of similarity judgment
(e.g., geometric similarity models, feature contrast models) to
provide the link between empirical data and the inferred mental
representation. However, if the goal is to learn something about the
hypotheses that constrain people’s generalizations, it seems to
make more sense to use a psychological theory of generalization to
do to the work.

Experiment

The data for this case study come from a property induction task
(e.g., Osherson, Smith, Wilkie, Lopez, & Shafir, 1990). In it,
participants are presented with one or more examples that share a
novel property and are then asked to rate the probability that
additional exemplars also possess that property. Data were col-
lected from 762 workers on Amazon Mechanical Turk who were
paid $0.50 for completing the 10-min study. After a pretest de-
signed to ensure that people understood the task, they were given
the following question:

In the past, scientists discovered that all A have an enzyme called
Enzyme-Q. What is the probability that each of the following animals
also have Enzyme-Q?

The known exemplar A was one of the following 20 mammals:
bats, beavers, chimps, cows, dolphins, elephants, gorillas, horses,
kangaroos, koalas, mice, pandas, polar bears, rabbits, rhinos, seals,
squirrels, tigers, whales, or wolves. People were asked to give
probability judgments for all 20 the mammals by moving a slider
between 0% and 100%. After providing probability judgments for
all of the mammals, all of the sliders were reset to 0% and people
were given the following additional information:

Later, scientists discovered that in addition to A, all B also have
Enzyme-Q. Given this new information, what is the probability that
each animal has Enzyme-Q?

The first exemplar A remained unchanged, and the second
exemplar B was one of the remaining mammals other than A.
Trials were balanced so that each of the 190 possible combinations
of two mammals occurred approximately four times across all
participants.

Results

We excluded from analysis 175 participants who either failed to
follow the instructions on the pretest or did not rate mammals as
having a property with 100% certainty when they were told the
mammal had that property in the instructions. Results are based on
analysis of the remaining 587 participants.

Human generalization data. Representative generalization
patterns from human participants are shown in Figure 9, and seem
very sensible. When told that cows have Enzyme-Q people are
most willing to extend that property to horses (panel a) and vice

versa (panel b). When told that Enzyme-Q is possessed by both
cows and horses, people tended to extend the property far more
widely (panel c): In this instance, our participants showed the
premise monotonicity effect in which adding more positive exam-
ples causes people to generalize more widely. However, in other
instances people showed the opposite premise nonmonotonicity
effect. For instance, compare the generalization gradients from
dolphins (panel d) to those from both dolphins and seals (panel e).
The addition of the second exemplar increases the probability of
some items (e.g., whales shows premise monotonicity in this case)
but decreases the probability of others (e.g., bats shows
nonmonotonicity).

This pattern, in which some generalizations show monotonicity
effects and others nonmonotonicity is generally explained by not-
ing that some pairs of premise items tend to “call attention” to a
specific category. Adding seals to dolphins strongly suggests that
the true extension of the property is marine mammals and so
the probability that whales possess the property increases, and the
probability hat bats do so decreases. Moreover, when “given” the
right set of categories upon which to base its inductive inferences,
Bayesian generalization models capture this pattern perfectly well
(e.g., Ransom et al., in press). However, this raises the question:
How do we know which categories people perceive to be relevant
to the inductive generalization problem? It seems obvious that
when reasoning about dolphins and whales, the category of marine
mammals is relevant. This would explain the pattern of general-
izations in panels d–f of Figure 9. Yet one might also have made
the case that farm animals or ungulants might be perceived as
especially relevant when reasoning about cows or horses, but when
we compare panel c to panels a and b there is very little evidence
for any nonmonotonic inferences.

Inferring a hypothesis space. Given the above, how does the
researcher work out which categories contributed to the learner’s
hypothesis space? This seems to be a natural context to apply
probabilistic models: The Bayesian generalization model from
TG1 supplies a theory that says, given this hypothesis space H and
that prior P(h) defined over it, then people should be expected to
make these generalizations. We can use statistical methods to
invert this: If we assume people produced those generalizations
using this psychological model, what hypothesis space is required
to support it? However, although the Bayesian framework is ide-
ally suited to exactly this kind of work (e.g., Kemp & Tenenbaum,
2008; Navarro & Griffiths, 2008), it is not at all clear how any
notion of optimality is relevant to this sort of problem. If we use
the generalization model to infer a hypothesis space H, does that
mean that it is “rational” to use H? Are we committed to a claim
that people were reasoning rationally given those hypotheses? We
are not at all convinced that either of these are true. Nevertheless,
the underlying descriptive goal is an intriguing one: Can we use
the TG1 model as a tool to learn something about the mental
representations and hypotheses that people use to guide their
generalizations? Bayesian optimality is quite irrelevant to this
goal, but Bayesian description is very relevant indeed.

Our approach is loosely based on the additive clustering model
for extracting discrete categories from similarity judgments
(Shepard & Arabie, 1979) and adapted to the inductive general-
ization context using the model from TG1. We assume that the
“base” hypothesis space H consists of a set of categories that can
be described by the binary matrix C such that cik � 1 if the ith item
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belongs to the kth category, and cik � 0 if it does not. Some of the
categories are fixed a priori: We assume that there exists a “sin-
gleton” category for each animal (e.g., one possibility is that the
property holds for dolphins only), and we assume that there exists
a “universal” category (i.e., the property is true for all mammals).
We impose no other a priori constraints on the structure of the
category matrix C.

To construct the generalization probabilities for the Bayesian
model, we follow Navarro et al. (2012) in allowing the model to
learn the extent to which people use strong sampling or weak
sampling, indexed using a single parameter � (where � � 0
implies weak sampling, and � � 1 implies strong sampling).
Similarly, we follow Sanjana and Tenenbaum (2003) in allow-
ing composite hypothesis spaces in which the property in ques-

Figure 9. Example generalization gradients produced by human participants (bars) compared with those
estimated with the help of the Bayesian generalization model (solid lines). In each case, the title of the plot
indicates which item(s) were known to possess Enzyme-Q, and the generalization targets are arranged in order
of decreasing (human) generalization probability.
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tion might be possessed by two of the categories in C.13 The
model includes a free parameter � corresponding to the relative
weight given to simple hypotheses where the property is as-
sumed to be a characteristic of a single category, versus com-
posite ones in which it is assumed to be a property of multiple
categories. When � � 0 all generalizations from multiple items
rely on simple hypotheses only, whereas setting � � 1 produces
generalizations from composite hypotheses. The model is de-
scribed in detail in Appendix C, along with details of how we
estimate the category assignment matrix C, the prior weights
assigned to the categories, and the free parameters � and �.

Applying the model. The hypothesis space and priors that we
estimated consists of the 9 categories listed in Table 3 and visu-
alized in Figure 10 (singleton categories and the universal category
are omitted). The categories are generally sensible ones, and the
generalization gradients that they produce are a reasonable approx-
imation to human generalizations (e.g., solid lines in Figure 9).
Some of the categories have a taxonomic basis (e.g., primates),
others are superficial resemblances (e.g., koala are unrelated to
pandas), and others are based on ecological roles (e.g., large
predator). As a consequence, the overall structure of the categories
people used to guide inductive inferences is nonhierarchical and
cross-cutting.

The parameter estimates are also revealing. The best fitting
model parameters were � � 0.09, which suggests that people
tended not to rely on a strong sampling assumption. This pattern is
consistent with earlier results (Navarro et al., 2012; Ransom et al.,
in press), and indeed has some resemblances with the “conserva-
tive” inferences in our first case study. The best fitting parameter
value of � � 0.91 indicates that people had a strong tendency to
rely on composite hypotheses when generalizing from multiple
exemplars. This pattern is consistent with the approach taken by
Sanjana and Tenenbaum (2003). Finally, when evaluating the
overall performance of the Bayesian model, it is interesting to
compare the model against human responses separately for those
trials in which people were asked to generalize from a single
exemplar versus when they were asked to generalize from multiple
exemplars. As Figure 11 illustrates, the model does a very good
job of producing human like generalizations from a single exem-
plar (panel a; r � .93), but the fits are rather less impressive for the
trials when generalizations from two exemplars are requested
(panel b; r � .76), suggesting that there is still something missing
from the Bayesian generalization framework.

Discussion

The central point in our third case study is that using a Bayesian
model as a general purpose, descriptive model can be extremely
useful as a tool for exploring mental representations. Our applica-
tion in this instance is a relatively simple example, and is a natural
way of extending the framework developed by TG1, but it ad-
dresses a fundamental problem in cognitive science, by exploring
the hypothesis spaces that underpin human inductive inferences. In
light of our results, the utility of Bayesian cognitive models seem
obvious. By supplying a probabilistic model for human behavior
that links a hypothesis space to an observable response, we can
reverse engineer the process and seek to infer the hypothesis space
itself. Although we admit to a degree of bias ourselves, it is hard
not be interested in results suggesting that people in this task relied

more heavily on composite hypotheses and used a weak sampling
model. Having found that the Bayesian model works better at
capturing generalizations from a single exemplar than from two
exemplars, we are motivated to ask why this might be so. We do
not know the answer ourselves, but this analysis opened up many
useful questions for further exploration.

This case study highlights another point worth making. The
descriptive Bayesian approach might provide a partial solution to
a common problem within cognitive modeling: the fact that in
some situations internal representations, like the hypotheses used
by the learner, might not always be recoverable. This occurs when
the parameters of the model (which for Bayesian models includes
choices of prior and likelihood) are underconstrained by the data
(see, e.g., Mamassian & Landy, 2010). The descriptive approach,
which performs inference over possible priors and likelihoods,
may help by providing researchers with some guidance about
whether these choices are reliably constrained by the data.

More importantly for the purposes of the current paper, the
importance of these findings seems to be largely unconnected to
any notion of human “optimality.” Our analysis used the TG1
model in an entirely pragmatic fashion, as a tool to help us explore
people’s hypothesis spaces and open up new questions about the
inductive biases that guide inductive reasoning. Similarly, it does
not seem entirely on point to be asking whether it would be
rational for our participants to rely on the categories listed in Table
3, and thereby make the generalizations they did. To the extent that
we have any intuitions about this ourselves, we might be tempted
to suggest that people were not making good judgments: If people
really were using a bears category that lumps koalas with polar
bears and pandas as the inductive basis for making generalizations
about a biological property (Enzyme-Q), one would hope there is
some deeper reason for it other than superficial resemblances.

However, this is very much besides the point: Our goal with this
scenario is to illustrate that the model serves a scientifically useful
purpose when used in a purely instrumental fashion. In this appli-
cation at least, the model does not act as a vehicle for us to justify
any claim about the rationality or irrationality of human cognition.
It is just a useful tool that allows us to learn about the mind.
Indeed, we suggest that Bayesian models are often, in practice,
used in exactly this fashion: Probabilistic topic models (Steyvers &
Griffiths, 2007), structure learning models (Kemp & Tenenbaum,
2008) and models for cross-classification (Shafto, Kemp,
Mansinghka, & Tenenbaum, 2011), for instance, are all Bayesian
frameworks for exploring mental representations that do not seem
especially reliant on any notion of “optimality” to advance their
psychological claims. The general philosophy of their approach
fits better with the descriptive framework than the Procrustean
“optimal” framework within which they had to be forced because
optimal Bayesian models were the only game in town.

13 There is nothing special about the number two. There is no reason why
the hypothesis space could not include a hypothesis that property P is char-
acteristic of three or more categories. However, given that we never presented
people with more than two premise items, the limitation to two seems sensible.
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General Discussion

“When I use a word,” Humpty Dumpty said in rather a scornful tone,
“it means just what I choose it to mean—neither more nor less.”

— Lewis Carroll, Through the Looking Glass

In the final passages of a recent article, Bowers and Davis
(2012b) argued that “there is a good deal of confusion about what
theoretical claims are being advanced by Bayesian modelers” (p.
426). Although we are frequent advocates of the Bayesian frame-
work ourselves, we find it difficult to disagree with this aspect to
their critique. As they note, Bayesian researchers sometimes slide
back and forth between making claims about rationality and claims
about descriptive adequacy. We have argued that much of this
confusion is due to the fact that there are two distinct kinds of
model that are subsumed under the term “Bayesian.” Optimal
Bayesian models can provide a normative standard for human
behavior; within that framework, researchers are obligated to pro-
vide explicit justifications for their choices of prior and likelihood,
showing that the model solves an appropriate problem. Descrip-
tive Bayesian models impose different obligations on the re-
searcher. Because the researcher has the freedom to specify what-
ever priors and likelihoods they feel best instantiate their
psychological theory, the behavior resulting from the model does
not warrant the label “optimal” (at least not in any more than the

weak sense implied by Dutch book arguments) and the scientific
merits of the model must be established on different grounds.

Although our case studies have tended to focus on the value of
building descriptive Bayesian models,14 we do not argue that
either approach is inherently better. They simply represent differ-
ent kinds of theoretical claims and serve different goals. Each of
our three case studies brings this out in a slightly different way:

• In case Study 1, we found that human judgments deviated
quite sharply from the predictions of an optimal Bayesian
model, but were able to use a descriptive Bayesian model
to shed light on how people solved an inductive problem.

• In case Study 2, an analysis based on a descriptive Bayes-
ian model produce nearly identical conclusions to one that
relied on an optimal Bayesian model. Although we found
minor departures from optimality, the main message that
came through is that human cognition in this task was
remarkably well-calibrated.

• Contrasting with both of the previous examples, case
Study 3 explored a situation in which Bayesian cognitive
models can serve a useful scientific purpose even when
claims about optimality do not seem pertinent, or at least
not relevant to the research question at hand.

These three examples are certainly not exhaustive, but we hope
that they make clear that the scientific utility of a Bayesian
analysis need not be tied to any claim about the optimality of
human cognition, and that the success of a Bayesian model does
not always imply that human behavior is especially rational in a
particular task.

Much of what we have argued in this paper closely agrees with
earlier work. We are hardly the first people to suggest that it is
unhelpful to equate “Bayesian” with “optimal” (e.g., see, McKen-
zie, 2003), and what we have called the “descriptive view” has a
good deal in common with recent defenses of the Bayesian para-
digm (Goodman et al., 2015; Griffiths et al., 2012). Applications of
Bayesian models resembling the descriptive approach have in-
creasingly appeared in the literature on cognition (e.g., Hemmer et
al., 2014; Huszár et al., 2010; Navarro et al., 2012) and perception
(e.g., Acerbi, Ma, & Vijayakumar, 2014; Acerbi, Wolpert, &
Vijayakumar, 2012; Battaglia, Kersten, & Schrater, 2011; Gir-
shick, Landy, & Simoncelli, 2011; Houlsby et al., 2013; Körding

14 This was motivated in part by a desire to highlight the value of
Bayesian models even when no strong claim to optimality is possible.

Table 3
Categories Inferred Using the Bayesian Generalization Model

Hypothesis Prior Interpretation

tigers, wolves .089 big predators
chimps, gorillas .036 primates
dolphins, seals, whales .032 marine mammals
bats, beavers, mice, rabbits, squirrels .022 rodents
koalas, pandas, polar bears .022 “bears”
cows, elephants, horses, rhinos .019 hoofed animals
beavers, chimps, cows, elephants, gorillas, horses, kangaroos, koalas, mice, pandas, polar

bears, rabbits, rhinos, squirrels, tigers, wolves .012 non-marine, non-flying mammals
chimps, cows, gorillas, horses, kangaroos, koalas, pandas, polar bears, tigers, wolves .007 medium-sized land mammals

Note. The model included singleton categories (e.g., “just dolphins”) and the universal category (i.e., “all mammals”).

Figure 10. Visualization of the categories estimated from human induc-
tive generalizations with the assistance of a Bayesian model. As is clear
from inspection, the category structure is nonhierarchical and includes a
number of cross-cutting categories.
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& Wolpert, 2004b; Stocker & Simoncelli, 2006; Zhang, Kwon, &
Tadin, 2013) with varying levels of clarity about whether or not the
models were meant to be explicitly nonoptimal or in what degree.
Indeed, it does not seem unreasonable to us to suggest that most
Bayesian models are not intended to imply strong claims about
optimality of human cognition.

Nevertheless, our view—as Bayesians ourselves—is that if re-
searchers in the field are unsure as to whether and when Bayesian
models are intended to justify claims about optimality or rational-
ity (and clearly many people are), then something has gone awry
in the way Bayesian models are promoted or designed. In our view
considerable confusion results when descriptive claims and opti-
mality claims are conflated. If Bayesians are to avoid contributing
to this confusion we should avoid making optimality claims when
none are intended, and make sure that we make them only when
they are justified.15 It is our goal with this paper to try to avoid
much of this confusion in the future—not only because of the
useful rhetorical distinction between descriptive and optimal, but
also because that rhetorical distinction corresponds to an actual
modeling distinction (i.e., whether priors and likelihoods are in-
ferred or stipulated by the scientist). This will, we hope, lead to far
less uncertainly about what conclusions one is justified in drawing
from the model.

How Many Different Kinds of Bayesian Explanation
Are There?

“The question is,” said Alice, “whether you can make words mean so
many different things.”

— Lewis Carroll, Through the Looking Glass

Throughout the paper we have maintained a strong binary
distinction: Some Bayesian analyses make optimality claims; oth-
ers make purely descriptive claims. This clean distinction is, of
course, fiction. In reality every Bayesian model makes a slightly
different claim, and it is an oversimplification to reduce all this
variation to a simple “optimal versus descriptive” distinction.

Notwithstanding our suggestion that even a crude binary distinc-
tion would go a long way toward reducing the ambiguity in the
literature, we recognize that nuance is required in practice. For
example, in this paper we have described both the GT1 coinci-
dences model (case Study 1) and the GT2 optimal predictions
model (case Study 2) as optimal models, and we would certainly
argue that stronger normative claims are licensed by both of those
models than either of the descriptive models that we built. The
GT1 and GT2 models both use likelihood functions that are
justified with reference to a statistical model for the data that a
statistician would find reasonable. In that respect, they both meet
the “external criterion” standard that we have suggested is needed
for the model to count as normative. However, the optimal pre-
dictions model in GT2 uses priors that are very explicitly grounded
in the world (using actuarial statistics) whereas the GT1 model
treats the prior as an unknown parameter to be estimated from data.
With respect to the likelihood function, the GT1 and GT2 models
seem equally plausible as normative standards, but with respect to
the prior only the GT2 model makes an optimality claim.

A similar story emerges when we consider the descriptive
models that we built for case studies 1 and 2. The descriptive
model for the coincidences study certainly does not merit the label
“optimal” in the sense that we have been using the term. We did
not provide an external justification for why the “conservative
inference” likelihood function is the right thing for a person to use
when evaluating the data, nor did we provide a strong reason to
explain why people should revise their beliefs more conservatively
in the psychokinesis scenario than in the genetic engineering

15 We would concede that we have ourselves been guilty of eliding this
distinction in some of our own work and, if anything, this serves to
strengthen our argument in the current paper. If it is so easy for researchers
to accidentally slip into using “rational analysis” language when only a
descriptive claim is intended, then the need to have distinct nomenclature
and a distinct modeling framework is even stronger than it might otherwise
appear.

Figure 11. Comparing the model predictions against human responses. The left panel plots all 380 pairs of
stimuli for which we obtained generalization judgments, and the right panel plots all 3760 triads for which we
did so. The inferred hypothesis space produces generalization probabilities that provide a very good account of
those trials in which participants were asked to generalize from a single exemplar (the correlation on the left
panel is r � .93), and are adequate (r � .76) when predicting generalizations from multiple items.
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context. That being said, there does seem to be a kind of logic to
it: Conservative updating makes sense when people have reasons
to distrust the data they are given (e.g., Welsh & Navarro, 2012),
and it seems reasonable to be more suspicious about a psychoki-
nesis study than about genetics research. Therefore, although our
model development was entirely post hoc, it was not unprincipled,
and the structure of the descriptive model in case Study 1 could—
given more effort to externally justify the modeling assumptions
and a clearer grounding in a real world inference problem—
potentially be used as a tool to explore the rational basis of
conservatism. In contrast, the descriptive model in case Study 2
does not have any comparable grounding to justify why people’s
priors should take on different specific forms. All we did was write
down a broad family of possible priors loosely motivated by the
GT2 study to find out what prior best matches people’s inferences.

Blurring the distinction further, there are other factors that need
to be considered when determining the extent to which any par-
ticular Bayesian model maps onto a normative claim about human
cognition. For instance, one of the reasons we chose to examine
the optimal predictions model from GT2 is that we consider it to
be one of the best examples of a model that makes a genuinely
normative claim, yet even that model has some limitations. Danks
(2008) argues—compellingly, we would suggest—that a com-
pletely satisfying rational analysis needs to do more than “merely”
showing that (a) the Bayesian model solves the correct inference
problem and (b) people’s behavior matches the predictions of that
model. Rather, according to Danks (2008), a rational analysis must
also show that (c) people produce that behavior because this is the
behavior that solves the correct inference problem. Arguably, the
GT2 optimal predictions model achieves (a) and (b), but not (c);
and although this does not in our view diminish the scientific
contribution of the work, it again highlights the variety of possible
claims that a Bayesian analysis might correspond to.

Given these complexities it might seem that there are as many
kinds of Bayesian models as there are Bayesian models, and that
any attempt to classify them is doomed to fail. To some extent this
is true, and we would concede that the binary distinction that
motivated our case studies is indeed too simple; but in practice we
think that most models could—at least approximately—be
mapped onto one of the following five claims, which correspond to
five different kinds of scientific explanation more broadly:

1. Participants produce the Bayesian solution to the infer-
ence problem presented in the task, and there is a clear
causal mechanism linking the behavior to the optimality.

2. Participants produce the Bayesian solution to the infer-
ence problem presented in the task, but a clear causal role
linking the two has not been identified.

3. Participants produce the Bayesian solution to a sensible
inference problem that may differ from the one presented
in the task, and there is an explanation for why people
might apply it to this task.

4. Participants produce the Bayesian solution to a sensible
inference problem, but it is not clear why people might
apply it to this task.

5. Participant behavior can be captured by a model, but that
model does not map onto any sensible inference problem.

We would argue that levels 1 and 2 both carry very strong
implications of optimality and rationality, and in these cases it
seems reasonable to us that researchers would want to emphasize
the normative implications of their findings. At the other end of the
spectrum, results at level 5 clearly do not warrant any normative
claim, and would probably also not be of much scientific merit in
most cases.

In the middle of the spectrum, however, a good deal of inter-
esting variation can be found. The distinction between 3 and 4 is
a little difficult to draw cleanly, but it does seem genuine. For
example, there are a number of Bayesian analyses of hypothesis
testing problems such as the Wason selection task (e.g., Oaksford
& Chater, 1994), all of which assume that people are solving an
inductive reasoning problem that seems very natural in real life
(ask good questions to learn which rules work) but differs subtly
from the one that experimenters were trying to investigate (attempt
to falsify a rule). There seems to be a clear difference between
those studies and studies in which it is very clear that people are
solving the wrong problem: In those studies, the participants might
be justified in choosing to solve the more natural real-life problem,
and the experimenters might be justified in labeling this behavior
“rational.”

A contrasting example is the Bayesian analysis by Yu and
Cohen (2008), which explains sequential effects in RTs with a
model that treats a purely random binary sequence (i.e., indepen-
dent Bernoulli trials with both outcomes equally likely) as if the
data arose from a time-inhomogeneous Markov chain. The result-
ing model is—in our opinion—interesting and useful, but we do
not think that the resulting behavior warrants the term “rational”
unless there is a good explanation given for why people should use
a time-inhomogeneous Markov chain to form expectancies about
independent Bernoulli trials. This does not seem to be an expla-
nation on the same level as the Oaksford and Chater (1994)
analysis, and certainly is not the same kind of Bayesian model as
the GT2 optimal predictions model. Critically, all of these exam-
ples are scientifically useful: they just provide explanations on
different levels.

What Counts as the Correct Problem?

Setting the subtler points from the previous section to one side,
one of the reasons why we tend to prefer making descriptive
claims rather than normative ones—while again noting that we are
not opposed to researchers wanting to make optimality claims
where it is appropriate—is that it is so often difficult to work out
what the “correct” inference problem really is. One of the major
contributions of the Bayesian framework has been to revisit many
supposedly irrational behaviors that people engage in and show
that these behaviors emerge naturally as the solution to a sensible
problem, albeit not the one that researchers originally thought they
“should” be solving. The Oaksford and Chater (1994) models is
one obvious example of this, but there are many more.

However, it is one thing to undermine claims of human irratio-
nality, quite another to provide a positive demonstration of ratio-
nality or optimality. Even a model that seems to be solving the
right inference problem can be very wrong in practice. To illustrate
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this, consider our original discussion of the Dutch book argument,
and the outcomes of the gambling contest presented in Figure 1. To
construct our gambling contest, we followed much the same line of
reasoning used by De Finetti (1980) and Teller (1973) to suggest
that a rational gambler should buy and sell bets based on their
Bayesian beliefs. The purpose of our original analysis was simply
to highlight the limitations of the Dutch book argument by point-
ing out that a Bayesian whose beliefs more closely match the true
state of the world (the veridical Bayesian) will perform better on
this task than other Bayesians who lack the same calibration.
However, a deeper point can be made by adding a fourth gambler
to the problem, a non-Bayesian reasoner who brings a very dif-
ferent perspective to the problem. Based on the Dutch book argu-
ment, one might think that it is impossible for such a reasoner to
consistently defeat the veridical Bayesian model on this gambling
problem, since this model is not merely Bayesian but is also that
Bayesian whose beliefs are perfectly matched to the world. This
need not be so.

To understand why this is the case, it is important to recognize
that the veridical Bayesian model is optimal only for the purpose
of predicting the outcomes upon which the bets are to be made. It
is not optimal for making those bets in a world that has other
agents. In the framework introduced by De Finetti (1980), the
“rational gambling” framework acts as a device to map the sub-
jective and unobservable epistemic (Bayesian) probability onto an
objective event—betting. It is useful for that purpose because
people can place bets on one-off events that do not have a fre-
quentist interpretation, highlighting the differences between epis-
temic and aleatory probabilities. However, once we start consid-
ering the real world implications of this Bayesian-as-gambler
construction, the nature of the inference problem to be solved
changes. One can be a successful gambler by predicting what
outcomes will occur in the world (e.g., which horse will win the
race), or by predicting the bets that other agents will make (e.g.,
perhaps too many people bet on the favorite). In other words,
gambling is as much a social inference problem as it is a prediction
problem.

With that in mind, we add the following—extraordinarily
lazy—non-Bayesian agent to our simulation. This agent initially
assumes both outcomes are equally likely, and offers bets accord-
ingly. After each round of betting, the agent inspects his or her
bank balance. If it has gone up, the agent assumes they have
successfully exploited the other agents and leaves the odds un-
changed, but if it has gone down the agent moves their odds
halfway from the current value to the outcome of the last trial.
This lazy tracking model does no complicated calculations (it
employs a simple win-stay lose-shift heuristic), but because the
agent pays attention to the bank balance, it is implicitly consider-
ing a social environment as well as addressing the objective
prediction problem. The results are shown in Figure 12. The
striking result is that this model is very effective at exploiting the
two miscalibrated Bayesian models, and performs at a level that is
comparable (if not superior) to the veridical Bayesian model. The
veridical Bayesian model does not catch up with our lazy tracking
model until 500 bets have been made. In real life one is rarely
afforded the chance to make 500 successive bets on the same
outcome, and as a consequence a real world bookie might do rather
better than the supposedly veridical Bayesian.

The conclusions from the simulations in Figure 12 mirror those
from the original analysis—a Bayesian learner who solves the
wrong problem has precious little guarantee of success in real life,
and Dutch book arguments are a cold comfort to the exploited
Bayesian—but extends it to highlight the fact that it is not at all
easy to work out what the right problem should be. The correct
solution to a prediction problem need not be the same as the
solution to the corresponding gambling problem because the social
environment is different. When making predictions one is not
necessarily in competition with other agents, but gambling typi-
cally does put one in conflict with other people, and as a conse-
quence the relative importance of social reasoning shifts quite
dramatically. Labeling the veridical Bayesian model as “optimal”
seems reasonable for a prediction task, but the same model is
decidedly nonoptimal at gambling. Of course, there is probably a
Bayesian model that is ideal for the gambling problem—one that
integrates social reasoning with objective learning in a natural
fashion—and we expect that this model would outperform all four
of our existing models. However, this is beside the point. Our point
here is that it is surprisingly easy to accidentally solve the wrong
problem, and as a consequence we find ourselves very cautious
about making optimality claims.

Combining Bayesian Data Analysis With Bayesian
Cognition

Although not the main focus of our discussion, one theme that
has run through some of our analysis is that it is useful to combine
Bayesian models of human cognition with Bayesian data analysis
tools—an approach that has been appropriately dubbed doubly
Bayesian (Hemmer et al., 2014; Huszár et al., 2010). For example,
to estimate individual subject response curves in case Study 1 we
implemented the Bayesian cognitive model as a parameterized
model in JAGS (Plummer, 2003), and the curves reported in
Figure 4 were constructed by plotting the model predictions at the
posterior mean parameters. This is a fairly standard way of esti-
mating model parameters within the Bayesian data analysis tradi-

Figure 12. The gambling game from Figure 1 revisited, with a fourth
non-Bayesian agent added to the mix. Despite its reliance on a simple
win-stay lose-shift heuristic, the non-Bayesian agent is arguably the best
gambler of the four.
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tion (e.g., Lee & Wagenmakers, 2014). For the most part we have
moved technical details to the Appendixes, to make the main text
more readable, but it is worth noting that much of what we are able
to achieve in this paper has been because we relied on principled
tools for model fitting and model selection, which the Bayesian
data analysis approach provides.

The merits of combining a descriptive Bayesian cognitive model
with a Bayesian data analysis are considerable. In principle, so-
phisticated data analysis methods are not necessary when building
an optimal Bayesian model because there are no free parameters to
be estimated—at least in theory if not so much in practice. The
model is the very ideal of a scientific hypothesis because every
relevant detail is specified a priori. This is a caricature of how
optimal Bayesian models are constructed in the real world, but the
issue of properly accounting for model complexity seems more
important in situations where the researcher acknowledges that he
or she does not know what priors or likelihoods the participant
used.

In theory, Bayesian data analysis is naturally applicable to
Bayesian cognitive models: The researcher expresses their uncer-
tainty about the participant in the form of a researcher prior, and
uses the Bayesian cognitive model to express the researcher
likelihood. All inferences about individual participants and all
model comparisons are then based on the researcher posterior
beliefs about what actually happened in the experiment. This is
precisely the approach to data analysis advocated elsewhere in the
methodological literature (e.g., Kruschke, 2010; Lee, 2008; Lee &
Wagenmakers, 2014; Wagenmakers, 2007), but we concede that it
poses a uniquely awkward problem when applied to Bayesian
cognitive models: The same few words (“priors,” “likelihoods,”
“posteriors,” etc.) become severely overloaded. Authors must go to
considerable rhetorical lengths to disambiguate between partici-
pant priors (what subjects believe about the world) and researcher
priors (what the modeler believes about the subjects). Similarly,
a participant likelihood would refer to the theory that underpins a
participant’s learning in the experiment, whereas the researcher
likelihood refers to the researcher’s theory about how participants
were producing responses, and thus corresponds to the entirety of
the Bayesian cognitive model. A good deal of care is required to
clearly disambiguate between these different entities. Even so, our
view is that the power of the Bayesian data analysis framework
makes it worth the effort.

Conclusions

Our goals in this paper are twofold. Most importantly, we argue
that researchers need to make a clear distinction between Bayesian
models that make normative claims and Bayesian models that
make only descriptive claims. We feel that much of the confusion
in the existing literature arises because people do not make this
distinction as clearly as they should. As a secondary goal—be-
cause many researchers are unsure whether Bayesian models are
useful when normative claims are not made—we have sought to
highlight some of the types of questions and analyses that are
possible while only making descriptive claims. Descriptive Bayes-
ian models are more modest, because they require the researcher to
express ignorance about which participant priors and participant
likelihoods are involved. But it is exactly this modesty that makes
them more generally useful, because the expression of researcher

uncertainty is what allows the model to be used as a tool to guide
our learning as psychologists. Instead of having to state a priori
what knowledge people should have (priors) or what learning rules
they should use (likelihoods), we treat those quantities as the
unknowns that we seek to learn about.

Our three case studies, as simple as they are, illustrate several
different ways in which descriptive Bayesian models can be used
to learn about human cognition. The value of optimal models and
normative descriptions has been debated elsewhere in the litera-
ture—it is arguably the central issue spanning the many papers that
followed from the initial Jones and Love (2011a) critique—but in
our view the question of whether psychology needs optimal Bayes-
ian models is very different to the question of whether descriptive
Bayesian models are useful to the field. Even the somewhat
cursory applications we have presented in this paper illustrate the
usefulness of these models for addressing a wide range of psycho-
logical questions that go beyond the narrow—albeit powerful—
focus of optimal Bayesian models.

When combined with powerful statistical tools to perform in-
ference (e.g., Bayesian data analysis, cross-validation, etc.), we
can use a flexible, descriptive Bayesian cognitive model to explore
individual differences in prior beliefs and in the willingness to
have data change those beliefs (case Study 1). We can use them to
learn about people’s prior beliefs and how they compare to envi-
ronmental statistics or to the performance of non-Bayesian heuris-
tics (case Study 2). Finally, we can develop tools that allow us to
learn about the hypotheses that people rely on to guide their
inferences (case Study 3). Independent of the question about
whether people’s behavior is optimal, descriptive Bayesian models
have an important role to play in helping us understand this
behavior—which is, of course, one of the main goals of
psychology.
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Appendix A

Details for the Bayesian Gamblers Problems

In the main text we describe a gambling contest to determine
which of three Bayesian agents holds “better” beliefs about a
simple binary prediction task (e.g., whether the next card drawn
from a deck will be black or white). The veridical Bayesian
assumes—correctly, as it turns out—that arrivals are independent,
and that there is some unknown probability � � P(B) with which
any given card will be black. Moreover, this Bayesian decides that
they have no knowledge about � and—again, correctly, as it turns
out—places a uniform prior over this quantity P(�) � 1. The
misinformed Bayesian also assumes that outcomes are indepen-
dent, but adopts a prior that favors black P(�) � �. Finally, the
miscalibrated Bayesian correctly adopts a uniform prior over � but
incorrectly assumes that the arrivals will be “streaky,” with suc-
cessive arrivals tending to be of the same color. Specifically, the
probability that the next card is black is judged to be (� 	 1)/2 if
the last card was also black, but only �/2 if the last card was white.
Formally, this likelihood arises from a first order Markov chain in
which the marginal probability of black is fixed at �, but the
probability that successive cards will be of different colors is only

�(1 � �) rather than 2�(1 � �) as would be expected if the
outcomes were independent Bernoulli trials with probability �.

To convert this scenario into a gambling problem we suppose
that every agent offers bets that they believe to be fair, and places
a $1 bet every time another agent offers a bet that they believe to
be favorable. Given a starting stake of $100, Figure 1 tracks the
relative fortunes of all three Bayesians, averaged across 10,000
repeats of the betting game. Critically, the game is structured to
match the assumptions made by the first Bayesian: The true
probability of a black card � is generated uniformly at random on
each repeat of the game, and the outcomes on every trial are
generated independently on each trial. As the figure illustrates, the
three Bayesians perform very differently on this problem: The
misinformed Bayesian fares very poorly, and quickly loses money
to the other two. The streaky Bayesian initially does well despite
the miscalibrated likelihood but the veridical model tends to win
out in the long run by capitalizing on the streaky model’s tendency
to expect too many repetitions and not enough alternations among
the outcomes.

(Appendices continue)
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Appendix B

Details for the Coincidences Example

In the original binary-data model for the coincidences task
presented by GT1, the learner is told about a sample containing n
binary observations, of which k are “successes.” If the learner
assumes the data represent the outcomes of n independent Ber-
noulli trials, then the model described by Equations 5 and 6 results.
In our “conservative” version of the model the learner acts as if the
effective sample size consisted of only n= observations, where n=�
n, and similarly assumes that there were only k= successes where
k= � k. Thus the predictions of our model can be obtained by
applying Equations 5 and 6 to a smaller sample in which k=
successes from n= trials are observed.

To formalize this in terms of a probabilistic model, we imagine
that the learner “retains” only a subset of the original observations,
where the probability that a specific observation is retained is
denoted �. This model implies that the number of success obser-
vations retained k= and the number of non-success observations
n= � k= are both binomially distributed:

k� � Binomial (
, k)
n� � k� � Binomial (
, n � k)

(11)

Thus the full model has two free parameters to describe the
response curve for an individual participant: � captures the degree
of conservatism (i.e., the extent to which data causes the learner to
adjust his or her beliefs), and as per the original GT1 model, �
captures the prior degree of belief that the learner places in the
alternative hypothesis (i.e., that a real effect exists). More precisely
� � log P(h1)/P(h0) denotes the logarithm of the prior odds for the
alternative hypothesis over the null.

The output of this model is the posterior probability P(h1 |n, k,
�, �), the probability that the alternative hypothesis is true (ac-

cording to the learner) given that observations k out of n successes
were observed, given the learner’s priors � and likelihood �. If we
let e � P(h1 |n, k, �, �) denote the extent of this evidence, then we
assume that the actual response r given by the participant is equal
to this evidentiary value e plus some normally distributed error:

r � Normal 	e, �1
2
 (12)

In our applications we defined the researcher prior over the
response variability in terms of the precision (i.e., 
1 � 1/�1

2) and
placed a diffuse prior over it, namely a Gamma(.001,.001).

To specify a model that allows us to capture individual differ-
ences, we adopt a hierarchical Bayesian approach. We assume that
each participant has unique value of � and �, where these param-
eters are sampled from group level distributions:


 � Beta(a, b)
� � Normal(
, �2

2)
(13)

The researcher prior over a and b is an exponential distribution
with scale parameter 1. The prior over � was a normal distribution
with mean 0 and standard deviation 100, and the prior over the
variability parameter �2

2 was again defined in terms of the preci-
sion, 
2 � 1/�2

2, where our prior over 
2 was again a Gamma(.001,
.001) distribution. We assume that different group level distribu-
tions exist for each of the cover stories. We implemented this as a
graphical model in JAGS, allowing us to estimate the posterior
distribution over � and � for each subject, as well as obtaining
estimates of the group level parameters a, b, �, and �2. It is this
model reported in the main text.

(Appendices continue)
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Appendix C

Details for the Optimal Predictions Example

The descriptive Bayesian model in the second case study uses
the same likelihood function as the original model from GT2, but
treats the participant prior as an unknown variable to be inferred
from the data. To that end we assume that the learner’s prior could
be a normal distribution, an Erlang distribution or a Pareto distri-
bution, and place a uniform (researcher) prior across these three
possibilities:

t ��Normal (
, �) if c � 1
Erlang (�) if c � 2
Pareto (�) if c � 3

(14)

where we (as researchers) place a uniform prior over c and diffuse
priors over the parameters for all three distributional families.
Specifically our priors over the parameters are given by � 

HalfNormal (.0001) and � 
 Uniform (0, 1,000) for the normal
distribution; � 
 Uniform (0, 1,000) for the Erlang model; and �

 Gamma (.1, .1) for the Pareto distribution.

As noted in the main text, for any specific choice of participant
prior the Bayesian cognitive model (both the descriptive model
and the original optimal model from GT2) produces a participant
posterior P(t |x) corresponding to the learner’s belief about the
likely duration/extent of the unknown quantity. To convert this to
a full probabilistic model for the participant response r we assume
that people sample the response from their posterior distribution.
We implemented this model with a custom sampler in PyMC to
estimate the posterior predictive estimates for the responses to

each condition reported in Figure 7, as well as for the participant
priors themselves (in Figure 8).

The Noisy Mink model is probabilistic extension of the Mink
heuristic. The only difference in the new generative model is that
instead of assuming that people report the value of t that is
produced by the Mink heuristic, it suggests that the participant
samples their response from a normal distribution that is centered
on that value. If t� denotes the value predicted by the deterministic
Mink model, the Noisy Mink model predicts that people sample
from

t � Normal (t*, �2). (15)

However, because people never report values of t that are below
the observed value x, the actual response distribution is truncated
at x. Moreover, instead of assuming that the experimenter guesses
the value of the multiplier g, we fold it into the experimenter’s
model. That is, we specify a prior that captures our actual prior
beliefs about the value of g,

g � Uniform (0, 3) (16)

and seek to infer the actual value of g from the empirical data. As
with the two Bayesian cognitive models, we implemented the
model in PyMC and applied a custom sampler to infer posterior
distributions over the model parameters g and � as well as the
specific exemplars people used to estimate t�.

(Appendices continue)
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Appendix D

Details for the Generalization Example

As outlined in the main text, the Bayesian generalization model
specified by TG1 specifies a generalization probability. When told
that a set of items possesses some property, the generalization
probability is the chance that a novel item shares that property.
Given a binary matrix of category assignments C—such that cix �
1 if item i belongs to category x and cix � 0 if it does not—the
simplest version of the model assumes that the extension of
the novel property is to a single category. Under this model, the
probability of generalizing a property from item j to item i is
denoted g(i | j),

g(i | j) � � xP(cix � 1)P(x | j)

� � x | cix�1P(x | j)
(17)

where P(x | j) is the posterior probability that category x is the true
extension of the novel property given that the item j is known to
possess the property, and

P(x | j) 	 P(j |x)P(x) (18)

The prior distribution P(x) is captured by a vector of weights w
such that wx � 0 and � xwx � 1. As discussed in the main text, the
likelihood function is a weighted mixture of the strong sampling
model and the weak sampling model, so the probability that item
j would have been generated if x were the true hypothesis is given

P(j |x) � (1 � 
)1
n � 


cjx

nx
(19)

where nx � � jcjx counts the number of item is the xth category,
n is the total number of items in the domain, and � is a model
parameter that specifies which sampling model the learner relies
upon: � � 0 implies weak sampling and � � 1 is strong sampling.

The full model implemented in the paper extends this basic
model in four respects. Firstly, following TG1 we allow general-
ization from multiple exemplars, so if the learner has been told that
items j and k both possess the novel property, the posterior prob-
ability of category x is given by

P(x | j, k) 	 P(j |x)P(k |x)P(x) (20)

Secondly, the “base” category matrix C is augmented by one
“universal” category (to which all items belong) and n “singleton”
categories (each containing only one item). So if C is an n � m
binary matrix specifying the memberships for m categories, then
the model actually has m 	 n 	 1 categories once the universal
and singleton categories are added. As such the weights vector w
that specifies the prior distribution over categories has length m 	
n 	 1.

The third extension allows the learner to construct a more
elaborate hypothesis space H from the base representation defined
by C and w. Instead of assuming that the extension of the unknown
property is necessarily restricted to a single category, the learner
also considers the possibility that the property is possessed by the
members of two categories (i.e., the intersection of two categories
in C. We operationalize this in terms of an expanded hypothesis
matrix H that contains a copy of every element in C as well as an
additional column for every pair of columns in C, and whose

elements are 1 if either of the original columns has a 1 in the
corresponding location. The prior probability of any such “com-
posite” hypothesis is computed from the weights vector w in the
following way. If hypothesis z is the union of categories x and y
then

P(z) 	 �wxwy (21)

and similarly if hypothesis z is a “primitive” hypothesis that
corresponds to category x only then

P(z) 	 (1 � �)wx (22)

Finally, to assign probability to responses at an individual trial
level we assume that the raw response is sample from a normal
distribution whose mean corresponds to the model-predicted gen-
eralization probability, g(i | j) or g(i | j, k), and whose variance �2 is
unknown.

The full model requires that we infer an n � m binary matrix C
for the category assignments, a vector of n 	 m 	 1 non-negative
weights w for the m base categories, the n singleton categories and
the 1 universal categories (though this corresponds only to n 	 m
unknowns as these must sum to 1), the parameter � that defines the
sampling model and the parameter � that indicates the relative
weights assigned to “primitive” versus “composite” hypotheses.
To perform inference in this model we specify researcher priors for
� and � that are uniform across the unit interval, uniform priors
across all possible binary matrices C (for a fixed value of m) and
uniform across weight vectors w. We used a simulated annealing
algorithm to find the best fitting (i.e., maximum a posteriori)
values for the theoretically relevant parameters C, w, � and �.
Following Tenenbaum (1996) we treated �2 as a nuisance param-
eter, and can be used as a de facto temperature parameter in a
simulated annealing algorithm by initializing �2 at a large value
and gradually reducing it. The results reported in the main text
were the result of an application of the simulated annealing pro-
cedure with m � 8.

It should be noted that unlike the other two cases studies we did
not do full Bayesian inference for this model. What we have
reported is a point estimate (in effect the Bayesian MAP estimate)
for the theoretically important variables, rather than estimating the
full posterior distribution over all variables. The reason for this is
partly that it is more tractable to compute the point estimate,
though not impossible: We did also implement a fully Bayesian
version of a restricted model that more closely resembles the
approach in Navarro and Griffiths (2008), and found it worked
reasonably well. The more important reason is that the results are
somewhat more interpretable when we have a single set of cate-
gories C, rather than a full posterior distribution over possible
category assignment matrices. The former can be described in a
table, the latter is difficult to summarize, though Navarro and
Griffiths (2008) do offer suggestions for how to do so.
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