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Abstract 

Previous research shows that people assign latent goals or 

intentions to simple animated agents based on the motion behavior 

of these agents. We propose that human observers can infer that an 

animated agent has a partial state of belief about its environment 

and that observers use this information – in combination with the 

agent's observable behavior – to infer its goals. We conducted an 

experiment that showed that observers used line-of-sight cues – an 

agent's orientation relative to various objects in the environment, 

and the presence or absence of visual obstructions – to determine 

the content of an agent's state of belief about the location of 

objects. Our results are consistent with the hypothesis that human 

observers use line-of-sight cues to assign belief states to agents and 

that these belief states can be used to interpret agent behavior. We 

found that observer models that incorporated inferences about 

agents’ beliefs outperformed an all-knowing observer model in 

describing human responses. Additionally, we found that human 

responses were most consistent with the behavior of a model that 

incorporates information about both orientation and line-of-sight 

obstructions. 
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Introduction 

Imagine that you are standing across the street from a bank 

right before closing time. Suddenly, a car pulls up and four 

bank robbers get out of the car and charge into the bank. A 

minute later, another car pulls up and a man jumps out of 

the car and runs towards the bank entrance. What is he 

doing? Maybe he is trying to stop the robbery or help the 

hostages; or maybe he is rushing to cash a paycheck before 

the bank closes. As it stands, we are missing a key piece of 

information that would help us understand the man’s 

intentions – whether or not he knows that the robbers are in 

the bank. We are often able to make inferences about the 

intentions of others based on the context of the situation and 

their behavior but, as our example shows, sometimes we 

also need to know something about a person’s state of belief 

about the world in order to interpret their actions with any 

amount of certainty. 

Theory of Mind 

Much research on Theory of Mind (ToM) has focused on the 

ability (or inability) of animals and human children to 

represent others as having states of belief about the 

environment that are different from their own. The general 

assumption is that most human adults have this ability 

(Premack & Woodroof, 1978; Doherty, 2008). ToM can 

play an interesting role in our ability to engage in social 

interaction. For instance, we have to keep track of the 

information that individuals know or do not know and 

combine this with contextual information in order to 

understand the intentions of others. Others have argued that 

ToM is much too complex to understand in terms of simply 

having or lacking the ability to represent other's beliefs and 

that evidence about the limitations in adult's ToM abilities 

may provide insight about the cognitive process(es) 

involved in ToM (Samson & Apperly, 2010). These 

limitations in adults are only beginning to be explored and 

may lead us to a better understanding of the process or 

processes that underlie  the phenomenon that has been 

referred to broadly as ToM.  

The perception of animacy 

Studying ToM and social goal inference in realistic social 

contexts is a difficult undertaking with many uncontrollable 

variables. It is therefore useful to develop controlled 

experiments that allow us to simulate social interactions that 

are tractable. Heider and Simmel (1944) were the first to 

demonstrate that humans perceived simple two-dimensional 

shapes that were animated on a screen as having latent 

motives, goals and intentions. The motion of these shapes 

was designed by an animator – the shapes were not real 

agents and did not have real latent intentions. Nevertheless, 

human observers perceive these shapes as agents with 

―minds.‖ This phenomenon is sometimes referred to as the 

perception of animacy (for a technical description see 

Feldman and Tremoulet, 2008) 

Modern research that employed the perceived animacy 

phenomenon showed that not only did human observers 

perceive that the agents had goals; they also appeared to 

perceive that the agents made inferences about the goals of 

other agents (Baker, Goodman, & Tenenbaum, 2008; Baker, 

Saxe, & Tenenbaum, 2009; Ullman et al., 2010). These 

studies showed that not only can people perceive these 

shapes as agents with minds, but they can also perceive 

them as agents who can reason about the minds of other 

agents.  

Inverse planning 

Baker, et al. (2008, 2009) showed that a Bayesian inverse 

planning process provided inferences about the latent goals 

of animated agents that were more similar to human 

inferences than a simple cue-based model. In general, the 

idea of an inverse planning process is that humans have 

access to a generative process in which an agent's behaviors 

can be generated rationally based on the state of the 



environment, their own goals, and their inferences about the 

goals of other agents. Humans infer the goals of another 

agent by inverting this generative process to infer an agent's 

goals from its observed behaviors. It is important to note 

that in the aforementioned experiments, the inverse planning 

model assumed (and the human observers were instructed) 

that the agents had complete knowledge of the environment 

including the position of the other agent(s). This was 

potentially important for the inferences that humans made 

because they could assume that an agent had the same 

knowledge about the other agent’s behavior as they had. 

In our experiment, we eliminate this assumption so that 

even though human observers have complete knowledge of 

the environment, they have the opportunity to take into 

consideration that the agents have incomplete knowledge of 

the environment. 

States of belief 

As demonstrated in our bank robbery example, agents often 

have incomplete or false beliefs about the state of the 

environment and this can affect human judgments about the 

goals of these agents. Our objective for the current study 

was to build on the inverse planning and perceived animacy 

literature to include situations in which humans would 

assign relative or incomplete states of belief to animated 

agents and combine this information with the agents’ 

observable behavior when inferring their goals. In order to 

create the perception that agents had different states of 

knowledge about the environment we instructed observers 

to assume that agents did not know the location of other 

agents or objects in the environment unless they ―saw‖ 

them. We predicted that the perception that agents did or did 

not ―see‖ portions of the environment would be mediated by 

the presence or absence of obstructions (such as walls and 

doors) and by orientation cues that would allow observers to 

perceive that the agent was ―looking‖ in a certain direction. 

Taken together, we refer to these as line-of-sight cues. 

The usefulness of orientation cues was inspired by 

previous research that indicated that these cues influence the 

way observers perceive the intentions of agents in perceived 

animacy experiments (Gao, Newman, & Scholl, 2009). In 

our case, we hypothesized that observers interpreted the 

orientation of an agent as the direction in which it was 

looking. In order for an agent to ―see‖ another agent or 

object in the environment it must have oriented towards that 

agent or object and there must not have been any 

obstructions (closed doors) blocking the line of sight. We 

predicted that if these two conditions were met then an 

observer would represent the agent as knowing with 

certainty the location of the other agent or object. If the two 

conditions were not met – either the agent did not look 

towards the other agent or object; or it did look but there 

was an obstruction blocking the line of sight – then an 

observer would represent the agent as not knowing with 

certainty the location of the other agent or object.  

The Challenge of modeling ToM 

It is challenging to design ToM experiments that involve the 

dynamic interaction of multiple agents and are rich enough 

for observers to perceive the agents as having goals, 

preferences and states of belief, yet remain tractable for the 

application of computational modeling. 

Previous inverse planning research used a Markov 

Decision Process (MDP) to model continuous agent 

behavior as a function of its goals and the state of the 

environment (Baker, et al., 2008, 2009). One way to extend 

this framework to account for agents having states of belief 

is to use Partially Observable Markov Decision Process 

(POMDP). Both MDPs and POMDPs are complex models 

of sequentially dependent agent behavior. Because we were 

more interested in the role of belief states than in action 

planning, we chose to simplify the generative action process 

in such a way that we could avoid modeling sequentially 

dependent action information. Specifically, we decided to 

reduce agent action sequences down to a single discrete 

multi-choice decision. The hope was that we would better 

be able to isolate the effects of the belief state inference 

process on observers' judgments from the effects of the 

inverse action planning process. 

Another issue that arises when attempting to isolate the 

effect of different variables in this type of framework is the 

confounding of goals and priorities. Once an observer has 

inferred that an agent has a certain belief state and observes 

the agent's behavior in light of that belief, the observer can 

attempt to use this information to infer the agent's goal. 

When there are multiple objects in the environment 

however, the agent may have multiple goals – some of 

which may be more important than others. An observer may 

not be able to infer a unique set of goals/priorities to explain 

an agent's behavior. We address this issue with our Cops 

and Robbers paradigm by assuming that most people assign 

the same constant set of goals and priorities to specific agent 

types. Instead of asking observers to infer an unknown 

agent's multiple goals and the priority of these goals, we ask 

observers to identify the type of agent they are observing – 

cop or robber. We eliminate the confounding of goals and 

priorities by assuming that cops always want to get the 

robber (primary goal), and robbers want to stay away from 

the cop (primary goal) and get the loot (secondary goal). 

Experiment 

We designed an experiment that used perceived animacy to 

simulate social interactions in which observers would 

potentially use line-of-sight cues to track an agent's state of 

belief about the environment and combine this information 

with the agent's motion behavior in order to infer the 

identity of the agent. The idea was that, given the same 

motion behavior, different line-of -sight cues would affect 

observers' perception of agents' states of belief, which 

would in turn affect their inferences about the agents' 

identities. 

Human participants performed a task in which they 

observed the interactions of two animated agents and had to 



determine the identity of a particular agent based on its 

behavior and the state of the environment. We told 

participants that one agent was a cop and the other was a 

robber but they did not know which agent was which on 

each of the trials. We also told participants that the agents’ 

knowledge of the environment depended on what the agents 

could or could not see. 

We varied the relative motion and orientation of one of 

the agents with respect to the other agent and the loot; and 

we varied the positions of the second agent and the loot, as 

well as whether there were visual obstructions (walls) 

between the agents and/or between the agents and the loot. 

Method 

Participants Participants were 28 undergraduate students 

from The University of California, Irvine that each received 

partial course credit for their involvement in our experiment. 

Stimuli The stimuli consisted of 128 brief animations in 

which there was an active agent (blue triangle), a static 

agent (green triangle) and a static object called the loot (a 

red square). For each trial the static objects were in one of 

32 possible configurations (figure 1-a) and the active agent 

had one of four possible motion sequences (figure 1-b). 

Participants were instructed that the interior (gray) doors in 

the environment blocked the sight of the agents when they 

were closed, but that they always opened when an agent 

moved towards them. 

Procedure Participants were provided with a background 

story for the experiment in which they were told that there 

were two agents – a cop and a robber. The cop was trying to 

catch the robber and the robber was trying to get the loot 

without being caught by the cop. It was not known which 

agent was the cop and which was the robber. The 

experimental task was to identify the moving agent as either 

the cop or the robber for each animation. On each trial 

participants watched the animation and were presented with 

a choice about the moving (blue) agent’s identity. The 

options were ―Cop‖, ―Robber‖ and ―Don’t Know.‖ The 

order of the trials was randomized for each participant and 

the order of the options was randomized for each participant 

on each trial.  

Empirical Results 

A comparison of several key trials (Fig. 2) demonstrates the 

relative impact of motion, orientation, and visible 

obstructions on human judgments and model predictions. 

We will first outline the results of the human judgments 

before moving on to the model predictions. 

Figure 2-a demonstrates the effect of a wall between the 

agents in a trial where the active agent moved towards the 

other agent. Humans overwhelmingly gave cop responses 

when there was no wall between the agents (fig. 2-a-2), 

whereas the presence of a wall resulted in uncertainty in the 

human responses (fig. 2-a-1). 

Figure 2-b demonstrates the effect of walls and 

orientation in a trial where the active agent moved away 

from the other agent. Humans gave mostly robber responses 

when the active agent had a clear line-of-sight to the other 

agent and then moved away from it (fig. 2-b-3). When there 

was no line-of-sight because of non-orientation (fig. 2-b-1) 

or the presence of a wall between the agents (fig. 2-b-2) 

human responses were more uncertain. 

Computational Theory 

Graphical models
1
 are a useful way to describe the 

generative process by which human participants respond to 

                                                           
1For an introduction to graphical model notation, see Koller, 

Friedman, Getoor, and Taskar (2007). 

 
 

Figure 1. Stimuli: a) shows the four possible positions 

for the loot (red square) and static agent (green 

triangle) – which was oriented either towards (as 

shown) or away from the center room; b) each row 

demonstrates one of the four possible motion 

sequences for the active agent (blue triangle) – the 

three columns depict the active agent’s starting 

position, orientation behavior, and motion behavior; c) 

A complete example trial as seen by a human observer 

at 3 different points in time. The blue agent moves 

from the left-most room into the intersection, ―looks‖ 

down towards the green agent, and then moves away 

from the green agent and towards the loot (which is 

behind a closed door). Gray doors always opened as 

agent approached them—they obstructed line-of-sight 

but not motion. 



experimental stimuli. We develop four graphical models of 

observer behavior and compare the predictions of these 

models to the human response data. 

We assume that observers use an inverse planning process 

that reverses an action-planning model to infer the identity 

of an agent from observations of its actions. 

In order to model the agent’s goal driven behavior as a 

single multi-choice decision, we separate each trial into two 

distinct phases. The information gathering phase consists of 

the agent moving into the center of the maze and its 

orientation behavior. All of our models assume that this 

sequence of behavior is not generated by the agent’s goal-

directed action planning process, but rather by a random 

information gathering process. This random process allows 

an observer to infer the agent’s state of belief, but does not 

provide any evidence about the agent’s identity. The 

decision phase consists of the agent’s movement in one of 

the three directions. Our models assume that this behavior 

results from the agent’s goal-directed action planning 

process and therefore provides evidence about the agent’s 

identity. These assumptions allow us to model the agent’s 

belief formation and action planning as two separate 

processes. 

Generative model (agent's perspective) In each trial, the 

active agent makes a sequence of observations   about the 

location of objects in the environment. Figure 3-a is a 

graphical model representing the agent’s theory about how 

these observations are formed from the true locations   of 

objects in the environment, whether or not the agent 

oriented towards each location   and the location of doors 

 . From the agent's perspective, the true state   of the 

objects is unobserved and the other variables are observed. 

Step one: belief inference In the first step, the agent has a 

prior belief that there is equal probability that each of the 

objects is in each of the rooms. The agent then uses the 

belief model (fig. 3-a) to update the probability that each 

object is in each room based on its sequence of 

observations, orientations, and its knowledge of the position 

of walls. We refer to the posterior distribution of    as the 

agent's belief state about the location of object  . For 

example,  (    |      ) is the agent’s belief that the 

other agent (object    )  is in location four. Applying 

Bayes’ rule gives the posterior probability (from the agent's 

perspective) that object    is in location   (Eq. 1). This 

posterior distribution is proportional to the likelihood of the 

observations   , given that   was the true location of object 

 , multiplied by the prior probability that object   was in 

location  . 

 (    |      )

 ∏  (  
 |        )

      

  (    ) (1) 

Step two: action planning The belief state that the agent 

inferred in step one becomes an observed variable in the 

action planning model (fig. 3-b). The model assumes that 

the agent has a goal    with respect to each object and a 

priority    for that object of primary, secondary or 

unimportant. There were two agent types (cop and robber) 

and we assumed a constant configuration of goals and 

priorities for each type. Based on its goals, priorities, and 

belief state, the agent chooses an action   as a sample from 

a distribution that is proportional to the expected utility   of 

the actions (eq. 2). 

 (   |     )  
 (         )

∑  (         ) 

 (2) 

 

Inverse model (observer's perspective) Figure 3-c depicts 

the inverse planning model from the perspective of the 

observer. 

 
 

Figure 2. Example trials with human results (H) and 

model comparisons (LS, PR, XV and AK).  For each 

example trial: The agent always enters the center room 

from the left (indicated by arrow); first frame shows 

direction agent oriented after reaching center 

(information gathering phase); second frame shows 

agent motion (decision phase). 



Step one: belief inference The observer knows the true 

state of the environment   and infers the agent's belief state 

using a version of eq. 1 where     is replaced with    . We 

use    to represent the agent's belief state as inferred by the 

observer. We do not provide the graphical model for this 

step because it is identical to fig. 3-a with the exception that 

   is replaced with    . 

Step two: type inference In the second step (fig. 3-c) the 

variables that are known to the observer are the agent's 

belief state     from step one and its action  . The observer’s 

inference about the agent’s type is represented by the 

posterior joint distribution  (     |    ). 

 

 (     |    )   ( |      ) ( | ) ( ) (3) 

 

Step three: response The observer chooses a response 

(“cop”, “robber”, or “don’t know”) based on the posterior 

probability of the agent’s type  .  

 

See the online appendix
2
 for a more detailed description 

of the computational theory and modeling – including a 

description of the agent's utility function and the observer 

response model. 

Modeling 

We developed four observer models based on the inverse 

planning framework—the first model provides a full 

description of our hypothesis about the mechanism by 

which human observers assign belief states to agents. Each 

of the last three models is a version of the full model in 

which we remove one of the constraints on belief inference.  

Line-of-sight (LS) model This observer assumes that an 

agent’s belief about the location of objects is a function of 

its orientation and the presence or absence of visual 

obstructions (doors) between the agent and the objects. For 

                                                           
2https://webfiles.uci.edu/stauber/Tauber_Steyvers_CogSci2011_

Appendix.pdf 

an agent to ―see‖ an object it must orient towards the object 

and there must not be a closed door in front of the object. 

Proximity (PR) model This observer does not require 

orientation for the formation of belief states. It assumes that 

an agent can ―see‖ an object if it is in an adjacent room and 

not behind a closed door even if the agent does not orient 

towards the object. 

X-ray vision (XV) model This observer assumes that an 

agent’s belief about the location of objects is a function of 

its orientation only. For an agent to ―see‖ an object it must 

orient towards the object – closed doors do not block its 

line-of sight. 

All-knowing (AK) model This model corresponds to an 

observer that has no ToM. The observer represents the agent 

as having the same belief state about the environment that it 

has – in this case, complete and correct knowledge of the 

environment. It implements only steps two and three of the 

inverse model where the agent's belief state is equal to the 

actual state of the environment. 

Model Comparison 

Figure 4 shows the negative log-likelihood of model 

predictions for each participant based on a cross validation 

analysis. We used the responses from all but one participant 

to optimize a single parameter ( ) that relates to the 

response mechanism for each of the four observer models. 

We then used this learned parameter value when predicting 

the responses of the participant that was held out of the 

training data. We did this for every participant. The line-of-

sight model made the best predictions for every participant, 

followed by the proximity model, x-ray model and finally 

the all-knowing model. 

Qualitative model comparison Figure 2 provides a 

comparison of model behavior and human judgments in 

several illustrative conditions. All of the models tended to 

correspond to the human responses on trials in which the 

active agent had a clear line-of-sight to the other agent (figs. 

2-a-2 & 2-b-3). When there was not a clear line of sight 

between the agent and the objects, the LS model, and to 

some extent the PR model, tended to perform better than the 

 
 

Figure 3. a) Belief model, b) generative action model 

(agent’s perspective), c) inverse-planning model 

(observer’s perspective). Shaded nodes are observed 

variables and unshaded nodes are unobserved 

variables. 

 
Figure 4. Negative log-likelihood of model predictions. 



AK and XV models. 

Figure 2-a demonstrates the effect of a closed versus open 

door between the agents when the target agent is 

approaching the other agent. The LS and PR models, along 

with the humans, tended to respond with more uncertainty 

when there was a closed door (fig. 2-a-1) than the AK and 

XV models did. When there was an open door (fig. 2-a-2), 

the humans and all of the models gave predominantly cop 

responses. 

Figure 2-b shows the effects of orientation and doors on 

human and model behavior when the target agent moves 

away from the other agent. When there is an open door but 

no orientation (fig. 2-b-1) the LS model and humans are 

uncertain, and the other three models give primarily robber 

responses. When the target agent orients towards the other 

agent but there is a closed door between them, the humans, 

LS and PR model responded with uncertainty. The AK and 

XV models gave robber responses. When the target agent 

oriented towards the other agent and there was an open door 

between them, the humans and all of the models gave 

primarily robber responses. 

Discussion 

We propose that observing an agent's actions in the 

context of the true state of its environment does not always 

provide enough information for an observer to infer its 

goals. Often, an observer needs to know something about 

the agent's state of belief in order to interpret its actions. We 

designed an experiment where observers watched a series of 

animations – in each of which it appeared that an agent 

moved in a certain direction in order to achieve its goals. 

Even though there were sets of multiple trials that had 

equivalent environmental states and agent actions, observers 

interpreted the agents' actions differently depending on what 

they thought the agent knew about the environment at the 

time that it made its decision. 

Our results are consistent with the hypothesis that human 

observers infer an agent's belief state by using information 

about whether it has a clear line-of-sight to relevant aspects 

of the environment; and that these inferred belief states 

affect observers' interpretations of the agent's behavior. 

We developed four graphical models that each make 

predictions about the structure of the process that humans 

use to infer the identity of agents in our experiment. We 

found that observer models that incorporated inferences 

about agents’ beliefs outperformed an all-knowing observer 

model in describing human responses. Additionally, we 

found that all human responses were most consistent with 

the predictions of a line-of-sight model that required agents 

to both orient and have an obstruction-free line of sight 

towards a location in order to observe it. The 

correspondence between model predictions and human data 

was progressively worse when we 1) assumed agent's 

observed adjacent locations without orienting towards them 

(proximity model); 2) assumed visual obstructions did not 

impede observations (x-ray vision model); 3) assumed 

agents had complete knowledge of the environment (all-

knowing model). 

Our assumptions about the independence of the 

information gathering and decision phases simplified the 

model process. However, it is reasonable to argue that in 

more realistic situations the information gathering process 

would depend on the agent’s goals and priorities. In this 

case an agent’s information gathering behavior depends on 

where it has already looked, what it saw, and what its goals 

are. 

Finally, there is a growing body of empirical evidence 

suggesting that ToM abilities may involve a combination of 

processes that are each used more or less effectively by 

human children and adults in different situations (Samson & 

Apperly, 2010). A new direction for future research is the 

development of a computational description of the cognitive 

process(es)  involved in ToM that accounts for the wide 

range of failures and successes on ToM tasks by children 

and adults described in the empirical literature. 
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