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Abstract: Determining how cognition affects functional abilities is
important in Alzheimer disease and related disorders. A total of
280 patients (normal or Alzheimer disease and related disorders)
received a total of 1514 assessments using the functional assessment
staging test (FAST) procedure and the MCI Screen. A hierarchical
Bayesian cognitive processing model was created by embedding a
signal detection theory model of the MCI Screen-delayed recog-
nition memory task into a hierarchical Bayesian framework. The
signal detection theory model used latent parameters of discrim-
inability (memory process) and response bias (executive function) to
predict, simultaneously, recognition memory performance for each
patient and each FAST severity group. The observed recognition
memory data did not distinguish the 6 FAST severity stages, but
the latent parameters completely separated them. The latent pa-
rameters were also used successfully to transform the ordinal FAST
measure into a continuous measure reflecting the underlying con-
tinuum of functional severity. Hierarchical Bayesian cognitive proc-
essing models applied to recognition memory data from clinical
practice settings accurately translated a latent measure of cognition
into a continuous measure of functional severity for both individuals
and FAST groups. Such a translation links 2 levels of brain in-
formation processing and may enable more accurate correlations
with other levels, such as those characterized by biomarkers.
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Relating cognitive to functional impairment has been a
relatively understudied area in Alzheimer disease (AD)

research. Yet, it is practically important in terms of un-
derstanding outcomes in clinical trials and in predicting the
degree of impairment in functional capabilities from ob-
jective cognitive testing in clinical practice.

The usual way of relating cognition to function has
been to look at their intercorrelations. An alternative ap-
proach is to create a model that posits the form of the
relationship between the degree of impairment in functional
capabilities and the processes underlying a given cognitive
task. Recently, we applied a methodology combining hier-
archical Bayesian statistical methods with psychological
measurement models of the processes underlying memory
[hierarchical Bayesian cognitive processing, (HBCP)]. Such
models may provide useful insights into the cognitive ability
being studied. They can also simultaneously estimate pa-
rameters for groups and individuals, automatically make
inferences for missing data, and integrate multidimensional
data, such as biomarkers, cognitive, and functional meas-
ures plus covariates, into a single construct.

The delayed recognition memory task may help relate
cognitive and functional changes because its performance
requires memory storage and executive function processes.
The task involves studying a list of items (usually words or
pictures) one or more times, and then after a few minutes or
longer, presenting these studied (old) items intermixed with
a list of nonstudied (new) items. The subject is asked to
discriminate the old from the new items.

Signal detection theory (SDT) is used to model rec-
ognition memory as composed of underlying memory and
decision-making processes.1–3 Decision making is an exec-
utive function, which helps individuals perform various
functional abilities.

The functional assessment staging procedure (FAST)
is a valid and internationally used measure of the degree of
impairment in functional capabilities for persons with AD,
in which the functional stages have been correlated with
cognitive impairment.4,5 Because of their use in clinical
practice and research, it is useful to explore how different
degrees of functional incapacity relate to an SDT model of
delayed recognition memory using clinical data.
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METHODS

FAST Staging Procedure
At each patient visit, a trained physician inter-

viewed either the patient or a reliable informant using the
FAST procedure5,6 to stage the patient’s degree of func-
tional incapacity into one of the 16 stages (7 major stages, 1
to 7, with 11 substages, 6a to e and 7a to f).7

Patients with no subjective functional impairment and
no objectively evident functional impairment are classified as
FAST stage 1 and will be referred to as no cognitively related
functional impairment (NCI). Patients who subjectively have
greater difficulty in cognitively related functional abilities but
still perform them completely normally are classified as
FAST stage 2. FAST stage 2 patients will be referred to as
subjective cognitively related functional impairment (SCI).
Patients who have impairment in cognitively related, execu-
tive-level functional abilities, such as using a calendar to
prospectively keep appointments but have no impairment in
instrumental activities of daily living (complex activities of
daily life, such as marketing properly, managing personal
finances properly, and preparing meals for guests, in one’s
accustomed manner), are classified as FAST stage 3. FAST
stage 3 patients will be referred to as mild cognitively related
functional impairment (MCI). FAST stage 4, 5, and 6 pa-
tients have functional deficits that correspond to the levels of
mild, moderate, and moderately severe dementia, re-
spectively, and are classified by their degree of impairment in
instrumental and basic activities of daily living.

Cognitive Testing
At each visit, patients are tested with a cognitive bat-

tery derived from the Consortium to Establish a Registry
for AD (CERAD), consisting of trails A and B—measures
of sequencing, processing speed, and set shifting; FAS letter
fluency—a measure of phonemic fluency, working memory,
and rule application; Ishihara number naming test—a
measure of object recognition that minimizes the use of
semantic memory; CERAD drawings—a measure of simple
object recognition, planning, organization, and visual
constructional praxis; and the MCI Screen (MCIS)—a
measure of rule application, working memory, rehearsed

delayed recall and recognition memory, unrehearsed de-
layed recall, judged comparisons, and self-estimation of
memory ability.8–10 The MCIS was the only cognitive test
involved in relating cognition to function.

Clinical Sample
The data came from a primary care and a cognitive

disorder clinic and included all assessments of 280 patients
followed up every 3 to 6 months for up to 6 years. The
number of patients assessed one or more times in any given
FAST stage varied from 26 to 163. If one sums the number
of patients assessed per FAST stage over the 6 stages, the
total is 514, which is greater than the 280 patients in the
study. This is because each patient can contribute data to
one or more FAST stages. There was a total of 1514 FAST
stage assessments for the 280 patients studied.

Because the data are repeated measures, there are po-
tential confounding effects on task performance due to practice
and reliability. However, these potential confounds have been
shown to be small and are therefore unlikely to influence the
present study’s results (MCIS interrater and test-retest reli-
ability=0.839; wordlist effect size <0.009 SDs11).

Patients with AD or a related disorder (ADRD) un-
derwent a standardized evaluation, including MRI, labo-
ratory tests, medical history, and physical examination and
were diagnosed according to the published criteria for AD,
Lewy body disease, cerebrovascular disease, and frontal
temporal lobe disease.12–16 Patients were followed up every
3 to 6 months from 2002 to 2007. Table 1 shows the
numbers of patients and patient assessments by FAST
stage, along with its description.

Delayed Recognition Memory Task
The delayed recognition memory task was performed

after the MCIS-delayed free recall task. The examiner reads
aloud to the patient the 10 study list words (old) intermixed
with 10 unstudied words (new), one at a time, and the pa-
tient is asked to decide whether the word was old or new. In
SDT, correct identifications of old and new words are called
hits and correct rejections; incorrect identifications of old
and new words are called misses and false alarms.

TABLE 1. Number of Study Patients and Patient Assessments in Each FAST Stage

Patients Assessments FAST Stage*

FAST Stage N % N % Severity Description

1 159 15% 288 19% Normal No subjective or objective,
cognitively related functional
decline

2 163 10% 308 20% Normal/SCI Subjective decline in cognitively
related functional capacity

3 26 36% 129 9% MCI Objective impairment in
cognitively related complex
functions without impairment in
instrumental ADLs

4 75 28% 436 29% Mild dementia Impaired instrumental ADLs
5 47 7% 189 12% Moderate dementia Impaired judgment related to

proper selection of clothing for
social and weather conditions

6 44 4% 164 11% Moderately severe dementia Impaired basic ADLs
All 514 100% 1514 100%

ADL indicates activities of daily living; *FAST, functional assessment staging test, copyrightr1984 by Barry Reisberg, MD; MCI, mild cognitively related
functional impairment; SCI, subjective cognitively related functional impairment.
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Construction of New Wordlists for the MCIS
Ten pairs of equivalent wordlists have been con-

structed to minimize practice effects, minimize interitem
associability, and parallel the original CERAD wordlist.
Eight of the 10 pairs are used with the MCIS test. Each time
a patient is tested, the MCIS algorithm randomly selects a
pair of old and new wordlists from the available pool
without replacement. This means that the patient has to
take the MCIS test 9 times before being exposed to the
same pair of wordlists. The wordlists were designed so that:
(1) the items of the old and new wordlists are similar; (2)
words are 1 or 2 syllables; (3) their frequency, range, and
diversity statistics resemble those of the original CERAD
wordlist; (4) the words in each list are not easily associable
(low semantic associability)17; (5) the residual semantic
similarities among list words are comparable with those
of the CERAD wordlist18; and (6) neither homophones
(eg, bare/bear) nor words ending in the same phoneme
(eg, plain/airplane) are allowed in a wordlist.19

HBCP Model for Delayed Recognition Memory
Figure 1 shows the SDT model of the memory strength

distributions for old and new list words (Fig. 1A) that was
incorporated into the HBCP model (Fig. 1B). Each pre-
sented word evokes a memory strength, which the subject
compares with their criterion level, k, for decision making.
The model predicts that a subject will respond to a word
that evokes a memory strength greater than k as an old
word, whereas a word that evokes a memory strength less
than or equal to k is responded to as a new word. The dis-
criminability, d0, is the difference between mean memory
strengths of old and new list words, and indicates the memory
gain from studying the old list words. The hit rate is the area,
h, of the old word distribution, and lies above k. The false-
alarm rate is the area, f, of the new word distribution, and

also lies above k. The response bias, c, for a subject is the
distance between their criterion memory strength level, k, and
the midpoint of their discriminability, d 0. These measures of
response bias and discriminability have been proposed to be
independent.3 Because recognition memory experiments have
found that the SDs of the old and new word distributions
differ by about 25%,20 we incorporated this unequal variance
assumption into the SDT model.

Model Extension for Group and Individual
Differences

Unlike previous SDT applications to recognition
memory data of ADRD patients, individual differences
were modeled by introducing a parameter reflecting the 6
functional severity levels (FAST stages 1 to 6), which in-
fluenced the response bias, cj, and discriminability, d 0j of each
subject, j. Each subject’s discriminability and response bias
parameters were therefore drawn from the distribution of
values generated by the subject’s FAST stage group. In this
way, the HBCP model allows different parameter values for
individuals with the same FAST stage.

Model Extension for Predicting Changes in
Discriminability

Discriminability, d 0, between old and new words was
modeled by a psychophysical function that made d 0 a
function of FAST stage severity. For FAST stage i, the
mean discriminability is:

md 0 i ¼ kþ
l

1þaebi

� �

where k corresponds to baseline discriminability, l corre-
sponds to the potential change in discriminability across
FAST severity levels, and a and b are parameters that
control the shape of the psychophysical function. A sigmoid
form of the psychophysical function was selected because

A B

FIGURE 1. A, Signal detection theory (SDT) model. B, The hierarchical bayesian cognitive processing (HBCP) model. SDT model: the
SDT model shows the memory strength distributions for old (studied) and new (unstudied) list words, along with parameters, k (subject’s
response criterion), d 0 (discriminability), c (response bias), h (hit rate), and f (false-alarm rate). The HBCP model: this HBCP model
generates each patient’s observed response data (Hj, Fj) from their cognitive processes of discriminability and response bias. It also
models the continuum of functional severity underlying the discrete functional assessment staging test stages. See Methods section for
details.
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the changes in discriminability between each of the FAST
stages from 1 to 6 are nonlinear (Fig. 3). The term in the
denominator, aebi, can approach “0” nonlinearly as one
progresses from FAST stage 1 to 6, which maximizes the
value of the numerator, l, at FAST stage 6. Thus, the
change in mean discriminability from baseline at FAST
stage 1 will be maximal at FAST stage 6 and approach it
nonlinearly. This approach goes beyond simply testing for a
significant difference in discriminability between FAST
stages and models how discriminability changes with func-
tional severity.

HBCP Graphical Model Implementation
We implemented the aforementioned hierarchical SDT

model in the form of a Bayesian graphical model, a formalism
widely used in statistics and computer science.21,22 In graphical
models, nodes correspond to variables and their interdepen-
dencies show the causal relationships between the variables. In
particular, graphical models show how unobserved variables
(ie, parameters) generate observed variables (ie, data). Details
and tutorials for the use of graphical models are available.23,24

The practical advantage of graphical models is that sophisti-
cated and general-purpose Markov chain Monte Carlo
(MCMC) algorithms exist that can sample from the full joint
posterior distribution of the parameters conditional on the
observed data. In Bayesian statistics, the posterior is the
probability distribution of unobserved values (often parame-
ters) that results after a prior distribution has been updated by
data.25

It is easiest to understand the HBCP graphical model
in Figure 1 by starting with the jth patient’s discriminability
and response bias parameters (d0j and cj nodes). These pa-
rameters generate the jth patient’s predicted hit, hj, and
false-alarm, fj, rates, according to the SDT model. The hit
rate is hj=F[(d0j/2)�cj] and the false-alarm rate is fj=
F[� [(d0j/2)+ cj]/t], where t=0.8, arising from the unequal
variance assumption. On the basis of these hit and false-
alarm rates and the O=10 old and N=10 new words
presented to each patient during the recognition task, the
jth patient produces Hj observed hits and Fj observed false
alarms, which follow binomial distributions parametrized
by hit and false-alarm rates and by their number of old and
new words presented [HjBbinomial(hj,O), FjBbinomial
(fj,N)]. Each FAST stage, i, has its own set of Gaussian

distributions for the discriminability (d0) and response bias
(c) parameters, which are controlled by their mean, m, and
precision, l (l=1/s2) variables. These FAST stage group
distributions are implemented using an indicator variable,
zj, which takes the value, 1, 2,y6 according to the jth
patient’s FAST stage. For this patient, j, their discrim-
inability is distributed as djBGaussian (md0,zj, ld0,zj) and their
response bias is distributed as cjBGaussian (mc,zj,lc,zj).
Finally, the psychophysical function determines the mean
discriminability of FAST stage, i (md0i node), which then
updates the subject’s discriminability, d0j.

Bayesian Inference Generated by the HBCP
Graphical Model and Clinical Data

Graphical HBCP modeling was performed using
WinBUGS software.26 This software uses a range of
MCMC computational methods to obtain samples from the
posterior distributions of the relevant parameters.27 To
perform all analyses, 10,000 posterior samples were col-
lected, after a burn-in of 1000 samples (samples collected
but not used to approximate the posterior distribution of
interest), using multiple chains to check convergence.

RESULTS

HBCP Grahical Model Fit
Posterior predictive distributions assess the descriptive

adequacy of a Bayesian model by predicting what the data’s
distribution should be.25 A poor-fitting model will produce
inaccurate posterior predictive distributions of the data.
Figure 2 shows a posterior predictive analysis for the im-
plemented HBCP model. Rows 1 to 3 correspond to the
(1) observed delayed recognition data (y axis=hits, x ax-
is= false alarms); (2) group-level (FAST stage) model in-
ferences; and (3) individual-level model inferences, showing
1 patient per FAST stage, with their mean value marked as
an “�.” The hollow black squares show the distribution of
predicted hits and false alarms for each FAST stage (col-
umn). For row 1, the gray X are the patient-observed hits
and false alarms. For row 2, the hollow black squares show
the posterior predictive distribution of hits and false alarms
at the group level (FAST stage); each square’s area is
proportional to its predictive mass. Comparison of rows 1
and 2 indicates that the group-level predictions match the

0 10

0

Hits

10

False Alarms

Individual

Group

Stage 6Stage 5Stage 4Stage 3Stage 2

Data

Stage 1

FIGURE 2. Posterior predictive assessment of the hierarchical signal detection theory model’s fit to the clinical data. Hit and false-alarm
distributions per functional assessment staging test (FAST) stage: observed versus group-level and individual-level posterior predic-
tions. The predicted, individual-level data (row 3) model individuals better than group-level predictions (row 2). See Results section for
details.
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observed data fairly closely, which is consistent with a well-
fitting model. For row 3, the hollow black squares show the
posterior predictive distribution of hits and false alarms for
a selected patient in each FAST stage; each square’s area is
proportional to its predictive mass for that patient in that
FAST stage.

Note that the posterior predictive distributions of the
individuals selected for FAST stages 4 to 6 represent out-
liers for their FAST stage groups. The use of an individual
who is an outlier for a given group illustrates the point that
one can simultaneously examine both the group and the
individual posterior predictive distributions. It also illus-
trates the point that the distribution of the individual out-
lier patient is different from that of the group and is more
informative than simply using the group distribution for
that individual. Specifically, one can see that the HBCP
model’s posterior predictive distribution of hits and false
alarms for any given selected individual outlier patients is a
much better fit than the group-level predictions in row 2.
The HBCP model’s ability to characterize these individuals
well, while simultaneously describing group-level perform-
ance well, highlights an important advantage of the hier-
archical approach for modeling individual differences.

Assessing Discriminability, Response Bias, and
Changes As ADRD Progresses

Figure 3 shows the joint posterior distributions of the
discriminability and response bias parameters for each
FAST stage. As the degree of functional impairment in-
creases from FAST stages 1 (circles) to 5 (squares), dis-
criminability between old and new list words decreases, and
response bias shifts toward misses and false alarms being
equally likely. However, response bias during FAST stage 6

(Xs) shifts back toward that seen in normal aging patients
(FAST 1), who make more misses than false alarms.

Figure 4 shows the fit of the modeled relation between
discriminability and the degree of impairment in functional
capabilities (FAST stage). MCMC sampling of the dis-
criminability values, d 0i, generated by the psychophysical
function, was used to estimate the mean discriminability
(black curve) and its 95% credible interval (thick blue lines)
per FAST stage. The uncertainty of predicted discrim-
inability was also estimated by random sampling of the d0

parameter values from their associated posterior dis-
tributions (gray curves). Both measures of uncertainty
showed that the predicted discriminability of each FAST
stage was reliably predicted by the continuous measure of
the severity of functional impairment modeled by the psy-
chophysical function.

DISCUSSION
The HBCP model of delayed recognition memory

showed that decision making—an executive function modeled
by response bias—shifts toward unbiased responding during
subjective cognitively related functional impairment and MCI
(FAST 2 to 3). A surprising result was the shift back to biased
responding similar to NCI individuals (FAST 1) during
moderately severe dementia (FAST 6). FAST stage 6 patients
have severe memory impairment, so that the memory strength
distributions for the old and new wordlists will be similar. This
loss of discriminability means that there is nomemory signal to
make a decision between old and new list words. However,
judgment becomes more severely impaired as dementia severity
progresses from FAST stages 4 to 6. This decline in judg-
ment may shift the FAST stage 6 patient’s decision-making
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FIGURE 3. Joint posterior distributions for functional assessment staging test (FAST) stage group-level discriminability and response bias
parameters. The joint posterior predictive group-level Discriminability and Response Bias parameter distributions per FAST stage. The joint
posterior group-level distributions of these latent cognitive processing parameters (discriminability and response bias) completely sep-
arate the 6 FAST stages, whereas the observed behavioral data do not. See Results section for details.
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criterion, k, to the right. This shift would yield a response bias,
c, similar to that seen in NCI (FAST 1).

A potentially useful clinical application is that delayed
recognition memory tasks can be used to create a con-
tinuous measure of severity of functional impairment that
reliably predicts FAST staging, which is an ordinal meas-
ure. A continuous measure of functional impairment allows
one to compute the rate of functional decline, which can be
used, for example, to determine whether a treatment has
delayed disease progression.

The relatively good fit between discriminability, d0,
and the FAST stages, as shown in Figure 4, means that the
psychophysical function used to model this relationship will
aid the interpolation, generalization, and prediction of the
severity of functional impairment. In other words, this
psychophysical function allows one to trace out trajectories
of functional decline with respect to discriminability and
map these trajectories into statements about memory task
performance.

The HBCP model presented here demonstrates how
one can simultaneously evaluate clinically relevant groups
(ie, FAST stage groups) and individuals within each group.
The individual-level fits (see row 3, Fig. 2) show that one
can predict the distribution of an individual’s recognition
memory performance better than that obtained by the in-
dividual’s group-level predictions. This is particularly useful
for patients who may belong to a distinct subset of the
distribution.

The HBCP model presented here also shows how la-
tent processes of memory and executive function that are
not directly measurable can be usefully estimated from the
delayed recognition memory response data. These latent
parameters separated the group-level values for FAST

stages 1 and 2 (Fig. 3), whereas the observed recognition
memory data did not (see row 1, Fig. 2). This improved
separation of the FAST stages illustrates an important
advantage of generative HBCP models over discriminative
statistical methods.

HBCP models accurately translated a latent measure
of cognition into a continuous measure of the degree of
impairment in functional capabilities. This translational
ability may facilitate better understanding of the relations
between cognition, function, and other levels of brain
information processing, including those measured by bio-
markers at molecular, structural, and electrophysiological
levels. In this regard, our future studies will examine
how this continuous measure of functional severity relates
to ADRD diagnosis, quantitative MRI volumetric data,
apolipoprotein E genotype, cerebrospinal fluid levels of
Abeta42, phospho tau, and total tau, plus affective states
such as depression, and behavioral states such as agitation,
aggression, and psychosis.
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