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Abstract 

When individuals independently recollect events or retrieve facts from 
memory, how can we aggregate these retrieved memories to reconstruct the 
actual set of events or facts? In this research, we report the performance  of 
individuals in a series of general knowledge tasks, where the goal is to 
reconstruct from memory the order of historic events, or the order of items 
along some physical dimension. We introduce two Bayesian models for 
aggregating order information based on a Thurstonian approach and 
Mallows model. Both models assume that each individual's reconstruction 
is based on either a random permutation of the unobserved ground truth, or 
by a pure guessing strategy. We apply MCMC to make inferences about the 
underlying truth and the strategies employed by individuals. The models 
demonstrate a "wisdom of crowds" effect, where the aggregated orderings 
are closer to the true ordering than the orderings of the best individual. 

 

1 Introduction  

Many demonstrations have shown that aggregating the judgments of a number of individuals 
results in an estimate that is close to the true answer, a phenomenon that has come to be 
known as the “wisdom of crowds” [1]. This was demonstrated by Galton, who showed that 
the estimated weight of an ox, when averaged across individuals , closely approximated the 
true weight [2]. Similarly, on the game show Who Wants to be A Millionaire, contestants are 
given the opportunity to ask all members of the audience to answer multiple choice 
questions. Over several seasons of the show, the modal response of the audience 
corresponded to the correct answer 91% of the time. More sophisticated aggregation 
approaches have been developed for multiple choice tasks, such as Cultural Consensus 
Theory, that additionally take differences across individuals and items into account [3]. The 
wisdom of crowds idea is currently used in several real-world applications, such as 
prediction markets [4], spam filtering, and the prediction of consumer preferences through 
collaborative filtering. Recently, it was shown that a form of the wisdom of crowds 
phenomenon also occurs within a single person [5]. Averaging multiple guesses from one 
person provides better estimates than the individual guesses. 

We are interested in applying this wisdom of crowds phenomenon to human memory 
involving situations where individuals have to retrieve information more complex than 
single numerical estimates or answers to multiple choice questions. We will focus here on 
memory for order information. For example, we test individuals on their ability to 
reconstruct from memory the order of historic events (e.g. , the order of US presidents), or 
the magnitude along some physical dimension (e.g., the order of largest US ci ties). We then 
develop computational models that infer distributions over orderings to explain the observed 
orderings across individuals. The goal is to demonstrate a wisdom of crowds effects where 



the inferred orderings are closer to the actual ordering than the orderings produced by the 
majority of individuals.  

Aggregating rank order data is not a new problem. In social choice theory, a number of 
systems have been developed for aggregating rank order preferences for groups (Marden, 
1995). Preferential voting systems, where voters explicitly rank order their candidate 
preferences, are designed to pick one or several candidates out of a field of many. These 
systems, such as the Borda count, perform well in aggregating the individuals' rank order 
data, but with an inherent bias towards determining the top members of the list.  However, as 
voting is a means for expressing individual preferences, there is no ground truth. The goal 
for these systems is to determine an aggregate of preferences that is in some sense “fair” to 
all members of the group. The rank aggregation problem has also been studied in machine 
learning and information retrieval [6,7]. For example, if one is presented with a ranked list 
of webpages from several search engines, how can these be combined to create a single 
ranking that is more accurate and less sensitive to spam?  

Relatively little research has been done on the rank order aggregation problem with the goal 
of approximating a known ground truth. In follow-ups to Galton's work, some experiments 
were performed testing the ability of individuals to rank-order magnitudes in psychophysical 
experiments [8]. Also, an informal aggregation model for rank order data was developed for 
the Cultural Consensus Theory, using factor analysis of the covariance structure of rank 
order judgments [3]. This was used to recover the (partially) recover the order of causes of 
death in the US on the basis of the individual orderings. 

We present empirical and theoretical research on the wisdom of crowds phenomenon for 
rank order aggregation. No communication between people is allowed for these tasks, and 
therefore the aggregation method operates on the data produced by independent decision -
makers. Importantly, for all of the problems there is a known ground truth. We compare 
several heuristic computational approaches―based  on voting theory and existing models of 
social choice―that analyze the individual judgments and provide a single answer as output, 
which can be compared to the ground truth. We refer to these synthesized answers as the 
“group” answers because they capture the collective wisdom of the group, even though no 
communication between group members occurred. We also apply probabilistic models based 
on a Thurstonian approach and Mallows model. The Thurstonian model represents the group 
knowledge about items as distributions on an interval dimension [9]. Mallows model is a 
distance-based model that represents the group answer as a modal ordering of items, and 
assumes each individual to have orderings that are more or less close to the modal ordering  
[10]. Although Thurstonian and Mallows type of models have often been used to analyze 
preference rankings [11], they have not been applied, as far as we are aware, to ordering 
problems where there is a ground truth. We also present extensions of these models that 
allow for the possibility of different response strategies -- some individuals might be purely 
guessing because they have no knowledge of the problem and others might have partial 
knowledge of  the ground truth. We develop efficient MCMC algorithms to infer the latent 
group orderings and assignments of individuals to response strategies. The advantage of 
MCMC estimation procedure is that it gives a probability distribution over group orderings, 
and we can therefore assess the likelihood of any particular group ordering. 

 

2 Experiment  

 
2 .1  Method  

Participants were 78 undergraduate students at the University of California, Irvine. The 
experiment was composed of 17 questions involving general knowledge regarding: 
population statistics (4 questions), geography (3 questions), dates, such as release dates for 
movies and books (7 questions), U.S. Presidents, material hardness, the 10 Commandments, 
and the first 10 Amendments of the U.S. Constitution. An interactive interface was presented 
on a computer screen. Participants were instructed to order the presented items (e.g., “Order 
these books by their first release date, earliest to most recent”), and responded by dragging 
the individual items on the screen to the desired location in the ordering. The initial ordering 
of the 10 items within a question was randomized across all questions and all participants.  



 

2 .2  Resu l t s  

To evaluate the performance of participants as well as models, we measured the distance 
between the reconstructed and the correct ordering. A commonly used distance metric for 
orderings is Kendall’s τ. This distance metric counts the number of adjacent pairwise 
disagreements between orderings. Values of τ range from: 0 ≤  τ ≤  𝑁(𝑁 − 1)/2, where N is 
the number of items in the order (10 for all of our questions). A value of zero means the 
ordering is exactly right, and a value of one means that the ordering is correct except for two 
neighboring items being transposed, and so on up to the maximum possible value of 45.  

Table 1 shows all unique orderings, by column, that were produced for two problems: 
arranging U.S. States by east-west location, and sorting U.S. Presidents by the time they 
served in office. The correct ordering is shown on the right. The columns are sorted by 
Kendall's τ distance. The first and second number below each ordering correspond to 
Kendall's τ distance and the number of participants who produced the ordering respectively. 
These two examples show that only a small number of participants reproduced the correct 
ordering (in fact, for 11 out of 17 problems, no participant gave the correct answer). It also 
shows that very few orderings are produced by multiple participants. For 8 out of 17 
problems, each participant produced a unique ordering.  

To summarize the results across participants, the column labeled PC in Table 2 shows the 
proportion of individuals who got the ordering exactly right for each of the ordering task 
questions. On average, about one percent of participants recreated the correct rank ordering 
perfectly. The column τ, shows the mean τ values over the population of participants for 
each of the 17 sorting task questions. As this is a prior knowledge task, it is interesting to 
note the best performance overall was achieved on the Presidents, States from west to east, 
Oscar movies, and Movie release dates tasks. These four questions relate to educational and 
cultural knowledge that seems most likely to be shared by our undergraduate subjects.  

Finally, an important summary statistic is the performance of the best individual. Instead of 
picking the best individual separately for each problem, we find the individual who scores 
best across all problems. Table 2, bottom row, shows that this individual has on average a τ 
distance of 7.8. To demonstrate the wisdom of crowds effect, we have to show that the 
synthesized group ordering outperforms the ordering, on average, of this best individual.  

 

3 Model ing 

We evaluated a number of aggregation models on their ability to reconstruct the ground truth 
based on the group ordering inferred from individual orderings. First, we evaluate two 
heuristic methods from social choice theory based on the mode and Borda counts.  One 
drawback of such heuristic aggregation models is that they create no explicit representation 
of each individual's working knowledge. Therefore, even though such methods can aggregate 

Table 1: Unique orderings for each individual for the states and presidents ordering problems  

 

A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A B B A A A B A A B A A A A A D A B A B E A D C B E C I J J H A = Oregon 

B B B B B B B B B B B B B B B B B B B B B B C E B B B B B B B B B B B B B B C F A C B B G A B B A B B F B F F B A C A F H E I J H B E G G J B = Utah 

C C C C C C C C D D C C C C C C C D D C D D B B C D D D E C C D D F F C C F B B C D C C C C C D F D E C F E B D E G E C C I G H G I A B I I C = Nebraska 

D D D E D D E E C C D D D D E F F C F E C C D C G F F F F D E C H C D D H C F D E A H I B F H C C H I B J C C I I F I G E H A C B G H H D G D = Iowa 

E E F D E F D F E F E E E F F D D F C F F H E D F C E E D F D H C D C H F E D C H F F F D J I H H I D I D D E F F B H A D A D I J H G I H E E = Alabama 

F F E F F E F D F E F G H E D E E E E G E E F F D H C C C H G F E E E I E D I E D H D E F D D F D C F D C B A E H J C D F B F A A J D F E F F = Ohio 

G G G G H G G G H G I H F I G G H H G D H F H G E E G H G I J E F I H F D I E H I E I D E E F I I F C E E I G C C D D B J F H D F F F E C D G = Virginia 

H I H H I I I H G H H I G G I I G G H I I G I I H G I G H G F I I H I E G H H I F G E G I G E J E E H H H G I J D H J H I C E F D D C A B C H = Delaware 

I H I I G H H I I I G F J H H H I I I H G I J H I I H I I E I G G G G G I G G G G J G H H H G E G G G G G H H H G I F I B G B E C E B C F B I = Connecticut 

J J J J J J J J J J J J I J J J J J J J J J G J J J J J J J H J J J J J J J J J J I J J J I J G J J J J I J J G J E G J G J J G I A J D A A J = Maine

0 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 7 8 8 8 8 9 9 9 10 10 10 11 11 11 12 13 14 14 14 16 18 20 22 24 26 26 33 37 42

2 1 5 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A C A H A = George Wash ington 

B B B B C B B B C B B B C B B B B B B B B B B B B B C C D B B B B C C C C B B C E E F B B B C C C B C C C E B C H B B B C B C C E E C E G J C B = John Adams 

C C C C B C C C B C C C B C C C C D D C C C C C C E B B C C C C D B B B E C D B C D C C C C B D E C B B F B I B B C D G F C E F D C F G J G D C = Thomas Jefferson 

D D D E D D E E D D E E E D D E E C E D E E E E E C D D B D E E C E E E B E C E B B D E E J F B B E F F E C G E E G J C E H B H I B B D A I I D = James Monroe 

E E E D E E D D E E D D D E E D D E C I D D D D F D E E E E D G E D G I G G J G F C B D D D D E D I E G D F C J C J E F B J I E G J J C E D J E = Andrew Jackson  

F F G F F F F G F F F G F F H F G F F E F F H I D I G H F J J D J F D D D H E H D G G H J F G I J H J H B H E G D D G I J I F D B I H J B C E F = Theodore Roosevelt 

G G F G G H H F G G G F G J G H F I I G J J G G J G I F I I G I F I I G I F G D I F H J H G J J G F H E I I D H J I C H G D J G C D I F I H G G = Woodrow Wilson 

H H H H H G G H H J I I H G F I J G G F H I J H G F J J H F F J I J F F F I F J H J E I I E I G F G D J H G F D F H I J I E H J H G E I D B F H = Franklin D. Roosevelt 

I J I I I J I I J I J H J I J J H J H J I G F F I H F I G G I F G H J H H J I F G H I G F I E F I D G D G J H I I E H D D G G B F H G H F F A I = Harry S. Truman 

J I J J J I J J I H H J I H I G I H J H G H I J H J H G J H H H H G H J J D H I J I J F G H H H H J I I J D J F G F F E H F D I J F D B H E B J = Dwight D. Eisenhower

0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 12 12 13 13 13 13 14 14 14 14 15 17 18 19 26 28

5 1 2 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



the individual pieces of knowledge across individuals, they cannot explain why individuals 
rank the items in a particular way. To address this potential weakness, we develop two 
simple probabilistic models based on the Thurstonian approach [9] and Mallows model [10].  

 

3 .1  Heur i s t i c  Mode ls  

We tested two heuristic aggregation models. The simplest heuristic, based on the mode, the 
group answer is based on the most frequently occurring sequence of all observed sequences. 
In cases where several different sequences correspond to the mode, a randomly chosen 
modal sequence was picked. The second method uses the Borda count method, a widely used 
technique from voting theory. In the Borda count method, weighted counts are assigned such 
that the first choice “candidate” receives a count of N (where N is the number of candidates), 
the second choice candidate receives a count of N-1, and so on. These counts are summed 
across candidates and the candidate with the highest count is considered the “most 
preferred”. Here, we use the Borda count to create an ordering over all items by ordering the 
Borda counts.   

Table 2 reports the performance of all of the aggregation models. For each, we checked 
whether the inferred group order is correct (C) and measured Kendall's τ. We also report in 
the rank column the percentage of participants who perform worse or the same as the group 
answer, as measured by τ. With the rank statistic, we can verify the wisdom of crowds effect. 
In an ideal model, the aggregate answer should be as good as or better than all of the 
individuals in the group. Table 1 shows the results separately for each problem, and averaged 
across all the problems.  

These results show that the mode heuristic leads to the worst performance overall in rank. 
On average, the mode is as good or better of an estimate than 68% of participants. This 
means that 32% of participants came up with better solutions individually. This is not 
surprising, since, with an ordering of 10 items, it is possible that only a few participants will 
agree on the ordering of items. The difficulty in inferring the mode makes it an unreliable 
method for constructing a group answer. This problem will be exacerbated for orderings 
involving more than 10 items, as the number of possible orderings grows combinatorially. 
The Borda count method performs relatively well in terms of Kendall's τ and overall rank 
performance. On average, these methods perform with ranks of 85%, indicating that the 
group answers from these methods score amongst the best individuals . On average, the 
Borda count has an average distance of 7.47, which outperforms the best individual over all 
problems.  

Table 2: Performance of the four models and human participants 

 

Problem PC τ C τ Rank C τ Rank C τ Rank C τ Rank

books .000 12.3 0 5 91 0 5 91 0 7 82 0 12 40

city population europe .000 16.9 0 11 81 0 12 77 0 11 81 0 17 42

city population us .000 15.9 0 7 96 0 7 96 0 12 67 0 16 45

city population world .000 19.3 0 16 73 0 16 73 0 15 77 0 19 44

country landmass .000 10.9 0 5 95 0 5 95 0 5 95 0 7 76

country population .000 14.6 0 12 74 0 11 82 0 11 82 0 15 53

hardness .000 15.3 0 14 64 0 14 64 0 11 91 0 15 46

holidays .051 8.9 0 4 78 0 5 77 0 4 78 1 0 100

movies releasedate .013 7.3 0 2 95 0 2 95 0 2 95 0 2 95

oscar bestmovies .013 11.2 0 4 90 0 4 90 0 3 97 0 3 97

oscar movies .000 11.9 0 1 100 0 1 100 0 2 96 0 2 96

presidents .064 7.5 0 2 87 0 1 94 0 3 79 1 0 100

rivers .000 16.1 0 13 77 0 14 67 0 11 91 0 16 42

states westeast .026 8.2 0 2 88 0 2 88 0 3 78 0 1 97

superbowl .000 18.6 0 16 65 0 15 71 0 10 96 0 19 40

ten amendments .013 14.0 0 2 97 0 3 96 0 5 90 0 4 95

ten commandments .000 16.8 0 8 90 0 7 91 0 12 74 0 17 51

AVERAGE .011 13.3 .00 7.29 84.8 .00 7.29 85.1 .00 7.47 85.3 .12 9.67 68.2

BEST INDIVIDUAL 0 7.8

Mallows Model Borda Counts ModeThurstonian ModelHumans



 

3 .2  A Thurs tonian  Mode l  

In the Thurstonian approach, the overall item knowledge for the group is represented 
explicitly as a set of coordinates on an interval dimension. The interval representation is 
justifiable, at least for some of the problems in our study that involve one-dimensional 
concepts, such as the relative timing of events, or the lengths of items. We will introduce an 
extension of the Thurstonian approach where the orderings of some of the individuals are 
drawn for a Thurstonian model and others are drawn are based on a guessing process with no 
relation to the underlying interval representation. 

To introduce the basic Thurstonian approach, let N be the number of items in the ordering 
task and M the number of individuals ordering the items. Each item is represented as a value 
𝜇𝑖  along this dimension, where 𝑖 ϵ  1,… ,𝑁 . Each individual is assumed to have access to 
this group-level information. However, individuals might not have precise knowledge about 
the exact location of each item. We model each individual's location of the item by a single 
sample from a Normal distribution, centered on the item’s group location. Specifically, in 
our model, when determining the order of items, a person 𝑗 ϵ  1,… ,𝑀  samples a value from 
each item 𝑖, 𝑥𝑖𝑗   ~ N 𝜇𝑖 ,𝜎𝑖 . The standard deviation 𝜎𝑖  captures the uncertainty that 

individuals have about item 𝑖 and the samples 𝑥𝑖𝑗  represent the mental representation for the 

individual. The ordering for each individual is then based on the ordering of their samples. 
Let 𝒚𝑗  be the observed ordering of the items for individual j so that 𝒚𝑗 = (𝑖1, 𝑖2,… , 𝑖𝑁) if and 

only if 𝑥𝑖1𝑗 < 𝑥𝑖2𝑗 < ⋯ <  𝑥𝑖𝑁 𝑗 . Figure 1 (left panel) shows an example of this basic 

Thurstonian model with group-level information for three items, A, B, and C and two 
individuals. In the illustration, there is a larger degree of overlap between the representations 
for B and C making it likely that items B and C are transposed (as illustrated for the second 
individual). 

We extend this basic Thurstonian model by incorporating a guessing component. We found 
this to be a necessary extension because some individuals in the ordering tasks actually were 

 
Figure 1. Illustration of the extended Thurstonian Model with a guessing component  

A

B C

A B C

y1 :  A < B < C

A C B

x1

x2

y2 :  A < C < B

C B A

C A B

x3

x4

Thurstonian model (z = 1) Guessing model (z = 0)

y3 :  C < B < A

y4 :  C < A < B

 
 
Figure 2. Graphical model of the extended Thurstonian Model (a) and Mallows model (b) 
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not familiar with any of the items in the ordering tasks (such as the ten commandments or 
ten amendents). In the extended Thurstonian model, the ordering of such cases are assumed 
to originate from a single distribution,  𝑥𝑖𝑗  ~ N  𝜇0,  𝜎0 , where no distinction is made 

between the different items -- all samples come from the same distribution with parameters 
 𝜇0,  𝜎0. Therefore, the orderings produced by the individuals under this model are 
completely random.  For example, Figure 1, right panel shows two orderings produced from 
this guessing model. We associate a latent state 𝑧𝑗  with each individual that determines 

whether the ordering from each individual is produced by the guessing model or the 
Thurstonian model: 

  𝑥𝑖𝑗  | 𝜇𝑖 ,  𝜎𝑖 ,  𝜇0,  𝜎0  ~  
 N  𝜇𝑖 ,  𝜎𝑖 𝑧𝑗 = 1

  N  𝜇0,  𝜎0 𝑧𝑗 = 0.
   (1) 

To complete the model, we placed a standard prior on all normal distributions, 𝑝 𝜇,𝜎 ∝
1 𝜎2 .  Figure 2a shows the graphical model for the Thurstonian model. Although the model 
looks straightforward as a hierarchical model, inference in this model has proven to be 
difficult because the observed variable 𝒚𝑗  is a deterministic ranking function (indicated by 

the double bordered circle) of the underlying latent variable 𝒙𝑗 . The basic Thurstonian model 

was introduced by Thurstone in 1927, but only recently have MCMC methods been 
developed for estimation [12]. We developed a simplified MCMC procedure as described in 
the supplementary materials that allows for efficient estimation of the underlying true 
ordering, as well as the assignment of individuals to response strategies.   

The results of the extended Thurstonian model are shown in Table 1. The model performs 
approximately as well as the Borda count method. The model does not recover the exact 
answer for any of the 17 problems, based on the knowledge provided by the 78 participants. 
It is possible that a larger sample size is needed in order to achieve perfect reconstructions of 
the ground truth. However, the model, on average, has an distance of 7.29 from the actual 
truth, which is better than the best individual over all problems.  

One advantage of the probabilistic approach is that it gives insight into the difficulty of the 
task and the response strategies of individuals. For some problems, such as the ten 
commandment, 32% of individuals were assigned to the guessing strategy (𝑧𝑗 = 0). For other 

problems, such as the US presidents, only 16% of individuals were assigned to the guessing 
strategy, indicating that knowledge about this domain was more widely distributed in our 
group of individuals. Therefore, the extension of the Thurstonian model can eliminate 
individuals who are purely guessing the answers.    

An advantage of the representation underlying the Thurstonian model is that it allows a 
visualization of group knowledge not only in terms of the order of items, but also in terms of 
the uncertainty associated with each item on the interval scale. Figure 3 shows the inferred 
distributions for four problems where the model performed relatively well. The crosses 
correspond to the mean of 𝜇𝑖  across all samples, and the error bars represent the standard 

 
Figure 3. Sample Thurstonian inferred distributions. The vertical order is the ground truth 

ordering, while the numbers in parentheses show the inferred group ordering 

First Last

George Washington  (1)

John Adams  (2)

Thomas Jefferson  (3)

James Monroe  (5)

Andrew Jackson  (4)

Theodore Roosevelt  (6)

Woodrow Wilson  (7)

Franklin D. Roosevelt  (9)

Harry S. Truman  (8)

Dwight D. Eisenhower (10)

Presidents

Largest Smallest

Russia  (1)

Canada  (4)

China  (2)

United States  (3)

Brazil  (7)

Australia  (5)

India  (6)

Argentina  (8)

Kazakhstan  (10)

Sudan (9)

Country Landmass

Freedom of speech & religion  (1)

Right to bear arms  (2)

No quartering of soldiers  (4)

No unreasonable searches  (3)

Due process  (5)

Trial by Jury  (6)

Civil Trial by Jury  (7)

No cruel punishment  (8)

Right to non-specified rights  (10)

Power for the States & People (9)

Ten Amendments



deviations 𝜎𝑖  based on a geometric average across all samples. These visualizations are 
intuitive, and show how some items are confused with others in the group population.  For 
instance, nearly all participants were able to identify Maine as the westmost state in our list, 
but many confused the central states.  Likewise, there was a large agreement on the proper 
placement of the right to bear arms in the amendments question ― this amendment is often 
popularly referred to as “the second amendment”.  

 

3 .3  Mal lows  Mode l  

One drawback of the Thurstonian model is that it gives an analog representation for each 
item, which might be inappropriate for some problems. For example, it seems 
psychologically implausible that the ten amendments or ten commandments are mentally 
represented as coordinates on an interval scale. Therefore, we also applied probabilistic 
models where the group answer is based on a pure rank ordering. One such a model is 
Mallows model [7, 9, 10], a distance-based model that assumes that observed orderings that 
are close to the group ordering are more likely than those far away. One instantiation of 
Mallows model is based on Kendall's distance to measure the number of pairwise 
permutations between the group order and the individual order. Specifically, the probability 
of any observed order 𝒚, given the group order 𝝎 is:  

  𝑝 𝒚|𝝎,𝜃 =
1

Ψ 𝜃 
𝑒−𝜃𝑑  𝒚,𝝎   (2) 

where 𝑑 is the Kendall τ distance. The scaling parameter 𝜃 determines how close the 
observed orders are to the group ordering. As described by [7], the normalization function 
Ψ 𝜃  does not depend on 𝜔 and can be calculated efficiently by: 

 Ψ 𝜃 =  
1−𝑒−𝑖𝜃

1−𝑒−𝜃
𝑁
𝑖=1  . (3) 

The model as stated in the Eqs. (2) and (3) describe that standard Mallows model that has 
often been used to model preference ranking data. We now introduce a simple variant of this 
model that allows for contaminants. The idea is that some of the individuals orderings do not 
originate at all from some common group knowledge, and instead are based on a guessing 
process. The extended model introduces a latent state 𝑧𝑗  where 𝑧𝑗 = 1 if the individual j 

produced the ordering based on Mallows model and 𝑧𝑗 = 0 if the individual is guessing. We 

model guessing by choosing an ordering uniformly from all possible orderings of N items. 
Therefore, in the extended model, we have 

  𝑝 𝒚𝒋|𝝎,𝜃, 𝑧𝑗  =  

1

Ψ 𝜃 
𝑒−𝜃𝑑  𝒚,𝝎 𝑧𝑗 = 1

1/𝑁! 𝑧𝑗 = 0.
   (4) 

To complete the model, we place a Bernoulli(1/2) prior over 𝑧𝑗 . The MCMC inference 

algorithm to estimate the distribution over 𝝎, 𝒛 and 𝜃 given the observed data is based on 
earlier work   [6]. We extended the algorithm to estimate 𝒛 and also allow for the efficient 
estimation of 𝜃. The details of the inference procedure are described in the supplementary 
materials.   

The result of the inference algorithm is a probability distribution over group answers 𝝎, of 
which we take the mode as the single answer for a particular problem.  Note that the inferred 
group ordering does not have to correspond with an ordering of any particular individual. 
The model just finds the ordering that is close to all of the observed ordering, except those 
that can be better explained by a guessing process. Figure 3 illustrates the model solution 
based on a single MCMC sample for the ten commandments and ten amendment sorting 
tasks. The figure shows the distribution of distances from the inferred group ordering. Each 
circle corresponds to an individual. Individuals assigned to Mallows model and the guessing 
model are illustrated by filled and unfilled circles respectively. The solid and dashed red 
lines show the expected distributions based on the model parameters. Note that although 
Mallows model describes an exponential falloff in probability based on the distance from the 
group ordering, the expected distributions also take into account the number of orderings 
that exist at each distance (see [11], page 79, for a recursive algorithm to compute this).  



Figure 4 shows the  distribution over individuals that are captured by the two routes in the  
model. The individuals with a Kendall τ above below 15 tend to be assigned to Mallows 
route and all other individuals are assigned to the the guessing route. Interestingly, the 
distribution over distances appears to be bimodal, especially for the ten commandments. The 
middle peak of the distribution occurs at 22, which is close to the expected value of 22.5 
based on guessing. This result seems intuitively plausible -- not everybody has studied the 
ten commandments, let alone the order in which they occur.  

Table 2 shows the results for the extended Mallows model across all 17 problems. The 
overall performance, in terms of Kendall τ and rank is comparable to the Thurstonian model 
and the Borda count method. Therefore, there does not appear to be any overall advantage of 
this particular approach. For the ten commandments and ten amendment sorting tasks, 
Mallows model performs the same or better than the Thurstonian model. This suggests that 
for particular ordering tasks, where there is arguably no underlying analog representation, a 
pure rank-ordering representation such as Mallows model might have an advantage.   

 

4 Conclusions  

We have presented two heuristic aggregation approaches, as well as two probabilistic 
approaches, for the problem of aggregating rank orders to uncover a ground truth. For each 
particular problem, we found that there were individuals who performed better than the 
aggregation models (although we cannot identify these individuals until after the fact). 
However, across all problems, no person consistently outperformed the model. Therefore, for 
all aggregation methods, except for the mode, we demonstrated a wisdom of crowds effect, 
where the average performance of the model was better than the best individual over all 
problems. 

We also presented two probabilistic approaches based on the classic Thurstonian and 
Mallows approach. While neither of these models outperformed the simple Borda count 
heuristic models, they do have some advantages over the heuristic models. The Thurstonian 
model not only extracts a group ordering, but also a representation of the uncertainty 
associated with the ordering. This can be visualized to gain insight into mental 
representations and processes. In addition, the Thurstonian and Mallows models were both 
extended with a guessing component to allow for the possibility that some individuals 
simply do not know any of the answers for a particular problem. Finally, although not 
explored here, the Bayesian approach potentially offers advantages over heuristic approaches 
because the probabilistic model can be easily expanded with additional sources of 
knowledge, such as confidence judgments from participants and background knowledge 
about the items. 

 
 

Figure 4. Distribution of distances from group answer for two example problems.  
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We can extend these computational models to situations involving episodic memory. For 
example, if a number of witnesses recollect the order of events, how can we best aggregate 
the individual recollections to best reconstruct the actual order of events? A number of 
models have been developed for serial recall but, as far as we are aware, none have been 
"inverted" to infer the original stimulus sequence given the observed recollected order from 
a number of individuals. 
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A Supplementary material  

 

A .1  MCMC a lgor i thm for  the  Thurs ton ian  Mode l  

In our estimation procedure, the goal is to draw samples for the latent variables 𝑥𝑖𝑗  , 𝑧𝑗 ,  𝜇0, 

𝜎0, 𝜇𝑖 , and 𝜎𝑖  given the observed orderings 𝒚j. For this model, we can estimate all latent 

variables through Gibbs sampling. We first sample a value for each 𝑥𝑖𝑗  conditional on all 

other variables according to:  

  𝑥𝑖𝑗  | 𝜇𝑖 ,  𝜎𝑖 ,  𝜇0,  𝜎0, 𝑧𝑗 , 𝑥𝑙 ,𝑗 , 𝑥𝑢 ,𝑗  ~  
N𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑   𝜇𝑖 ,  𝜎𝑖 , 𝑥𝑙 ,𝑗 , 𝑥𝑢 ,𝑗  𝑧𝑗 = 1

N𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑   𝜇0,  𝜎0, 𝑥𝑙 ,𝑗 , 𝑥𝑢 ,𝑗  𝑧𝑗 = 0,
   (A1) 

where the sampling distribution is the truncated normal with mean and standard deviation 

dependent on the latent state 𝑧𝑗 ; with 𝑧𝑗 = 1,  and  𝑧𝑗 = 0, the sample comes from the 

Thurstonian model and the guessing model respectively. The lower and upper bounds for 

truncated normal are determined by 𝑥𝑙 ,𝑗  and 𝑥𝑢 ,𝑗  respectively. The values 𝑥𝑙 ,𝑗  and 𝑥𝑢 ,𝑗  are 

based on the samples 𝒙𝑗  that are ordered right before and after the current value 𝑥𝑖𝑗  

respectively. Specifically, if π(𝑖) denotes the rank given to item 𝑖 and π−1 𝑖  denotes the 

item assigned to rank 𝑖, 𝑙 = π−1 π 𝑖 − 1 , and 𝑢 = π−1 π 𝑖 + 1 . We also define 𝑥𝑙 ,𝑗 = −∞ 

when π 𝑖 = 1, and 𝑥𝑢 ,𝑗 = ∞, when π 𝑖 = 𝑁. With these bounds, the observed data 

influences the possible locations for the samples. I t is guaranteed that the ordering of 

samples 𝒙𝑗  is consistent with the observed ordering 𝒚𝑗  for individual j.  

To sample 𝜇𝑖 , and 𝜎𝑖  given 𝒙, we have: 

  𝜎𝑖
2 | 𝜇𝑖 , 𝑠𝑖

2, 𝐳 ~ Inv-χ2 𝑀(𝑧=1) − 1, 𝑠𝑖
2   (A2) 

   𝜇𝑖  |  𝜎𝑖 , 𝑥 𝑖 , 𝐳 ~ N  𝑥 𝑖 ,  𝜎𝑖  𝑀 𝑧=1   ,  (A3) 

where 𝑠𝑖
2 and 𝑥 𝑖  are the variance and mean of all samples 𝒙𝑖  (restricted to individuals 

assigned to the Thurstonian model) for item i respectively, and 𝑀(𝑧=1) =  𝑧𝑗𝑗 , the number of 

individuals assigned to the Thurstonian model. Similar update equations were used to update 

 𝜇0 and 𝜎0 based on the samples of the individuals assigned to the guessing route:  

  𝜎0
2 | 𝜇0, 𝑠0

2 , 𝐳 ~ Inv-χ2 𝑀(𝑧=0) − 1, 𝑠0
2   (A4) 

   𝜇0 |  𝜎0, 𝑥 0, 𝐳 ~ N  𝑥 0,  𝜎0  𝑀 𝑧=0   .  (A5) 

In order to prevent a drift in the item positions during estimation (as there is no natural zero 

point), we fixed the minimum of 𝜇𝑖  to 0 and the maximum of 𝜇𝑖  to 1, and scaled the other 

variables accordingly. 

Finally, to sample the assignment of individuals to modeling routes, we use  

  𝑝 𝑧𝑗 = 𝑘 | 𝜇𝑖 ,  𝜎𝑖 ,  𝜇0,𝜎0, 𝑥𝑙 ,𝑗 , 𝑥𝑢 ,𝑗  ∝   
 𝑓  𝑥𝑖𝑗 | 𝜇𝑖 ,  𝜎𝑖 

𝑁
𝑖=1 𝑘 = 1

 𝑓  𝑥𝑖𝑗 | 𝜇0,  𝜎0 
𝑁
𝑖=1 𝑘 = 0.

   (A6) 

where 𝑓 𝑥 | 𝜇,𝜎  is the normal probability density function. In our procedure, we ran 20 

chains with a burn-in of 200 iterations. From each chain, we drew 20 samples with an 

interval of 10 iterations. In total, we collected 400 samples. To construct a single group 

answer, we analyzed the ordering of the items according to 𝜇𝑖 , separately for each sample, 

and then picked the mode of this distribution. This corresponds to the most likely order in 

the distribution over orders inferred by the model. 
 

A.2  MCMC a lgor i thm for Mal lows  Mode l  

 

In our MCMC algorithm for Mallows model, we use a combination of Metropolis-Hastings 



(MH) and Gibbs sampling steps. To estime 𝝎, we use the MH algorithm based on Lebanon 

and Lafferty (2002). The idea is to move the group estimate 𝝎 by transposing any randomly 

chosen pair of items. The proposal distribution 𝑞 𝝎∗|𝝎  is 

  𝑞 𝝎′|𝝎 =  
1  

𝑛
2
  if 𝑆(𝝎′,𝝎) = 1

0 otherwise,

   (A7) 

 

where 𝑆(𝝎′,𝝎) is the Cayley distance. The Metropolis-Hastings acceptance ratio is 

  

 min  1,
𝑞 𝝎 𝝎′  

𝑞 𝝎′  𝝎 

𝑝 𝒚 𝝎′ ,𝜃 ,𝒛 

𝑝 𝒚 𝝎,𝜃 ,𝒛 
 .  (A8) 

Note that the first likelihood ratio for the proposal distribution equals one because of the 

symmetry in the proposals. Also, in Eq 1., the normalization constant does not depend on 𝝎, 

which can be used to simplify the acceptance ratio to:  

 min  1, exp  −𝜃 𝑑 𝒚𝑗 ,𝝎′ − 𝑑 𝒚𝑗 ,𝝎 𝑧𝑗=1    , (A9) 

where the sum is taken over all individuals currently assigned to Mallows model. To 

facilitate the inference for 𝜃, we used a discretized set of 1000 𝜃 values, logarithmically 

spaced between 10-4 and 2. Let  𝑣𝑘  refer to the kth value in this set. We use a Gibbs sampling 

step for 𝜃 by sampling from the discrete distribution 

  𝑝 𝜃 = 𝑣𝑘 |𝝎, 𝒛,𝒚  ∝  exp  −𝑣𝑘  𝑑 𝒚𝑗 ,𝝎 𝑧𝑗=1 −   logΨ 𝑣𝑘 𝑧𝑗=1  .  (A10) 

Finally, we use a Gibbs sampling step to estimate the latent state 𝑧𝑗  

 𝑝 𝑧𝑗 = 𝑘|𝜃,𝝎, 𝒛−𝑗 ,𝒚𝑗  =  
1 N! k = 0

  exp −𝜃𝑑 𝒚𝑗 ,𝝎 − logΨ 𝜃   k = 1.
   (A11) 

In the MCMC procedure, we ran 20 chains with a burn-in of 200 iterations. From each chain, 

we drew 20 samples with an interval of 10 iterations. In total, we collected 400 samples. To 

construct a single group answer, we picked the most frequently occuring sampled ordering 

𝝎. 

 


