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Abstract
AI assistance is readily available to humans in a variety of decision-making applications. In order to fully understand the 
efficacy of such joint decision-making, it is important to first understand the human’s reliance on AI. However, there is a 
disconnect between how joint decision-making is studied and how it is practiced in the real world. More often than not, 
researchers ask humans to provide independent decisions before they are shown AI assistance. This is done to make explicit 
the influence of AI assistance on the human’s decision. We develop a cognitive model that allows us to infer the latent reliance 
strategy of humans on AI assistance without asking the human to make an independent decision. We validate the model’s 
predictions through two behavioral experiments. The first experiment follows a concurrent paradigm where humans are shown 
AI assistance alongside the decision problem. The second experiment follows a sequential paradigm where humans provide 
an independent judgment on a decision problem before AI assistance is made available. The model’s predicted reliance strate-
gies closely track the strategies employed by humans in the two experimental paradigms. Our model provides a principled 
way to infer reliance on AI-assistance and may be used to expand the scope of investigation on human-AI collaboration.
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Introduction

Over the past decade, there has been an increase in domains 
where AI is used to assist humans by providing recommen-
dations in the context of a prediction problem. Examples 
of these AI recommendation systems include making bail 
decisions in a legal context (Kleinberg et al., 2018), detect-
ing deception in consumer reviews (Ott et al., 2011), making 
medical decisions in diagnostic imaging (Esteva et al., 2017; 
Patel et al., 2019; Rajpurkar et al., 2020), recognizing faces 
in forensic analysis (Phillips et al., 2018), and classifying 
astronomical images (Wright et al., 2017). Such widespread 
adoption of AI decision aids has been accompanied by bur-
geoning interest in investigating the efficacy of AI assistance 
in collaborative decision-making settings (Yin et al., 2019; 

Park et al., 2019; Zhang et al., 2021; Poursabzi-Sangdeh 
et al., 2021; Buçinca et al., 2021; Kumar et al., 2021; Chong 
et al., 2022; Becker et al., 2022).

To investigate such AI-assisted decision-making, 
researchers have designed a variety of workflows. Some 
workflows require the human to provide an independent 
decision first, then display the AI’s advice which the human 
can then use to update their final decision (Yin et al., 2019; 
Poursabzi-Sangdeh et al., 2021; Chong et al., 2022). Other 
workflows present AI advice alongside the prediction prob-
lem and the human can decide to follow the advice or ignore 
it (Rajpurkar et al., 2020; Sayres et al., 2019). Finally, a 
few studies force individuals to spend time thinking about 
the decision problem by artificially delaying the presenta-
tion of AI advice (Buçinca et al., 2021; Park et al., 2019) 
or making AI advice available only when it is requested 
(Kumar et al., 2021; Liang et al., 2022). In this work, we 
focus on two of the aforementioned workflows of AI-assisted 
decision-making and refer to them as paradigms; a detailed 
illustration can be found in Fig. 1. We term the first as a 
sequential paradigm, where AI advice is displayed only 
after the human provides an independent judgment and the 
human can choose to revise their initial judgment. We term 
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the second as a concurrent paradigm where AI advice is 
displayed concurrently with the prediction problem.

The sequential paradigm provides direct insights about 
the human’s reliance on the AI based on two human judg-
ments: the initial independent judgment and a final judg-
ment after receiving the AI advice. This paradigm makes 
it easier for experimenters to disentangle the influence of 
AI advice on the human’s decision. However, in many real-
world applications, the human user does not independently 
make a decision before AI assistance is provided since pro-
viding the AI’s recommendation immediately simplifies the 
workflow and can save time. The concurrent paradigm offers 
an alternative setting to study AI-assisted decision-making. 
One drawback of the concurrent paradigm is the fundamen-
tal ambiguity in data interpretation — it is unclear as to how 
one can assess the usefulness of the AI decision aid to the 
human user. Since there is no initial human judgment avail-
able before AI advice is offered, there is no direct empiri-
cal observation about any changes the human is making in 
their decision-making. Any observed agreement between the 
human and the AI, in the concurrent paradigm, could arise 
because the human changed their judgment and took the AI’s 
advice or the human already arrived at the same judgment 
independent of the AI. How, then, do we assess the impact 
of AI assistance on the human’s decision?

Our research has three main goals. First, we develop a 
computational cognitive model for AI-assisted decision-
making in the concurrent paradigm. The cognitive model 
provides a principled way to infer the latent reliance of a 
human on the AI assistant in spite of the fact that there are 
no direct observations of switching behaviors when a person 

is presented with the AI advice. We empirically validate the 
computational model by collecting empirical data from a 
behavioral study using both the sequential and concurrent 
paradigms. The data from the sequential paradigm offers 
a comparison to the concurrent paradigm and provides a 
test to assess the merit of the computational framework. We 
demonstrate that the model’s predictions of reliance behav-
ior in the concurrent paradigm are qualitatively similar to 
the reliance behavior observed in the sequential paradigm. 
In addition, we demonstrate that the model can generalize 
to held out trials in the concurrent paradigm.

In our second goal, we use the cognitive modeling 
approach to understand how a human’s reliance policy 
depends on a number of factors related to the human and the 
AI. Previous research has shown that a human’s confidence 
in their own decision influences the tendency to rely on AI 
assistance (Lu and Yin, 2021; Pescetelli et al., 2021; Wang 
et al., 2022). In addition, reliance on the AI is also affected 
by the AI’s confidence in its decision (Zhang et al., 2020). 
Another contributing factor is the overall accuracy of the AI. 
In some previous research, only a single AI model with a 
fixed degree of accuracy was used; for example, an AI model 
with an accuracy comparable to human performance (Zhang 
et al., 2020) or above human performance (Lai and Tan, 
2019; Pescetelli et al., 2021). A few studies have investigated 
the effect of varying AI accuracy on reliance strategy (Yin 
et al., 2019). In our empirical paradigm, we investigate how 
human reliance varies across multiple levels of AI accuracy. 
This allows for a more nuanced understanding of the impact 
of the AI aid’s accuracy on the human’s reliance behavior. 
In addition, we investigate how participant confidence and 
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Fig. 1   Illustration of the sequential and concurrent paradigms for AI-assisted decision-making (top two rows). The no-AI assistance paradigm 
(bottom row) is used as a control condition for the concurrent paradigm
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AI confidence scores affect the trial-by-trial reliance strategy 
used by participants.

In our third goal, we use the computational model to 
quantify the effectiveness of the reliance strategies employed 
by the human. In some instances, people adopt sub-optimal 
reliance policies when working with an AI. For example, 
it has been found that people will prefer to use their own 
(less accurate) forecasts instead of an algorithm if they have 
seen the algorithm make mistakes (Dietvorst et al., 2015). In 
another study, people placed too much trust in an automated 
system (Cummings, 2017). Over- and under-reliance on AI 
advice may depend on particular task domains and methods 
of interaction (Promberger and Baron, 2006; Castelo et al., 
2019; Logg, 2017). Whereas in these previous studies, the 
reliance was assessed at the aggregate level, our cognitive 
modeling approach enables us to estimate the trial-by-trial 
variations in reliance depending on factors such as the con-
fidence state of the participant and the level of confidence 
of the AI for particular problem instances. For particular 
combinations of self- and AI confidence (e.g., low self-
confidence and high AI confidence) and particular combi-
nations of human and AI overall accuracy, we can expect 
joint decision-making accuracy to be better than the human 
or AI alone (Steyvers et al., 2022). An empirical question 
is whether participants are able to adopt such a policy. We 
compare the reliance policies adopted by participants to 
optimal policies and show that in our experiment, people 
were quite effective in their adoption of AI advice.

Cognitive Model

Before describing the computational model, we note some 
key aspects of the concurrent advice-taking paradigm in par-
ticular that motivate the design of the model. In the experi-
ment, participants have to predict the classification label of 
a set of images and a confidence level associated with their 

decision. Each participant alternates between two experi-
mental conditions. In the control (no assistance) condition, 
participants indicate their predictions without help from the 
AI. In the AI assistance condition, we follow the concurrent 
approach; the AI provides a recommended set of predictions 
by highlighting the class labels according to the AI’s con-
fidence scores. The participant can use these recommenda-
tions in any way they want to order to maximize their own 
accuracy (see Fig. 2 for an illustration of the user interface in 
the experiment). An important aspect of this condition is that 
the participant’s prediction reflects a combination of their 
own independent decision-making (which is not observable 
in this paradigm) and the AI prediction. In other words, the 
policy used by the participant to rely on and integrate AI 
predictions with their own predictions is not directly observ-
able from their behavior.

The main goal of the computational model is to draw 
inferences about the latent advice-taking policies. The 
policy can be determined by a number of factors, such as 
the confidence state of the participant and the confidence 
scores of the AI as well as the overall accuracy of the AI. 
We develop a hierarchical Bayesian model to draw infer-
ences about the policies not only at the population level 
but also at the level of individual participants. In the first 
part of the model, a Bayesian Item-Response model (Fox, 
2010) is applied to the no-assistance condition to infer 
individual differences in ability as well as differences in 
difficulty across items (i.e., prediction problems). In the 
AI-assistance part of the model, these latent person and 
item parameters are used to explain the observed predic-
tion from a participant which depends on their (unobserv-
able) unaided prediction and the advice-taking policy that 
determines the likelihood that a participant switches to the 
AI prediction or stays with their own prediction. Figure 3 
visualizes the graphical model of the computational model 
that explains the human predictions with and without AI 
assistance.

Fig. 2   Illustration of the behav-
ioral experiment interface in the 
AI assistance condition
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Modeling Human Decisions Before Assistance

The computational model for human predictions without 
AI assistance is based on a Bayesian Item-Response model 
(Fox, 2010). The Item-Response model makes it conveni-
ent to model individual differences in accuracy as well as 
differences in item difficulty (where items refer to the indi-
vidual images participants have to classify). To model the 
human predictions, we use a three-parameter IRT model to 
capture the probability �i,j that a correct response is made 
by person i on item j:

The person parameter ai is an ability parameter that deter-
mines the overall performance of the person across items. 
The item parameter dj captures differences in the item dif-
ficulty while the item parameter sj captures discrimination: 
the tendency of an item to discriminate between high and 
low ability individuals.

In a typical IRT model, the probability of making a cor-
rect response, � , is used to sample the correctness of an 
answer. However, for our model, we code the responses 
from individuals in terms of the predicted label. Let xi,j 

(1)log

(
�i,j

1 − �i,j

)
= sjai − dj

represent the prediction by person i for item j in the absence 
of AI assistance. Each prediction involves a choice from a 
set of L labels, i.e., x ∈ {1,… , L} . Let zj represent the true 
label for item j. We assume that person i produces the cor-
rect label zj on item j with probability �i,j and otherwise 
chooses uniformly from all other labels, as follows:

Various model extensions could be considered that allow for 
response biases such that some labels are preferred a priori 
over other.

Participants not only make a prediction but also express a 
confidence level, ri,j , associated with their prediction. In the 
experimental paradigm, confidence levels are chosen from a 
small set of labels, ri,j ∈ {low,medium, high} . In the model, 
we assume that predictions associated with higher accuracy on 
average lead to higher confidence levels, but that at the item 
level, the mapping from accuracy to confidence is noisy. To 
capture the noisy relationship between accuracy and confi-
dence, we use a simple generative model based on an ordered 
probit model:

(2)p(xi,j = m) =

{
�i,j if zj = m

(1 − �i,j)∕(L − 1) if zj ≠ m

(3)ri,j ∼ OrderedProbit(�i,j, vi, �i)

Fig. 3   Graphical model for the 
AI-assisted decision-making 
model. In the condition without 
assistance, rij and xij and zj 
are observed. In the condition 
where AI assistance is provided, 
rij and xij are latent and yijk , zj , 
cjk , and �jk are observed. For 
visual clarity, plate notation is 
omitted
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In this generative model, normally distributed noise with 
standard deviation �i is added to the probability of being cor-
rect �i,j . The resulting value is then compared against a set 
of intervals defined by parameters vi , and the interval which 
contains the value determines the resulting confidence level. 
Changes in vi can lead the participant to different uses of the 
response scale (i.e., using one particular confidence level 
relatively often) while �i determines (inversely) the degree 
to which accuracy and confidence are related. Note that the 
parameters � and v are person-specific to allow for individual 
differences in the confidence generating process. Appendix 
1 provides more detail on the ordered probit model.

Modeling Human Decisions After Advice

In the model for human decisions in the presence of advice, 
let yi,j,k represent the observed prediction made by person i 
on item j after AI advice is considered from AI algorithm 
k. We include a dependence on the type of algorithm as 
our empirical paradigm will present AI advice from dif-
ferent algorithms. In the advice-taking model, we assume 
that the participant initially makes their own prediction xi,j 
independent of the AI advice but that their final decision 
yi,j,k can be influenced by the AI advice. Note that in the 
no-assistance condition, the independent predictions xi,j and 
associated confidence levels ri,j are directly observable, but 
they are latent in the AI assistance condition. However, we 
can use the IRT model in the previous section to simulate the 
counterfactual situation about the prediction and confidence 
level that a person would have made if AI advice was not 
provided. Specifically, we can use the generative model in 
Eqs. 1–3 to generate predictions for xi,j and ri,j on the basis of 
information about the participant’s overall skill (a) as well as 
information about the difficulty of the particular item ( dj)1.

In the advice-taking model, we assume that the partici-
pant will stay with their original decision xi,j if it agrees 
with the AI’s recommendation, denoted by cj,k . However, 
when the original decision is not the same as the AI’s recom-
mendation, we assume the participant switches to the AI’s 
recommendation with probability �i,j,k . Therefore, we can 
model the probability that the participant chooses label m 
for their final prediction as follows:

(4)p(yi,j,k = m) =

⎧
⎪⎨⎪⎩

�i,j,k if xi,j ≠ m ∧ cj,k = m

1 if xi,j = m ∧ cj,k = m

0 if xi,j ≠ m ∧ cj,k ≠ m

The variable �i,j,k determines the tendency of participant i to 
trust the AI advice from algorithm k related to item j. In the 
next section, we describe how this latent variable can depend 
on factors such as the confidence state of the participant as 
well as the confidence score of the AI.

Note that in this model, when the participant is provided 
with AI assistance, the independent prediction xi,j is latent in 
our experimental paradigm. Instead of explicitly simulating 
the process of first sampling an independent prediction xi,j 
and then a final prediction yi,j,k , we can simplify the genera-
tive process by marginalizing out xi,j:

In this equation, the probability that the participant selects 
label m is split into three different cases. The first case 
reflects the probability that the participant makes the cor-
rect decision independently (which happened to agree with 
the AI recommendation) or makes an incorrect decision ini-
tially but then adopts the correct AI advice. The second case 
reflects the probability that the participant initially selects 
an incorrect decision (which happened to agree with the AI 
recommendation) or makes another decision different from 
the AI but then adopts the incorrect AI advice. The third 
case reflects the probability that the participant makes an 
incorrect independent decision and decides not to switch to 
the AI’s recommendation.

Modeling Individual Differences in Advice‑Taking

The key latent variable of interest in the model is �i,j,k , which 
determines the willingness of the participant per item to 
switch to the AI’s recommended prediction if it differs from 
their own prediction. Generally, �i,j,k can depend on many 
characteristics related to the person, item, and classifier. 
Here, we will consider functions where � depends on the 
confidence state of the participant for item j ( ri,j ), the AI 
confidence score associated with item j ( �j,k ), and the type 
of classifier k:

One way to specify function f is based on a linear model 
that captures main effects as well as interaction between the 
two putative factors. However, to avoid specifying the exact 
functional form of f, we will instead simplify the model and 
treat function f as a lookup table that specifies the � values 
based on a small number of combinations of participant con-
fidence, AI confidence, and classifier type. Specifically, we 
create 3 × 4 × 3 lookup table that specifies the � value based 
on 3 levels of participant confidence (“low,” “medium,” 

(5)

p(yi,j,k = m) =

⎧
⎪⎨⎪⎩

�i,j + (1 − �i,j)�i,j,k if zj = m ∧ cj,k = m
1−�i,j

L−1
+
�
1 −

1−�i,j

L−1

�
�i,j,k if zj ≠ m ∧ cj,k = m

1−�i,j

L−1
(1 − �i,j,k) if zj ≠ m ∧ cj,k ≠ m

(6)�i,j,k = f (ri,j, �j,k, k)

1  Note that in empirical paradigm, each image is presented in both 
the control condition as well as the AI assistance condition to allow 
for the estimation of item difficulty parameters for each image.



	 Computational Brain & Behavior

1 3

“high”), 4 levels of AI confidence, and 3 types of classifiers 
(k). We use a hierarchical Bayesian modeling approach to 
estimate individual differences in the policy � (see Appendix 
2 for details).

Experiments

To validate our cognitive model, we investigated human per-
formance with and without AI assistance in two paradigms: 
the concurrent and sequential paradigm. We will apply the 
cognitive model to the concurrent paradigm to infer the AI 
reliance strategies by individual participants. The results from 
the sequential paradigm serve as a means to validate our cogni-
tive model, as the sequential paradigm allow us to empirically 
analyze participant strategies when integrating AI assistance.

In both paradigms, participants have to classify noisy 
images into 16 different categories (see Fig. 2 for an example 
of the user interface). There were two experimental manipu-
lations. First, the image noise was varied to produce substan-
tial difference in classification difficulty (Fig. 4). Second, we 
varied the overall accuracy of the AI predictions across three 
conditions: classifier A, classifier B, and classifier C. Classi-
fier A was designed to produce predictions that are, on aver-
age, less accurate than human performance. Classifiers B and 
C were designed to produce predictions that are, on average, 
as accurate and more accurate than human performance. Each 
participant was paired with one type of classifier.

The main difference between the two paradigms is that 
in the concurrent paradigm, participants alternated between 
blocks of trials where AI assistance was or was not pro-
vided. In the sequential paradigm, there were no alternating 
blocks. On each trial, the participant first made an independ-
ent prediction for a image classification problem and was 
then given an opportunity to revise their prediction after AI 
assistance was provided.

Methods

Participants

A total of 60 and 75 participants were recruited using Ama-
zon Mechanical Turk for the concurrent and sequential 
experiments respectively. To ensure that participants under-
stood the task, they were given a set of instructions describ-
ing the experiment and what they would have to do. Upon 
reading all of the instructions, participants were then tasked 
with a comprehension quiz to ensure they fully understood 
the task. The quiz consisted of having participants classify 
five different noisy images with AI help turned off. In order 
to participate in the study, participants had to correctly clas-
sify four of the five images in the quiz. Participants were 
given two opportunities to pass the quiz. Successful par-
ticipants were then allowed to proceed with the rest of the 
experiment.

Images

All images used for this experiment come from the ImageNet 
Large Scale Visual Recognition Challenge (ILSRVR) 2012 
validation dataset (Russakovsky et al., 2015). Following 
(Geirhos et al., 2019), a subset of 256 images was selected 
divided equally among 16 classes (chair, oven, knife, bottle, 
keyboard, clock, boat, bicycle, airplane, truck, car, elephant, 
bear, dog, cat, and bird). To manipulate the classification dif-
ficulty, images were distorted by phase noise at each spatial 
frequency, where the phase noise is uniformly distributed 
in the interval [−�,�] (Geirhos et al., 2019). Eight levels 
of phase noise, � = {0, 80, 95, 110, 125, 140, 155, 170} , 
were applied to the images, a different noise level for each 
unique image, resulting in 2 unique images per category 
per noise level (see Fig. 4 for examples of the phase noise 
manipulation).

Fig. 4   Illustration of three 
images under different levels of 
phase noise. Original images 
(left) were not used in experi-
ments and are shown only for 
illustrative purposes
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AI Predictions

We used a convolutional neural network (CNN), based on 
the VGG-19 architecture (Simonyan and Zisserman, 2014), 
pretrained on the ImageNet dataset as the basis for the AI 
assistance. Our choice of VGG-19 was motivated by previ-
ous experiments (Steyvers et al., 2022) that showed that the 
performance of the VGG-19 model could be manipulated 
to produce above-human performance for the challenging 
image noise conditions in the experiment.

Three different levels of classifier performance were cre-
ated by differentially fine-tuning the VGG-19 architecture 
to the phase noise used in our experiment. All models were 
trained with all levels of phase noise. However, to generate 
these different levels of performance, the models were fine-
tuned for different periods of time. We used a pilot experi-
ment with 145 participants to assess human performance 
at the different noise levels. Classifier A was produced by 
fine-tuning for less than one epoch (10% of batches of the 
first epoch) and produced a performance level that was on 
average below human performance. Classifier B was pro-
duced by fine-tuning for the entirety of one epoch and pro-
duced a performance level that was on average near human 
performance. Classifier C was fine-tuned for 10 epochs 
and produced a performance level above average human 
performance.

Procedure

In both the concurrent and sequential paradigms, partici-
pants were instructed to classify images as best as possible 
and to leverage AI assistance, when provided, to optimize 
performance. Each participant was assigned to a single 
classifier level (A, B, or C) at the start of the experiment 
and each was only presented with AI assistance from that 
particular classifier; 20 participants were assigned to each 
classifier level in concurrent paradigm, and 25 participants 
to each classifier level in the sequential paradigm. Partici-
pants were given no information about the accuracy of the 
classifier.

Concurrent paradigm  In the concurrent paradigm, there 
were 256 trials total. Each trial presented a unique image 
randomly selected from the set of 256 images. The classifi-
cation trials were separated into 4 blocks where each block 
consisted of 48 consecutive trials in which AI assistance was 
turned on, and 16 consecutive trials without AI assistance. 
The larger number of trials with AI assistance was used to 
better assess participants AI reliance strategies under differ-
ent levels of AI confidence. Because of the random order-
ing of images across participants, a particular image was 
shown for some participants in the AI assistance condition 

and for other participants in the control condition without 
AI assistance. Each unique image was shown to a median of 
15 participants in the control condition and 45 participants 
in the AI assistance condition.

On each trial, participants were shown an interface as 
illustrated in Fig. 2. Participants classified images into 16 
categories by pressing the response buttons that represented 
the categories with visual icons as well as labels (when the 
participant hovers the mouse over the button). For each clas-
sification, the participant provided a discrete confidence 
level (low, medium, and high). Finally, the rightmost col-
umn of the interface was used for AI assistance. When AI 
assistance was turned off, this column displayed nothing. 
However, when AI assistance was turned on, a grid of the 16 
category options was shown with the same layout as the par-
ticipant response options. Each of the 16 categories would 
be highlighted based on a gradient scale associated with the 
probability that the AI classifier assigned to the category. 
The darker the hue of the highlighted category, the more 
confident the classifier was in that selection. Instances in 
which the classifier was extremely confident in a single cat-
egory, there would only be one category highlighted with an 
extremely dark hue. However, in instances where the classi-
fier was not confident in a classification, there would be mul-
tiple categories highlighted with low hue levels. Participants 
were to use the AI assistance to aid their classification deci-
sion so as to optimize their own performance on the task. 
At the end of each trial, feedback was provided to enable the 
participant to develop an AI reliance strategy tailored to the 
particular AI algorithm they were paired with. In the feed-
back phase, the correct response option was highlighted in 
blue. If the participant was incorrect, the incorrect response 
was highlighted in red.

Sequential paradigm  In the sequential paradigm, there were 
192 trials total. Each trial presented a unique image ran-
domly selected from the set of 256 images. On each trial, 
participants were first tasked with classifying an image 
on their own and were shown the interface as displayed in 
Fig. 2 but without AI assistance (the third column showing 
AI assistance was completely blank). After selecting their 
initial classification decision and submitting their response 
by selecting a confidence level, participants then were pro-
vided with AI assistance. The user interface at this stage 
looked exactly like Fig. 2 and the procedure for displaying 
AI confidence was the same as in the concurrent procedure. 
With AI assistance turned on, participants then made a final 
classification decision for the image shown and submitted 
their response by selecting their confidence level. Once a 
final classification was made, participants were provided 
feedback for 3 s.
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Results

Figure 5 shows the average accuracy across noise lev-
els, AI classifier accuracy levels, AI assistance condi-
tions, and the concurrent and sequential advice-taking 
paradigms. In both the concurrent and sequential proce-
dures, substantial performance differences are observed 
as the level of image noise varies, ranging from near 
ceiling performance at the zero noise level to close to 
chance-level performance (i.e., 1/16 = 0.0625) at the 
highest noise level. Across all classifier conditions, 
human performance improves with AI assistance, espe-
cially at intermediate levels of noise, as illustrated in 
Fig. 6. For classifiers B and C, the AI assistance pro-
duces performance levels comparable to the AI alone. 
For classifier A, the AI assistance improves human 

performance even though the AI assistance’s accu-
racy is below human performance, on average. Note 
that this result is possible when participants rely on AI 
assistance on select trials when participants are in a 
low confidence state and the classifier is in a relatively 
high confidence state (see Appendix 5 for an analysis 
of the relationship between human and AI confidence). 
Overall, these results show that participants are able to 
rely on AI assistance to produce complimentarity — the 
joint human-AI accuracy is equal to or better than either 
the human or the AI alone.

The results are very similar across the concurrent and 
sequential paradigms. The average human accuracy with AI 
assistance for classifiers A, B, and C is 57%, 62%, and 68% 
respectively in the concurrent paradigm and 56%, 61%, and 
65% respectively in the sequential paradigm. A Bayesian 

Fig. 5   Human accuracy with 
and without AI assistance as 
well as AI accuracy as a func-
tion of noise level (horizontal 
axis) across the concurrent and 
sequential paradigms (rows). 
Columns show different types 
of AI classifiers: classifier 
A’s accuracy is below aver-
age human accuracy, classifier 
B’s accuracy is comparable to 
average human accuracy, and 
classifier C’s accuracy is above 
average human accuracy. Error 
bars reflect the 95% confidence 
interval of the mean based on a 
binomial model

Fig. 6   Differences in accuracy 
with AI assistance relative to 
no AI assistance and AI only. 
Results are shown as a function 
of noise level (horizontal axis) 
and type of AI (columns) across 
the concurrent and sequential 
advice-taking paradigms. Error 
bars reflect the 95% confidence 
intervals
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independent samples t-test showed no evidence for a differ-
ence in performance for any the classifiers (i.e., all Bayes 
Factors < 1)2. That these results are consistent and very 
similar in both the concurrent and sequential experiments 
suggests that the experimental advice-taking paradigm does 
not produce important differences in how humans rely on 
and integrate AI assistance.

Model‑Based Analysis

The empirical results showed that the concurrent and 
sequential advice-taking paradigms produce similar levels of 
accuracy across all experimental manipulations. In this sec-
tion, we report the results of applying the cognitive model 
to the data from the concurrent paradigm.

We used a Markov chain Monte Carlo (MCMC) proce-
dure to infer model parameters for the graphical model as 

illustrated in Fig. 3 (see Appendix 2 for details). Generally, 
the model is able to capture all the qualitative trends in the 
concurrent paradigm (see Appendix 4 on an out-of-sample 
assessment of model fit). We focus our analysis on two key 
parameters estimated by the model: � , the advice-taking pol-
icy at the population level, and � , the advice-taking policy 
for individual participants. In the next sections, we illus-
trate the inferred policies and compare the results against the 
empirically observed strategies from the sequential advice-
taking paradigm. In addition, we analyze how effective the 
policies are relative to the set of all possible policies that 
participants could have adopted, ranging from the worst to 
best policies.

Inferred Advice‑Taking Policies

Figure 7, top row, shows the inferred advice-taking pol-
icy � as a function of classifier confidence, participant 
confidence and classifier. These policies represent the 
behavior of an average participant at the population level 
of the model. Figure 8 shows examples of inferred advice-
taking policies ( � ) from a subset of individual partici-
pants. Overall, the probability of taking AI advice differs 

Fig. 7   Advice-taking policies inferred from the advice-taking behav-
ior in the concurrent paradigm (top row) and observed in the sequen-
tial paradigm (bottom row). The policy determines the probability of 
taking the AI advice as a function of human confidence (colors), clas-
sifier confidence (horizontal axis), and type of classifier (columns). 

The colored areas in the top row show 95% posterior credible inter-
vals. The colored areas in the bottom row reflect the 95% confidence 
interval of the mean based on a binomial model. The inferred advice-
taking parameters ( � ) are converted from log-odds to probabilities in 
this visualization

2  Bayes factors were computed using JASP (JASP Team , 2022) with 
the default priors that came with the software.
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substantially across classifiers. Advice is more likely to 
be accepted when the participant is in a low confidence 
decision-state and the classifier provides high confi-
dence recommendations. In addition, across the different 
levels of classifier accuracy, advice is more likely to be 
accepted from high accuracy classifiers. Overall, these 
results show that the advice-taking behavior depends on 
a number of factors and is not based on simple strategies 
that rely solely on the confidence level of the AI or the 
confidence level of the participant. In addition, the results 
show that the advice-taking behavior is adjusted when the 
AI assistance becomes more accurate, from classifier A 
to classifier C, showing that participants are sensitive to 
AI accuracy.

Figure 7, bottom row, shows the empirically observed 
reliance strategies for the sequential paradigm. This 
analysis focuses on the subset of trials where the initial 
prediction from the participant differs from the AI pre-
diction (which is not yet shown) and then calculating the 
proportion of trials where the participant switches to the 
AI prediction. Importantly, even though there are some 
quantitative differences that can be observed between the 
reliance strategies in the two paradigms, the qualitative 
patterns are the same. Thus, the results from the sequen-
tial paradigm provide a key validation of the cognitive 
model. The latent strategies uncovered by the cognitive 
model in the concurrent paradigm are very similar to 
those observed in the sequential paradigm.

Effectiveness of the Advice‑Taking Policies

We now address the question of how effective are the 
participants’ advice-taking policies. How much better (or 
worse) could participants have performed if they changed 
their advice-taking strategy? Figure 9 shows the range of 

Fig. 8   Inferred advice-taking policies for a subset of 7 individual par-
ticipants in the concurrent paradigm. The policy determines the prob-
ability ( � ) of taking the classifier advice as a function of human con-

fidence (colors), classifier confidence (horizontal axis), and type of 
classifier (rows). Colored areas show 95% posterior credible intervals

Worst Best
Actual
97%

C
lassifier A

Worst Best
Actual
87%

C
lassifier B

0.45 0.5 0.55 0.6 0.65 0.7
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Worst Best
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C
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Fig. 9   Accuracy of the advice-taking policy at the population level 
relative to the best and worst possible advice-taking policies. The dis-
tributions show the accuracy of randomly sampled advice-taking pol-
icies. To quantify the participants’ performance levels, percentages 
show the percentile rank of their performance relative to the accuracy 
distribution over all possible policies



Computational Brain & Behavior	

1 3

all possible outcomes across different instantiations of the 
advice-taking policies. The accuracies of the worst and 
best possible advice-taking strategies were inferred by an 
analysis that optimizes performance conditional on the 
performance of the participants (Appendix 3). Note that 
the worst to best accuracies span the range of all possible 
outcomes. To understand how effective the average par-
ticipants’ policies ( � ) are on this range, we used a Monte 
Carlo sampling procedure to derive the accuracy distribu-
tion over all strategies (see Appendix 3 for details) and 
compute the percentile rank of the participant strategies in 
this distribution. These results show that the actual poli-
cies adopted by participants were highly effective, scoring 
in or near the top 10% of all possible strategies. Figure 10 
shows the percentile rank for all individual participants 
when the effectiveness analysis is applied to the individual 
participant data. While a small subset of participants used 
suboptimal reliance strategies, the majority of participants 
used highly effective strategies.

Discussion

Appropriate reliance on AI advice is critical to effective col-
laboration between humans and AI. Most research on AI-
assisted decision-making has focused on gaining insight into 
the human’s reliance on AI though empirical observations 
based on trust ratings and comparisons of observed accu-
racy and final decisions by humans and AI. For instance, 
in work that uses trust as a proxy for reliance, individuals 
are required to report their trust in the AI assistant (Lee 
and See, 2004). However, self-reported trust is not a reliable 
indicator of trust (Schaffer et al., 2019). Researchers have 
also compared the accuracy of the human-AI team when AI 
assistance is provided to the accuracy without assistance 
(Lai and Tan, 2019). However, this difference in accuracy is 
directly correlated with the performance of the AI. Another 
method used to investigate reliance is based on analyzing 
the agreement between the human’s final decision and the 
AI’s prediction (Zhang et al., 2020). This approach is prob-
lematic when used in the concurrent paradigm — while 
agreement can occur because of an individual’s trust in 
the AI, it can also occur because the individual might have 
arrived at the same prediction as the AI even without the 
AI’s assistance. Finally, in experiments using the sequen-
tial paradigm, reliance can be assessed by the propensity of 
individuals to switch to the AI’s recommendation for those 
cases where their initial independent decision differs from 
the AI (Zhang et al., 2020; Yin et al., 2019). While this is 
a simple and straightforward procedure to gain insight into 
a reliance strategy, it cannot be applied to the concurrent 
paradigm as the individual’s independent response is inher-
ently unobservable.

Instead of using empirical measures to assess reliance, we 
developed a cognitive modeling approach that treats reliance 
as a latent construct. The modeling framework provides a 
principled way to reveal the latent reliance strategy of the 
individual by using a probabilistic model of the advice-taking 
behavior in the concurrent paradigm. It can be used to infer 
the likelihood that a human would have made a correct deci-
sion for a particular item independently even when their inde-
pendent decision is not directly observed. The model is able 
to make this inference because it assumes that people, at the 
same levels of skill, will likely make the same prediction. The 
model allows us to investigate the difference between agree-
ment with the AI and switching to AI advice (two metrics 
often used to assess trust) without explicitly asking the human 
to respond independently to each problem. In order to apply 
the model, empirical observations are needed that assess peo-
ple’s independent decisions without the assistance of an AI.

We showed that the AI reliance strategy inferred by the 
cognitive model on the basis of the concurrent paradigm is 
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Fig. 10   Individual differences in the effectiveness of advice-taking 
strategies as assessed by the percentile rank relative to the distribu-
tion of all possible advice-taking policies
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qualitatively similar to the AI reliance strategy observed in 
the sequential paradigm. Therefore, this demonstrates that 
a latent modeling approach can be used to investigate AI-
assisted decision-making. The reliance strategy estimated by 
the model showed that participants discriminatively relied 
on the AI and varied their reliance from problem to prob-
lem. Participants were more likely to rely on the AI if they 
were less confident in their own decisions or when the AI 
was relatively confident. In addition, participants relied more 
heavily on AIs that were more accurate overall. This find-
ing is consistent with (Liang et al., 2022) who showed that 
people rely on AI assistance more when the task is difficult 
and when they were given feedback about their performance 
and the AI’s performance.

The results also showed that participants were able to 
build very effective reliance strategies compared to the opti-
mal reliance strategy. We believe that participants were able 
to achieve this because of the following reasons. First, this 
is a simple image classification task and most people are 
experts at identifying everyday objects from images. This 
enables people to have a good understanding of their own 
expertise and confidence on any presented image. Second, 
in our experiment, people received feedback after each trial, 
which gave them the opportunity to learn about the AI assis-
tant’s accuracy and confidence calibration. This feedback 
allowed people to build reasonable mental models of the AI 
assistant when paired with any of the three classifiers.

Finally, our results showed that the concurrent and sequen-
tial AI assistance paradigms led to comparable accuracy. Some 
researchers have argued that the sequential paradigm is superior 
to the concurrent paradigm because the initial unassisted pre-
diction encourages independent reflection which could lead to 
retrieval of additional problem-relevant information (Green and 
Chen, 2019). However, consistent with our study, other stud-
ies have found no difference in overall performance between 
the concurrent and sequential paradigm (Buçinca et al., 2021). 
Another factor that could be relevant is the timing of AI assis-
tance. The AI advice can be presented after some delay which 
provides the decision-maker additional time to reflect on the 
problem and improve their own decision-making accuracy (Park 
et al., 2019). Another possibility is to vary the amount of time 
available for people to process the AI prediction after it is shown 
making it more likely for people to detect AI errors (Rastogi 
et al., 2022). Overall, more research is needed to understand the 
effects of soliciting independent human predictions and varying 
the timing of the AI recommendation.

Our empirical and theoretical work comes with a number 
of limitations. First, we provided trial-by-trial feedback to 

help participants with the task of building a suitable mental 
model of AI performance. However, feedback is not always 
possible in real-world scenarios (Lu and Yin, 2021). Future 
research should investigate modeling extensions that model 
the cognitive process when participants do not receive feed-
back at all or receive feedback after a delay. Second, while 
the cognitive model captured the general process of advice 
taking based on a latent reliance policy, it did not model 
the process of establishing the reliance policy over time. 
Therefore, one important model extension, which we leave 
for future research, is to model the trial-by-trial adjustments 
of the reliance policy as a function of beliefs held a priori 
by participants about the accuracy of AI algorithms and 
external signals of AI confidence and accuracy as well as 
internally generated confidence signals.

Appendix

Appendix 1. The ordered probit model

The ordered probit model, r ∼ OrderedProbit(�, v, �) is a 
generative model that maps a (latent) value � to one of R + 1 
discrete scores r ∈ {0,… ,R} . In this process, noise is added 
to the latent value resulting in a new latent value, �� = � + � , 
where � ∼ N(0, �) and the resulting discrete score is deter-
mined by the interval where �′ lies:

The ordered vector v = [v1,… , vR] represents the transition 
points between different discrete scores. With this construc-
tion, the probability of producing a score r = m conditional 
on the latent value � is:

where Φ is the cumulative standard normal distribution and 
v0 = −∞.

For our empirical (concurrent) paradigm, we use 
the ordered probit model to map the latent probabil-
ity correct, � to three different levels of confidence, 
r ∈ {Low,Medium,High} . Figure 11 shows an example of 
how the latent scores are mapped to confidence levels. Note 
that the higher value of the parameter � (top panel) results in 
a noisier mapping of latent probabilities to discrete scores.

(7)r =

⎧⎪⎨⎪⎩

0 if 𝜃� ≤ v1
1 if v1 < 𝜃� ≤ v2
2 if v2 < 𝜃� ≤ v3
R if 𝜃� > vR

(8)P(r = m|�, �) = Φ((vm+1 − �)∕�) − Φ((vm − �)∕�)
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Appendix 2. Details on model inference

We used Markov chain Monte Carlo (MCMC) to infer 
model parameters and obtain samples from the posterior 
distribution, conditioned on the observed data. We chose 
JAGS for posterior inference (Plummer et al. , 2003). To 
facilitate posterior inference, the inference procedure was 
separated into two stages. In the first stage, the observed 
data xi,j , zj , and ri,j from the no AI assistance condition 
was used to infer all model parameters related to person 
and item differences ( ai,dj,sj ) and confidence generating 
process ( �i , vi ). As a result of this stage, we computed 
posterior predictive distributions for the latent (independ-
ent) decisions xi,j and associated confidence levels ri,j for 
the AI assistance condition. In the second inference stage, 
the posterior modes of xi,j and ri,j were used as observed 
data, along with yi,j,k , cj,k , zj , and �j,k to infer the advice-
taking model parameters �i,j,k . In theory, one does not 
need to separate the first and second stage of inference 
and model parameters can be estimated in one joint pro-
cedure. We followed this two-stage inference process to 
facilitate the comparison with the optimization experi-
ments (described in the next section). For both the first and 
second stage inference process, we ran the sampler with 8 
chains with a burn-in of 1000 iterations before taking 50 
samples per chain. The chains mixed appropriately. For 
prior distributions, we used normal priors for the ability 
and discrimination IRT parameters, consistent with pre-
vious Bayesian IRT modeling (Fox , 2010): ai ∼ N(0, 1) , 
sj ∼ N(1, 1)I(0, ) , where I(0, ) denotes truncation a values 

below zero. Because of the large item differences in the 
classification task, we use a uniform prior spanning a 
large range of item differences, dj ∼ Uniform(−10, 10) . 
For the generative process of the confidence levels, we 
used �i ∼ Uniform(0, 15), �i = 1∕�i .  In addition, we 
used uniform priors on the two cutpoints needed to pro-
duce three levels of confidence, vi,1 ∼ Uniform(0, 1) , 
vi,2 ∼ Uniform(0, 1) , with the constraint that the cutpoints 
are ordered (i.e., vi,1 < vi,2).

Finally, for the advice-taking process, the AI reliance 
parameter � is treated as a 3 × 4 × 3 lookup table for each 
individual i where entries are determined by the three con-
fidence levels of the participant (“low,” “medium,” and 
“high”), 4 classifier confidence levels (0.00–0.35, 0.35–0.57, 
0.57–0.78, 0.78–1.00), and 3 AI classifiers (A, B, and C). 
The classifier confidence levels were chosen to evenly dis-
tribute the observations across bins. Changing notation, the 
AI reliance parameters can be represented by �i,r,�,k where r 
indexes the participant confidence level and � is the (discre-
tized) AI confidence level. We use a hierarchical Bayesian 
approach to estimate the individual differences in reliance 
policies by assuming that these are sampled from a normal 
distribution on the log-odds scale log

(
�i,r,�,k

1−�i,r,�,k

)
∼ N(�r,�,k,�) . 

The parameter � represents the advice-taking policy at the 
population level, the tendency across participants to accept 
AI advice. The standard deviation � captures the spread in 
individual differences. For priors, we use �r,�,k ∼ N(0, 3) . In 
addition, because there are relatively few “medium” confi-
dence levels, we imposed an order constraint, 
�1,�,k ≤ �2,�,k, �2,�,k ≤ �3,�,k for � = 1, .., 4, and k = 1, ...3.

Fig. 11   Illustration of the 
ordered probit model to produce 
three levels of confidence. Top 
and bottom panels are produced 
with � = 1∕10 and � = 1∕60 
respectively
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Appendix 3. Optimality analysis

The inferred advice-taking policies show that participants 
use a number of different factors in sensible ways. A natu-
ral question is what could participants have done differently 
in order to optimize their performance. We conducted an 
optimality analysis to identify the best possible policy to 
better understand the strategies that would have maximized 
accuracy in the AI-assistance condition. Importantly, in 
this analysis, the goal is to identify the most effective pol-
icy conditional on the performance of the participants and 
confidence states before AI assistance is provided. In other 
words, in the optimality analysis, we are not changing any 
assumptions about the ability of participants to classify 
images and express their confidence in their prediction — 
we are only considering scenarios where participants might 
have utilized the AI assistance in different ways. Also, we 
are not considering how participants have to learn about 
the effectiveness of their AI reliance policy over the course 
of the experiment.

Specifically, we start the analysis with the inferred con-
fidence state of the participant (r) and accuracy ( � ) of the 
predictions before AI assistance is considered. We then find 
out what strategy (at the individual level, � , or at the popula-
tion level, � ) would have maximized the accuracy of the final 
predictions (y) after AI assistance. The analysis is applied 
separately for each classifier A, B, and C.

The goal of the optimality analysis is to identify the best 
and worst possible advice-taking policy ( �i,j,k ) conditional 
on inferred accuracy ( �i,j ), confidence state ( ri,j ) of the par-
ticipant for individual items before AI assistance is provided, 
and classifier type k. For the inferred accuracy �i,j , we took 

the posterior mean for each item based on our MCMC pro-
cedure. For the confidence state ri,j , we took the posterior 
mode for each item.

The analysis was based on a brute-force search conducted 
separately for the three types of classifier. In this search, the 
parameter values � were discretized into 80 equally spaced 
values between 0 and 1, and then searching the space across 
3 levels of DM confidence ( ri,j ) and 4 levels of AI confi-
dence ( �j ). We then applied Eqs. 6–5 to identify the � policy 
that produced the highest as well as the lowest accuracy of 
predictions yi,j,k in Eq. 5. The parameters were subject to an 
order constraint identical to the order constraint imposed in 
the MCMC procedure: � should be monotonically increasing 
for higher levels of participant confidence.

Figure 12 shows the resulting optimized policies ( � ) 
at the average participant level. These policies only take 
on extreme values such that advice is either always taken 
( � = 1 ) or never taken ( �=0) for particular combinations 
of participant and classifier confidence. Similar to the par-
ticipant strategies, the results show that classifier advice 
should more readily be adopted when the participant is in 
a low confidence state and the classifier is in a high con-
fidence state3.

Fig. 12   Advice-taking policies derived from an optimality analysis to 
maximize accuracy conditional on human confidence and accuracy. 
The policy determines the probability of taking the AI advice as a 

function of human confidence (colors), classifier confidence (horizon-
tal axis), and type of classifier (columns)

3  Note that the optimal policy for classifier B shows that advice 
should be accepted more often than for classifier C even though clas-
sifier B performs worse on average than classifier C. This result can 
be attributed to between-group differences in classifiers B and C as 
well as differences in classifier calibration.
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Deriving the percentile rank of participants policies

We conducted a Monte Carlo procedure to estimate the per-
centile rank of the accuracy of participants’ policies relative 
to accuracy achieved by random strategies. In this Monte 
Carlo procedure, we sampled �i,j,k from a uniform (0,1) 
distribution separately for the 3 levels of DM confidence 
( ri,j ) and 4 levels of AI confidence ( �j ). We computed the 
expected accuracy for each of the �i,j,k samples. We next 
computed the percentile rank of the actual participants’ 
policy relative to this distribution.

Appendix 4. Out‑of‑sample model predictions

To assess model fit of the concurrent experiment, we used a 
10-fold cross-validation approach to compute out-of-sample 

model predictions for the human decisions and confidence 
levels. For each individual, the observed data from the AI 
assistance and no AI Assistance condition was randomly 
partitioned into 10 disjoint test sets. For the no AI assis-
tance condition, model parameters were inferred on the basis 
of observed predictions x and confidence levels r for each 
training fold. For the test set, we used the MCMC inference 
procedure described in Appendix 2 to infer the predictions x 
and confidence levels r for the test set. For the AI assistance 
condition, the model has to predict the withheld data on y, 
the decisions made with the aid of the AI.

Figure 13 shows the out-of-sample model predictions 
and observed data. One point of deviation is that the model 
somewhat underpredicts the size of the assistance effect 
(bottom row). However, the model captures all qualitative 
trends in the data.
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Fig. 13   Model predictions and observed data for human performance 
with and without AI assistance in the concurrent paradigm. Model 
predictions and data are shown with lines and points respectively. 

Error bars reflect the 95% confidence interval of the mean of the 
observed data based on a binomial model
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Appendix 5. Relationship between human and AI 
confidence

Prior to AI assistance, human confidence levels are cor-
related with AI confidence scores, with Spearman’s rank 
correlations of 0.28, 0.43, and 0.47 for AI classifiers A, 
B, and C respectively (in this analysis, we are combining 
results across the sequential and concurrent conditions). 
Therefore, what is a difficult problem for the human par-
ticipant (e.g., a high noise classification problem) tends to 
be challenging for the classifier as well. Figure 14 provides 
more detailed information about the relationship broken 
down by classifier and degree of image noise. For ease 
of interpretation, AI confidence scores were discretized 
into three labels “Low,” “Medium,” and “High” where 

the cutoffs to define the labels were chosen such that the 
marginal frequencies of the labels matched the marginal 
frequencies of human confidence ratings (note that in the 
experiment, the participants did not see these discrete AI 
confidence labels).

For low noise conditions (phase noise levels at 110 or 
lower), there is a stronger correspondence between human 
and AI confidence, such that there are few cases (fewer than 
14% for classifier C) where the human is in a low confidence 
state and the AI is in a high confidence state (or vice versa). 
However, for the more challenging high-noise classification 
problems (phase noise levels above 110), the correspond-
ence between human and AI confidence is reduced and in 
roughly a third of cases, the human and AI are in opposite 
confidence states.
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Fig. 14   Relationship between AI and human confidence scores prior 
to AI assistance across AI classifiers and noise levels. Percentages in 
each row show the relative number of AI discretized confidence lev-
els given a particular level of human confidence. AI confidence lev-
els were discretized into three labels to match the marginal frequen-
cies of the human label frequencies (34%, 25%, and 41% for “Low,” 

“Medium,” and “High” ratings). The results are combined across the 
concurrent and sequential conditions without AI assistance. Low 
noise (top row) includes the 0, 80, 95, and 110 phase noise levels 
whereas high noise (bottom row) includes the 125, 140, 155, and 170 
phase noise levels
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