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Evaluating Probabilistic Forecasts with Bayesian Signal
Detection Models

Mark Steyvers,1,∗ Thomas S. Wallsten,2 Edgar C. Merkle,3 and Brandon M. Turner4

We propose the use of signal detection theory (SDT) to evaluate the performance of both
probabilistic forecasting systems and individual forecasters. The main advantage of SDT is
that it provides a principled way to distinguish the response from system diagnosticity, which
is defined as the ability to distinguish events that occur from those that do not. There are
two challenges in applying SDT to probabilistic forecasts. First, the SDT model must handle
judged probabilities rather than the conventional binary decisions. Second, the model must
be able to operate in the presence of sparse data generated within the context of human fore-
casting systems. Our approach is to specify a model of how individual forecasts are generated
from underlying representations and use Bayesian inference to estimate the underlying la-
tent parameters. Given our estimate of the underlying representations, features of the classic
SDT model, such as the receiver operating characteristic (ROC) curve and the area under
the ROC curve (AUC), follow immediately. We show how our approach allows ROC curves
and AUCs to be applied to individuals within a group of forecasters, estimated as a func-
tion of time, and extended to measure differences in forecastability across different domains.
Among the advantages of this method is that it depends only on the ordinal properties of
the probabilistic forecasts. We conclude with a brief discussion of how this approach might
facilitate decision making.
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1. INTRODUCTION

A fundamental issue for forecasting binary
events is to distinguish the occurrence of an event, E,
from its nonoccurrence, ¬E. Signal detection theory
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(SDT)(1–3) offers a natural framework to analyze the
performance of forecasting systems and individual
human forecasters in these situations. The key idea is
to characterize the distributions that explain the fore-
casts associated with E (“signal”) separately from
the forecasts associated with ¬E (“noise”). Based on
the underlying distributions, receiver operating char-
acteristic (ROC) analysis can be used (as explained
later) to derive measures of diagnosticity such as
the area under the curve (AUC). The AUC mea-
sure assesses the ability to discriminate E from ¬E,
unconfounded by response bias and base rates. In
addition to characterizing forecasting performance,
ROC analysis can be used to analyze performance
under different decision thresholds and misclassifica-
tion costs. SDT and ROC analyses have long been
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used to evaluate forecasting or diagnostic systems in
a variety of areas (examples to follow), but have only
recently been proposed in the prediction of uncertain
world events.(4)

In this article, we will focus on the problem
of evaluating individual human forecasters and ag-
gregates of human forecasts related to uncertain
world events such as the United Kingdom leaving the
European Union, the winner of the 2012 South Ko-
rean presidential election, and group on declaring
bankruptcy. Recent work in this area(4) assumes that
the forecaster produces binary forecasts (e.g., “tar-
get event will occur”). However, forecasts for binary
events are often uncertain and therefore accompa-
nied by a confidence or probability estimate (e.g.,
there is a 70% chance that the event will occur within
a specific time frame). One solution is to use rating-
scale SDT models where a judgment is discretized
into a number of ordered response bins.(3) We ex-
plore another solution in the form of a new type of
SDT approach where we directly model the contin-
uous judgments without assuming a discrete ordered
scale.

Furthermore, in forecasts based on human
judgment,(5) problems of data sparsity can arise that
can complicate standard SDT analyses. For exam-
ple, forecasters might choose to answer only a few
forecasting problems or they might answer many.
In addition, an individual who contributes prob-
abilistic forecasts to only a few problems might
also have an associated imbalance in the number
of forecasts associated with E and ¬E. In an ex-
treme situation, we might have a forecaster who
contributes judgments to only problems that resolve
as E or that resolve as ¬E. Data sparsity and im-
balance can result in unstable parameter estimates,
potentially leading one to draw inaccurate conclu-
sions about the forecasters in question. Therefore,
one should take care when estimating parameters
and conducting ROC analyses in such cases.

Other challenges for the evaluation of human
forecasts are that they might be dependent on the
time of judgment relative to the resolution of the
problem and/or on the forecasting domain. In the
case of time, one might expect that forecast diagnos-
ticity improves dynamically over time as the point of
forecast resolution approaches. Similarly, one might
expect that forecasting domains vary in inherent
uncertainty, with some domains being more fore-
castable than others. Thus, a reasonable SDT analy-
sis should account for differences in temporal dynam-
ics as well as differences among forecasting domains.

To address these challenges, we introduce a new
SDT modeling framework designed to handle judged
probabilities rather than discrete decisions or confi-
dence ratings. Our approach is to specify a model
of how individual forecasting judgments are gener-
ated from underlying belief distributions, and use
Bayesian inference to estimate the distributions. We
will use the Beta distribution to model probabilis-
tic judgments and refer to the overall approach as
the Beta-SDT model. To address the data sparsity
problem, we use a hierarchical Bayesian approach
in which the belief distributions for individual fore-
casters are based on group-level belief distributions
that characterize the commonalities across individ-
uals. Hierarchical Bayesian SDT models have been
used successfully to model individual differences as
well as differences among items(6–8) and are use-
ful in measuring individual performance in the con-
text of sparse data.(9) We also show how the SDT
approach can be extended to measure forecasting
performance at different points in time relative to
the closing date.5 Finally, we show how to account
for domain-specific forecasting differences. Gener-
ally, one attractive feature of our hierarchical Beta-
SDT approach is that we can flexibly incorporate
forecaster-specific and problem-specific effects.

After the Beta-SDT distributions are estimated,
standard ROC analysis can be applied to the inferred
distributions in order to evaluate performance. ROC
analysis had its roots in statistical decision the-
ory, psychophysics, and radar engineering,(10,11) but
is now used in many areas to evaluate predictive
models including artificial intelligence and machine
learning,(12–14) medicine(15–17) and meteorology,(18–21)

and other domains.(22) We will focus on the AUC as
a summary statistic of the ROC curve. The AUC is
a widely used measure for ranking and classification
performance.(23) We use the AUC as a way to assess
the ability of individual forecasters and forecasting
systems to discriminate between E and ¬E. The ad-
vantages of the AUC as an index of diagnostic per-
formance are outlined in Section 2.1.

An advantage of the Bayesian approach to an-
alyzing probabilistic forecasts is that it naturally
leads to distributions over the AUC value for a

5The closing date is the date at which the forecasting problem will
resolve and is closely related to the forecasting horizon, i.e., the
length of time into the future for which forecasts are to be pre-
pared. In the data sets that we focus on, each forecasting problem
is associated with a fixed closing date but individual forecasters
can choose to forecast on any date before the closing date, effec-
tively leading to different forecasting horizons across forecasters.
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particular forecaster or forecasting method. These
distributions can be expressed as credible intervals—
the Bayesian version of a confidence interval—which
is important when interpreting the performance of
any predictive method.(24) For example, we might
want to know which individual forecasters are per-
forming better than chance or whether one forecaster
is performing better (in terms of AUC) than another
forecaster.

In the rest of the article, we first give a brief in-
troduction to empirical ROC curves that can be used
to calculate the AUC without using an SDT model.
We discuss the potential problems of estimating the
AUC through empirical ROC curves. We then intro-
duce the Beta-SDT model for judged probabilities
that gives a parametric model for ROC analysis. We
discuss a number of Beta-SDT modeling variants
that allow us to measure differences among individu-
als as well as forecasting domains, and we also specify
a temporal SDT model that can measure changes
in discrimination ability over time. We apply the
models to data from a recent forecasting study,(5)

comparing the inferred AUC values at the level of
individual forecasters as well as aggregates of fore-
casting judgments. Finally, we compare the AUC to
conventional measures of forecasting performance
(i.e., the Brier score and its decompositions) and
argue that the AUC is preferable to these measures
if the goal is to measure diagnosticity.

2. EMPIRICAL ROC ANALYSIS

ROC analysis is used across many disciplines as
a way to evaluate the diagnosticity of human judg-
ments and artificial systems.(10–13,16,17,22,25) We will
first provide a basic review of empirical ROC anal-
ysis in the context of forecasting systems, in which no
assumptions are made about underlying belief dis-
tributions, and therefore no SDT assumptions are
needed for the analysis. For a more in-depth tutorial
on ROC analysis, we refer the reader to Refs. 23, 26,
and 27.

In our forecasting context, individual forecasters
and forecasting systems produce a probability judg-
ment on a continuous scale about E. We can obtain
binary classifications by comparing the probability
judgments against a decision threshold. For all
cases where the judgment exceeds or equals the
threshold, we predict E, and ¬E otherwise. ROC
analysis provides a graphical means to explore the
tradeoff between hit rates and false alarm rates at
various decision thresholds. The hit rate (also known

as sensitivity) measures the proportion of those cases
in which E occurs (or is true) that the decisionmaker
(DM) (or system) forecasted E. The false alarm
rate (also known as the complement of specificity,
or 1-specificity) measures the proportion of those
cases in which E does not occur (i.e., ¬E is true) that
the DM (or system) forecasted E. The ROC curve
specifically traces the hit rates against the false alarm
rates under decision thresholds that vary from the
minimum to the maximum value (see Fig. 1). High
decision thresholds lead to relatively few forecasts
of E and therefore to low hit and false alarm rates;
and conversely, low decision thresholds lead to many
forecasts of E and correspondingly high hit and false
alarm rates.

2.1. The AUC

The area under the ROC curve traced by the hit
and false alarm rates as the decision threshold varies
serves as a useful summary statistic of performance.
A perfect AUC of 1 is achieved when all probabil-
ity judgments associated with E are higher than judg-
ments associated with ¬E. This perfect performance
yields a single point at (0, 1), the resulting ROC con-
sists of a line from (0, 0) to (0, 1) and another from
(0, 1) to (1, 1), and as a consequence AUC = 1. A
random guessing strategy (e.g., generating random
probabilities between 0 and 1) leads to an AUC of
0.5.6 An AUC smaller than 0.5 is indicative of a sys-
tem that is diagnostic but where better performance
can be obtained by reporting the complement of the
probability judgments. In many practical situations,
the AUC lies between 0.5 and 1. A chance-corrected
AUC is also known as the Gini coefficient,(28) G (i.e.,
G = 2AUC − 1, the area above the diagonal).

The AUC has a natural interpretation as a rank-
ing measure: it is equivalent to the probability that
a forecaster assigns a higher probability judgment to
a randomly chosen E relative to a randomly cho-
sen ¬E. Therefore, what matters are the ordinal re-
lationships among the judged probabilities and not
the numerical values of the probabilities per se. For
example, if all forecasts associated with E and ¬E
are judged with values of 0.51 and 0.49, respec-
tively, this would lead to a perfect AUC value of
1 even though the forecasts are hardly separated

6Note that while a random guessing strategy always leads to an
AUC of 0.5, the converse is not necessarily true. An AUC of 0.5
and an ROC curve close to the diagonal is required to indicate a
random guessing strategy.
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Fig. 1. An example of constructing an empir-
ical ROC curve from probabilistic forecasting
judgments. The probabilistic judgments from 20
problems are arranged in order of magnitude
along with the associated resolution (1=E is
true, 0=¬E is true). The ROC plot shows the
hit rate against the false alarm rate under a va-
riety of decision thresholds varying from 0 to 1.
One practical method considers only K + 1
thresholds when there are K unique values ob-
served in the forecasts. In this example, this
method leads to 21 possible thresholds. Five ex-
ample decision thresholds are shown in (a) with
corresponding ROC points in (b). One way to
derive the AUC value is by calculating the area
under the curve shown in gray. For this exam-
ple, the AUC is 0.91.

quantitatively. In this example, what matters is that
the forecasts associated with E are consistently higher
than the forecasts associated with ¬E. Any AUC
value higher than 0.5 indicates that the forecaster is
performing above chance in discriminating between
E and ¬E.

One attractive feature of the AUC is that it is in-
dependent of any threshold required for making de-
cisions (i.e., deciding whether a forecast should lead
to an E or ¬E decision based on the judged proba-
bility). This feature is useful in deployment contexts
where the costs of misclassifications (e.g., incorrectly
predicting the occurrence of an event or missing the
actual occurrence of an event) cannot be determined
in advance, and a measure is needed that averages
over a wide range of misclassification costs and
associated decision thresholds. From another per-
spective, given a well-established ROC, the DM
can estimate hit and false alarm probabilities as-
sociated with any forecast, combine them with her
cost-benefit matrix, and make a decision accordingly.
Another attractive feature of the AUC is that it
is independent of the extent to which forecasts
are calibrated. As we indicated above, any strictly
monotonic transformation of the probabilistic fore-
casts will yield the same AUC. What matters are
the ordinal relationships among the probabilities
assigned to E and ¬E. This is important because
statistical techniques can be used to calibrate indi-
vidual forecasters,(29) but the fundamental measure
of interest is the discrimination ability of individual
forecasters. Indeed, because it is only the ordinal
relationships among the judgments that are needed
for the AUC, judged probabilities are not required.
A discrete ordered scale also would do. For example,

a seven-category rating scale might be used with
ratings such as very unlikely, unlikely, somewhat
unlikely, 50-50, somewhat likely, likely, and very
likely. Therefore, the same measure of diagnosticity
can be applied to both probabilistic forecasts based
on probability judgments and judgments based on a
discrete ordered scale.

3. BETA-SDT MODELS FOR PROBABILISTIC
FORECASTS

In the basic SDT approach to forecasting of
dichotomous outcomes, all resolved forecasting
problems are separated into two classes: problems
where the event of interest occurred (E, or “sig-
nal” trials) and problems where the event did not
occur (¬E, or “noise” trials). Prior applications of
SDT to forecasting(4,18–20,30) have assumed that the
forecasting system produces discrete judgments in
the form of warnings—either a warning is produced
about an upcoming event or it is not. Models for
this case have often taken the standard Gaussian
SDT approach where internal evidence values
are sampled from latent Gaussian distributions.
These values are then compared against a decision
threshold. For cases where the evidence exceeds
the threshold, a warning is issued. It is important to
note that although the vast majority of SDT models
make Gaussian assumptions, the underlying theory
of signal detection does not depend on the form of
the distributions and other types of distributions are
possible.(31) In principle, the standard SDT approach
can be extended to probability judgments on a rating
scale by assuming that the judgments fall into a
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(b)Fig. 2. Illustration of the Beta-SDT model and
ROC analysis. In the SDT analysis, all resolved
forecasting problems are separated into two
classes: problems where the event of interest oc-
curred (E; “signal” trials) and problems where
the event did not occur (¬E; “noise” trials). The
probabilistic forecasts in these two classes are
modeled by two separate Beta distributions, f1
and f0 (a). The ROC plot in (b) traces the hit
and false alarm rates for all possible decision
thresholds. Five points are marked correspond-
ing to the thresholds shown in (a). The AUC
value corresponds to the area under the curve
shown in gray. In this example, the AUC is 0.82.

predetermined number of ordered categories (e.g.,
0–0.1, 0.1–0.2, etc.), which requires multiple internal
response criteria to be estimated.

The key difference in our approach is that we
model the judgments as arising from a simple family
of distributions based on the Beta distribution, as op-
posed to the normal. In addition, our approach does
not require any response criteria to be estimated.
Fig. 2 illustrates the basic approach. The probabilistic
forecasts for the two classes of problems are modeled
by two separate probability distributions. We assume
that f1(y) and f0(y) describe the density functions for
probabilistic forecasts y associated with signal and
noise trials, respectively. Just as in standard SDT, the
parameters that govern the shape and location of the
signal and noise distribution are latent and need to be
estimated on the basis of the observed data. The main
difference is that in standard SDT, the observed data
consist of discrete judgments or rating scales whereas
in our approach, the observed data consist of contin-
uous probability judgments. These judgments are as-
sumed to be the direct result of a sampling process
from the underlying signal and noise distribution. In
standard SDT, the internal evidence values sampled
from the signal and noise distributions are first com-
pared to a decision or rating scale threshold in order
to generate a discrete judgment.

The ROC plot, then, is simply a plot of the decu-
mulative distribution (i.e., one minus the cumulative
distribution) under f1(y) as a function of the decu-
mulative under f0(y), calculated for each point from
0 to 1 on the probability judgment axis. The former is
the hit rate, the probability of calling a signal a signal
and the latter is the false alarm rate, the probabil-
ity of calling a nonsignal (noise) a signal . Note that
this process is conceptually identical to that used to
create ROC plots in standard SDT, in which the hit

and false alarms rates are the areas to the right of the
threshold under the signal and noise distributions, re-
spectively, for any given threshold location.

In the remainder of this section, we describe how
we can model the underlying belief distribution fk

with a Beta distribution with separate parameters for
the signal (k = 1) and the noise (k = 0) distributions.
The Beta distribution7 is a natural distribution for
modeling probabilistic forecasts(31) because it inher-
ently produces values bounded between 0 and 1.

We will describe three versions of Beta-SDT
models for the evaluation of probabilistic forecasts.
The first model applies to situations where a number
of individual forecasters are forecasting on overlap-
ping sets of problems and the diagnosticity of each
individual forecaster needs to be assessed. In this
approach, we use a hierarchical Bayesian model to
address data sparsity problems, in which some in-
dividual forecasters produce judgments on a small
number of problems and some problems have only
a small number of forecasts. The second model ex-
tends the hierarchical approach to model differences
among forecasting domains and the time of judgment
relative to the forecasting horizon. In this approach,
the signal and noise distributions are made function-
ally dependent on the time of judgment as well as
the forecasting domain, allowing us to estimate how
fast diagnosticity improves as forecasters come closer
to the forecasting horizon and more accurate infor-
mation becomes available. Finally, the third model,
achieved by removing the hierarchical component
from the first model, applies to situations where only

7The Beta distribution has the density function fk(y|ak, bk) =
1

B(ak,bk) yak−1(1 − y)bk−1, where B(a, b) is the Beta function,

B(a, b) = ∫ 1
0 ya−1(1 − y)b−1dy.
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a single forecasting system or individual forecaster is
evaluated and there are no issues of data sparsity.

3.1. Basic Model

The hierarchical model handles data sparsity by
associating judges with their own signal and noise dis-
tributions, pooling statistical strength across judges,
and estimating the distributions at the individual
judge level.

To introduce notation, let N be the number of
resolved events and M be the number of judges.
Let yi, j represent the probabilistic forecast of the
ith judge for the jth event where i ∈ {1, . . . , M} and
j ∈ {1, . . . , N}. Let xj represent the coded outcome
for Event j , setting xj = 0 if the jth event did not
occur (corresponding to a noise trial) and xj = 1 if
the jth event did occur (corresponding to a signal
trial).

Each forecast yi, j is assumed to arise from one of
two Beta distributions (corresponding to the signal
and noise distributions) depending on the outcome
xj :

yi, j ∼ Beta (ai,0, bi,0)) , if xj = 0,

Beta (ai,1, bi,1) , if xj = 1.
(1)

The parameters ai,k and bi,k, where k ∈ {0, 1}, de-
termine the shapes of the Beta distributions for the
signal and noise conditions. In the model, we de-
termine these parameters in terms of mean and
precision parameters:

ai,k = μi,k exp(ξi,k)

bi,k = (1 − μi,k) exp(ξi,k). (2)

The first parameter μ, 0 < μ < 1, is the mean of the
distribution. The second parameter ξ is a precision
parameter that determines how concentrated the dis-
tribution is around the mean. At the next level, we as-
sume that the means of the individual judge distribu-
tions are sampled from a logit-normal distribution:

logit(μi,k) ∼ N(μ∗
k, φ

∗
k), (3)

where μ∗
k and φ∗

k are the mean and precision of this
group-level distribution.

In Equation (2), it is convenient to use an ex-
ponential transformation on ξ . This allows us to
model the precision parameters ξi,k by a normal
distribution:

ξi,k ∼ N(δ∗
k, τ

∗
k ). (4)

To complete the model, we need to specify prior
probability distributions on the parameters μ∗

k, φ∗
k , δ∗

k,
and τ ∗

k . One approach would be to inform our pri-
ors by previous experimental research or theory to
find plausible ranges for these parameters. However,
we are unaware of prior research (or theory). There-
fore, we set the priors with the goal to be as unin-
formative as possible about the means and precisions
of the probabilistic forecasts consistent with compu-
tational simplicity. Specifically, we use normal priors
on the means and inverse Gamma (IG) priors on the
precisions:

μ∗
k ∼ N(0, 0.35), (5)

φ∗
k ∼ IG(1, 1), (6)

δ∗
k ∼ N(2, 0.01), (7)

τ ∗
k ∼ IG(1, 1). (8)

The N(0, 0.35) prior on μ∗
k in Equation (5) was

chosen such that the means μi,k in the probability
scale (i.e., after the inverse logit transform in Equa-
tion (3)) are approximately uniform. The IG(1,1) pri-
ors in Equations (5) and (7) are noninformative pri-
ors for precision parameters. The prior on δ∗

k places
most density on low precisions (high variances). This
is useful because previous research has found the
Beta distribution’s precision parameter to generally
be overestimated.(32) However, this distribution also
places enough density on high precisions to counter-
act the density on low precisions, resulting in a min-
imally informative prior. For similar priors in other
Beta-distributed models, see Ref. 33.Taken together,
these priors only provide minimal information about
μi,k and ξi,k.

3.2. Incorporating Temporal and Domain Effects

We can extend the hierarchical model by incor-
porating the effects of the time of judgment and fore-
casting domain. With respect to forecasting domain,
we assume that it is easier to provide accurate fore-
casts in some domains than in others and so they will
be associated with higher diagnosticity, and therefore
greater area under the ROC. With respect to the role
of time, we expect that forecasts made closer to the
forecasting horizon will be more accurate than those
made earlier in time.
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We incorporate time effects by allowing the
mean μ of the signal and noise distributions in
Equation (3) to vary as a function of time. We con-
sider growth functions of the form logit(μ) = b +
exp(−γ t)(a − b), where t is the time at which the
judge forecasts the event, expressed in days before
resolution, a is the intercept when t = 0, b is the
asymptotic value as t approaches infinity, and γ is a
scaling parameter. There are many ways to parame-
terize a, b, and γ on the basis of item, person, and
outcome differences.

To introduce notation, let K be the number of
forecasting domains (K < N), and c j ∈ {1, . . . , K}
represent the forecasting domain for the jth event.
In the hierarchical model, we replace Equation (3)
with:

logit(μi, j ) = b1,i,xj + b3,c j ,xj + exp(−γc j ti, j )

(b0,i,xj + b2,c j ,xj − b1,i,xj − b3,c j ,xj )

b0,i,xj ∼ N(μ0,xj , φ0,xj )

b1,i,xj ∼ N(μ1,xj , φ1,xj ) (9)

b2,c j ,xj ∼ N(μ2,xj , φ2,xj )

b3,c j ,xj ∼ N(μ3,xj , φ3,xj ),

where ti j is the time at which Judge i forecasted
Event j , expressed in days before resolution. The
b1 and b3 parameters, respectively, account for fore-
caster and domain differences in the intercept of the
growth function, while the b0 and b2 parameters, re-
spectively, account for forecaster and domain differ-
ences in the asymptote of the growth function. Note
that in this parameterization, the scaling variable γk

in the growth function depends on the forecasting do-
main k, allowing for differences in the temporal dy-
namics of diagnosticity across domains.

To complete the model, we place uninforma-
tive priors on the means and precisions of the b
parameters:

μ0,xj ∼ N(0, 0.35), μ1,xj ∼ N(0, 0.35),

μ2,xj ∼ N(0, 0.35), μ3,xj ∼ N(0, 0.35),

φ0,xj ∼ IG(1, 1), φ1,xj ∼ IG(1, 1),

φ2,xj ∼ IG(1, 1), φ3,xj ∼ IG(1, 1). (10)

Note that these priors are equivalent to the priors
used in Equations (5) and (6) and lead to an approx-
imately uniform distribution (a priori) over the b pa-
rameters.

We also place a uniform prior on the temporal
scaling variable γk:

γk ∼ Uniform(0.0001, 0.75). (11)

This prior allows for a flexible range in the temporal
scaling of the growth function.

3.3. Nonhierarchical Model

Finally, we can also evaluate diagnosticity of a
single forecaster in situations where data sparsity is
not an issue. In this case, we can create a nonhierar-
chical model variant of the basic model. To simplify
notation, we can omit the index for judges and let yj

represent the probabilistic forecast for event j where
j ∈ {1, . . . , N}. Each forecast yj is sampled from ei-
ther the signal and noise distribution depending on
the outcome xj :

yj ∼ Beta (μ0 exp(ξ0), (1 − μ0) exp(ξ0)) if xj = 0,

Beta (μ1exp(ξ1), (1 − μ1) exp(ξ1)) if xj = 1.

(12)
Instead of specifying group-level distributions as the
basic model, we can complete the model by placing
priors on the means and precisions μk and ξk, respec-
tively. As before, we place a normal prior on the logit
of μk and a normal prior on ξk:

logit(μk) ∼ N(0, 0.35), ξk ∼ N(2, 0.01). (13)

3.4. ROC and AUC Analysis with
Beta-SDT Models

Once the signal and noise densities ( f1 and f0,
respectively) are estimated in any of three modeling
approaches we described, the procedure for calculat-
ing the hit (F1) and false alarm rates (F0) involves
integrating over the signal and noise densities f1 and
f0:

F1 =
∫ 1

c
f1(y)dy, and (14)

F0 =
∫ 1

c
f0(y)dy, (15)

where c is a point on the probability forecast axis.
Based on the signal and noise densities or the hit and
false alarm rates, the AUC can then be computed(24)
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by calculating:

AUC=
∫

y1>y2

∫
f1(y1)dy1 f0(y2)dy2 =

∫ 1

0
F1(y)dF0(y).

(16)
For the Beta distribution, the AUC has an analytic
expression if the parameters of the Beta distribution
have integer values.(31) This does not apply in our sit-
uation, and we have to use numerical integration to
calculate Equations (14)–(16).

4. DATA AND MODEL ESTIMATION

To evaluate the signal detection modeling ap-
proach for probabilistic forecasting judgments, we
use data from a total of 1,309 participants col-
lected by the aggregative contingent estimation sys-
tem (ACES), a large-scale project for collecting and
combining forecasts of many widely dispersed indi-
viduals (http://www.forecastingace.com/aces). A pre-
liminary description of the data-collection procedure
can be found in Ref. 5.Volunteer participants were
asked to estimate the probability of various future
events’ occurrences, such as the outcome of presiden-
tial elections in Taiwan and the potential of a down-
grade of Greek sovereign debt. Participants were
free to log on to the website at their convenience and
forecast any items of interest. A median of 52 fore-
casters contributed to each forecasting problem. For
this article, we focused on a subset of 176 resolved
binary forecasting problems. The forecasting prob-
lems were categorized into a priori K = 5 forecast-
ing domains, including politics and policy (N = 82),
business and economy (N = 39), science and tech-
nology (N = 16), military and security (N = 23),
and sports, health, and social (N = 16). All forecast-
ing problems involved a standard way of framing the
event and were presented in the form: Will event
A happen by date B? This last constraint excluded
a small number of events from the current analysis
where the event was framed in terms of a deviation
from status quo (e.g., will Aremain true by date B?).
In this data set, 39 of the 176 events happened before
the closing date (xj = 1), such that the base rate of
event occurrence, x̄ = 0.22.

4.1. Parameter Inference

We used JAGS(34) to estimate the joint poste-
rior distribution of each set of model parameters in
the Beta-SDT models. For each model, we obtained

1,000 samples from the joint posterior after a burn-in
period of 1,000 samples, and we also collapsed across
seven chains.

4.2. Performance Measures

We use a number of measures to evaluate fore-
casting performance, including AUC, Brier scores,
and measures of (mis)calibration, as explained be-
low. For each of these measures, we evaluate individ-
ual forecasters as well as aggregates of probabilistic
forecasts. To simplify notation, we omit the indexing
over individuals and the resulting value of the perfor-
mance statistic refers to a specific forecaster or aggre-
gation method.

4.2.1. AUC

One of the advantages of the posterior sampling
approach in the Beta-SDT models is that we can in-
fer distributions of the AUC value. We obtain these
distributions by calculating the estimated signal and
noise densities f0 and f1 for each posterior parameter
sample. We can then calculate Equations (14)–(16)
for each posterior sample in order to get distribu-
tions over the AUC value. From these distributions,
we will derive the 95% credible intervals. We will
also calculate the empirical AUC value as explained
in Section 2 when sufficient data are available. This
allows us to compare the results from the Beta-SDT
procedure with the results obtained through standard
empirical ROC analysis.

4.2.2. Global Calibration Offset (GCO)

A previous study using the same data found that
many individual forecasters are poorly calibrated and
systematically overestimate the likelihood of future
events.(29) We will evaluate the calibration of fore-
casters with a single measure that assesses the de-
gree to which forecasters overestimate the likeli-
hood of future events. Our measure, which we call
GCO, measures the log-difference between the mean
(expected) probabilistic forecasts, derived from the
Beta-SDT model, and the base rate of events. Specif-
ically, the GCO is based on the contrast between the
expectation of probabilistic forecasts ŷ derived from
the Beta-SDT model and the base rate of events x̄:

GCO = log(ŷ/x̄)

= log
(

(x̄ ŷ1 + (1 − x̄)ŷ0) /x̄
)
. (17)



Bayesian Signal Detection Models 443

This definition of GCO assumes that x̄ can never
be zero and that any processes that lead to over-
and underestimation have multiplicative effects on
the judged probabilities.8 Note also that in the sec-
ond equation, the expectation of probabilistic fore-
cast is based on the empirical base rates of event
occurrence—it is simply the average of the (inferred)
means of the signal and noise distributions weighted
by the empirical base rates of event occurrence.
Overall, a GCO value is greater (less) than zero if the
expected probabilistic forecasts are greater (smaller)
than the empirical base rate. A GCO value of zero in-
dicates that there are neither overestimation nor un-
derestimation errors.

4.2.3. Brier Scores and Mean Predictive Error
(MPE)

Finally, we will also evaluate models through use
of the Brier score.(35–37) Because all events involved
only two outcomes, the Brier score for the jth event
can be expressed as:

Bj = (xj − yj )2, (18)

where yj is the probabilistic forecast for Event j and
xj is the resolution of the jth event. Thus, in this def-
inition of the Brier score, the best score Bj is zero,
and the worst possible score is one. After the Brier
scores are obtained for each event, we compute the
MPE by averaging the Brier scores across the num-
ber of events N:

MPE = 1
N

N∑
j=1

Bj . (19)

4.3. Forecast Aggregation Methods

There exists a large body of work focused on
the use of statistical models for combining individual
subjective probability judgments into a single prob-
ability estimate.(38–42) A simple form of aggregation,
namely, the unweighted linear average, has proven to
be effective in many situations.(35) The goal of this ar-
ticle is not to propose novel aggregation methods for
probabilistic forecasts. Instead, we investigate a num-
ber of simple aggregation procedures(29) that allow us
to highlight the effects of aggregation on diagnostic-
ity and GCO.

8An alternative definition of GCO could be based on the differ-
ence between ŷ and x̄.

� ULinOP. The unweighted linear opinion pool
(ULinOP) is simply the unweighted average
of probabilistic forecasts across judges. Thus,
predictions λ j are obtained by evaluating λ j =
1

nj
(
∑nj

i=1 yi, j ), where nj is the number of re-
sponses obtained on event j .

� Calibrated ULinOP. The ULinOP is not neces-
sarily calibrated(29,42) and can be associated with
systematic forecasting errors. A simple aggrega-
tion method is to recalibrate the unweighted av-
erage using a monotonic transformation func-
tion f such that λ j = f ( 1

nj
(
∑nj

i=1 yi, j )). In this
procedure, we chose the linear in log-odds
transformation function(43) to recalibrate the
unweighted average, where f (p) = δpγ /(δpγ +
(1 − p)γ ), and γ and δ are parameters. We fol-
lowed the procedures of Ref. 29 to estimate
these parameters for our data set.

� Calibrated Time-Weighted Average. Another
procedure is to take the time of judgment rel-
ative to the forecasting horizon into account.
The idea is to upweight forecasts closer to
the forecasting horizon as these are expected,
on average, to be more accurate. We imple-
mented this in a weighted averaging scheme
λ j = f ((

∑n
i=1 wi, j yi, j )/(

∑n
i=1 wi, j ))), where the

weight for each judgment is based on an expo-
nential decay function, wi, j ∝ exp(−ti, j c), ti, j is
the time of judgment expressed in number of
days before the forecasting horizon, and c is a
scaling constant.

� Guess Baseline. Our final forecasting procedure
does not involve aggregating the forecasts at all,
but instead relies on the base rate of event oc-
currence such that λ j = x̄. Therefore, using this
method, a constant probabilistic forecast is used
across all forecasting problems. This method re-
sults in zero GCO because the average fore-
casted probability exactly matches the base rate.
Even though this particular method is not psy-
chologically interesting (as it does not rely on
human judgment) and computationally simplis-
tic (there is no procedure for estimating the
base rate in an online fashion), it is helpful for
illustration purposes because it is associated, by
definition, with zero diagnosticity (i.e., an AUC
value of 0.5) and has zero GCO.

5. RESULTS

In the sections below, we evaluate forecast-
ing performance of individual forecasters as well as



444 Steyvers et al.

0 0.2 0.4 0.6 0.8 1
0

1,000

2,000

3,000
All Judges

F
re

qu
en

cy

Signal
Noise

0 0.2 0.4 0.6 0.8 1
0

1

2

3

D
en

si
ty

Forecast

Signal
Noise

Fig. 3. Empirical results and posterior predictive distributions of
the hierarchical Beta-SDT model. The top panel shows the fre-
quency counts of the probabilistic forecasts across all judges sep-
arated into problems where the event did or did not occur (signal
and noise trials, respectively). The bottom panel shows the poste-
rior predictive distributions when sampling new judges from the
population-level distributions in the model.

forecast aggregates using various Beta-SDT models.
We first describe the results of the basic hierarchical
model and show individual forecaster differences in
diagnosticity and calibration. We then show how we
can use the nonhierarchical model to evaluate fore-
cast aggregates. By combining the performance mea-
sures for individual forecasters and aggregates into
one visualization, we show how forecast aggregates
improve on the diagnosticity of the majority of indi-
vidual forecasters. Finally, we show how the hierar-
chical model with a temporal component allows us to
evaluate the temporal changes in forecasting perfor-
mance as well as differences in those dynamics across
forecasting domains.

5.1. Evaluating Individual Forecasters

The top panel of Fig. 3 shows the frequency dis-
tribution of probabilistic forecasts across all judges.
Because the majority of events did not occur, there
are more probabilistic forecasts associated with noise
trials than signal trials. The results show that the dis-
tribution of forecasts on noise trials is skewed toward

the lower probabilities. In contrast, the distribution
of forecasts on signal trials is fairly uniform with no
indication that higher probabilistic forecasts are fa-
vored for events that eventually will occur.

The bottom panel of Fig. 3 shows the posterior
predictive distribution of forecasts for the basic hi-
erarchical model. These correspond to the forecast
distributions for a new (simulated) judge sampled
from the group-level distributions using the distribu-
tions in Equations (3) and (4). These posterior pre-
dictive distributions describe what the forecasts of an
“average” judge looks like according to the model.
Note that the empirical distributions and predictions
of the model match reasonably well with the one ex-
ception that the model favors a U-shaped Beta distri-
bution for the signal trials in contrast to the relatively
flat empirical distribution.

Fig. 4 illustrates the results of the hierarchical
model for three individual judges. The top panels
show the empirical distributions of forecasts. Note
that judge #133 performs reasonably well and tends
to separate forecasts for signal and noise trials. Judge
#935 shows poor performance and does not seem
to distinguish forecasts based on eventual outcome.
Judge #1198 highlights a common issue when ana-
lyzing sparse forecasts from individual users. This
judge has provided only a single forecast for a prob-
lem where the event did not occur. The middle pan-
els show the inferred distributions for these individ-
ual judges. Note that for judge #1198, the model is
able to infer a signal distribution even though the
judge never contributed any forecasts for this condi-
tion. The hierarchical model in this case simply uses
the parameter estimates at the group level to infer
a distribution. The bottom panels show the inferred
ROC curves. Importantly, the ROC curves shown
are the mean curves. The model actually infers a dis-
tribution over ROC curves from which a distribution
over AUC values can be calculated. The 95% cred-
ible intervals of AUC values are shown in the fig-
ure. Note that the model infers the AUC for judge
#935 around 0.5, consistent with the empirical distri-
butions of forecasts not discriminating between sig-
nal and noise trials. For judge #1198, the range of
AUC values is much larger, indicating large uncer-
tainty about the diagnosticity of this judge. The range
includes AUC = 0.5, suggesting the judge might be
completely undiagnostic, but most of the range ex-
ceeds 0.5, which implies that it is likely that the judge
performs better than chance. This inference is based
on only a single forecast (and, of course, on the as-
sumptions in the model). However, this one forecast
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Fig. 4. Results of the hierarchical Beta-SDT
model for three individual judges. The top row
shows the frequency counts of the judged prob-
abilities separated into problems where the event
did or did not occur (filled and open squares, re-
spectively). The middle row shows the estimated
Beta distributions. The bottom row shows the
ROC curves with the 95% credible interval of
the AUC values. Note that the left and middle
columns show the results of judges with relatively
many judgments, one associated with a high AUC
(left column) and the other with a chance-level
AUC (middle column). The right column shows
a judge with a single probability judgment associ-
ated with an event that did not occur. This judge
is associated with an expected AUC better than
chance but there is a great uncertainty about the
exact AUC value.

was quite accurate, which makes it more likely than
not (but by no means guaranteed) that this judge will
perform well on other problems.

Fig. 5 shows the inferred AUC distributions for
individual forecasters. The results show that the ma-
jority of individual forecasters have an AUC value
around 0.65, but that there are significant individual
differences—some forecasters appear to be perform-
ing at or near chance whereas others are much better
than average.

5.2. Evaluating Forecast Aggregates

Up to this point, we have observed the diagnos-
ticity of individual forecasters. We can also investi-
gate how forecasting performance, as measured by
AUC, MPE, and GCO, changes when aggregating
over individual forecasts. Table I and Fig. 6 show
the forecasting performance for the four aggregation
procedures. The results show the AUC values de-
rived from empirical ROC analysis as well as the non-
hierarchical Beta-SDT model. The values are quite
similar to each other, showing that the two proce-
dures result in the same AUC (as long as the data
set is not sparse). The results also show that the ef-
fect of (model) calibration (row 2 of Table I) has
no effect on the AUC value, but it does remove the

overestimation bias (GCO > 0). This is not surprising
as the calibration is designed to remove the system-
atic error (leading to zero GCO) but cannot improve
diagnosticity—the calibration procedure involves a
strictly monotonic transformation of the probabilis-
tic forecast and the AUC is not sensitive to such
transformations. The results also show that taking a
weighted average leads to higher diagnosticity rela-
tive to an unweighted average (compare the second
and third rows of Table I). As a reminder, in the
weighted average procedure, recent forecasts are up-
weighted relative to older forecasts. The difference in
diagnosticity demonstrates that forecasters are bet-
ter able to discriminate between signal and noise as
time approaches the forecasting horizon. Finally, the
results show that the guessing strategy involving a
constant baseline probability is associated with zero
diagnosticity (i.e., an AUC around 0.5) and no over-
estimation (i.e., a GCO value of 0).

Interestingly, the MPE based on Brier scores
shows significant changes across all four methods.
This is because the Brier score does not separate be-
tween diagnosticity and bias components of perfor-
mance. This could potentially lead to the wrong con-
clusions. The guessing strategy, for example, shows
an MPE that is similar to the MPE of the ULinOP.
Based on these results, one might question whether
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Fig. 5. Estimated AUC values of individual forecasters using the hierarchical Beta-SDT model. Panel (a) shows the mean AUC values for
each forecaster ordered from worst to best along with the 95% credible interval shown in the gray area. Panel (b) shows the distribution of
AUC values across forecasters.

Table I. AUC, Global Calibration Offset (GCO), and MPE (Brier) Scores for Four Aggregation Methods

Model Empirical AUC AUC GCO MPE (Brier)

ULinOp 0.834 0.835 (0.753–0.901) 0.605 (0.552–0.656) 0.153 (0.135–0.171)
Calibr. ULinOp 0.828 0.822 (0.732–0.892) 0.042 (−0.077–0.150) 0.120 (0.090–0.152)
Calibr. Weighted Average 0.931 0.932 (0.873–0.968) 0.129 (0.012–0.238) 0.072 (0.052–0.098)
Guess Baseline 0.492 0.488 (0.381–0.592) −0.009 (−0.016 to −0.001) 0.166 (0.131–0.202)

Notes: The empirical AUC is the area under the curve derived from empirical ROC analysis. AUC is the area under the curve estimated by
the nonhierarchical Beta-STD model. The ranges provide the 95% confidence interval.

human forecasters exceed the performance of sim-
ple guessing strategies that do not rely on any hu-
man judgment. However, based on the AUC, it is
clear that aggregates of human probabilistic forecasts
carry important diagnostic value that is not present in
random guessing strategies.

Overall, the results for AUC and GCO show that
some aggregation procedures perform well on diag-
nosticity but not calibration, and vice versa. There-
fore, the AUC can be used to identify aggregation
procedures that perform well on diagnosticity, which
is arguably the most important goal when developing
aggregation methods.

5.3. Comparing Individual Forecasters
and Aggregates

We can also investigate how the performance
of forecast aggregates compares with the perfor-
mance of individual forecasters. Fig. 7, left panel,
shows the AUC plotted against GCO for individual

forecasters as well as the four aggregation meth-
ods. The results show that all aggregation procedures
except the guessing heuristic are associated with a
much higher diagnosticity than the majority of in-
dividual forecasters. However, just taking the un-
weighted average (ULinOP) does not reduce the ten-
dency to overestimate event probabilities (measured
by GCO) relative to the individual forecasters. This
result is not surprising because averaging is not ex-
pected to remove any systematic bias. Visualizing the
aggregation procedures and individual forecasters in
the AUC versus GCO space clarifies which compo-
nents of forecasting performance are improved un-
der the different aggregation procedures.

Fig. 7, right panel, shows the Brier scores for in-
dividual forecasters in the AUC versus GCO space.
Note that many individual forecasters have similar
Brier scores but different AUC and GCO values.
Fig. 8 plots the Brier score as a function of AUC with
a point for each forecaster and points with 95% cred-
ible intervals for the various aggregation methods.
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Fig. 6. Results of the basic Beta-SDT model applied to four aggregation models. The top row shows the frequency counts of the aggregated
judgments across forecasting problems separated into problems where the event did or did not occur (solid and dashed lines, respectively).
The middle row shows the estimated Beta distributions. The bottom row shows the ROC curves with the 95% credible interval for the AUC
values.

Fig. 7. Estimated global calibration offset (GCO) plotted against estimated AUC values. The left panel shows individual forecasters as well
as aggregation models. The right panel indicates the Brier scores for individual forecasters with the colormap as shown on the right side.
For individual forecasters, only the mean performance numbers are visualized.



448 Steyvers et al.

0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AUC

B
rie

r 
S

co
re

ULinOp
Calibr. ULinOp
Calibr. Weighted Average
Guess Baseline
Individual Forecaster
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This visualization highlights the differences between
the two indices. Note the severe nonmonotonicity
in the relationship. This nonmonotonicity occurs be-
cause, as Yates (1982) has demonstrated, the Brier
score reflects three components: diagnosticity, cali-
bration, and problem difficulty (base rate). For any
given base rate, procedures or methods that decrease
Brier scores could be either improving calibration
or diagnosticity. Because calibration can always be
improved via monotonic transformation, the more
fundamental issue is to assess improvement in di-
agnosticity. AUC provides this measure uncontam-
inated by other factors.

Fig. 7 also shows a correlation between the esti-
mated AUC and GCO values. Individual forecasters
with higher diagnosticity tend to overestimate event
probabilities to a lesser degree. This correlation
stems from the fact that the base rate plays a role in
both the GCO and AUC measures. In an analysis of
the prior predictive distribution(44) of the model, we
found that a small negative (positive) correlation can
be expected, a priori, between AUC and GCO, when
the base rate of events falls below 0.5 (above 0.5).

5.4. Evaluating the Effects of Time and
Forecasting Domain

Finally, we will evaluate how the performance
of individual forecasters changes over time and how

the dynamics of this change varies among forecast-
ing domains. Fig. 9 shows the empirical mean fore-
casts conditioned on event occurrence and nonoccur-
rence computed over a number of temporal ranges.
The figure also shows the posterior predictive means
(lines; collapsed across judges) from the hierarchical
model that incorporates time effects. Note that there
is a reasonable overlap between theory and data.
For some forecasting domains, such as science and
technology, there are only a few forecasting prob-
lems (N = 16), which makes the estimation of em-
pirical means difficult. The majority of forecasting
problems in the current data set fall in the politics
and policy domain (N = 82), which leads to a clearer
picture of the temporal dynamics. Overall, the results
show that the signal and noise distributions separate
when time approaches the forecasting horizon.

Fig. 10 shows the mean estimated AUC (across
judges) as a function of time and forecasting domain.
Note that these trends show the performance of the
average individual forecaster. The figure also shows
the 95% credible interval as dashed lines. The com-
parisons among forecasting domains reveal some in-
teresting differences in temporal dynamics between
domains. For example, for the politics and policy do-
main, the AUC quickly increases when fewer than 20
days remain in the forecasting period, suggesting that
the type of problems in this domain can be resolved
with recent information. In the domain of business
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Fig. 9. Empirical and theoretical means of probabilistic forecasts given signal (event occurrence) and noise (event nonoccurrence), respec-
tively, as a function of time (horizontal axis) and forecasting domain (panels). Note that these means are based on the average individual
forecaster. Signal and noise distributions are represented by solid and dashed lines (model) and squares and circles (empirical data), respec-
tively. Note that time is expressed as the number of days before the forecasting horizon. Thus, time from problem closure decreases to the
left on the horizontal axis.

and economy on the other hand, the AUC changes
slowly, indicating that accurate information available
to forecasters does not accumulate quickly over time.
The most important message in Fig. 10, however, is
the general one that AUC can quantify diagnosticity,
or forecasting difficulty, as a function of domain and
horizon.

6. DISCUSSION

In this article, we introduced a novel Beta-
SDT modeling approach to describing and evalu-
ating probabilistic forecasts. We showed that the
Beta-SDT model can be estimated on the basis of
sparse data using Bayesian hierarchical modeling
techniques. The hierarchical model allows us to es-
timate the underlying belief distributions for individ-
ual forecasters as well as for the group of forecasters
as a whole. Furthermore, the model provides esti-
mates of diagnosticity (AUC) along with credible in-
tervals for individuals or groups, overall or for de-

fined domains collapsed over time or as a function of
time expressed as forecasting horizon.

Two features not emphasized earlier bear men-
tioning here. The first is that the GCO measure
introduced above addresses a global aspect of
calibration, which is forecasters’ tendency to over-
estimate (or underestimate, if that turns out to be
the case) the likelihood of events. By distinguishing
AUC and GCO at the level of individual forecasters,
we can compare the performance of a large number
of forecasters with aggregates of the individual
forecasts. Going beyond what we already know
about the benefits of forecast aggregation,(29) Figs.
7 and 8 show that any of the aggregation methods
improve diagnosticity (AUC) relative to the indi-
vidual forecasts, some methods more than others,
whereas recalibration is required to reduce the
GCO. Aggregation via calibrated weighted averag-
ing provides better AUC than does aggregation via
the calibrated ULinOp model, but at the expense
of GCO. We argue that this tradeoff is worthwhile
as, within this framework, what is important are
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Fig. 10. AUC of the average individual
forecaster as a function of time (horizon-
tal axis) and forecasting domain (panels).
The dashed lines show the 95% confi-
dence interval across individual forecast-
ers. Note that time is expressed as the
number of days before the forecasting
horizon.

the AUC and the hit and false alarm probabilities
associated with any decision threshold, not the
numerical values of the forecasts themselves.

6.1. Other Modeling Extensions

We have already discussed a number of variants
of the Beta-SDT approach that allow us to investi-
gate individual differences as well differences in the
temporal dynamics and the effect of forecasting do-
main. One attractive feature of the Beta-SDT ap-
proach is that it can be extended in many other ways.

For example, the model can be extended to
handle ordinal judgments even when expressed
nonnumerically (e.g., unlikely, perhaps, likely) by in-
cluding response thresholds for the samples from the
underlying evidence distributions. In fact, the same
latent belief distributions could be used to model the
probabilistic forecasts as well as ordinal responses,
allowing the mapping between different types of
responses.

We have also focused in the current work on
forecasting problems with only two possible out-
comes. However, it is possible to extend the ROC

analysis to multiple classes,(28,45) and these alterna-
tive ROC approaches can motivate different SDT
models.

Finally, we have assumed that the resolution
of the binary forecasting problems leads to an un-
ambiguous assignment of E and ¬E. However, in
some situations, the definition of E and ¬E are arbi-
trary. For example, a temperature forecasting prob-
lem could be framed in terms of the temperature ex-
ceeding a given value or in terms of the temperature
not exceeding a given value. In these cases, the SDT
model can be simplified to enforce symmetry in the
signal and noise distributions, i.e., μ0 = 1 − μ1, and
ξ0 = ξ1.

6.2. Relationship to Brier Score and
Related Measures

The relative performance of competing forecast-
ing systems is often evaluated with Brier scores. We
contend that the Brier score, or any strictly proper
scoring rule, is not sufficient for evaluating forecast-
ing systems, as these rules were developed to moti-
vate honest reporting, not to compare systems. The
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Brier score, as illustrated in our results, is sensitive
to different components of forecasting performance,
including diagnosticity and calibration. One possi-
bility is to decompose the Brier scores into compo-
nent scores to assess different dimensions of forecast-
ing performance.(37,46,47) Although a detailed discus-
sion of these decompositions is outside the scope of
this article, we note a few differences with the Beta-
SDT approach. First, it is not clear how to separate
out different components of performance in situa-
tions where only sparse forecasting data are avail-
able. There is also no obvious way to take uncertainty
about the measured values of the components into
account. In addition, the AUC comes with a guaran-
tee that it is insensitive to strictly monotonic transfor-
mations of probabilistic forecasts. In contrast, there
are no corresponding results for components of the
Brier score. Indeed, although AUC is a principled
statistic based on underlying theory, the Brier score
decomposition simply reflects a convenient variance
partitioning. See Ref. 46 for further discussion of
issues associated with interpreting partitioned com-
ponents. Finally, one of the appealing properties of
the Beta-SDT approach is that it can be viewed as
a model that describes the generation of probabilis-
tic forecasts, and can be extended in any number of
ways to take additional covariates, different response
types, and different types of forecasting problems
into account. In contrast, the Brier score decompo-
sition is based on a measurement approach that does
not lend easily to extensions, primarily because it was
not intended to provide an explanation of the process
of forecasting.

7. CONCLUSIONS AND FINAL THOUGHTS

The developments in this article highlight two
main points. (1) It is possible to distinguish in a prin-
cipled way two important properties of forecasts in
order to assess the effects of any methods for improv-
ing them or for quantifying differences in domain
forecastability as a function of domain and/or time or
overall. AUC is a principled, easy to understand, in-
dex of diagnosticity; and GCO, the log-difference be-
tween the mean forecast and the base rate, is an easy
to understand index of bias. (2) The Beta-SDT model
is a powerful tool for estimating AUC along with the
precision of the estimate for individuals or groups
overall or within domains, collapsed over time or as
a function of time.

An additional point not emphasized until now,
but that derives directly from SDT, is that if the ROC

is sufficiently well specified for any given forecaster,
group, or domain, it provides the DM with the prob-
ability estimates she needs in order to do expected
utility analyses on potential decisions. That is, the
probability forecasts, per se, are not sufficient for the
DM to make a best decision. She also requires good
estimates of the hit and false alarm rates, which are
obtained from the ROC. Armed with estimates of
these two rates as well as of the event probability,
the DM can utilize cost or utility estimates of the two
kinds of errors, a miss (complement of a hit) or a false
alarm, and estimate the expected utility of acting as
though the event will or will not occur.

Details on how such a decision policy might be
implemented await further research, but we can ad-
dress one potential criticism immediately. That crit-
icism is that the utilities of outcomes of many de-
cisions, e.g., public policy, national security, or per-
sonal health, cannot be numerically estimated and in
that sense, expected utility is not the right decision
criterion at all. To this point, we agree, but never-
theless it is the case that sensitivity analyses, accom-
plished by varying the ratios of the error costs, say
from small to large, can be enormously helpful to the
DM in arriving at a justifiable decision.
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