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Abstract

Metacognition—the capacity to monitor and evaluate one’s own knowledge and performance—is foundational to human
decision-making, learning, and communication. As large language models (LLMs) become increasingly embedded in
both high-stakes and widespread low-stakes contexts, it is important to assess whether, how, and to what extent
they exhibit metacognitive abilities. Here, we provide an overview of the current knowledge of LLMs’ metacognitive
capacities, how they might be studied, and how they relate to our knowledge of metacognition in humans. We show
that although humans and LLMs can sometimes appear quite aligned in their metacognitive capacities and behaviors, it
is clear many differences remain; attending to these differences is important for enhancing the collaboration between
humans and artificial intelligence. Last, we discuss how endowing future LLMs with more sensitive and more calibrated
metacognition may also help them develop new capacities such as more efficient learning, self-direction, and curiosity.
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Metacognition refers to the human capacity to monitor,
assess, and regulate our own cognitive processes and
mental states. It is foundational for learning, decision-
making, and communication. Within this framework,
confidence judgments and uncertainty representations
play central roles. Confidence is a specific form of cer-
tainty and involves an explicit evaluation that a given
choice is correct. Confidence is therefore tied directly
to evaluating one’s own decision (Pouget et al., 20106).
In contrast, uncertainty can be considered the broader
internal representation of possible states or outcomes
that may or may not be explicitly expressed. Therefore,
confidence is a particular, overt expression of uncer-
tainty, and together these constructs provide measur-
able indicators of metacognition (Fleming, 2024; Pouget
et al., 2016).

Importantly, confidence not only shapes an indi-
vidual’s own decisions but also serves a communica-
tive function. Expressing confidence enables humans
to coordinate effectively by signaling when their

judgments are likely trustworthy and when they may
be error-prone (Frith, 2012). This communication of
uncertainty allows groups to integrate knowledge effi-
ciently and to calibrate trust across team members.
Recent developments in artificial intelligence (AI) have
placed considerable attention on uncertainty and its
effective communication to human users. Large lan-
guage models (LLMs), in particular, increasingly serve
in advisory roles, providing recommendations, expla-
nations, and answers to diverse inquiries. Conse-
quently, LLMs must be able to communicate uncertainty
effectively, enabling humans to appropriately calibrate
their reliance on Al-generated recommendations and
to understand clearly when such advice is dependable
(Steyvers & Kumar, 2024; Steyvers, Tejeda, et al., 2025).
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Therefore, it is important to understand LLMs’ meta-
cognitive capabilities and to explore their capacity to
communicate uncertainty to facilitate their effective
use in human collaboration.

Here we examine key recent findings in LLMs’ meta-
cognitive capabilities in relation to the literature on
humans, highlighting the methods for evaluating inter-
nal uncertainty and explicit confidence reporting with
an emphasis on human-LLM collaboration. We provide
insights into the parallels and divergences between
human and LLM metacognition throughout and discuss
potential pathways for enhancing metacognitive inter-
actions between humans and LLMs. In closing, we con-
sider how advances in LLM metacognition might
contribute to the emergence of other cognitive func-
tions relevant to intelligence.

Confidence and Uncertainty
Quantification in LLMs

A key question regarding LLMs’ metacognition is
whether they can accurately recognize and adequately
communicate their own knowledge boundaries. Exist-
ing research is mixed in its conclusions. Some studies
suggest that LLMs demonstrate limited metacognitive
insight and struggle to recognize gaps in their own
knowledge, leading to conclusions that LLMs lack
essential metacognitive capabilities (Griot et al., 2025).
Yet other findings suggest that LLMs can indeed detect
their knowledge boundaries and can discriminate
effectively between problems they can solve correctly
and those for which they may fail (Kadavath et al.,
2022; Steyvers, Tejeda, et al., 2025); for a few exam-
ples, see Figure 1. A contributing factor to these seem-
ingly conflicting results is the diversity in methods
used to quantify LLM uncertainty and the different
ways in which the term “confidence” is used in the
literature on machine learning and psychology.
Broadly, two approaches for assessing uncertainty
dominate current research: explicit and implicit
methods.

Implicit methods seek to infer model uncertainty by
either consistency-based methods or token likelihoods.
With consistency-based methods, the agreement
between multiple generated answers from an LLM
determines uncertainty: If the model is certain, the same
question tends to produce more consistent answers (Liu
et al., 2025). With the token likelihood method, in con-
trast, the likelihood assigned to tokens at the output
layer of the LLM is taken as a measure of uncertainty
(Liu et al., 2025; Steyvers, Tejeda, et al., 2025). For
example, when answering a multiple-choice question
with Options A, B, C, and D, the model generates a
probability distribution over these choices that reflects

its internal uncertainty about the answer option to gen-
erate. Unlike consistency-based methods, which often
rely on sampling variability introduced through param-
eters such as temperature, the token likelihood
approach uses the distribution computed during a sin-
gle forward pass and does not depend on additional
randomness or counterfactual generations. The token
likelihood method extends to open-ended questions
through the “p(true)” approach (Kadavath et al., 2022),
in which the model first generates an answer and is
then prompted with a follow-up query such as “Is this
statement true or false?” The probability assigned to
“true” versus “false” tokens is then taken as the confi-
dence score. Although this approach involves issuing
an additional query, it is still considered an implicit
method because the model is not explicitly asked to
verbalize its level of confidence; rather, researchers
infer confidence from token likelihoods in the follow-
up response.

These implicit measures of confidence can serve as
indirect evidence for metacognitive computations, simi-
lar to how indirect evidence has been interpreted in
nonhuman animal research: Rats can indicate higher
confidence in a decision by waiting longer for a food
reward, and their behavioral patterns precisely map
onto explicit confidence reports in humans and mon-
keys (Stolyarova et al., 2019). However, the true test for
LLM metacognitive confidence is through explicit meth-
ods that involve prompting the model to verbalize its
own level of confidence—either through qualitative
statements (e.g., “I'm not sure”) or quantitative confi-
dence judgments expressed as percentages or proba-
bilities (e.g., “I'm 70% sure”; Cash et al., 2025; Griot
et al., 2025; Steyvers, Belem, & Smyth, 2025)—rather
than an external observer inferring the uncertainty pres-
ent in the model. These outputs are generated via text,
relying on the model’s ability to represent and articulate
its own uncertainty in language.

Both implicit and explicit methods have been used
by various groups to assess LLMs’ metacognitive per-
Jformance, that is, the degree to which LLMs’ confidence
(or uncertainty) reflects their task accuracy. These stud-
ies have found that differences in model architecture
and scale can influence how well LLMs express confi-
dence in ways that reflect their underlying accuracy.
For instance, some models appear better able to express
high confidence for correct answers and lower confi-
dence for incorrect ones (Kadavath et al., 2022; Xiong
et al., 2023) or to express confidence levels that more
closely match their actual probability of being correct.
Yet direct comparisons between LLMs’ metacognitive
capacities often involve mixed assessments, with some
groups relying on explicit and others on implicit mea-
sures, and studies have consistently found that implicit
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confidence measures derived from token likelihoods
tend to exhibit greater trial-by-trial correspondence
between confidence and task accuracy than does ver-
balized confidence elicited through explicit prompting
(Xiong et al., 2023). This discrepancy highlights an
important distinction between what models internally
“know” (or represent)—which can be accessed by an
external observer—and what they can explicitly express.
This underscores the need for consistent and precise
evaluation methods to meaningfully assess metacogni-
tive capabilities across LLMs.

Metrics for Assessing the
Confidence-Accuracy Relationship

Several metrics have been used to assess the relation-
ship between confidence and accuracy across both
humans and Al systems. Although these metrics differ
across disciplines, with some metrics originating in
computer science and others in cognitive science, the
metrics reveal two key facets of metacognitive ability:
metacognitive sensitivity and metacognitive calibration
(Fleming, 2023; Lee et al., 2025; Li & Steyvers, 2025).
Figure 1 illustrates both concepts and compares them
to empirical results for GPT-3.5 on a multiple-choice
task and GPT-4.1 on a short-answer trivia task.

Metacognitive sensitivity (also called “metacognitive
discrimination accuracy,” “relative accuracy,” or “moni-
toring resolution”) quantifies how “diagnostic” confi-
dence judgments are of decisional accuracy (.e.,
whether they reliably discriminate between correct or
incorrect answers; Fig. 1, top row). Metacognitive sen-
sitivity metrics in the literature on humans include phi
(¢) correlation (i.e., the correlation between accuracy
and confidence across trials), the area under the Type
2 receiver operating characteristic curve (AUROC2)—
corresponding to the probability that a randomly sam-
pled correctly answered question receives a higher
confidence score than a randomly sampled incorrectly
answered question—and a signal detection theoretic
metric known as “meta-d’” (analogous to d' from signal
detection theory), among others (Fleming & Lau, 2014).
Worth noting here is that most measures of metacogni-
tive sensitivity (with the exception of meta-d’ of the
measures discussed here) are “contaminated” by Type
1 accuracy, or the observer’s capacity to complete the
target task. This means that an apparent increase in
metacognitive sensitivity may trivially be explained by
an increase in task performance if one of these uncor-
rected measures is used.

In contrast, metacognitive calibration refers to
whether an observer reports a generally appropriate
level of confidence given their probability of being

correct. For example, if an individual—or an LLM—
reports 75% confidence across multiple trials, calibra-
tion can be considered optimal when the actual
percentage of correct answers in those trials is also 75%
(Maniscalco et al., 2025). The expected calibration error
(ECE) is often used in computer-science research to
summarize the overall discrepancy between confidence
and accuracy. The ECE is typically computed by binning
predictions according to confidence levels and compar-
ing average confidence within each bin to the empirical
accuracy. Calibration curves—graphs plotting model
confidence against observed accuracy—are also com-
monly used to visualize calibration performance (Fig. 1,
bottom row). A perfectly calibrated system would
exhibit a calibration line that falls on the diagonal (i.e.,
predicted confidence equals actual accuracy at all
levels). Deviations from this line reflect systematic
biases such as overconfidence (when predicted confi-
dence exceeds accuracy) or underconfidence (when
accuracy exceeds confidence). However, note that in
the literature on human metacognition, apparent over-
or underconfidence may in fact be mathematically opti-
mal when considering reward functions or the observer’s
global strategy or goals, such as whether it is more
desirable to maximally avoid high-confidence errors
given the consequences of such errors in the environ-
ment (Maniscalco et al., 2025).

Comparing Human and LLM
Metacognitive Architecture
and Behavior

There are several notable parallels between how
humans and LLMs not only generate and calibrate
confidence but also express it (for an overview, see
Table 1). These similarities may seem surprising given
the fundamental architectural and cognitive differences
between humans and LLMs, yet important differences
also remain; exploring these differences and their con-
sequences on collaborative behavior may be key to
effective human-LLM collaboration.

Similarities between bumans
and LLMs

One point of convergence may be with some mechanisms
thought to generate confidence. In LLMs, one approach
to estimating confidence leverages their probabilistic
nature: the model can be prompted multiple times with
the same question, and confidence can be inferred from
the consistency of responses (Liu et al., 2025; Xiong et al.,
2023)—similar to the other implicit measures of metacog-
nition discussed above. Interestingly, this approach is
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Table 1. Comparison of Human and LLM Metacognitive Capabilities

Capability Humans LLMs
Expressing Flexibly and automatically report confidence Default models have limited capacity to report calibrated
confidence across many domains; humans often appear numeric confidence that discriminates between
to exhibit overconfidence (Kelly & Mandel, correct and incorrect answers; models tend to be
2024), but this may reflect strategic trade-offs overconfident when expressing confidence verbally or
(Maniscalco et al., 2025) numerically (Steyvers, Tejeda, et al., 2025; Zhou et al.,
2024); fine-tuning can improve both sensitivity and
calibration (Steyvers, Belem, & Smyth, 2025)
Mechanisms Confidence may reflect internal consistency or Token likelihoods and response consistency are used
for assessing access to task-relevant information (Koriat, to estimate uncertainty (Kadavath et al., 2022;
uncertainty 2012) or the formation of second-order beliefs Liu et al., 2025)
(Peters, 2022)
Metacognitive Some evidence for improvement with training, Fine-tuning on metacognitive tasks can improve
training mostly in calibration; no evidence for gains confidence calibration and sensitivity, but any
in metacognitive sensitivity (Haddara & gains in metacognitive sensitivity show only partial
Rahnev, 2022; Kelly & Mandel, 2024; generalization to other domains (Stengel-Eskin et al.,
Rouy et al., 2022) 2024; Steyvers, Belem, & Smyth, 2025)
Metacognitive Ability to self-direct learning and offload Ability to integrate external tools (e.g., search engines,
control cognition strategically (Gilbert, 2024; Gureckis calculators), enabling a form of cognitive offloading
& Markant, 2012)
Introspection Privileged introspective access to at least some Limited introspective-like behaviors, such as predicting

internal processes

their outputs better than others (Betley et al., 2025;
Binder et al., 2024)

Note: LLM = large language model.

similar to a proposed theoretical framework for human
confidence in which subjective certainty arises from the
self-consistency of internally generated candidate answers
(Koriat, 2012). Although developed independently in Al
and cognitive psychology, both approaches suggest that
consistency across internally simulated alternatives may
serve as a basis for confidence.

Another similarity concerns the outwardly visible
behavioral patterns of calibration and sensitivity. Recent
work has shown that LLMs and humans both tend to
exhibit overconfidence when given the same task, and
both can achieve a similar degree of metacognitive
sensitivity—that is, their confidence ratings are similarly
diagnostic of accuracy (Cash et al., 2025). Note, how-
ever, that this study used AUROC2—which is con-
founded with accuracy (Fleming & Lau, 2014)—to
quantify metacognitive sensitivity but did not control
for accuracy across the LLMs and humans. Nevertheless,
the tendency toward overconfidence has long been
observed in human cognition (Kelly & Mandel, 2024)
and appears to extend to LLMs as well, possibly because
of inductive biases or training data characteristics (Zhou
et al., 2024).

Further parallels are found in the expression and
perception of linguistic uncertainty. Humans often use
terms such as “likely,” “probably,” or “almost certainly”
to convey probabilistic beliefs, and so do LLMs when

prompted for confidence statements. Research compar-
ing the two has found that modern LLMs match popu-
lation-level human perceptions of linguistic uncertainty
reasonably well when asked to translate between verbal
and numeric probabilities (Belém et al., 2024).

Last, metacognition in humans is thought to rely on
introspective-like processes, defined specifically by the
privileged access we have to our own thoughts over
those of others (i.e., the difference between metacogni-
tion and theory of mind). Similarly, it has been sug-
gested that LLMs can better predict their own behavior
than the behavior of another LLM, which some
researchers interpret to imply the presence of such
privileged access in the LLMs tested (Binder et al.,
2024). Evidence of introspective-like capacities may
also come from LLMs’ demonstrated ability to describe
their own behaviors after training even when those
behaviors are not explicitly described in their training
data (such as preferring risky choices), including
behaviors displayed via “backdoors” in which models
show unexpected or undesirable behaviors under cer-
tain trigger conditions (such as holding a goal to elicit
certain behaviors from a human user). For example,
Betley et al. (2025) asked models to describe their
“tendencies” or “goals” in general, separate from a
specifically prompted behavior, and found that they
could describe these predilections or goals
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accurately—suggesting some degree of introspective
access that they can explicitly report.

Differences between human and
LLM metacognition

Despite a number of parallels, there remain important
differences between human and LLM metacognition. In
humans, many researchers suppose that the ability to
form confidence judgments rests on the formation of a
second-order representation: a separate evaluation or
reassessment of the internal representations prompted
by input information and that gave rise to a behavioral
output (Peters, 2022; for a differing perspective, how-
ever, see, e.g., Zheng et al., 2025). Unless explicitly
present in their architecture, LLMs may not form such
second-order self-evaluative representations unless
explicitly prompted to do so. Relatedly, LLMs may be
less able to correctly evaluate the source of uncertainty
in their internal representations, suggesting they lag
humans in distinguishing between metacognition and
theory of mind. LLMs are prone to conflate their own
beliefs with those attributed to others; that is, they are
less able to separate the speaker’s belief from their own
compared with humans when interpreting uncertain
statements (Belém et al., 2024).

Another difference is the extent to which metacogni-
tive abilities can be improved through training. In the
case of LLMs, research has shown that confidence ver-
balization can be improved by fine-tuning approaches
that reward the LLM for accurately conveying uncer-
tainty to a listener (Stengel-Eskin et al., 2024) or align-
ing overt confidence scores with implicit measures of
uncertainty such as consistency scores (Steyvers, Belem,
& Smyth, 2025). Both metacognitive calibration and
sensitivity can be improved through training. However,
although trained models show some generalizability to
other knowledge domains and other types of questions
(e.g., switching from multiple choice to short answers),
there is no generalization between different types of
metacognitive tasks (e.g., single-question confidence
estimation, in which the model assigns a numeric cer-
tainty to its answer, and pairwise confidence compari-
son, in which the model selects which of two answers
it is more likely to answer correctly; Steyvers, Belem,
& Smyth, 2025). For humans, providing feedback,
encouraging reflective reasoning, and explicitly target-
ing cognitive biases can reduce human miscalibration
of confidence (Kelly & Mandel, 2024; Rouy et al., 2022).
However, there is no evidence that human metacogni-
tive sensitivity improves in the presence of feedback
(Haddara & Rahnev, 2022), likely reflecting underlying
architectural differences: Whereas LLMs’ metacognitive

judgments can be fine-tuned through explicit training
objectives, human metacognitive sensitivity appears to
be constrained by more stable, possibly hardwired cog-
nitive mechanisms that are less responsive to
feedback.

Another difference may stem from the domain gen-
erality or specificity of metacognition in humans. It is
thought that some shared processes that underlie meta-
cognition about perception, memory, and cognition
may exist and rely on common neural structures,
whereas others may be domain-specific (i.e., separable
computational or neural modules for perceptual vs.
cognitive or memory metacognition; Morales et al.,
2018). A comprehensive assessment of the domain gen-
erality of LLMs’ metacognitive capacity has not yet been
undertaken; however, preliminary evidence suggests
that fine-tuning a model on a particular task (including
training specific metacognitive capacities in that task)
may not automatically generalize to other tasks
(Stengel-Eskin et al., 2024; Steyvers, Belem, & Smyth,
2025). As LLMs are increasingly integrated into many
highly different tasks and reasoning domains, attending
to their domain-specific versus domain-general meta-
cognitive capacities will become increasingly urgent
(for LLMs’ metacognitive failures in medical reasoning,
see, e.g., Griot et al., 2025).

Communication of Uncertainty in
Human-AI Interaction

To facilitate ideal collaboration between humans and
LLMs, we must attend to the sources of metacognitive
sensitivity and metacognitive bias in both populations—
including cases in which LLMs seem to engage in meta-
cognition similarly to how humans do but may not
actually. Importantly, these behaviors and distinctions
can have critical consequences for how levels of con-
fidence can be effectively communicated between LLMs
and humans.

As discussed above, metacognitive sensitivity is the
degree to which confidence judgments can discriminate
between right and wrong answers, which is critical to
effective decision-making in humans (Fleming, 2024).
For optimal interaction and humans’ trust of Al systems,
LLMs thus must be able to convey to human deciders
whether their decisions are likely to be correct
(Kadavath et al., 2022; Lee et al., 2025; Li & Steyvers,
2025; Steyvers, Tejeda, et al., 2025). Problematically,
LLMs appear reluctant to express uncertainty (Zhou
et al., 2024). Because humans rely heavily on linguistic
uncertainty expressions (Steyvers, Tejeda, et al., 2025;
Zhou et al., 2024), the absence of expressions of uncer-
tainty may raise humans’ reliance on model outputs
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even beyond the already overconfident judgments the
models express. A potential reason for LLMs’ reluctance
to express uncertainty may lie in the use of reinforce-
ment learning from human feedback, in which models
are fine-tuned to produce outputs that align with human
preferences. These preferences often favor responses
that sound confident—even when that confidence may
not reflect higher accuracy—Ileading LLMs to avoid ver-
bal expressions of uncertainty during generation
(Steyvers, Tejeda, et al., 2025; Zhou et al., 2024). Unfor-
tunately, this problem may be further exacerbated as
LLMs are used for increasingly challenging applications,
potentially by increasingly nonexpert users. Because
individuals who do not possess topical expertise are
less able to correctly assess the expertise of others
(Bower et al., 2024), nonexpert users may be especially
influenced by superficial aspects of LLM responses—
such as the absence of uncertainty expressions or the
length of the answer. Recent findings show that users
tend to interpret longer LLM responses as more confi-
dent, even when the model’s internal confidence remains
unchanged (Steyvers, Tejeda, et al., 2025). This suggests
that response length and style can mislead users into
overestimating the certainty or reliability of the model’s
output, potentially leading to overreliance on answers
that do not warrant such confidence. Humans and LLMs
may also rely on different sets of cues when assessing
their confidence in other humans, such as humans’ reli-
ance on the time it takes to render a response (Tullis,
2018); these cues likely will not be used in the same
way by LLMs. Together, these differences in the assumed
computations and inputs to metacognition may strongly
impact how humans integrate LLMs’ expressed confi-
dence into their own beliefs and decisions.

Overall, it is clear that improving Al metacognition
is a key priority: LLMs must be able to differentiate
correct responses from incorrect ones. Yet our research
trajectory must exceed simply improving LLMs’ self-
evaluation capacities if they are to effectively collabo-
rate with humans. Imbuing LLMs with appropriate
metacognitive capacities must also include directed
research into their communication of uncertainty to
human users and explicit comparisons between how
humans and LLMs evaluate their own uncertainty. New
tasks and evaluation strategies may be beneficial in
driving such development, such as building LLM capaci-
ties to recognize and name skills required to solve the
task at hand (e.g., mathematical problems; Didolkar
et al., 2024). Training regimes that drive alignment
between LLMs’ verbalized confidence and the perceived
confidence by humans (Stengel-Eskin et al., 2024), or
that emphasize LLMs’ capacities to detect questions that
are beyond the scope of their knowledge base or are
unanswerable, may also be powerful paths forward.

Future Benefits of Improved Al
Metacognition

Beyond the importance of improving LLMs’ metacogni-
tive capacities to facilitate their effective integration
into human-AI joint decision-making, imbuing LLMs—
or any Al system—with improved metacognition may
also play a role in progress toward more general forms
of machine intelligence. In humans, metacognitive
capacities—including metacognitive control, such as
deciding what to learn and when—facilitate goal-
directed behaviors, including learning, information-
seeking, and more. For example, cognitive science has
long recognized the role of metacognition in driving
self-directed learning, which allows us to focus effort
on acquiring information that we do not yet possess
(Gureckis & Markant, 2012). These curiosity-driven
behaviors may reflect a motivation to minimize uncer-
tainty in our internal representations of the world
(Schulz et al., 2023), with strong parallels to active-
learning AI algorithms that can optimally select their
own training data to maximize efficient acquisition of
coherent skills or beliefs (Gureckis & Markant, 2012).
Confidence signals can also help agents learn in rein-
forcement-learning contexts through explicit calcula-
tions of confidence-based prediction errors (Ptasczynski
et al., 2022). Last, metaevaluations of one’s own meta-
cognitive abilities can also drive humans’ learning
(Recht et al., 2025), and the same could be true for Al
systems. It is clear that promoting LLMs’ metacognitive
capacities may significantly advance the design of Al
systems with broader adaptive capacities.
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