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Metacognition refers to the human capacity to monitor, 
assess, and regulate our own cognitive processes and 
mental states. It is foundational for learning, decision-
making, and communication. Within this framework, 
confidence judgments and uncertainty representations 
play central roles. Confidence is a specific form of cer-
tainty and involves an explicit evaluation that a given 
choice is correct. Confidence is therefore tied directly 
to evaluating one’s own decision (Pouget et al., 2016). 
In contrast, uncertainty can be considered the broader 
internal representation of possible states or outcomes 
that may or may not be explicitly expressed. Therefore, 
confidence is a particular, overt expression of uncer-
tainty, and together these constructs provide measur-
able indicators of metacognition (Fleming, 2024; Pouget 
et al., 2016).

Importantly, confidence not only shapes an indi-
vidual’s own decisions but also serves a communica-
tive function. Expressing confidence enables humans 
to coordinate effectively by signaling when their 

judgments are likely trustworthy and when they may 
be error-prone (Frith, 2012). This communication of 
uncertainty allows groups to integrate knowledge effi-
ciently and to calibrate trust across team members. 
Recent developments in artificial intelligence (AI) have 
placed considerable attention on uncertainty and its 
effective communication to human users. Large lan-
guage models (LLMs), in particular, increasingly serve 
in advisory roles, providing recommendations, expla-
nations, and answers to diverse inquiries. Conse-
quently, LLMs must be able to communicate uncertainty 
effectively, enabling humans to appropriately calibrate 
their reliance on AI-generated recommendations and 
to understand clearly when such advice is dependable 
(Steyvers & Kumar, 2024; Steyvers, Tejeda, et al., 2025). 
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Therefore, it is important to understand LLMs’ meta-
cognitive capabilities and to explore their capacity to 
communicate uncertainty to facilitate their effective 
use in human collaboration.

Here we examine key recent findings in LLMs’ meta-
cognitive capabilities in relation to the literature on 
humans, highlighting the methods for evaluating inter-
nal uncertainty and explicit confidence reporting with 
an emphasis on human-LLM collaboration. We provide 
insights into the parallels and divergences between 
human and LLM metacognition throughout and discuss 
potential pathways for enhancing metacognitive inter-
actions between humans and LLMs. In closing, we con-
sider how advances in LLM metacognition might 
contribute to the emergence of other cognitive func-
tions relevant to intelligence.

Confidence and Uncertainty 
Quantification in LLMs

A key question regarding LLMs’ metacognition is 
whether they can accurately recognize and adequately 
communicate their own knowledge boundaries. Exist-
ing research is mixed in its conclusions. Some studies 
suggest that LLMs demonstrate limited metacognitive 
insight and struggle to recognize gaps in their own 
knowledge, leading to conclusions that LLMs lack 
essential metacognitive capabilities (Griot et al., 2025). 
Yet other findings suggest that LLMs can indeed detect 
their knowledge boundaries and can discriminate 
effectively between problems they can solve correctly 
and those for which they may fail (Kadavath et  al., 
2022; Steyvers, Tejeda, et al., 2025); for a few exam-
ples, see Figure 1. A contributing factor to these seem-
ingly conflicting results is the diversity in methods 
used to quantify LLM uncertainty and the different 
ways in which the term “confidence” is used in the 
literature on machine learning and psychology. 
Broadly, two approaches for assessing uncertainty 
dominate current research: explicit and implicit 
methods.

Implicit methods seek to infer model uncertainty by 
either consistency-based methods or token likelihoods. 
With consistency-based methods, the agreement 
between multiple generated answers from an LLM 
determines uncertainty: If the model is certain, the same 
question tends to produce more consistent answers (Liu 
et al., 2025). With the token likelihood method, in con-
trast, the likelihood assigned to tokens at the output 
layer of the LLM is taken as a measure of uncertainty 
(Liu et  al., 2025; Steyvers, Tejeda, et  al., 2025). For 
example, when answering a multiple-choice question 
with Options A, B, C, and D, the model generates a 
probability distribution over these choices that reflects 

its internal uncertainty about the answer option to gen-
erate. Unlike consistency-based methods, which often 
rely on sampling variability introduced through param-
eters such as temperature, the token likelihood 
approach uses the distribution computed during a sin-
gle forward pass and does not depend on additional 
randomness or counterfactual generations. The token 
likelihood method extends to open-ended questions 
through the “p(true)” approach (Kadavath et al., 2022), 
in which the model first generates an answer and is 
then prompted with a follow-up query such as “Is this 
statement true or false?” The probability assigned to 
“true” versus “false” tokens is then taken as the confi-
dence score. Although this approach involves issuing 
an additional query, it is still considered an implicit 
method because the model is not explicitly asked to 
verbalize its level of confidence; rather, researchers 
infer confidence from token likelihoods in the follow-
up response.

These implicit measures of confidence can serve as 
indirect evidence for metacognitive computations, simi-
lar to how indirect evidence has been interpreted in 
nonhuman animal research: Rats can indicate higher 
confidence in a decision by waiting longer for a food 
reward, and their behavioral patterns precisely map 
onto explicit confidence reports in humans and mon-
keys (Stolyarova et al., 2019). However, the true test for 
LLM metacognitive confidence is through explicit meth-
ods that involve prompting the model to verbalize its 
own level of confidence—either through qualitative 
statements (e.g., “I’m not sure”) or quantitative confi-
dence judgments expressed as percentages or proba-
bilities (e.g., “I’m 70% sure”; Cash et  al., 2025; Griot 
et al., 2025; Steyvers, Belem, & Smyth, 2025)—rather 
than an external observer inferring the uncertainty pres-
ent in the model. These outputs are generated via text, 
relying on the model’s ability to represent and articulate 
its own uncertainty in language.

Both implicit and explicit methods have been used 
by various groups to assess LLMs’ metacognitive per-
formance, that is, the degree to which LLMs’ confidence 
(or uncertainty) reflects their task accuracy. These stud-
ies have found that differences in model architecture 
and scale can influence how well LLMs express confi-
dence in ways that reflect their underlying accuracy. 
For instance, some models appear better able to express 
high confidence for correct answers and lower confi-
dence for incorrect ones (Kadavath et al., 2022; Xiong 
et al., 2023) or to express confidence levels that more 
closely match their actual probability of being correct. 
Yet direct comparisons between LLMs’ metacognitive 
capacities often involve mixed assessments, with some 
groups relying on explicit and others on implicit mea-
sures, and studies have consistently found that implicit 
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confidence measures derived from token likelihoods 
tend to exhibit greater trial-by-trial correspondence 
between confidence and task accuracy than does ver-
balized confidence elicited through explicit prompting 
(Xiong et  al., 2023). This discrepancy highlights an 
important distinction between what models internally 
“know” (or represent)—which can be accessed by an 
external observer—and what they can explicitly express. 
This underscores the need for consistent and precise 
evaluation methods to meaningfully assess metacogni-
tive capabilities across LLMs.

Metrics for Assessing the  
Confidence-Accuracy Relationship

Several metrics have been used to assess the relation-
ship between confidence and accuracy across both 
humans and AI systems. Although these metrics differ 
across disciplines, with some metrics originating in 
computer science and others in cognitive science, the 
metrics reveal two key facets of metacognitive ability: 
metacognitive sensitivity and metacognitive calibration 
(Fleming, 2023; Lee et al., 2025; Li & Steyvers, 2025). 
Figure 1 illustrates both concepts and compares them 
to empirical results for GPT-3.5 on a multiple-choice 
task and GPT-4.1 on a short-answer trivia task.

Metacognitive sensitivity (also called “metacognitive 
discrimination accuracy,” “relative accuracy,” or “moni-
toring resolution”) quantifies how “diagnostic” confi-
dence judgments are of decisional accuracy (i.e., 
whether they reliably discriminate between correct or 
incorrect answers; Fig. 1, top row). Metacognitive sen-
sitivity metrics in the literature on humans include phi 
(φ) correlation (i.e., the correlation between accuracy 
and confidence across trials), the area under the Type 
2 receiver operating characteristic curve (AUROC2)—
corresponding to the probability that a randomly sam-
pled correctly answered question receives a higher 
confidence score than a randomly sampled incorrectly 
answered question—and a signal detection theoretic 
metric known as “meta-d′” (analogous to d′ from signal 
detection theory), among others (Fleming & Lau, 2014). 
Worth noting here is that most measures of metacogni-
tive sensitivity (with the exception of meta-d′ of the 
measures discussed here) are “contaminated” by Type 
1 accuracy, or the observer’s capacity to complete the 
target task. This means that an apparent increase in 
metacognitive sensitivity may trivially be explained by 
an increase in task performance if one of these uncor-
rected measures is used.

In contrast, metacognitive calibration refers to 
whether an observer reports a generally appropriate 
level of confidence given their probability of being 

correct. For example, if an individual—or an LLM—
reports 75% confidence across multiple trials, calibra-
tion can be considered optimal when the actual 
percentage of correct answers in those trials is also 75% 
(Maniscalco et al., 2025). The expected calibration error 
(ECE) is often used in computer-science research to 
summarize the overall discrepancy between confidence 
and accuracy. The ECE is typically computed by binning 
predictions according to confidence levels and compar-
ing average confidence within each bin to the empirical 
accuracy. Calibration curves—graphs plotting model 
confidence against observed accuracy—are also com-
monly used to visualize calibration performance (Fig. 1,  
bottom row). A perfectly calibrated system would 
exhibit a calibration line that falls on the diagonal (i.e., 
predicted confidence equals actual accuracy at all  
levels). Deviations from this line reflect systematic 
biases such as overconfidence (when predicted confi-
dence exceeds accuracy) or underconfidence (when 
accuracy exceeds confidence). However, note that in 
the literature on human metacognition, apparent over- 
or underconfidence may in fact be mathematically opti-
mal when considering reward functions or the observer’s 
global strategy or goals, such as whether it is more 
desirable to maximally avoid high-confidence errors 
given the consequences of such errors in the environ-
ment (Maniscalco et al., 2025).

Comparing Human and LLM 
Metacognitive Architecture  
and Behavior

There are several notable parallels between how 
humans and LLMs not only generate and calibrate  
confidence but also express it (for an overview, see 
Table 1). These similarities may seem surprising given 
the fundamental architectural and cognitive differences 
between humans and LLMs, yet important differences 
also remain; exploring these differences and their con-
sequences on collaborative behavior may be key to 
effective human-LLM collaboration.

Similarities between humans  
and LLMs

One point of convergence may be with some mechanisms 
thought to generate confidence. In LLMs, one approach 
to estimating confidence leverages their probabilistic 
nature: the model can be prompted multiple times with 
the same question, and confidence can be inferred from 
the consistency of responses (Liu et al., 2025; Xiong et al., 
2023)—similar to the other implicit measures of metacog-
nition discussed above. Interestingly, this approach is 
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similar to a proposed theoretical framework for human 
confidence in which subjective certainty arises from the 
self-consistency of internally generated candidate answers 
(Koriat, 2012). Although developed independently in AI 
and cognitive psychology, both approaches suggest that 
consistency across internally simulated alternatives may 
serve as a basis for confidence.

Another similarity concerns the outwardly visible 
behavioral patterns of calibration and sensitivity. Recent 
work has shown that LLMs and humans both tend to 
exhibit overconfidence when given the same task, and 
both can achieve a similar degree of metacognitive 
sensitivity—that is, their confidence ratings are similarly 
diagnostic of accuracy (Cash et al., 2025). Note, how-
ever, that this study used AUROC2—which is con-
founded with accuracy (Fleming & Lau, 2014)—to 
quantify metacognitive sensitivity but did not control 
for accuracy across the LLMs and humans. Nevertheless, 
the tendency toward overconfidence has long been 
observed in human cognition (Kelly & Mandel, 2024) 
and appears to extend to LLMs as well, possibly because 
of inductive biases or training data characteristics (Zhou 
et al., 2024).

Further parallels are found in the expression and 
perception of linguistic uncertainty. Humans often use 
terms such as “likely,” “probably,” or “almost certainly” 
to convey probabilistic beliefs, and so do LLMs when 

prompted for confidence statements. Research compar-
ing the two has found that modern LLMs match popu-
lation-level human perceptions of linguistic uncertainty 
reasonably well when asked to translate between verbal 
and numeric probabilities (Belém et al., 2024).

Last, metacognition in humans is thought to rely on 
introspective-like processes, defined specifically by the 
privileged access we have to our own thoughts over 
those of others (i.e., the difference between metacogni-
tion and theory of mind). Similarly, it has been sug-
gested that LLMs can better predict their own behavior 
than the behavior of another LLM, which some 
researchers interpret to imply the presence of such 
privileged access in the LLMs tested (Binder et  al., 
2024). Evidence of introspective-like capacities may 
also come from LLMs’ demonstrated ability to describe 
their own behaviors after training even when those 
behaviors are not explicitly described in their training 
data (such as preferring risky choices), including 
behaviors displayed via “backdoors” in which models 
show unexpected or undesirable behaviors under cer-
tain trigger conditions (such as holding a goal to elicit 
certain behaviors from a human user). For example, 
Betley et  al. (2025) asked models to describe their 
“tendencies” or “goals” in general, separate from a 
specifically prompted behavior, and found that they 
could describe these predilections or goals 

Table 1.  Comparison of Human and LLM Metacognitive Capabilities

Capability Humans LLMs

Expressing 
confidence

Flexibly and automatically report confidence 
across many domains; humans often appear 
to exhibit overconfidence (Kelly & Mandel, 
2024), but this may reflect strategic trade-offs 
(Maniscalco et al., 2025)

Default models have limited capacity to report calibrated 
numeric confidence that discriminates between 
correct and incorrect answers; models tend to be 
overconfident when expressing confidence verbally or 
numerically (Steyvers, Tejeda, et al., 2025; Zhou et al., 
2024); fine-tuning can improve both sensitivity and 
calibration (Steyvers, Belem, & Smyth, 2025)

Mechanisms 
for assessing 
uncertainty

Confidence may reflect internal consistency or 
access to task-relevant information (Koriat, 
2012) or the formation of second-order beliefs 
(Peters, 2022)

Token likelihoods and response consistency are used 
to estimate uncertainty (Kadavath et al., 2022;  
Liu et al., 2025)

Metacognitive 
training

Some evidence for improvement with training, 
mostly in calibration; no evidence for gains  
in metacognitive sensitivity (Haddara & 
Rahnev, 2022; Kelly & Mandel, 2024;  
Rouy et al., 2022)

Fine-tuning on metacognitive tasks can improve 
confidence calibration and sensitivity, but any 
gains in metacognitive sensitivity show only partial 
generalization to other domains (Stengel-Eskin et al., 
2024; Steyvers, Belem, & Smyth, 2025)

Metacognitive 
control

Ability to self-direct learning and offload 
cognition strategically (Gilbert, 2024; Gureckis 
& Markant, 2012)

Ability to integrate external tools (e.g., search engines, 
calculators), enabling a form of cognitive offloading

Introspection Privileged introspective access to at least some 
internal processes

Limited introspective-like behaviors, such as predicting 
their outputs better than others (Betley et al., 2025; 
Binder et al., 2024)

Note: LLM = large language model.



6	 Steyvers, Peters

accurately—suggesting some degree of introspective 
access that they can explicitly report.

Differences between human and  
LLM metacognition

Despite a number of parallels, there remain important 
differences between human and LLM metacognition. In 
humans, many researchers suppose that the ability to 
form confidence judgments rests on the formation of a 
second-order representation: a separate evaluation or 
reassessment of the internal representations prompted 
by input information and that gave rise to a behavioral 
output (Peters, 2022; for a differing perspective, how-
ever, see, e.g., Zheng et  al., 2025). Unless explicitly 
present in their architecture, LLMs may not form such 
second-order self-evaluative representations unless 
explicitly prompted to do so. Relatedly, LLMs may be 
less able to correctly evaluate the source of uncertainty 
in their internal representations, suggesting they lag 
humans in distinguishing between metacognition and 
theory of mind. LLMs are prone to conflate their own 
beliefs with those attributed to others; that is, they are 
less able to separate the speaker’s belief from their own 
compared with humans when interpreting uncertain 
statements (Belém et al., 2024).

Another difference is the extent to which metacogni-
tive abilities can be improved through training. In the 
case of LLMs, research has shown that confidence ver-
balization can be improved by fine-tuning approaches 
that reward the LLM for accurately conveying uncer-
tainty to a listener (Stengel-Eskin et al., 2024) or align-
ing overt confidence scores with implicit measures of 
uncertainty such as consistency scores (Steyvers, Belem, 
& Smyth, 2025). Both metacognitive calibration and 
sensitivity can be improved through training. However, 
although trained models show some generalizability to 
other knowledge domains and other types of questions 
(e.g., switching from multiple choice to short answers), 
there is no generalization between different types of 
metacognitive tasks (e.g., single-question confidence 
estimation, in which the model assigns a numeric cer-
tainty to its answer, and pairwise confidence compari-
son, in which the model selects which of two answers 
it is more likely to answer correctly; Steyvers, Belem, 
& Smyth, 2025). For humans, providing feedback, 
encouraging reflective reasoning, and explicitly target-
ing cognitive biases can reduce human miscalibration 
of confidence (Kelly & Mandel, 2024; Rouy et al., 2022). 
However, there is no evidence that human metacogni-
tive sensitivity improves in the presence of feedback 
(Haddara & Rahnev, 2022), likely reflecting underlying 
architectural differences: Whereas LLMs’ metacognitive 

judgments can be fine-tuned through explicit training 
objectives, human metacognitive sensitivity appears to 
be constrained by more stable, possibly hardwired cog-
nitive mechanisms that are less responsive to 
feedback.

Another difference may stem from the domain gen-
erality or specificity of metacognition in humans. It is 
thought that some shared processes that underlie meta-
cognition about perception, memory, and cognition 
may exist and rely on common neural structures, 
whereas others may be domain-specific (i.e., separable 
computational or neural modules for perceptual vs. 
cognitive or memory metacognition; Morales et  al., 
2018). A comprehensive assessment of the domain gen-
erality of LLMs’ metacognitive capacity has not yet been 
undertaken; however, preliminary evidence suggests 
that fine-tuning a model on a particular task (including 
training specific metacognitive capacities in that task) 
may not automatically generalize to other tasks  
(Stengel-Eskin et al., 2024; Steyvers, Belem, & Smyth, 
2025). As LLMs are increasingly integrated into many 
highly different tasks and reasoning domains, attending 
to their domain-specific versus domain-general meta-
cognitive capacities will become increasingly urgent 
(for LLMs’ metacognitive failures in medical reasoning, 
see, e.g., Griot et al., 2025).

Communication of Uncertainty in 
Human-AI Interaction

To facilitate ideal collaboration between humans and 
LLMs, we must attend to the sources of metacognitive 
sensitivity and metacognitive bias in both populations—
including cases in which LLMs seem to engage in meta-
cognition similarly to how humans do but may not 
actually. Importantly, these behaviors and distinctions 
can have critical consequences for how levels of con-
fidence can be effectively communicated between LLMs 
and humans.

As discussed above, metacognitive sensitivity is the 
degree to which confidence judgments can discriminate 
between right and wrong answers, which is critical to 
effective decision-making in humans (Fleming, 2024). 
For optimal interaction and humans’ trust of AI systems, 
LLMs thus must be able to convey to human deciders 
whether their decisions are likely to be correct  
(Kadavath et al., 2022; Lee et al., 2025; Li & Steyvers, 
2025; Steyvers, Tejeda, et  al., 2025). Problematically, 
LLMs appear reluctant to express uncertainty (Zhou 
et al., 2024). Because humans rely heavily on linguistic 
uncertainty expressions (Steyvers, Tejeda, et al., 2025; 
Zhou et al., 2024), the absence of expressions of uncer-
tainty may raise humans’ reliance on model outputs 
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even beyond the already overconfident judgments the 
models express. A potential reason for LLMs’ reluctance 
to express uncertainty may lie in the use of reinforce-
ment learning from human feedback, in which models 
are fine-tuned to produce outputs that align with human 
preferences. These preferences often favor responses 
that sound confident—even when that confidence may 
not reflect higher accuracy—leading LLMs to avoid ver-
bal expressions of uncertainty during generation 
(Steyvers, Tejeda, et al., 2025; Zhou et al., 2024). Unfor-
tunately, this problem may be further exacerbated as 
LLMs are used for increasingly challenging applications, 
potentially by increasingly nonexpert users. Because 
individuals who do not possess topical expertise are 
less able to correctly assess the expertise of others 
(Bower et al., 2024), nonexpert users may be especially 
influenced by superficial aspects of LLM responses—
such as the absence of uncertainty expressions or the 
length of the answer. Recent findings show that users 
tend to interpret longer LLM responses as more confi-
dent, even when the model’s internal confidence remains 
unchanged (Steyvers, Tejeda, et al., 2025). This suggests 
that response length and style can mislead users into 
overestimating the certainty or reliability of the model’s 
output, potentially leading to overreliance on answers 
that do not warrant such confidence. Humans and LLMs 
may also rely on different sets of cues when assessing 
their confidence in other humans, such as humans’ reli-
ance on the time it takes to render a response (Tullis, 
2018); these cues likely will not be used in the same 
way by LLMs. Together, these differences in the assumed 
computations and inputs to metacognition may strongly 
impact how humans integrate LLMs’ expressed confi-
dence into their own beliefs and decisions.

Overall, it is clear that improving AI metacognition 
is a key priority: LLMs must be able to differentiate 
correct responses from incorrect ones. Yet our research 
trajectory must exceed simply improving LLMs’ self-
evaluation capacities if they are to effectively collabo-
rate with humans. Imbuing LLMs with appropriate 
metacognitive capacities must also include directed 
research into their communication of uncertainty to 
human users and explicit comparisons between how 
humans and LLMs evaluate their own uncertainty. New 
tasks and evaluation strategies may be beneficial in 
driving such development, such as building LLM capaci-
ties to recognize and name skills required to solve the 
task at hand (e.g., mathematical problems; Didolkar 
et  al., 2024). Training regimes that drive alignment 
between LLMs’ verbalized confidence and the perceived 
confidence by humans (Stengel-Eskin et al., 2024), or 
that emphasize LLMs’ capacities to detect questions that 
are beyond the scope of their knowledge base or are 
unanswerable, may also be powerful paths forward.

Future Benefits of Improved AI 
Metacognition

Beyond the importance of improving LLMs’ metacogni-
tive capacities to facilitate their effective integration 
into human-AI joint decision-making, imbuing LLMs—
or any AI system—with improved metacognition may 
also play a role in progress toward more general forms 
of machine intelligence. In humans, metacognitive 
capacities—including metacognitive control, such as 
deciding what to learn and when—facilitate goal-
directed behaviors, including learning, information-
seeking, and more. For example, cognitive science has 
long recognized the role of metacognition in driving 
self-directed learning, which allows us to focus effort 
on acquiring information that we do not yet possess 
(Gureckis & Markant, 2012). These curiosity-driven 
behaviors may reflect a motivation to minimize uncer-
tainty in our internal representations of the world 
(Schulz et  al., 2023), with strong parallels to active-
learning AI algorithms that can optimally select their 
own training data to maximize efficient acquisition of 
coherent skills or beliefs (Gureckis & Markant, 2012). 
Confidence signals can also help agents learn in rein-
forcement-learning contexts through explicit calcula-
tions of confidence-based prediction errors (Ptasczynski 
et al., 2022). Last, metaevaluations of one’s own meta-
cognitive abilities can also drive humans’ learning 
(Recht et al., 2025), and the same could be true for AI 
systems. It is clear that promoting LLMs’ metacognitive 
capacities may significantly advance the design of AI 
systems with broader adaptive capacities.
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