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An enduring challenge in psychology is to understand indi-
vidual differences in intellectual abilities. Early theories of 
intelligence have explained performance on cognitive tests 

in terms of broad factors such as general intelligence shared among 
all cognitive tests as well as domain-specific factors1,2. Cognitive 
theories have been developed to explain covariation across tests of 
mental ability in terms of shared cognitive resources across tasks 
such as working memory and executive processes3,4, the speed of 
information processing at various levels of processing5,6, associative 
learning7, as well as developmental models involving mutually inter-
acting cognitive processes8. Recent research has started to examine 
neurobiological mechanisms that influence individual differences 
in mental ability9.

In this research, the goal is to understand individual differences 
in performance on cognitive tasks when individuals practice over 
an extended period of time, and to understand how learning tra-
jectories covary across tasks. To what degree is the learning trajec-
tory in one task predictive of the learning trajectory in another task? 
Can we predict how well an individual will perform after extended 
practice on a task by observing how well this individual performs 
at the start of practice on the same task, or on others? We scale up 
the investigation of individual differences in learning trajectories by 
analysing large-scale data from Lumosity, an online cognitive train-
ing platform. On this platform, users perform a variety of gamified 
cognitive tasks that assess a wide range of cognitive abilities in areas 
such as memory, attention and reasoning. Some of the games on the 
platform correspond directly to well-known cognitive paradigms 
(for example, the Erikson flanker task and n-back tasks) whereas 
others involve complex planning and visualization tasks not typi-
cally studied in the laboratory.

The Lumosity platform offers unique advantages to study indi-
vidual differences. First, the platform has a very large and diverse 
user base. As of 2018, over 90 million users from 182 countries 
signed up to participate. We analyse a sample of the Lumosity 
data that includes the performance of 36,297 users on 51 differ-
ent cognitive games (see Methods). Unlike most laboratory studies 
of cognition, the users in our sample are associated with a diverse 

range of demographic characteristics in terms of age, gender and 
educational background. Second, users practice the cognitive tasks 
multiple times and performance on tasks typically improves with 
practice10–12. Therefore, the data are not restricted to a single snap-
shot of performance across tasks but instead offer a dynamic view 
of performance over time. In our data sample, we will analyse per-
formance on the platform during a 6-yr period (the average user in 
this set spends about 2.5 yr on the platform during this time span).

The aim of this work is to analyse the latent structure of the learn-
ing trajectories across cognitive tasks. We apply a dimensionality 
reduction approach on the basis of a Bayesian principal component 
analysis (PCA)13,14. This approach has proved useful for predictive 
modelling of human preferences in large-scale datasets15,16. The 
particular Bayesian PCA approach adopted here models time in 
a discrete fashion and makes no assumption about the functional 
form of the learning curve. There are several other approaches that 
could be applied to the data, including continuous-time models17 
and various forms of latent growth models to learn the covariance 
structure of latent parameters governing the changes over time (for 
example, refs. 18–22).

We use a predictive evaluation approach to assess the model’s 
ability to account for covariation across learning trajectories and 
forecast future performance23,24. There are two types of prediction 
problems we use for model evaluation, as illustrated in Fig. 1. In 
the first prediction problem (Fig. 1a), the goal is to predict an entire 
learning trajectory for a particular user and a single cognitive task 
on the basis of the learning trajectories from other cognitive tasks 
the user engaged with. Because the to-be-predicted learning curve 
is missing entirely, the prediction has to be based on the latent struc-
ture that captures covariation across tasks as well as covariation 
across different stages of practice. The challenge in this prediction 
task goes beyond extrapolating learning curves11,23 or predicting 
future errors on the same learning task25. In the second prediction 
problem (Fig. 1b,c), the goal is to predict the user performance on 
a specific task at a later stage of practice based on observations of 
learning trajectories on other tasks, as well as partially observed 
performance at the initial stages of practice on the target task.  
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By systematically varying the amount of observed information 
about early task performance and number of other tasks observed, 
we can assess the predictive utility of different sources of informa-
tion. Overall, these prediction problems are related to real-world 
situations involving decisions to invest in costly training of a par-
ticular individual on the basis of prior performance on the same, 
or other, tasks.

We also examine whether the latent learning factors correspond 
to interpretable dimensions of performance. To avoid relying on 
subjective judgement when assessing the interpretability of the 
latent factors, we use a predictive approach to evaluate whether the 
latent structure discovered by the model can be mapped to known 
types of cognitive activities associated with a task, as well as the 
types of stimuli used in the task. For this purpose, we characterized 
each Lumosity game in terms of a number of predefined task fea-
tures related to the particular cognitive task (for example, memory, 
selective attention and logical reasoning) as well as stimulus features 
(for example, words, single digits and objects). These task features 
are not mutually exclusive—a particular task can be associated with 
a number of cognitive task features and involve multiple types of 
stimulus features. If the latent structure discovered by the model 
carries information about mental activities involved in each task, 
a model-based mapping between the latent factors and predefined 
task features should lead to accurate predictions of the types of cog-
nitive activities involved in a particular task.

applying Bayesian PCa to the learning data
To explain the Bayesian PCA approach as applied to the learn-
ing trajectories, we will first ignore the temporal dimension of the 
data and assume that each individual is associated with a single 
(potentially missing) performance score for each task. We will then 
show how the representation of the data can be extended to apply 

the model to the three-way data of individuals × tasks × practice  
stages (time).

Let xj be an N × 1 vector that represents the normalized per-
formance scores across N tasks for individual j. In probabilistic 
PCA13,14, the individual performances x are modelled as a weighted 
linear combination of orthogonal latent factors (also known as 
components):

xj ¼ Wzj þ μþ εj ð1Þ
The N × K matrix W captures the latent factors where K corresponds 
to the number of latent factors. The K × 1 vector zj represents the 
user-specific scores on the latent factors that determines how high 
or low the user scores are on the latent factor. The N × 1 vector μ 
is a mean offset term to capture baseline differences in the tasks. 
This term is needed when modelling incomplete data and cannot be 
removed by subtracting the data mean13. Finally, the N × 1 vector ϵ 
represents the noise in the data.

A key assumption in probabilistic PCA is that the noise is nor-
mally distributed, independent across factors and has the same 
standard deviation σ across factors:

εj  Nð0; σ2IÞ ð2Þ

where the symbol I represents the identity matrix. In contrast, fac-
tor analysis uses the same model as in equation (1) but has a more 
flexible error term that allows variances to differ across factors: 
εj  Nð0;ψÞ
I

. Therefore, probabilistic PCA can be considered a 
type of factor analysis model but with a restricted error model13,26. 
Previous commentaries on the differences between PCA and fac-
tor analysis have focused on non-probabilistic PCA, which lacks 
an error model27, but these distinctions do not apply to our current 
modelling approach.
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Fig. 1 | Illustration of different learning curve prediction problems for one user. a, For one task (ebb and flow), the entire learning curve is missing and needs 
to be predicted from the user’s performance on three other tasks (Lost in migration, Train of thought and Speed match). b, The performance on ‘ebb and flow’ 
is partially observed and the goal is to predict the performance at the last stage of practice from the early performance on that task as well as the performance 
on other tasks. c, The performance on ‘ebb and flow’ is partially observed and the goal is to predict the performance at the last stage of practice without any 
knowledge of performance on other tasks. Dotted lines show the 95% range in scores for each stage of practice.
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Common scores, different latent factors across stages of practice. 
There are several ways to apply probabilistic PCA to the three-way 
data of individuals × tasks × practice stages. Here, we make the 
assumption that each practice stage t is associated with its own set 
of latent factors Wt allowing for the covariation pattern across tasks 
to be dependent on the amount of practice. For example, two tasks 
A and B might not covary at the start of practice but as practice 
progresses the score in task A might start to covary with the score in 
task B as the two tasks begin to depend on the same latent factors. 
To constrain the latent factors across stages of practice, we assume 
that each individual has a single set of scores zj that is shared among 
the latent factors associated with each stage of practice.

Specifically, let xt,j be the N × 1 vector of task performance scores 
for user j at practice stage t. The model can be written as an exten-
sion of equation (1) by stacking the performance scores xt,j and 
latent factors Wt across stages of practice:
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Therefore, the observed performance of a user at practice stage t is 
based on a weighted combination of latent factors specific to t but 
where the scores zj are shared across time. Because of the sharing of 
user-specific scores, the latent factors Wt cannot arbitrarily change 
across stages of practice. Note that the models in equations (3) and 
(1) are equivalent but only differ in the representation of the data x 
and the interpretation of the latent factors W.

Results
Bayesian inference. We first normalize the data such that perfor-
mance scores across tasks are on the same scale. In addition, we 
truncate the learning curves to the first 60 gameplays and discretize 
the temporal dimension into eight stages of practice (see Methods). 
We apply a variational Bayesian inference procedure (see Methods) 
to infer model parameters. The main results presented here are based 
on the posterior mean of W which represents the latent factors and 
zj which represents the scores on the latent factors for each user j.

Number of latent learning factors. Figure 2a shows the predic-
tive model performance as a function of number of latent learning 

factors (K). The prediction problem corresponds to reconstructing 
an entire missing learning curve for a user on the basis of all other 
observed learning curves for the user (Fig. 1a). The prediction error 
is assessed on the original untransformed data by the normalized 
mean absolute deviation (see Methods). For the observed learning 
curves, increasing the number of latent learning factors leads to bet-
ter reconstructions (lower in-sample prediction errors). However, 
for learning curves withheld from the model, increasing the num-
ber of factors leads to diminishing out-of-sample predictive perfor-
mance beyond seven factors. The Supplementary Results show the 
predictive performance for three other metrics, each consistent with 
Fig. 2a and suggesting that predictive performance for out-of-sample 
learning curves reaches a maximal value for solutions in the range 
of five to eight factors. All our subsequent analyses will focus on the 
model solution with six latent learning factors, as this solution pro-
vides good predictive performance while not leading to overly com-
plex visualizations of the factors (see the Supplementary Methods 
for additional description of predictive performance metrics and 
Extended Data Figs. 3 and 4 for inferred solutions with K = 5 and 
K = 7 latent factors). Note the substantial data compression that this 
implies: the variations in learning trajectories across all tasks for a 
user are captured by only six coefficients in the user scores (zj).

Predicting performance at the end of practice. Figure 2b shows 
the prediction error when the model is predicting user performance 
at the end of practice (between 51 and 60 gameplays, corresponding 
to the problem illustrated in Fig. 1b,c). The results show that predic-
tions at the end of practice improve as a larger portion of the learning 
curve is observed. In addition, prediction performance increases as 
more performances on other tasks are observed. Of particular inter-
est is that observing user performance on other tasks is as informa-
tive as observing about the first 10–25 performances on the learning 
curve for the target task itself. This shows that covariation between 
cognitive tasks can be used to form predictions about performance 
on a new task in the absence of any observations on that task.

Optimal prediction performance is obtained when observing as 
much of the learning curve for the target task as possible while not 
observing the performance on any other tasks (that is, the curves 
in Fig. 2b cross over). This result demonstrates that the model is 
not optimized to solve this particular prediction problem—the 
goal of the model is to reconstruct all observed learning curves as 
best as possible and more observed learning curves can deteriorate 
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Fig. 2 | Predictive model performance. a, error in predicting learning curves on a task from learning curves on other tasks as a function of the number of 
factors. In the prediction task, the learning curves are either observed (in-sample prediction error) or missing (out-of-sample prediction error). Prediction 
error is assessed by normalized mean absolute deviation. b, error in predicting performance at the final practice stage of a particular task, depending on 
the amount of practice observed for the task (horizontal axis) and the number of learning curves observed from other tasks (colours and markers). error 
is expressed in percentage of prediction error for the case where there is no historical performance data available for the user. Shaded areas indicate the 
s.e.m. across partitions of the data.
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predictive performance on any particular segment of any particular 
learning curve.

Inferred latent learning factors. Figure 3 shows the inferred latent 
learning factors broken down by stage of practice. The first latent 
learning factor is associated with positive scores across all tasks, 
consistent with a general ability factor often found in factor analysis 
of mental abilities2. While the first latent learning factor is positive  
across all tasks, there is also an increase over stages of practice  
(Fig. 4a). This increase in part reflects changes in the correlations in 
performance scores across tasks (Fig. 4b). A user who performs well 
in one task tends to perform well in other tasks and this correlation 
increases with practice.

Some of the changes in the first factor scores can be attributed 
to task differences related to adaptivity. In some tasks the level of 
difficulty adapts between gameplays (see Methods). For these 
between-game adaptive tasks, idiosyncratic effects might influence 
the performance scores in initial stages of practice, which would 
decrease the dependence on general ability and thus lower the first 
factor scores at at those stages. For example, a user who has high 
ability might only be able to express this ability once the game has 
adapted to an appropriate level. However, the first learning factor 
also increases with practice for tasks that maintain the same scoring 
system and difficulty level across stages of practice (that is, those 
with no between-game adaptivity).

Another potentially relevant factor is the reliability of scores as 
a function of practice. An increase in the first learning factor over 
stages of practice could be attributed to an increase in reliability (for 
example, smaller performance fluctuations over practice). However, 
Fig. 4c shows that the reliability of scores, assessed by the correla-
tion in task scores of consecutive gameplays, ramps up quickly and 
remains constant after the third stage of practice (that is, after six 
gameplays), showing that the changes in factor scores cannot be 
attributed to changes in performance variability (within person) 
over time.

The tree diagram of Fig. 3 shows the similarity structure between 
tasks on the basis of the latent learning factors. The tasks cluster 
along the primary task domains: language tasks are similar to other 
language tasks, math tasks are similar to other math tasks, etc. This 
suggests that while the domain independent factor (the first factor) 
has a large influence on performance, the remaining factors modu-
late the learning curves for particular sets of tasks depending on the 
primary cognitive processing demands of the tasks. Note that, with 
the exception of the first factor, the values have no natural interpre-
tation of higher-is-better. It is the sign of the user score along with 
the sign of the latent factor value that is important for interpretation.

Interpretation of latent learning factors. We examine whether the 
latent learning factors described by this six-factor solution can be 
related to known features of the tasks such as the types of cognitive 
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processing demands imposed by the task, the type of stimulus, 
method of input or aspects of game design (for example, the pres-
ence of leveling in difficulty or the presence of time pressure). Table 1  
shows a list of task features we used in our analysis. Each feature 
is binary: a task is either associated with the feature or it is not. 
(Extended Data Figs. 1 and 2 show the full task × feature matrix and 
a definition of the task features.)

Figure 5 shows the correlations between latent learning factors 
and task features corresponding to cognitive processes and stimulus 
types. The hierarchical tree visualizes the similarity structure in the 
pattern of correlations. We use the primary task domains in Fig. 3 and 
the task features in Fig. 5 to guide an interpretation of the individual 
factors. The first factor, as described above, is associated with higher 
performance across all tasks and is consistent with a general ability 
factor. The second factor is related to visuospatial abilities: it is has 
highest scores in tasks requiring spatial recall, route planning or the 
integration of visual information from across the visual field. Scores 
are correlated with the use of locations and objects as the task stimuli. 
The third factor is related to executive attention, with highest scores 
in tasks requiring the maintenance of goal-directed information or 
the inhibition of inappropriate responses and activation of appropri-
ate ones. An increased score on this factor improves performance on 
tasks requiring selective attention. The fourth factor is primarily asso-
ciated with comprehension knowledge related to math and language 
tasks, that is crystallized intelligence, although it also has high scores 
in several tasks requiring spatial reasoning or visualization. The fifth 
factor is related to mathematical ability—note the high correlation 
with task features involving numbers and math. The sixth factor is a 
hybrid factor that combines executive attention and math.

While this interpretation of the factors is consistent with the 
task features and primary task domains, there might be others as 
well. In addition, the interpretation of these factors is constrained 
by the orthogonality of these factors, which tends to lead to tasks 
being associated with multiple factors. To examine the effect of 
orthogonality on the interpretability of the factors, we applied fac-
tor rotation methods using the promax method28, which leads to 
non-orthogonal factors where the variance of each task is redistrib-
uted across factors such that tasks are associated with fewer factors 

(see Extended Data Fig. 5 for the resulting factors and factor cor-
relations). As with the original orthogonal solution, the first fac-
tor retains positive scores across all tasks, consistent with a general 
ability factor. Though still positive, first factor scores are weakest 
for tasks involving language. The second factor is also similar to its 
counterpart before rotation but the signs have been reversed such 
that visuospatial tasks now correspond to negative values. The larg-
est positive scores are for language tasks. Positive scores on the third 
factor are found for tasks involving spatial reasoning, with negative 
scores relating to tasks demanding response inhibition and other 
aspects of executive function. The fourth factor has strongest scores 
for tasks involving visualization of spatial transformations or spatial 
recall. The fifth factor relates to mathematical ability, similar to the 
orthogonal solution. The sixth factor is a hybrid that relates to tasks 
practicing executive attention and also to reasoning and language.

Predicting individual task features from the latent learning fac-
tors. The previous analysis focused on a qualitative interpretation of 
the latent learning factors. We can also perform a more fine-grained, 
quantitative analysis that examines whether the pattern of informa-
tion contained in the latent learning factors is predictive of indi-
vidual task features. We build a predictive model that has the goal 
of predicting (out-of-sample) the presence or absence of each task 
feature for any particular task on the basis of the latent learning fac-
tors associated with the task. Table 1 shows the diagnosticity of the 
predictive model expressed by area under the curve (AUC). This 
corresponds to the probability that the model assigns a higher score 
of ‘feature present’ to a new task where the feature is indeed present 
than a new task without the feature. For 16 of 28 task features, pre-
dictive model performance exceeds the 95% performance interval 
associated with chance-level performance. For example, whether 
a task involves cognitive processes such as selective attention, task 
switching, word generation, calculation, spatial reasoning and 
response inhibition can be determined by the latent learning factors 
associated with the task. Some of the other cognitive processes can-
not be reliably identified in part because the feature was only associ-
ated with a few tasks (N in Table 1), which makes generalization to 
new tasks more challenging.
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Fig. 4 | analysis of the first learning factor. a–c, mean score of the first learning factor (a), game score correlations between tasks (b) and play–replay 
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The particular Bayesian PCA approach we adopted allows for 
different latent factors Wt to be associated with each stage of prac-
tice (t), which raises the question whether the factors assess the 
same construct over time29. Because of the sharing of scores across 
stages of practice, there are constraints on the latent factors that 
prevent them from arbitrary changes across stages of practice. For 
example, a user who scores high on a particular factor will upweight 
the contribution of the corresponding column of all matrices Wt 
regardless of stage of practice t, which constrains model flexibility 
during inference. In model simulations (Supplementary Methods), 
we verified that the task feature prediction model retains high per-
formance when the model is trained on the latent factors associated 
with a particular stage of practice and validated on other stages of 
practice.

Overall, these results show that the latent learning factors 
carry not only information about general learning ability but also 
task-specific information related to the type of cognitive process 
involved, the type of stimulus being processed, the input method 
and additional aspects of game design.

Contributions of individual latent factors to the shape of the 
learning curve. To better understand the contributions of indi-
vidual latent learning factors to the shape of the learning curve, 
Fig. 6 shows the posterior predicted learning curves in the origi-
nal (untransformed) data space for the set of games that maintain 
the same difficulty levels and scoring across all stages of practice 
(Extended Data Fig. 6 shows results across all games). The curves 
show the predictions for simulated individuals who have individ-
ual scores on a factor that score in the top 10% (red), bottom 10% 
(blue) or at 50% (black) while scoring at 50% on all other factors. 
Consistent with Fig. 3, the first factor predicts improved learning 
outcomes across all tasks. The remaining factors primarily shape the 
learning curve at later stages of practice and for subsets of tasks. For 
example, the fifth factor primarily differentiates performance on the 
math tasks and has a relatively small impact on other tasks.

Relating individual scores to demographics. Figure 7 shows the 
distribution of individual scores (zj) for each latent learning fac-
tor as a function of age and educational background. The first fac-
tor strongly differentiates between age groups. Older age groups 
score lower on this factor, predicting lower performance across all 
tasks, consistent with cognitive slowing theories of aging that affect 
a broad range of tasks30. Note that the general learning factor we 
found does not depend on the presence of different age groups. The 
same learning factor emerges when the model is applied to indi-
vidual age groups, consistent with previous research that general 
intelligence factors can be found across different subpopulations31. 
In terms of educational differences, individuals with more advanced 
education score higher on the general learning factor and lower on 
the second factor, corresponding to higher math and language per-
formance scores. However, overall there are no strong effects of edu-
cational background.

Discussion
Large-scale datasets offer unique opportunities to study cognition 
at scale32,33. The Lumosity dataset offers a unique multivariate and 
longitudinal set for studying learning across a number of cognitive 
tasks and users. To avoid making strong assumptions about the 
data, we started this investigation with a data-driven Bayesian PCA 
approach to discover the statistical patterns of covariation across 
learning trajectories. The model infers a set of latent factors that 
can change as a function of the stage of practice, similar to other 
approaches that allow for the organization of cognitive abilities to 
vary as a function of ability34,35. The modelling results showed that 
the learning trajectories show substantial covariation across tasks. 
Individuals who are good at learning one task typically are also 
good at learning other tasks, analogous to the standard finding of 
Spearman’s general intelligence factor1 and a positive manifold in 
tests of cognitive ability where performance across tests tends to be 
positively correlated.

A key finding is that the general learning factor was expressed 
mostly at later stages of practice. Across tasks, asymptotic perfor-
mance correlates more strongly than baseline performance. The 
increase in the general learning factor over stages of practice was 
especially prevalent for tasks with adaptive difficulty, consistent 
with the possibility that tasks with adaptive difficulty may take some 
time to reach an individual’s challenge level. However, the effect was 
also found for non-adaptive tasks, which suggests that the type of 
learning in early stages (that is, learning how to complete the task, 
not necessarily how to perform it well) may not map as well to this 
general factor. Overall, the temporal pattern for the general learning 
factor suggests that early performance on these cognitive tasks is in 
part influenced by idiosyncratic, task-specific factors.

The finding that general ability is expressed to a higher degree 
after extended practice is also consistent with cognitive and devel-
opmental theories of intelligence such as mutualism8 and process 

Table 1 | Performance (auC) of predicting task features from 
the latent learning factors

Feature type task feature auC Confidence 
interva

N

Process memory 0.65 (0.26, 0.71) 24

Process memory updating 0.71 (0.21, 0.76) 10

Process multiple object 
monitoring

0.91 (0.08, 0.91) 3

Process Selective attention 0.82* (0.18, 0.73) 11

Process Divided attention 0.71 (0.23, 0.74) 13

Process Task switching 0.86* (0.15, 0.83) 5

Process Vocabulary knowledge 0.93 (0.04, 0.97) 2

Process Word generation 0.85* (0.13, 0.80) 6

Process Planning 0.80 (0.12, 0.84) 6

Process Calculation 0.98* (0.12, 0.86) 4

Process Quantitative reasoning 0.52 (0.14, 0.85) 4

Process Spatial reasoning 0.81* (0.22, 0.77) 10

Process Logical reasoning 0.77 (0.11, 0.86) 4

Process response inhibition 0.90* (0.24, 0.73) 17

Stimulus Objects 0.78* (0.27, 0.72) 33

Stimulus Locations 0.90* (0.26, 0.72) 25

Stimulus Single letters 0.79 (0.08, 0.91) 3

Stimulus Words 0.90* (0.20, 0.77) 10

Stimulus Single digits 0.59 (0.14, 0.83) 6

Stimulus Numbers 0.98* (0.10, 0.90) 4

Input method Cursor keys 0.76* (0.25, 0.72) 17

Input method Keyboard entry 0.83* (0.20, 0.77) 9

Input method mouse pointer 0.89* (0.26, 0.70) 27

Game design Within-game adaptivity 0.95* (0.25, 0.71) 29

Game design Algorithmic leveling 0.73 (0.23, 0.74) 14

Game design User-selected leveling 0.67 (0.25, 0.72) 17

Game design response-time pressure 0.89* (0.25, 0.71) 31

Game design briefly presented stimuli 0.82* (0.23, 0.74) 11

Values denoted with an asterisk show performances outside the 95% confidence interval given 
between parentheses. AUC, area under the curve; N, number of tasks with the feature present.
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overlap theory4. The mutualism theory of intelligence views the 
cognitive system as a set of basic cognitive abilities and growth 
in one ability is partly based on growth in other abilities. During 
development, initially uncorrelated abilities become correlated  
as a result of the mutually beneficent interactions between these 
abilities. For example, there is evidence for a coupling between fluid 
and crystallized abilities such that higher starting point in one abil-
ity is associated with greater developmental gains in the other36,37. 
Process overlap theory, on the other hand, proposes that perfor-
mance on a task depends on interactions between domain-specific 
as well as domain-general cognitive processes such as attentional 
and executive processes. Task performance is constrained by 
whichever required process an individual is weakest in. In the  
initial stages, task-specific skills need to be acquired, which lim-
its the observed correlations between tasks. During later learning 
stages, more domain-general abilities may set an upper limit on 
learning ability.

The model also inferred additional latent factors that captured 
performance variations related to specific types of tasks. In fact, the 
latent learning factors encode information related to a number of 
different cognitive processes, types of stimuli, ways of assessing user 
responses and general design features of the tasks. Therefore, the 
relatively low-dimensional factor structure captures a substantial 
amount of information about the mental activities in each task.

We also showed that the model can be used to predict task per-
formance from observed performance on other tasks. Specifically, 
we found that performance at a later stage of practice on a particu-
lar task can be predicted as accurately from observing performance 

on other cognitive tasks as observing performance at the very early 
stages of practice for that particular task. This result has implica-
tions for real-world forecasting scenarios where the most promising 
individuals need to be selected for expensive and time-consuming 
training of a particular task. Some of the future performance can be 
forecasted without engaging in the target task at all.

By making the Lumosity dataset publicly available, we aim to fos-
ter new research on individual differences and the development of 
new modelling approaches to account for covariation across learn-
ing trajectories. There are several research directions that are likely 
to improve the prediction results and interpretability of the latent 
factors. For example, we can improve the treatment of the temporal 
dimension of the data by building an explicit continuous-time model  
for the learning trajectory for each individual17,38 and applying  
multivariate latent growth models to learn the covariance structure of 
the latent parameters governing the changes over time (for example,  
refs. 18–22,36,37). In addition, future research could focus on a cognitive 
modelling approach to explain observed performance in terms of 
latent cognitive processes39. One Lumosity task (the task-switching 
game ‘Ebb and flow’) has already been modelled to understand 
the cognitive processes at the level of individual trials as well as the  
cognitive changes across sessions10. Finally, while our approach reveals 
changes in covariation of performance across tasks as practice pro-
gresses, it does not directly address the question of whether or how 
cognitive training might transfer between tasks, which has been a topic 
of recent debate40,41. Future modelling could allow for transfer effects 
arising from mutually coupled cognitive processes36,37 to account for 
the possibility that performance is impacted by the order in which 
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Fig. 5 | Correlations between latent learning factors and manually derived task features. each group of columns corresponds to the different time slices 
of a single latent factor. Positive (or negative) correlations are illustrated by red (or blue) colours. The hierarchical tree visualizes the similarity between the 
task features on the basis of the pattern of correlations between task features and latent factors. Task features are grouped by process and stimulus type.
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tasks are practiced in interleaved practice. Ultimately, the predictive 
evaluation approach introduced in this research will facilitate com-
parison between different modelling approaches.

Methods
The Lumosity platform provides several games that tap memory, attention, 
flexibility, speeded processing and problem solving. In the Lumosity program, 
individuals are given a recommended daily training session of five different 
cognitive training games. One five-game session takes approximately 15 min to 
complete. Outside of the training sessions, Lumosity users can also opt to select and 
play games directly from the entire library of available games.

Data sample. We performed a retrospective analysis of a sample of gameplay data 
on the basis of 84 distinct cognitive games. The de-identified data sample provided 
by Lumosity includes the gameplay event history for 36,297 individuals, 1,442,555 
individual learning curves and 50,374,056 gameplay events. No statistical methods 
were used to predetermine sample sizes but our sample sizes are larger than 
those typically reported. The data sample was selected from the overall Lumosity 
database by focusing on active users who have at least 500 lifetime gameplays. 
In addition, because the focus of our research is on analysing correlations across 

cognitive tasks, this dataset only included users if 5% or fewer of their gameplays 
were repetitions of the previous game. This criterion excludes individuals who 
choose to repeat specific games rather than play from the broader game library. 
In addition, individuals were selected who signed up between 1 August 2013 and 
31 December 2016, with an age at signup between 18 and 90 yr. The country of 
origin was restricted to the United States, Canada or Australia with English as 
the user’s preferred language. Finally, individuals were included if at least 99% of 
their lifetime Lumosity gameplays were on the web product (as opposed to mobile 
apps) and only the web data were included in the data sample. In total, the dataset 
contains the full gameplay history across tasks spanning a period from 1 August 
2013 to 30 June 2019. Most users in this sample (80%) signed up with Lumosity 
before 1 January 2015. Users in this sample spent a median of 2 yr on the platform.

Demographics of participants. Basic demographic information is available on the 
basis of information provided by users when signing up for Lumosity. In our data 
sample, most individuals are female (50%), with 39% males and 11% individuals 
who did not provide gender information. We coded the age of individuals in seven 
bins leading to the following breakdown of the user sample: 18–30 (5%), 31–40 (5%), 
41–50 (12%), 51–60 (25%), 61–70 (32%), 71–80 (17%) and 81+ (4%). Therefore, 
the user sample skews towards an older demographic. Individuals reported their 
educational attainment according to the following categories: some high school (2%), 
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Fig. 6 | Changes in predicted learning curves based on changes in individual scores for individual factors. For each factor (row), the blue, black and red 
lines show the predicted learning curves for 10, 50 and 90% percentile scores on that particular factor and median scores on all other factors. Therefore, 
the red (blue) lines show the predicted learning curves for individuals who score high (low) on that factor while holding constant the contribution of other 
factors. Intercept differences are highlighted with circles at the start of the learning curve. To facilitate comparison, the vertical axis is the same for each 
particular task (column) but is different across tasks. Tasks are ordered by primary domain (colour) consistent with Fig. 3. Only the subset of tasks without 
between-game adaptivity is shown.
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high school (13%), some college (22%), Associates degree (4%), Bachelors degree 
(31%), Professional degree (6%), Masters degree (19%) and PhD (3%).

Data filtering. For some of the cognitive tasks in the dataset, the available learning 
data were sparse in terms of the number of individuals who performed the task or 
the total number of times individuals performed the task. To ensure that sufficient 
data were available for our analyses, we filtered out any cognitive task that had 
fewer than 200 individuals at the twentieth gameplay attempt. At the learning 
curve level, we truncated the learning curve to the first 60 gameplays. The final 
dataset created after these filtering steps includes the gameplay event history for 
51 cognitive games, 36,297 individuals, 1,255,175 individual learning curves and 
36,736,286 single gameplay events.

Data sparsity. The observed data are sparse as users do not perform all cognitive 
tasks. The tasks vary by popularity from 99.8% to as few as 1.5% of users in this 
sample performing the task. On average, users perform a median of 32 distinct 
tasks. An additional factor that influences sparsity is that learning curves for a 
particular user and a particular task might not be complete—a user might stop 
playing the game before our cutoff of 60 gameplays. Across tasks, users and first 60 
gameplays, only 33% of the data are observed. Supplementary Fig. 3 illustrates the 
pattern of sparsity across games as well as stages of practice.

Performance scores. At the end of each gameplay event, users are given feedback 
on a variety of performance scores depending on the type of game. Some games 
provide feedback on mean response time per trial and/or mean accuracy. Our 
dataset only includes data on the total score per gameplay, which all games provide. 
This performance score is based on a combination of accuracy, speed of processing, 
as well as bonus points accumulated from a variety of factors (for example, streaks 
of correct responses or completing more challenging trials).

Adaptivity within and between games. Some of the Lumosity games have a 
level of difficulty that adapts to the user’s performance. For different games, 
this adaptivity may occur either within or between gameplays. Between-game 
adaptivity is achieved either through user-selected leveling, in which users unlock 
more challenging levels by reaching certain performance targets, or algorithmic 
leveling, in which the level of difficulty is adjusted algorithmically across gameplays 
on the basis of performance. For within-game adaptivity, the level of difficulty can 
increase or decrease during gameplay depending on user performance but each 
gameplay begins at the same difficulty level. Extended Data Fig. 1 shows which 
tasks are associated with each type of adaptivity. For the purpose of our analyses, 
we distinguish between tasks that have no between-game adaptivity (20 total), 
which maintain the same level of difficulty and scoring system across gameplays, 
and tasks that have a form of between-game adaptivity (31 total).

Data transformations. We applied several transformation steps to prepare the data 
for the PCA algorithm, reduce the computational complexity and normalize the 
performance scores across cognitive tasks. To introduce notation, we denote the 
observed performance scores by a three-way array Y with elements yijt referenced 
by indices i = 1, …, L (tasks), j = 1, …, M (individuals) and t = 1, …, T (number 
of gameplays). We transform the three-way array to a matrix of scores X with 
elements xij referenced by i = 1, …, N (combination of task and stage of practice) 
and j = 1, …, M (individual). It should be noted that the predictive performance 
of the PCA model is assessed on the original untransformed data (Y) to facilitate 
comparison to other models that might use the same data.

In the first data transformation step, we reduced the dimensionality of the 
temporal component of the data by discretizing time into B temporal bins. We 
set B = 8 and defined the following stages of practice by the number of gameplays 
completed: 1 or 2 gameplays, 3–5, 6–10, 11–20, 21–30, 31–40, 41–50 and 51–60. 
All (observed) performance outcomes were averaged within these bins. The bins 
were chosen to be smaller for the early stages of the learning curve as these are the 
stages where performance typically changes the most.

In the second data transformation step, we normalized the performance 
outcomes across cognitive tasks and temporal bins. For each task, the performance 
scores were normalized by the standard deviation of the performance scores in 
the last temporal bin (gameplays 51–60). No correction was applied to the mean. 
After this transformation step, the data are of size M = 36,297 (individuals) × L = 51 
(cognitive tasks) × B = 8 (stages of practice).

In the final data transformation step, we rearrange the data to a matrix 
representation. For each individual, we concatenate the L performance scores 
across tasks and B stages of practice to create a single (column) vector with 
N = L × B performance scores. By combining the M individual vectors, we create 
the final N x M matrix X.

Priors and model inference. The Bayesian approach to probabilistic PCA 
completes the model by using the following priors on the model parameters:

wik  Nð0; σ2wÞ
zij  Nð0; 1Þ
μi  Nð0; σ2μÞ

ð4Þ

In this notation, wik is an element of matrix W with indices i = 1, …, N and  
k = 1, …, K and the variable zij is the ith element of individual vector zj.

We use the variational Bayesian inference procedure (VBPCA) described in 
ref. 13 to infer model parameters. The algorithm provides estimates of the posterior 
mean and covariance of W, z and μ as well as estimates of the hyperparameters 
σ, σw and σμ. Finally, the algorithm provides estimates of the variance of withheld 
observations of the xj. The VBPCA algorithm was run for 30 iterations.

Predictive tests. We assess model performance on two types of prediction 
problems. In the first prediction problem (illustrated in Fig. 1a), the goal is to 
predict the entire learning curve for a task for a particular user given the observed 
learning curves from other tasks that the user engaged in. We created a validation 
set by withholding for each user the performance scores from one cognitive task 
chosen at random from all tasks that the user engaged in. Because of the size of the 
data, we only created a single partition of the data into a training and validation set 
to assess predictive performance.

In the second prediction problem (illustrated in Fig. 1b,c), the goal is to predict 
the user performance at the last stage of practice (51–60 gameplays) from some 
combination of observed performance on earlier stages of practice on the task as 
well as practice on other tasks. We created 36 partitions of the data into validation 
and training sets. For each partition, we first randomly selected 20% of users and 
selected for each user a single target learning curve without any missing practice 
data. The data for the last stage of practice (gameplays 51–60) of the target learning 
curves were then placed in the validation set. For each of the target learning curves, 
the number of observed stages of practice for the training data was randomly 
determined, uniformly from the B − 1 = 7 remaining practice stages. For each of the 
selected users, we selected a random number of learning curves from tasks other 
than the target tasks, uniformly from the number of other tasks the user engaged 
in. The selected learning curves were placed in the training set. For the remaining 
80% of users, all observed data were placed in the training data. We repeated this 
procedure of partitioning data into training and validation data 36 times. The 
model was applied to each partition and predictions for the last practice stage for 
the validation learning curves were recorded.

Assessing predictive performance. We use the normalized mean absolute 
deviation (NMAD) metric to assess the predictive performance of the model. The 
mean absolute deviation (MAD) for particular cognitive task i is defined as

MADi ¼
1

jΩij
X

ðj;tÞ2Ωi
jyijt � ŷijt j ð5Þ

where yijt is the withheld performance of user j on task i at time t and ŷijt
I

 is the 
corresponding model prediction. The variable Ωi denotes the set of withheld data 
pairs j and t for task i and ∣Ωi∣ is the number of withheld data pairs for task i. To 
combine the MAD across tasks, we normalize the scores before averaging:

NMAD ¼ 1
N

XN

j
MADi=Si ð6Þ

where Si is the standard deviation of performance scores (across all practice 
trials) for task i. This step normalizes the arbitrary scoring ranges associated with 
individual tasks. The Supplementary Methods show three additional predictive 
performance metrics for model evaluation.

Determining the number of factors. There are several methods to determine 
K, the number of latent factors in a dimensionality reduction algorithm such as 
PCA. We use a generalization test where we assessed the model’s performance on 
predicting learning curves that are withheld from the model. We calculated the 
normalized mean absolute deviations (NMAD) for K = 1 up to K = 12 and chose 
the number of latent factors such that generalization performance was adequate 
and no substantial gains could be obtained by selecting solutions with a higher 
number of latent factors. In our simulations, about six latent factors were sufficient 
to maximize predictive performance. Supplementary Figs. 1 and 2 show that 
similar results were obtained with three other predictive performance metrics.

Determining the primary cognitive domains and task features. The tasks 
included in the dataset span a range of cognitive skills. For the purpose of 
visualizing and interpreting the results of the probabilistic PCA, we classified the 
games into six primary areas: attention, flexibility, language, math, memory and 
reasoning. These classifications closely follow the primary areas that are listed on 
the Lumosity platform with a few exceptions (for example, we dropped the speed 
area and reclassified a few games into other areas). Extended Data Fig. 1 shows the 
primary cognitive areas designated for each task.

While these primary cognitive domain classifications are broadly useful, it 
is important to note that each game might require multiple types of cognitive 
processes. To more fully capture the set of cognitive activities involved in each 
task, we enumerated a list of task features shown in Extended Data Fig. 1. The task 
features relate to the type of cognitive process, the type of stimulus, the method of 
input and other aspects of game design. For each task, the authors assessed what 
task features were relevant and focused mainly on features that would be applicable 
to a range of tasks. For definitions of task features, see Extended Data Fig. 2.
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Linking latent factors to predefined task features. A (lasso) regularized 
logistic regression model was used to predict predefined task features from the 
pattern of latent factors. For each task feature, a separate model was trained 
using cross-validation. For each fold, the model was trained on all but two 
tasks and the test set consisted of the two held out tasks with the constraint 
that the feature was present on one task but not the other. The partitioning into 
training and test sets was done over 200 different combinations to create a test 
set with one feature-present and one feature-absent task. An AUC value was 
calculated from the proportion of test sets where the held out feature-present 
task was given a higher score by the logistic regression model than the held out 
feature-absent task.

In addition, we derived a distribution of AUC that can be expected from 
chance-level performance. In this procedure, we randomly permuted the feature 
pattern across tasks (losing any connection between the latent learning factors and 
task features but preserving the marginal distribution of variables) and calculated 
an AUC for the logistic regression model as described earlier. This procedure was 
repeated 400 times to derive a distribution of AUC values. The 2.5% and 97.5% 
percentiles of this distribution are reported in Table 1.

For all simulations of the regression model, a coordinate descent algorithm 
for model inference was used. Convergence was assessed by the relative change in 
the size of the estimated coefficients. All model simulations converged when the 
relative change dropped below 1 × 10–4.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The original and preprocessed versions of the data can be accessed at https://osf.io/
g9zkf. Source data are provided with this paper.

Code availability
The code used to analyse the data, run the Bayesian PCA model and create figures 
and tables can be accessed at https://osf.io/g9zkf.
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Extended Data Fig. 1 | task features for cognitive tasks grouped by process, stimulus, input method, and game design. Solid circles indicate the presence 
of the task feature. The primary cognitive area associated with each task is given between parentheses.
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Extended Data Fig. 2 | Glossary of task features. Definitions are provided for each process, stimulus, input method and game design feature used to 
describe the cognitive tasks.

NatuRe HuMaN BeHavIouR | www.nature.com/nathumbehav

http://www.nature.com/nathumbehav


Articles NaTurE HuMaN BEHaviourArticles NaTurE HuMaN BEHaviour

Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Inferred latent learning factors with five factors. Top panel: the heatmap visualizes the latent learning factors (columns) across 
games (rows). Positive (negative) values are visualized by brown (blue) colours. each latent learning factor corresponds to a group of 8 columns, where 
the columns within a group correspond to different stages of practice (practice increases from left to right). Cognitive tasks are coloured according to 
primary task domain. bottom panel: correlations between latent learning factors and manually derived task features. Positive (negative) correlations are 
illustrated by red (blue) colours. The hierarchical tree visualizes the similarity between the task features on the basis of the pattern of correlations between 
task feature and latent factors. Task features are grouped by process, stimulus, and game design features.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Inferred latent learning factors with seven factors. Top panel: the heatmap visualizes the latent learning factors (columns) across 
games (rows). Positive (negative) values are visualized by brown (blue) colours. each latent learning factor corresponds to a group of 8 columns, where 
the columns within a group correspond to different stages of practice (practice increases from left to right). Cognitive tasks are coloured according to 
primary task domain. bottom panel: correlations between latent learning factors and manually derived task features. Positive (negative) correlations are 
illustrated by red (blue) colours. The hierarchical tree visualizes the similarity between the task features on the basis of the pattern of correlations between 
task feature and latent factors. Task features are grouped by process, stimulus, and game design features.
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Extended Data Fig. 5 | See next page for caption.

NatuRe HuMaN BeHavIouR | www.nature.com/nathumbehav

http://www.nature.com/nathumbehav


ArticlesNaTurE HuMaN BEHaviour ArticlesNaTurE HuMaN BEHaviour

Extended Data Fig. 5 | Inferred latent learning factors after oblique rotation (promax) that results in non-orthogonal factors. Top panel: the heatmap 
visualizes the latent learning factors (columns) across games (rows). Positive (negative) values are visualized by brown (blue) colours. each latent learning 
factor corresponds to a group of 8 columns, where the columns within a group correspond to different stages of practice (practice increases from left 
to right). Cognitive tasks are coloured according to primary task domain. The matrix shows the correlations between factors. bottom panel: correlations 
between latent learning factors and manually derived task features. Positive (negative) correlations are illustrated by red (blue) colours. The hierarchical 
tree visualizes the similarity between the task features on the basis of the pattern of correlations between task feature and latent factors. Task features are 
grouped by process and stimulus features.
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Extended Data Fig. 6 | Changes in predicted learning curves based on changes in individual scores for individual factors. For each factor (row), the 
blue, black, and red lines show the predicted learning curves for 10, 50, and 90 percentile scores on that particular factor and median scores on all other 
factors. Therefore, the red (blue) lines show the predicted learning curves for individuals who score high (low) on that factor while holding constant the 
contribution of other factors. Intercept differences are highlighted with circles at the start of the learning curve. To facilitate comparison, the vertical axis is 
the same for each particular task (column) but is different across tasks. Tasks are ordered by primary domain (colour).
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