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Abstract It is known that the average of many forecasts about a future event tends to outper-
form the individual assessments. With the goal of further improving forecast performance,
this paper develops and compares a number of models for calibrating and aggregating fore-
casts that exploit the well-known fact that individuals exhibit systematic biases during judg-
ment and elicitation. All of the models recalibrate judgments or mean judgments via a two-
parameter calibration function, and differ in terms of whether (1) the calibration function
is applied before or after the averaging, (2) averaging is done in probability or log-odds
space, and (3) individual differences are captured via hierarchical modeling. Of the non-
hierarchical models, the one that first recalibrates the individual judgments and then aver-
ages them in log-odds is the best relative to simple averaging, with 26.7 % improvement
in Brier score and better performance on 86 % of the individual problems. The hierarchical
version of this model does slightly better in terms of mean Brier score (28.2 %) and slightly
worse in terms of individual problems (85 %).
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1 Introduction

In many situations, experts are asked to provide subjective probability or confidence esti-
mates of uncertain events. The estimates can relate to general knowledge questions (e.g.,
Which city is furthest North of the equator, Rome or New York?) or to predicting event
occurrence (e.g., Will political candidate X win the election?). There exists a large body of
work focused on the use of statistical models for combining these individual subjective prob-
ability judgments into a single probability estimate (e.g., Ariely et al. 2000; Clemen 1986;
Clemen and Winkler 1986; Cooke 1991; Wallsten et al. 1997). A simple form of aggregation,
namely the unweighted linear average, has proven to be effective in many situations (e.g.,
Armstrong 2001). Alternatively, the aggregation can be accomplished by taking a weighted
average of the reported probability estimates, with, for example, weights determined by
previous expert performance (Cooke 1991).

We consider the aggregation of subjective forecasts voluntarily provided by users of a
website. This is similar in spirit to the machine learning notion of aggregating across weak
learners, as implemented in popular methods such as bagging (Breiman 1996) and boosting
(Freund and Schapire 1996). The former method involves fitting a series of weak learners
(often classification or regression trees) to bootstrapped samples of the data, with overall pre-
dictions obtained by averaging across the weak learners. The latter method involves fitting a
series of weak learners to weighted versions of the original dataset, with overall predictions
obtained by taking an accuracy-weighted average across the weak learners. The aggrega-
tion of weak machine learning algorithms differs from the aggregation of human forecasts
in that (i) given a domain, the algorithms often exhibit more stable behavior, and (ii) the
humans often contribute only a small number of forecasts. While the ideas of averaging and
weighting weak learners definitely translate to the aggregation of human forecasts, specific
implementations must deal with these additional data sparsity and variability problems.

An important consideration for aggregation approaches involving human forecasts is the
presence of systematic biases that might distort the individuals’ subjective probability es-
timates. For example, when using probabilities to report confidence in one’s judgment, in-
dividuals often report values that are too extreme (e.g., Brenner et al. 1996; Keren 1991;
Lichtenstein et al. 1982; Yates 1990). Merkle (2010) estimated and corrected for these sys-
tematic biases in psychological data. Further, Shlomi and Wallsten (2010) have shown that
judges are sensitive to miscalibrated subjective probabilities, and they are able to internally
recalibrate miscalibrated information from advisors. These findings suggest that we might
improve forecast aggregation by correcting for forecasters’ systematic biases. In this arti-
cle, we construct a series of models that first estimate the bias inherent in judges’ forecasts,
then correct and aggregate the forecasts into a single value. The models we investigate dif-
fer in both the extent to which they accommodate individual differences and where the bias
correction takes place (see Clemen 1989, for a related discussion of the latter issue).

We first present the general recalibration function used in all the models, and then de-
scribe five aggregation models that use the function in different ways. We apply the models
to data from a recent forecasting study, comparing the models to one another and to the un-
weighted average forecast. By investigating a wide variety of model variants, we seek to un-
derstand which modeling procedure leads to the most accurate forecasting performance, as
measured by a cross validation test. Our research centers on three questions. (1) Is it better to
aggregate the raw individual judgments and then recalibrate the average; to first recalibrate
the individual judgments and then average those values; or to recalibrate the individuals, av-
erage those values and then recalibrate that average? (2) Regardless of the answer to the first
question, how should the recalibration take place—on the probabilities themselves or fol-
lowing some transformation, such as log odds? (3) Does including individual differences in
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these models improve accuracy or does it simply reduce their generalizability to new ques-
tions? We investigate each of these questions, draw conclusions about optimal calibration
methods, and relate these conclusions to possibilities for future methods and applications.

2 Recalibrating subjective probability estimates

A large body of evidence suggests that subjective probability estimates systematically de-
viate from objective measures (see Zhang and Maloney 2011, for examples across many
research domains). In forecasting situations, the probability of rare events is often overesti-
mated while the probability of common events is underestimated. This tendency is related
to the miscalibration that is often found in psychology research. For example, judges con-
sistently overestimate the probability of precipitation (Lichtenstein et al. 1982). Murphy
and Winkler (1974) asked judges to first report the probability of precipitation for the next
day. After this initial estimate, judges were provided with information from a computerized
weather prediction system, and were asked to reestimate their probabilities. The manipula-
tion showed no effect and both responses demonstrated overestimation of the probability of
precipitation.

Miscalibration in prediction often carries over to natural or expertise domains, but not
always. Griffin and Tversky (1992) found that when judges were asked about attributes such
as population size of pairs of states, they produced significantly overconfident responses. In
the prediction task, Murphy and Winkler (1984) showed that professional weather forecast-
ers are remarkably well-calibrated, producing nearly perfect probability estimates. However,
Christensen-Szalanski and Bushyhead (1981) showed that when physicians were asked to
estimate the likelihood of pneumonia in patients, they were grossly overconfident (predict-
ing probabilities as extreme as 0.88 when the actual probability was only about 0.14). This
difference can be explained by the fact that weather forecasters make large numbers of fore-
casts and receive relatively immediate feedback on them, while physicians do not (Wallsten
and Budescu 1983; Fryback and Erdman 1979). The forecasting situations that are consid-
ered below tend to be more similar to those made by physicians than to those made by
weather forecasters.

In other experimental paradigms, Brown and Steyvers (2009) asked judges to both infer
and predict stimulus properties in a perceptual task involving four alternatives. Their ex-
periment consisted of an “inference” task in which subjects were instructed to choose the
alternative that was most likely to have produced a particular stimulus, and a “prediction”
task in which judges were asked to choose the alternative that was most likely to produce
the next stimulus (i.e., a prediction about a future stimulus). On each trial, one of the four
alternatives produced a stimulus in a manner that induced a strong positive sequential de-
pendency. Specifically, the alternative that produced the stimulus on Trial t was more likely
than the others to produce the stimulus on Trial t +1. By using the same stimulus set in both
the inference and prediction tasks, Brown and Steyvers found that 48 of the 63 judges esti-
mated a higher probability of a change in the prediction task than they did in the inference
task, suggesting greater miscalibration in the former than in the latter (see also Wright and
Wisudha 1982; Wright 1982).

As mentioned earlier, judges who accurately estimate the observed relative frequency of
events are said to be “calibrated.” That is, if a judge reports a probability of occurrence of p,
and the event happens pn out of n times, then the judge is well recalibrated. Calibration can
be assessed both visually and statistically. A common empirical approach involves plotting
observed relative frequencies (y-axis) conditional on judged or subjective probabilities (x-
axis). In this approach, the relative frequency of occurrence is computed by binning the
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subjective probabilities and computing the proportion of events that occurred within each
bin. The line of perfect calibration is then y = x, with data falling below (above) the line
implying overconfidence (underconfidence). These plots can also be reinforced with simple
statistical measures of calibration, often based on decompositions of the Brier score (Arkes
et al. 1995; Yates 1982).

An alternative approach involves fitting a function to the (X,Y ) plot that characterizes
the nature and extent of the deviation of the points from the diagonal. The function itself can
be used to “recalibrate” the judged probabilities, while estimates of the function’s parame-
ters can be used to compare the extent and nature of miscalibration across judges, groups,
or experiments. Many different functions are available, but because of its great flexibility
we decided to use the Linear in Log Odds (LLO) function. Our use is different from previ-
ous decision researchers, however. Whereas they were concerned with decision weights in
choice tasks, our focus is on transforming judged probabilities to render them more accurate.

2.1 The linear in log odds function

The LLO recalibration function has been used extensively as a method for estimating
the distortion of subjective individual probability estimates from their true experimen-
tal probabilities in the context of risky decision (e.g., Birnbaum and McIntosh 1996;
Gonzalez and Wu 1999; Tversky and Fox 1995). To derive the functional form, we assume
that the recalibration function c(p) is linear with respect to p on the log odds scale, so that

log

(
c(p)

1 − c(p)

)
= γ log

(
p

1 − p

)
+ τ, (1)

where γ and τ are the slope and intercept, respectively. If we solve for c(p) in Eq. (1), we
obtain the recalibration function

c(p|γ, δ) = δpγ

δpγ + (1 − p)γ
, (2)

where δ = exp(τ ). The slope parameter γ in Eq. (1) corresponds to the curvature of the
function in Eq. (2) and the intercept parameter τ = log(δ) controls the height above zero.

In analogy to Gonzalez and Wu’s (1999) argument about the weighting function param-
eters, the recalibration function provides a convenient functional form with two psycholog-
ically interpretable parameters. The first parameter γ in our use of the model corresponds
to discriminability, which manifests itself in the functional form by means of curvature. As
γ increases, the form of the calibration function becomes more step-like, indicating that
judges’ estimates of low and high probability events are insufficiently extreme. The sec-
ond parameter δ represents overall response tendency, which is represented as the vertical
distance of the curve from zero. Tendencies for higher estimates yield higher calibration
curves.

Figure 1 shows various LLO curves as a function of different parameter values. The
left panel shows how the parameter γ affects the functional form by fixing δ = 0.6 and
incrementing γ by 0.1 from γ = 0 to γ = 3. The figure (left panel) shows that as γ is
increased from zero to three, the curves go from being a straight horizontal line to sharply
increasing on the interval [0.3,0.8]. The right panel shows how δ affects the functional form
by fixing γ = 0.2 and incrementing δ by 0.1 from δ = 0 to δ = 3. The figure (right panel)
shows that as δ is increased from zero to three, the function increases in height above zero
(also known as “elevation”; Gonzalez and Wu 1999).
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Fig. 1 Various LLO curves under different parameter values. The left panel shows how the γ parameter
affects the functional form by fixing δ = 0.6 whereas the right panel shows how δ affects the functional form
by fixing γ = 0.2

Figure 1 shows that the function is very flexible and has a number of interesting proper-
ties. First, we notice that under the restriction γ = 1 and δ = 1, c(p) = p and no transfor-
mation is applied. Second, if δ = 1 the function reduces to another well-known calibration
curve known as the Karmarkar’s equation (Karmarker 1978). Third, the function must go
through the points (0,0) and (1,1), which is not always true for some calibration functions.
Finally, the function is guaranteed to cross the identity line c(p) = p at exactly one location
p∗ (except when γ = δ = 1) where

p∗ = δ1/(1−γ )

1 + δ1/(1−γ )
. (3)

Note that the LLO function does not require that the curve passes through the point
(0.5,0.5), nor that it is symmetric. This property implies that the recalibration function is
not a probability function, which by definition must satisfy

c(p) + c(1 − p) = 1.

Functions that do not satisfy this constraint typically provide good fits to empirical data,
where the general finding is that judges both overestimate and overweight low-probability
events and even more dramatically underestimate and underweight high-probability events
(e.g., Camerer and Ho 1994; Tversky and Kahneman 1992; Wu and Gonzalez 1996).

Once a recalibration function has been fit to data for a particular judge, if the sum of the
recalibrated values for complementary probabilities is less than one (i.e., c(p)+ c(1 −p) <

1), the judge is said to exhibit subcertainty (Kahneman and Tversky 1979). In our applica-
tions, the very flexible form of the LLO recalibration function will be advantageous because
judges appear to be overly optimistic about the probability of future outcomes (i.e., they
tend to provide judgments that are higher than the relative frequency of an event occurring;
see Brown and Steyvers 2009).

To estimate the parameters γ and δ in Eq. (2), one can use classic maximum likelihood
methods. If we let Xj indicate whether the j th event did (Xj = 1) or did not occur (Xj = 0),
then the likelihood function is the product

L(γ, δ|X) =
∏

i

{
c(p|γ, δ)Xj

[
1 − c(p|γ, δ)

]1−Xj
}
, (4)
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where p is a single forecast associated with Event j . To obtain the maximum likelihood
estimates, one uses standard numerical optimization routines to optimize Eq. (4) with respect
to γ and δ.

If there are enough data, an alternative to likelihood-based methods are nonparamet-
ric estimation techniques (Gonzalez and Wu 1999; Page and Clemen 2012). For example,
Gonzalez and Wu proposed a nonparametric estimation algorithm that returns estimates of
the value and recalibration function in the prospect theory model (Kahneman and Tversky
1979), but other recalibrating functional forms can be estimated using this approach. Gonza-
lez and Wu found that using the nonparametric approach provided a great deal of flexibility
in fitting the data from a calibration experiment. As another example, Page and Clemen
used a localized kernel density estimator (see Silverman 1986) in combination with a clus-
tered bootstrap approach (see Härdle 1992) to fit calibration curves to data from a prediction
market.

One can also employ Bayesian methods to estimate the parameters γ and δ in Eq. (2). In
the Bayesian framework, one assumes that the parameters, along with the data, are random
quantities (e.g., Gelman et al. 2004). In contrast to classical statistics, inference about the
parameters are based on their probability distributions after some data are observed (see
Christensen et al. 2011; Gelman et al. 2004). We rely on Bayesian estimation procedures in
the applications described below.

2.2 Linear in log odds aggregation

For the longitudinal dataset to which we apply the models, some events do not yet have
known outcomes. We incorporate these missing observations into the vector xj , the result of
the j th event. When xj = 1, the event did occur—an event we refer to as a resolved event—
whereas xj = 0 denotes that the event did not occur—an event we refer to as an unresolved
event. We let yi,j represent the probability estimate provided by Judge i on Event j . Be-
cause Eq. (1) is not defined when p = 0 or p = 1, we must use a correction to judgments
such that yi,j = 0 or yi,j = 1 prior to use in the models. Thus, we adjust these boundary
forecasts to 0.001 and 0.999, respectively, prior to fitting any of the models to facilitate a
direct evaluation across models.

We generally compare our re-calibration models to the unweighted linear average (some-
times called the Unweighted Linear Opinion Pool; ULinOP) of the estimates provided by
each of the judges. Thus, predictions μ̂j for ULinOP are obtained by evaluating

μ̂j = 1

n

(
n∑

i=1

yi,j

)
,

where n is the number of responses obtained on Event j .
Despite its simplicity, the ULinOP is a formidable estimate for the probability of future

outcomes in forecasting future events. Some authors have even argued that it is difficult to
beat the ULinOP by more than 20 % (e.g., Armstrong 2001).

The models described below each allow for distortions that yield non-additive probabil-
ities. Although we assume that this distortion is a consequence of the functional form in
Eq. (2), we exploit the recalibration function in a variety of ways. All of the models pre-
sented below can be represented in the general form

Model(y) = f
(
g(y)

)
, (5)
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Table 1 Model specification as a function of an inner function g(·) and an outer function f (·) according to
Eq. (5)

Model Inner g(·) Outer f (·)

ULinOP yi (1/n)
∑n

i=1 g(yi )

Average then Recalibrate (1/n)
∑n

i=1 yi c(g(y)|γ, δ)

Calibrate then Average c(yi |γ, δ) (1/n)
∑n

i=1 g(yi )

Calibrate then Average Log Odds log(
c(yi |γ,δ)

1−c(yi |γ,δ)
)

exp[(1/n)
∑n

i=1 g(yi )]
1+exp[(1/n)

∑n
i=1 g(yi )]

where y denotes the set of observed responses, Model(y) represents the predictions of the
model, and g(·) and f (·) are two functions that are either calibration or aggregation func-
tions, depending on the model. Table 1 shows the functions g(·) and f (·) for each model
under consideration. The first type of model we present, Average then Recalibrate, first av-
erages all responses for Event j and then calibrates the average to estimate the probability of
an event occurring. The second type of model recalibrates each individual judgment using
the parameters γ and δ, and then averages these recalibrated judgments to estimate the event
probability. We explore two variants of this model. In the first version, Calibrate then Aver-
age, the averaging is performed directly on the recalibrated judgments. The second variant
of this model, Calibrate then Average Log Odds, performs the averaging on the log odds
of the recalibrated judgments. We will show that this second variant leads to much better
aggregation results. Finally, we also examine hierarchical extensions of the recalibration
model (not shown in Table 1) that incorporate individual differences into the estimation of
the parameters γ and δ in Eq. (2).

2.3 Average then recalibrate model

The first model we consider averages the responses for a particular event and then recali-
brates the average. One useful way to view this model is as a transformation of the ULinOP
discussed previously. Instead of taking the group average at face value, the group average
is transformed using Eq. (2). While this type of modeling does not necessarily have clear
psychological interpretability (as individual differences are ignored), it dampens the impact
of extreme predictions (i.e., zeros or ones) given by individual judges. In addition, averag-
ing the individuals’ biases may produce more stability in the estimation of the calibration
parameters.

Thus, for the j th resolved event, we assumed that

pj = 1

Sj

∑
i∈Qj

yi,j ,

μj = c(pj |γ, δ), and

xj ∼ Bernoulli(μj ),

where pj is the average probability elicited by judges for the j th event, xj is the coded
known outcome for the j th event, Qj is the set of judges who responded to the j th event,
Sj is the number of judges who responded to the j th event (i.e., Sj = |Qj |), and c(·|γ, δ) is
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governed by Eq. (2). Thus, for the j th event, the likelihood function can be written as

L(γ, δ|xj , yi,j ) =
[
c

(
1

Sj

∑
i∈Qj

yi,j

∣∣ γ, δ

)]xj
[

1 − c

(
1

Sj

∑
i∈Qj

yi,j

∣∣ γ, δ

)]1−xj

. (6)

As stated previously, we estimated the models via Bayesian methods that require prior
distributions. After some inspection, we settled on mildly informative priors for each of the
model parameters here so that

δ ∼ Γ (1,1) and

γ ∼ Γ (1,1),
(7)

where Γ (a, b) denotes the gamma distribution with rate a and shape parameter b. The
Γ (1,1) prior has a mean and standard deviation of 1, and a 95 % credible set of approx-
imately (0.025, 3.703). We chose these priors after observing the shape of the calibration
function for a representative range of values for γ and δ within this range. We note that
a Γ (1,1) prior is equivalent to an exponential prior with rate parameter equal to one (i.e.,
Γ (α,1) = Exp(α) for some rate parameter α).

With our fully-specified model, we can now write the joint posterior distribution for γ

and δ as

π(γ, δ|x, y) ∝
J∏

j=1

L(γ, δ|xj , yi,j )π(γ )π(δ), (8)

where L(γ, δ|xj , yi,j ) is defined in Eq. (6), and J is the number of resolved events.
Figure 2 shows a graphical diagram for this model. These types of diagrams are

often very useful for illustrating how the parameters in the model (white nodes) are
connected via arrows to the observed data (gray nodes; see Buntine 1994; Lee 2008;
Lee and Wagenmakers 2012; Shiffrin et al. 2008). When the variables are discrete-valued,
they are shown as square nodes, whereas when the variables are continuous, they are shown
as circular nodes. A double bordered variable indicates that the quantity is deterministic,
not stochastic. Finally, “plates” show how vector-valued variables are interconnected. For
example, in Fig. 3, we see that the nodes γ and δ are not on the plate, which indicates that
these parameters are fixed across events, whereas there are separate μj s for each Event j

ranging from one to J , which are connected to the other nodes on the plate.
To elicit a prediction for Event j , the model first calculates the mean of the posterior

distribution for each of the parameters μj , so that

μ̂j = 1

K

(
K∑

k=1

μj,k

)
, (9)

where K is the number of samples drawn from the posterior distribution (see below for more
details), and μj,k is the kth sample of the posterior corresponding to μj . Once each of these
μj s are obtained, the model returns the estimate

{μ̂j ,1 − μ̂j } (10)

for the probability of the event occurring and the probability of the event not occurring,
respectively.
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Fig. 2 Graphical diagram of the
Average then Recalibrate Model

Fig. 3 Graphical diagram of the
Recalibrate then Average Model

2.4 Calibrate then average model

The next calibration model we examined first recalibrates the reported probabilities for each
judge and then averages the results across judges to produce a single group forecast. Specif-
ically, this model applies the calibration function shown in Eq. (2) to the observed responses
yi,j (under the assumption that parameters are equal across subjects), creating the auxiliary
variable pi,j . For resolved events, we assume that

pi,j = c(yi,j |γ, δ),

μj = 1

Sj

∑
i∈Qj

pi,j , and (11)

xj ∼ Bernoulli(μj ).
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Thus, for the j th event, the likelihood function can be written as

L(γ, δ|xj , yi,j ) =
[

1

Sj

∑
i∈Qj

c(yi,j |γ, δ)

]xj
[

1 − 1

Sj

∑
i∈Qj

c(yi,j |γ, δ)

]1−xj

. (12)

For this model, we again assumed informative priors shown in Eq. (7). Thus, the joint
posterior distribution for γ and δ is as specified in Eq. (8), where L(γ, δ|xj , yi,j ) is now
given by Eq. (12). Figure 3 shows a graphical diagram for this model. To make a prediction,
the model forms an estimate by calculating Eq. (9) and then returning the estimate as in
Eq. (10).

2.5 Calibrate then average on the log odds scale

For the Recalibrate then Average models, we investigated two different methods of aggre-
gating the recalibrated individual judgments. The first method, discussed above, averages
the recalibrated judgments on the probability scale. A problem with averaging a set of recal-
ibrated judgments is that the average may not necessarily produce an optimally calibrated
model prediction (Hora 2004). The problem occurs in the transition from the recalibrated
judgments pi,j to the aggregated model prediction μj . For a given distribution of elicited
judgments, the application of Eq. (2) (i.e., when γ �= δ �= 1) results in model predictions that
are uncalibrated with respect to the event outcome.1

To illustrate the problem, the left panel of Fig. 4 shows a distribution of individual prob-
ability judgments, represented as y (bottom histogram). After recalibrating these judgments
via a LLO recalibration curve with γ = 2 and δ = 0.5, the resulting distribution is repre-
sented as p (the far left histogram).

The means of the uncalibrated judgments is represented as the vertical dashed line and
the mean of the recalibrated judgments is represented as the horizontal dashed line. If the
average of p was a fully recalibrated (i.e., with respect to the event outcome) version of y,
the horizontal line would intersect with the vertical line at a point directly on the recalibra-
tion curve. The figure shows that although the difference is slight, the average of p is not
a recalibrated version of y. Therefore, by first recalibrating individual judgments and then
averaging the resulting recalibrated judgments, the average may not be recalibrated.2

To remedy the problem of uncalibrated aggregate predictions, we investigated a method
of aggregation on the log odds scale, where the LLO calibration function becomes linear.
For a given judgment yi,j , we first recalibrate the judgment on the log odds scale, so that

pi,j = γ log

(
yi,j

1 − yi,j

)
+ log(δ). (13)

This transformation converts the judgments yi,j to recalibrated judgments pi,j ∈ (−∞,∞).
We now have recalibrated judgments that are linear with respect to log[yi,j /(1 − yi,j )]. We
can now aggregate these judgments in the log odds scale

μ∗
j = 1

Sj

∑
i∈Qj

pi,j .

1Producing an uncalibrated model prediction by aggregating calibrated forecasts is an example of Jensen’s
inequality.
2The judgments are always fully recalibrated in the trivial case when γ = δ = 1.
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Fig. 4 A comparison of calibration distortions on the probability scale (left panel) and on the log odds
scale (right panel). The bottom left histogram represents a distribution of probability judgments y, and the
far left histogram represents these judgments after the recalibration. The bottom right histogram represents
these same judgments on the log odds scale, and the far right histogram represents these judgments after
recalibration, on the log odds scale

Thus, the quantity μ∗
j can be viewed as a calibrated version of the log of the geometric mean

of the odds ratio y/(1 −y).3 The aggregate μ∗
j can then be converted back to the probability

scale, producing

μj = exp(μ∗
j )

1 + exp(μ∗
j )

.

As before, we assume that the resolution occurs randomly with probability μj , so that

xj ∼ Bernoulli(μj ),

and assumed the mildly informative priors shown in Eq. (7).
The right panel of Fig. 4 shows this aggregation scheme on the log odd scale. We begin

with a distribution of individual probability judgments converted to log odds, which we
represent as log(y/(1 − y)) (bottom histogram). This distribution is then recalibrated by
evaluating Eq. (13), creating the distribution of recalibrated judgments on the log odd space,
which we denote log(p/(1 − p)) (right histogram). As indicated by the dashed vertical
and horizontal lines, the mean of the recalibrated individual judgments, log(p/(1 − p)), is
recalibrated, so once it is converted to probability space, the aggregate can be naturally used
to model the Bernoulli outcome xj .

2.6 Hierarchical recalibrate then average model

We also examined a hierarchical extension of the Recalibrate then Average Model presented
above. As with the previous model, we again recalibrate the reported probabilities from
individual forecasters and then average the results. However, instead of assuming a single
set of calibration parameters across all individuals, we now assume that each judge i has

3Furthermore, when δ = γ = 1, no calibration occurs and μ∗
j

equals the log of the geometric mean of the
odds ratio.
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a different calibration function associated with her own parameter set, thereby allowing us
to capture individual differences. In the context of calibration, hierarchical models have
been shown to drastically improve the interpretation and precision of inferential analyses in
experimental studies (e.g., Budescu and Johnson 2011; Merkle et al. 2011).

Similar to the Calibrate then Average model above, for the Hierarchical Recalibrate then
Average model, we first recalibrate each judge’s response yi,j through the LLO function (see
Eq. (2)), so that

pi,j = c(yi,j |γi, δi),

where the parameters γi and δi are the recalibration parameters for the ith judge. Note
that this is different from the Calibrate then Average model, where we assumed a single
γ and δ across all judges. As a result, we cannot simply aggregate the pi,j s and connect
the aggregate to the event resolution vector xj (see Eq. (11)) because we will be unable to
estimate each individual judge’s calibration parameters. Because of the dimension mismatch
between the matrices p and x, to connect these matrices in the model we must define an
auxiliary matrix x∗ whose individual elements x∗

i,j contain the event resolution information
for the ith judge on the j th item. Here we make a distinction between the generative process
and the inferential process. By creating the auxiliary matrix x∗, the generative process would
allow for different event resolution information for each individual judge. This feature of the
model would be useful if we were interested in examining the effects of accurate feedback
on the calibration parameters. However, in this article we assume in the inferential process
that the event resolution is the same for each individual judge such that

x∗
1,j = x∗

2,j = · · · = x∗
Sj ,j = xj

for all Sj judges who responded to Item j . We assume that the answer to the j th resolved
event (for the ith judge) is a Bernoulli random variable distributed with probability equal to
pi,j , or

x∗
i,j ∼ Bernoulli(pi,j ).

Defining the model in this way allows the calibrated judgments pi,j to vary from one judge
to another while holding the event resolutions to be the same across judges. In other words,
pi,j is the model’s estimate of Judge i’s probability that Event j will occur, and therefore pi,j

models the Bernoulli process for that judge and item. We assume the calibration parameters
are commonly distributed according to one hyper-distribution, so that

γi ∼ Γ (γα, γβ), and

δi ∼ Γ (δα, δβ).

After some inspection, we arrived at the following mildly informative priors for the hyper-
parameters:

δα ∼ Γ (1000,1000),

γα ∼ Γ (1000,1000),

δβ ∼ Γ (1000,1000) and

γβ ∼ Γ (1000,1000).
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Fig. 5 Graphical diagram of the
Hierarchical Calibration Model

We chose these priors in part to maintain consistency among the models. The Γ (1000,1000)

prior has a mean of 1, a standard deviation of 0.032, and a 95 % credible set of approx-
imately (0.939, 1.063). Thus, when there are very few observations, the hyperparameters
(δα, γα, δβ, γβ ) become approximately equal to one, nearly translating to the priors

γi ∼ Γ (1,1), and

δi ∼ Γ (1,1),

as specified in the previous models.
Once we have established an estimate for each pi,j , we aggregate the estimate across the

judges to produce a prediction μj from the model, so that

μj = 1

Sj

∑
i∈Qj

pi,j .

Figure 5 shows a graphical diagram for the Hierarchical Recalibrate then Average model.
Unlike the previous models, μj is not part of the generative process, rather it is part of the
inference process. As a result, μj does not appear in Fig. 5, although it is used to elicit a
prediction from the model.

2.7 Hierarchical recalibrate then average on the log odds scale

We also implemented a hierarchical version of the Recalibrate then Average on the Log
Odds Scale model. We used the same priors as in the Hierarchical Recalibrate then Aver-
age model for all parameters and we applied the same transformation that we used in the
Recalibrate then Average Log Odds model (see, for example, Eq. (13)). Although the out-
puts from this model are produced from an aggregate on the log odds scale, the predictions
may be somewhat miscalibrated because of the influence of the prior and the sparsity in the
individual judgments.

We now present the results of fitting the models to the data. After fitting each model
to our data set, we compare each one to the ULinOP and then to one another via their
Brier scores. We further illustrate the differences between these models by presenting the
estimated posterior distributions of the parameters and the posterior predictive distributions
of the models.
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3 The data

To test the models’ aggregation abilities, we use data collected by the Aggregative Contin-
gent Estimation System (ACES), a large-scale project for collecting and combining forecasts
of many widely-dispersed individuals (http://www.forecastingace.com/aces). A preliminary
description of the data collection procedure can be found in Warnaar et al. (2012). Volunteer
participants were asked to estimate the probability of various future events’ occurrences,
such as the outcome of presidential elections in Taiwan and the potential of a downgrade of
Greek sovereign debt. Participants were free to log on to the website at their convenience
and forecast any items of interest. The forecasting problems involved events with two out-
comes (event X will occur or not) as well as more than two outcomes (e.g., event A, B, or
C will occur). For this paper, we focused on a subset of 176 resolved forecasting problems
that met a number of constraints. First, they involved binary events only because we are
only considering calibration models for binary events. Second, all 176 forecasting problems
involved a standard way of framing the event and was presented in the form: will event X
happen by date Y? This last constraint excluded a small number of events where the event
was framed in terms of a deviation from status quo (e.g. will X remain true by date Y?).
Finally, we only included forecasting problems where the event of interest could happen at
any time before the deadline associated with the event. For example, in the event “Greece
will default on its debt in July 2011”, the target event could have occurred anytime before
the end of July (it did not). However, items such as “The Cowboys and Aliens comic book
movie will out-gross the Green Lantern movie on its opening weekend July 29th”, were not
included because the event cannot happen on any other day except July 29th. These latter
items were excluded as a result of their framing because their status quo could not be altered.
A total of 1401 participants contributed judgments to these forecasting problems.

3.1 Model scoring through cross-validation

We primarily evaluate models through use of the Brier score (Armstrong 2001; Brier 1950;
Murphy 1973). The scoring rules that are commonly used in forecasting are often called
loss functions in the machine learning literature (e.g., Hastie et al. 2009). Popular loss func-
tions for binary forecasts include squared-error loss and the (negative of the) Bernoulli log-
likelihood, which forecasting researchers sometimes call the “Brier score” and “logarithmic
score,” respectively. These loss functions have the desirable property that they are “strictly
proper” (see, e.g., O’Hagan et al. 2006), meaning that the forecaster minimizes her expected
loss only by reporting her true beliefs. The expected loss cannot be reduced under alter-
native strategies, such as reporting forecasts that are more extreme than one’s true beliefs.
The above loss functions have also been shown to generally yield similar conclusions in a
forecasting context (e.g., Staël von Holstein 1970), leading us to focus on the Brier score
(squared error loss) in this paper.4

Because all events involved only two outcomes, the Brier score for the j th event can be
expressed as

Bj = (Xj − μ̂j )
2,

4We also evaluated the models with both spherical and logarithmic scoring rules. However, because the results
were invariant to these scoring rules (also see Staël von Holstein 1970), we present only the results using the
Brier score.
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where μ̂j is the model prediction for event j ’s occurrence and Xj is the resolution of the
j th event. For example, if the j th event did occur, then Xj = 1. Thus, in this definition of
the Brier score, the best score Bj is zero, and the worst possible score is one.

We calculate the Brier scores in a 10-fold cross-validation procedure where the parame-
ters of the calibration models are estimated on a subset of 90 % of the forecasting problems.
For the remaining 10 % of forecasting problems, the resolution is withheld from the model,
and the calibration models are used to make the predictions μ̂j for only that subset of fore-
casting problems. In the 10-fold cross-validation procedure, this process of estimation and
prediction is repeated on 10 random and non-overlapping partitions of the data set to create
a full set of model predictions μ̂j .

After the out-of-sample Brier scores are obtained for each event, we compute the mean
predictive error (MPE) by averaging the Brier scores across the number of events J , so

MPE = 1

J

J∑
j=1

Bj .

Once the MPE scores are calculated for each model, we evaluate the percentage improve-
ment over a baseline model, which in our case is the unweighted linear average (ULinOP).
We calculate the percentage difference of the mean (PDM) in MPE for the ith model, de-
noted MPE(i) relative to the score for the ULinOP MPE(0), by calculating

PDM = 100 × MPE(0) − MPE(i)

MPE(0)
. (14)

Therefore, PDM values larger than 0 indicate that the calibration model improves over the
average prediction of the unweighted linear average (ULinOP).

In addition to the global measures of model performance given by MPE and PDM, we
will also compare models at the individual event level using a pair-wise procedure proposed
by Broomell et al. (2011). In this procedure, we calculate PW(a, b), the number of events
for which model a has a lower Brier score than model b

PW(a, b) =
J∑

j=1

1Ba,j <Bb,j
(15)

where Ba,j is the Brier score for the j th event for model a, and 1x is an indicator function.
This pair-wise comparison is useful because one model might have a higher MPE relative to
another model but still be the better model in the pair-wise comparison. Therefore, the MPE
score measures how well the model performs on average, whereas the PW score measures
relative model performance on an individual event basis.

To fit all the models, we used the program JAGS (Plummer 2003) to estimate the joint
posterior distribution of each set of model parameters (code for the models appears in the
appendices). For each model, we obtained 1,000 samples from the joint posterior after a
burn-in period of 1,000 samples, and we also collapsed across two chains. For the Recali-
brate then Average and Average then Recalibrate models we initialized each of the chains by
setting γ = 0.17 and δ = 0.34. For the Hierarchical Calibration model, we initialized each
of the chains by setting γα = δα = 3 and γβ = δβ = 6.
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Fig. 6 Posterior predictive distributions for each of the three single-level models: Average then Recalibrate
(left panel), Recalibrate then Average (middle panel), and the Recalibrate then Average Log Odds (right
panel). The median and 95 % credible set for the posterior predictive distributions are shown as the solid
black and dashed gray lines, respectively

4 Results

Table 2 shows a subset of 40 representative forecasting problems. For each problem, a short
description of the event is given, as well as the number of judges (Sj ), the number of days
that the event was active (Days), and the resolution of the event (Xj ). Table 3 summarizes
model performance with the average Brier score (MPE), and the percentage improvement
over the baseline model (PDM). The table also shows the 95 % confidence interval for
the MPE and PDM, which we obtained by a bootstrapping procedure. The bootstrapping
was performed by repeatedly sampling forecasting problems and calculating performance
statistics on subsets of the forecasting problems in a 10-fold cross validation analysis. In the
sections below, we first describe the performance of each individual model in detail and then
discuss the pair-wise comparison scores (PW) between models (Table 4).

4.1 Average then recalibrate model

To evaluate the model, we first examined the posterior distribution of the parameters and
the posterior predictive distributions of the model. Table 5 summarizes the marginal distri-
butions of γ and δ by providing the median and 95 % Bayesian credible set. The estimates
show that there is still a good deal of uncertainty about these parameters, especially given
the amount of data. The left panel of Fig. 6 shows the posterior predictive distribution. To
plot this distribution, we took 1,000 samples from the estimated joint posterior distribution
and produced a calibration function using Eq. (2). We then plotted the median (black line)
and 95 % credible set (gray lines).

Note that the model predictions of the ULinOP and the Average then Recalibrate model
are connected directly through the LLO function (see Eq. (2)). Therefore, the observed prob-
ability in the left panel of Fig. 6 corresponds to the ULinOP prediction and demonstrates
that the distortion pattern for probability judgments that was found at the level of individual
judges was also found at the aggregate level (i.e., overestimation of unlikely future events
and underestimation of likely future events). The posterior median of the intersection point
p̂∗ = 0.679 (from Eq. (3)), so that ULinOP estimates below 0.7 are mapped to smaller values
and ULinOP estimates above 0.7 are mapped to larger values.

Table 3 shows that the MPE for the Average then Recalibrate Model is 0.12, which is
21.9 % better than ULinOP. The far right column of Table 3 shows that the 95 % confidence
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Table 2 Descriptions of events and summary statistics for a subset of 40 items. Note: Sj = number of
forecasters that responded to the event, Days = number of Days that the event was active, Xj = resolution
(coded event did (1) or did not (0) happen)

Id Description Sj Days Xj

3 Greek debt default 343 18 0
4 US credit rating 437 18 0
6 Libya’s Leadership 448 49 1
7 Military coup in Venzuela 369 171 0
8 Troops to Mexico 384 18 0

10 Iran nuclear facility 419 171 0
11 US-Korea trade deal 137 18 0
12 Flu pandemic 315 171 0
15 Earthquake in Japan 206 18 0
16 South-Atlantic Hurricanes 186 171 0

26 Karzai associate resigns 60 13 0

30 Military Organization 50 10 0

31 US-Russian Missile Agreement 61 40 0

32 Newt Gingrich’s campaign 50 10 0

34 CO2 emission levels 128 163 1

68 Troop Deployments to Congo 130 159 0

70 Future anti-government rebellions 103 37 0

71 Stem-cell funding issue 125 159 0

72 Space program 112 34 0

74 Facebook public offering 95 30 0

75 New York Times shut down 84 26 0

79 N.Korean prisoner release 34 30 0

80 Sr. Military Leadership Misconduct 131 133 1

82 TSA security practices improve 118 57 0

83 Military acquisition cuts 106 85 0

84 BRAC review of military installations 97 144 0

85 Ethnic clashes in China 104 60 0

86 College tuition increases 152 152 0

91 PC tablets vs. iPads 283 122 0

92 Earth’s surface temperature 97 27 0

94 2011 Nobel Prize winners 19 68 0

95 3D printing availability 177 114 0

96 McDonalds at DisneyWorld 138 152 0

99 Nook/Kindle Sales comparison 200 145 0

100 UK Royal Heir 125 145 0

103 Six-Party talks 105 124 0

105 EU candidacy of Serbia 110 124 0

108 Italian debt default 169 124 0

110 WTO membership for Russia 123 108 1

· · · · · · · · · · · · · · ·
Mean over 176 events: – 75.3 54.7 0.210
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Table 3 Average prediction error (MPE) and percentage difference of the mean prediction error (PDM)
relative to the unweighted average (ULinOP). The ranges provide bootstrap estimates of the 95 % confidence
interval

Model MPE Bootstrap MPE PDM Bootstrap PDM

ULinOP 0.153 (0.136–0.171) 0.0 % (0.0 %–0.0 %)

Average then Recalibrate 0.120 (0.091–0.151) 21.9 % (8.8 %–35.4 %)

Calibrate then Average 0.123 (0.096–0.153) 19.7 % (5.8 %–33.5 %)

Hier. Recalibrate then Average 0.141 (0.111–0.173) 8.0 % (−9.5 %–24.9 %)

Calibrate then Average Log Odds 0.112 (0.083–0.145) 26.7 % (13.0 %–41.0 %)

Hier. Recalibrate then Average Log Odds 0.110 (0.083–0.140) 28.2 % (16.0 %–41.4 %)

Table 4 Pairwise model comparison score PW(a, b): Number of events (% ) where the row model (a) has a
smaller prediction error than the column model (b). Key: UW is ULinOP, ATC is Average then Recalibrate,
CTA is Recalibrate then Average, HCTA is Hierarchical Recalibrate then Average, CTALO is Recalibrate
then Average Log Odds, HCTALO is Hierarchical Recalibrate then Average Log Odds

Model UW ATC CTA HCTA CTALO HCTALO

UW – 30 (17 %) 37 (21 %) 40 (23 %) 25 (14 %) 26 (15 %)

ATC 146 (83 %) – 132 (75 %) 130 (74 %) 66 (38 %) 99 (56 %)

CTA 139 (79 %) 44 (25 %) – 121 (69 %) 44 (25 %) 57 (32 %)

HCTA 136 (77 %) 46 (26 %) 55 (31 %) – 41 (23 %) 41 (23 %)

CTALO 151 (86 %) 110 (63 %) 132 (75 %) 135 (77 %) – 131 (74 %)

HCTALO 150 (85 %) 77 (44 %) 119 (68 %) 135 (77 %) 45 (26 %) –

Table 5 Summaries of the estimated posterior distributions obtained for all models except the hierarchical
calibration models. Key: ATC is Average then Recalibrate, CTA is Recalibrate then Average, CTALO is
Recalibrate then Average Log Odds

Model γ̂ δ̂

Median 95 % CI Median 95 % CI

ATC 2.006 (1.301, 2.766) 0.465 (0.305, 0.717)

CTA 1.859 (0.863, 4.025) 0.109 (0.012, 0.300)

CTALO 1.158 (0.811, 1.589) 0.497 (0.317, 0.785)

interval for the bootstrapped percentage improvement is (8.8 %–35.4 %). Because this in-
terval does not contain 0, we can conclude that this model provides a reliable improvement
over the basic ULinOP model.

4.2 Calibrate then average

Table 5 summarizes the marginal posterior distributions of γ and δ. The posterior median
values were δ̂ = 0.109 and γ̂ = 1.859, which lead to a posterior median for the intersec-
tion point p̂∗ = 0.915. The posterior again shows that there is still some uncertainty in the
estimates, especially given the amount of data. The bottom left panel of Fig. 6 shows the
posterior predictive distribution for this model. Note that the observed probability on the
horizontal axis corresponds to the probability judgments from individual judges. The plot
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again shows a slowly-graded curve indicating that individual judges dramatically overesti-
mated the probability of future events but showed very little underestimation.

The bottom right panel of Fig. 6 shows the posterior predictive distribution for the Re-
calibrate then Average Log Odds model. It is apparent that the calibration curves for the
CTA and the CTALO models are very different. For the log odds version, the median of the
marginal posterior distributions (reported in Table 5) are δ̂ = 0.497 and γ̂ = 1.158, which
leads to a posterior median for the intersection point p̂∗ = 0.915. Comparing the two cal-
ibration functions in the bottom panel of Fig. 6, we see that the probability scale version
applies a stronger correction for intermediate probability judgments, pushing them down-
ward toward zero.

The bottom left panel of Fig. 6 emphasizes the need to consider calibration functions
that are not probability functions. The fits to this data clearly suggest that the judges in the
experiment are subcertain. That is, judges are overly confident in their responses relative
to observed outcome frequencies. Furthermore, judges are miscalibrated because the cred-
ible intervals of the posterior predictive distributions do not capture the point (0.5,0.5).
Undoubtedly, a large reason for the subcertainty is that for most resolved events, the event
did not occur. This causes the model to favor a curve that only slowly increases c(p) as a
function of the observed probability estimates.

Table 3 shows that the Recalibrate then Average model had a MPE score of 0.123, which
is an 19.7 % improvement over the ULinOP model. The Recalibrate then Average model
with Log Odds averaging had a MPE score of 0.112, which is an 26.7 % improvement over
the ULinOP model. Therefore, we obtain a greater improvement in model performance by
using the log odds averaging approach. For both models, the 95 % confidence interval for
the percentage improvement does not contain zero, which indicates that these models are
performing significantly better than the basic unweighted average model.

4.3 A hierarchical recalibrate then average model

To evaluate the hierarchical recalibrate then average model, we examined the posterior pre-
dictive distribution and the joint posterior distribution of the parameters. Figure 7 shows the
posterior predictive distribution for six judges: i = {75,139,276,1243,1393,1394}. To plot
these distribution, we took 1,000 samples from the estimated joint posterior distribution for
(γi, δi), and then converted the observed yi,j s by using Eq. (2). The figure clearly shows
the individual differences between the judges. For example, Judge 1243 has a very different
calibration function than Judges 75 and 139. Specifically, when Judge 1243 provided small
probability forecasts (e.g., 0.1), the calibration curve pushed this probability upward and
when he or she provided large probabilities (e.g., 0.8), the fitted calibration curve pushed
this probability downward. However, the opposite pattern occurred for Judges 75 and 139.
Figure 7 also shows that some judges were well-calibrated (e.g., Judge 276). We should
emphasize that all but one of these judges (i.e., except Judges 1243 and 276) showed clear
patterns of subcertain responding and the curves are not symmetrical.

As previously mentioned, one benefit of the hierarchical model is that it includes indi-
vidual differences, allowing for much more flexible calibrations. Another substantial benefit
of this model (and hierarchical Bayesian models in general) is that when there are only a
few observations, the model “borrows” power from the estimates of the other judges in the
sample. For example, Judges 1393 and 1394 both responded to only one item in the set. As
a consequence, the estimates of γ and δ for these judges are reflective of the prior distribu-
tion for the group, which is governed by the parameters δα, γα, δβ , and γβ . Because these
hierarchical parameters are informed by all of the individual estimates for each judge in the
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Fig. 7 Illustrative examples for the Hierarchical Recalibrate then Average model. The median (black lines)
and 95 % credible interval (gray lines) for the posterior predictive distribution for nine judges in the data set

group, when there is little information for an individual judge, the model relies more heavily
on the prior estimates for these judges.

To further illustrate the range of individual differences across judges, we compared the
mean of the posterior distributions for γi and δi for each judge. The top left and bottom right
panels of Fig. 8 show the marginal distributions of γ and δ, respectively, and the top right
and bottom left panels of Fig. 8 show the joint distributions of the estimates. Judges 75, 95,
139, and 1243 are shown by the filled square, circle, triangle and diamond, respectively, and
Judges 1393 and 1394 are represented by the asterisk symbol. Because Judges 1393 and
1394 have so few observations, their estimates are most similar to the priors, where there is
a heavy concentration of estimates (see the marginal distributions of γ and δ in Fig. 8).

The Hierarchical Recalibrate then Average model without log odds averaging obtained a
MPE of 0.141, which is a 8 % improvement over the ULinOP. However, the Hierarchical Re-
calibrate then Average model with Log Odds averaging obtained a MPE of 0.110, which is
a 28.2 % improvement over the ULinOP. The model performance of the hierarchical model
with log odds averaging is slightly better than the non-hierarchical version. However, this
difference is small (and the pair-wise comparisons shown later will not show an advantage
for the hierarchical model). Therefore, this suggests that although the modeling of individual
differences does not provide a substantial improvement in prediction performance.

4.4 Model comparison at the individual event level

Overall, based on the average prediction error (MPE), it appears that the Hierarchical Re-
calibrate then Average Log Odds model is the best performing model among all the models
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Fig. 8 The marginal (top left
and bottom right panels) and
joint (top right and bottom left
panels) distributions of the mean
estimates for the 1401 judges in
the experiment for the
Hierarchical Recalibrate then
Average model. Judges 75, 95,
139, and 1243 are shown by the
filled square, circle, triangle and
diamond, respectively, and
Judges 1393 and 1394 are
represented by the asterisk
symbol

that we examined. However, this global measure of model prediction error ignores some im-
portant patterns at the individual event level (Broomell et al. 2011). For example, one model
can achieve a low MPE relative to another model by having substantially better Brier scores
on a few forecasting problems, while still doing more poorly on a majority of the problems.
The pair-wise model comparison score discussed above emphasizes the latter form of model
improvement because it measures the number of forecasting problems on which one model
is better than another, regardless of the magnitude of the improvement.

Table 4 shows the pair-wise model comparison scores between six models of interest
in the cross validation procedure. Each element in the table shows the number of times
the model corresponding to the row fit the data better than the model corresponding to the
column, and the percentages are shown in the parentheses. Because the CTALO (Recalibrate
then Average Log Odds) model is the only model whose rows contains percentages that are
all above 50 %, it is the best performing model in this pair-wise comparison. Importantly,
the CTALO model outperforms the hierarchical extension of this model (HCTALO) in 131
out of 176 forecasting problems (74 %).

5 General discussion

In this article, we have examined several models that use the “linear in log odds” function
(see Eq. (2)) to recalibrate individual or average judgments and improve the prediction of
future events. We found that the order and type of calibration and aggregation had a large
impact on the model performance. Overall, in the pair-wise model comparison we found that
the Recalibrate then Average Log Odds model has a lower prediction error than any other
model on the majority of events. It also performs only slightly worse than the Hierarchical
Recalibrate then Average Log Odds model on the average prediction error. Therefore, we
conclude that Recalibrate then Average Log Odds model is the simplest and best approach
to aggregate forecasting judgments in the presence of systematic biases.
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As mentioned in the introduction, in comparing the models we contrasted the conse-
quences of a number of modeling assumptions, including (1) the point at which recalibration
occurs (before or after aggregation), (2) the space in which the recalibration and aggregation
should take place, (3) the extent to which individual differences are taken into account. Our
main goal was to assess how these different assumptions affected the model performance.
We now discuss each of these topics in turn and also discuss the influence of the coding
scheme for events.

5.1 The order of aggregation and calibration

Our first research question was whether it is better to first aggregate and then recalibrate
or recalibrate then average. The answer is that it depends on whether it is probabilities or
log-odds that are being averaged. Working solely in the probability scale, we obtained better
results in comparisons against the ULinOP when averaging first than when calibrating first
(compare rows 2 and 4 in Table 3 and the first two cells under UW in Table 4). However,
when averaging log-odds, it is better to calibrate first (row 6 in Table 3 and cell 5 under UW
in Table 4).

5.2 The aggregation space

We then compared working with probability and log-odds scales and found that aggregating
on the log odds instead of the probability scale led to a reversal in the order of the aggre-
gation and calibration methods to achieve the best results. Specifically, the Recalibrate then
Average Log Odds model outperformed the ULinOP by 26.7 %, and achieved the second
best MPE score at 0.112. Taking these new results into account, our conclusion above was
reversed: it is better to first recalibrate the individual judgments and then aggregate these
recalibrated values on the log odds scale.

5.3 The inclusion of individual differences

We examined the benefits of including individual differences in the models. Both of our hier-
archical models assigned separate calibration parameters for each individual and estimated
the individual parameters in a hierarchical Bayesian approach. This allowed for the estima-
tion of these parameters even for individuals who contributed only a few judgments. For
the Hierarchical Recalibrate then Average Log Odds model, we found that taking individual
differences into account when aggregating probability judgments led to a 1.5 % improve-
ment in the PDM. However, in the pair-wise comparisons, the hierarchical model performed
systematically worse than the non-hierarchical model equivalent (the Recalibrate then Aver-
age Log Odds Models). This shows that the any modeling advantage from the hierarchical
model comes from improved performance on a small number of forecasting problems and
not a systematic improvement across the majority of forecasting problems.

5.4 The role of coding

Finally, we discuss the role of coding. Although the LLO function is not a probability func-
tion, we still will work with probabilities in binary forecasts. For example, suppose p is the
elicited (and possibly aggregated) probability for the occurrence of some event of interest,
we can use c(p) for the transformed probability of an event happening and 1 − c(p) for the
probability that an event will not happen. Alternatively, we can use a reverse coding scheme
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where p is the probability for the occurrence of some event, 1 − p is the judgment elicited,
1 − c(1 − p) for the transformed probability of an event happening, and c(1 − p) for the
transformed probability that an event will not happen. The reverse coding scheme will not
affect the performance of the models because the transformation still maps to a particular
calibration function, specifically

1 − c(1 − p|γ, δ) = pγ

δ(1 − p)γ + pγ

= c(p|γ,1/δ).

In the Bayesian framework, for the performance results to be exact, the contribution of
the prior for the regular coding scheme must be equivalent to contribution of the prior for
the reverse coding scheme for the parameter δ (i.e., the prior for γ can remain the same).
For example, for the Average then Calibrate Model we specified that δ ∼ Γ (α,β), where
α = β = 1. In the reverse coding scheme, an equivalent prior for 1/δ is the inverse gamma
distribution, such that 1/δ ∼ Γ −1(α,1/β). Thus, with the appropriate selection of the prior
distribution, the particular coding of the responses and event resolutions has no effect on
model performance when using the LLO function.

5.5 Alternatives

There are several other model-based approaches that should be examined and considered
in future work. They are important because they provide a model for the internal repre-
sentation of the judge, which recalibration functions neglect. For example, the Decision
Variable Partition model (Ferrell and McGoey 1980) uses signal detection theory as a base
representation of the underlying distributions for the alternatives. While this model pro-
vides a generally adequate fit to the data (e.g., Suantak et al. 1996), it has been criti-
cized by Keren (1991) for not providing a description of the cognitive processes under-
lying confidence. However, more recent models have taken this general approach but pro-
vide possible explanations of the underlying cognitive processes (e.g., Jang et al. 2012;
Wallsten and González-Vallejo 1994).

Other models assume that the judge has a perfectly accurate representation of the ob-
served relative frequency, but due to random error, the probability elicited by the judge is
a distorted and usually inaccurate version of the observed relative frequency. Erev et al.
(1994) demonstrated through simulation that models of this type can produce typical over-
confidence patterns in the data. Other models in this general framework assume the error is
attributable to the judgment (the stochastic judgment model; Wallsten and González-Vallejo
1994), aspects of the environment (the ecological error model; Soll 1996) or both (e.g.,
Juslin and Olsson 1997).

Finally, there exist a variety of mathematical models that explicitly describe psychologi-
cal processes underlying confidence and/or subjective probability. These include the Poisson
race model (Merkle and Van Zandt 2006; Van Zandt 2000), HyGene (Thomas et al. 2008),
and the two-stage dynamic signal detection model (Pleskac and Busemeyer 2010).

Although these model-based approaches are important because they offer information
about the underlying processes driving the decision, for the sake of simplicity we did not in-
clude them in this comparison that focuses primarily on maximizing the predictive accuracy
of group forecasts.
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6 Conclusions

We have demonstrated that several aggregation methods surpass the predictive accuracy of
the ULinOP, at least in the limited situation of forecasting whether or not the status quo will
change within a specified time frame. Our best performing model first corrected for sys-
tematic distortions and then aggregated the calibrated judgments on the log odds scale. The
hierarchical version of the calibration model, which allowed for individual differences in the
nature of the systematic distortion, outperformed its single-level counterpart, but this differ-
ence was small; and we concluded for this study does not merit the additional complexity
involved.

The present work builds on a growing body of literature evaluating various calibration
and aggregation methods. Aggregating multiple subjective probability estimates to improve
the performance of the estimate ties into the concept of the “wisdom of the crowd” effect
(Surowiecki 2004), which has usually been studied in the context of a single magnitude esti-
mate. For example, Galton (1907) found that when people were asked to estimate the weight
of a butchered ox, the average of these estimates was almost exactly correct, despite wide
variability in the estimates. More recent studies have demonstrated this effect in more com-
plicated situations such as optimizing solutions in combinatorial problems (Yi et al. 2010;
Yi et al. 2011), inferring expertise (Lee et al. 2011), maximizing event recall accuracy (Hem-
mer et al. 2011) and solving ordering problems (Miller et al. 2009; Steyvers et al. 2009). The
present work suggests substantially greater improvement can be attained by taking system-
atic distortions in the individual judgments into account. The best aggregation performance
might be obtained with models that first recalibrate individual estimates and then combine
these recalibrated judgments on an appropriate scale.
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Appendix

In each of the JAGS codes below, we pass the program a series of data structures to facilitate
the estimations. For all of the single-level models, we let y contain all probability judgments,
so it is a vector containing all of the judgments for the first item, followed by the second
item, and so on. To tell the program when the responses change from one item to the next,
we pass it a vector containing these indexes, called nresps. For example, nresps[1] might
equal 740, which indicates that all of the responses from y[1] to y[740] are for the first
item. For the Average then Recalibrate model, y contains only the averages of all judgments
for each item, so nresps is not needed. For the hierarchical models, y is a matrix where
the rows correspond to the observation, the first column contains the subject index eliciting
the judgment, and the second column contains the judgment. In addition, we pass JAGS
a new variable xstar, which contains the event resolution information for each individual
separately (see text above).

Finally, we pass the program the upper indexes for each loop. We let nd be the total
number of probability judgments, nq be the number of items in the set, nk is the number of
items with known outcomes, and ns is the number of subjects (only used for the hierarchical
models). For the hierarchical models, nk is the number of responses to items having known
outcomes (i.e., nk is the length of the vector xstar).

Author's personal copy



Mach Learn (2014) 95:261–289 285

A.1 Calibrate then average

##### Recalibrate Then Average
model{
# Specify the recalibration function
for(k in 1:nd){
p[k] <-delta*(y[k])^gamma/(delta*(y[k])^gamma+(1-y[k])^gamma)
}
# Collapse the information in the p matrix through aggregation
mu[1] <- mean(p[1:nresps[1]])
for(j in 2:nq){
mu[j] <- mean(p[(1+nresps[j-1]):nresps[j]])
}
# The resolution is a result of the latent mean parameters
for(j in 1:nk){
x[j] ~ dbern(mu[j])
}
# Priors on model parameters
delta ~ dgamma(1,1)
gamma ~ dgamma(1,1)
}

A.2 Calibrate then average log odds scale

##### Recalibrate Then Average Log Odds Scale
model{
# Specify the recalibration function
for(k in 1:nd){
p[k] <- gamma*log(y[k]/(1-y[k])) + log(delta)
}
# Collapse the information in the p matrix through aggregation
mu_star[1] <- mean(p[1:nresps[1]])
mu[1] <- exp(mu_star[1])/(1+exp(mu_star[1]))
for(j in 2:nq){
mu_star[j] <- mean(p[(1+nresps[j-1]):nresps[j]])
mu[j] <- exp(mu_star[j])/(1+exp(mu_star[j]))
}
# The resolution is a result of the latent mean parameters
for(j in 1:nk){
x[j] ~ dbern(mu[j])
}
# Priors on model parameters
delta ~ dgamma(1,1)
gamma ~ dgamma(1,1)
}

A.3 Average then recalibrate

##### Average then Recalibrate
model{
# Specify recalibration function
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for(k in 1:nq){
p[k] <- delta*(y[k])^gamma/(delta*((y[k])^gamma)+(1-y[k])^gamma)
}
# The resolution is a result of the latent mean parameters
for(j in 1:nk){
x[j] ~ dbern(p[j])
}
# Priors on model parameters
delta ~ dgamma(1,1)
gamma ~ dgamma(1,1)
}

A.4 Hierarchical recalibrate then average

##### Hierarchical Recalibrate then Average
model{
# Specify recalibration function
for(k in 1:nd){
p[k] <- delta[y[k,1]]*(y[k,2])^gamma[y[k,1]]/
(delta[y[k,1]]*(y[k,2])^gamma[y[k,1]]+(1-y[k,2])^gamma[y[k,1]])
}
# The resolution is a result of the latent mean parameters
for(j in 1:nk){
xstar[j] ~ dbern(p[j])
}
# Priors on individual-level model parameters
for(i in 1:ns){
delta[i] ~ dgamma(delta_mu,delta_sigma)
gamma[i] ~ dgamma(gamma_mu,gamma_sigma)
}
# Priors on hyperparameters
delta_mu ~ dgamma(1000,1000)
gamma_mu ~ dgamma(1000,1000)
delta_sigma ~ dgamma(1000,1000)
gamma_sigma ~ dgamma(1000,1000)
}

A.5 Hierarchical recalibrate then average log odds

##### Hierarchical Recalibrate then Average Log Odds
model{
# Specify recalibration function
for(k in 1:nd){
p[k] <- gamma[y[k,1]]*log(y[k,2]/(1-y[k,2])) + log(delta[y[k,1]])
}
# Aggregate the p vector
mu_star[1] <- mean(p[1:nresps[1]])
mu[1] <- exp(mu_star[1])/(1+exp(mu_star[1]))
for(j in 2:nq){
mu_star[j] <- mean(p[(1+nresps[j-1]):nresps[j]])
mu[j] <- exp(mu_star[j])/(1+exp(mu_star[j]))
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}
# The resolution is a result of the latent mean parameters
for(j in 1:nk){
xstar[j] ~ dbern(mu[j])
}
# Priors on individual-level model parameters
for(i in 1:ns){
delta[i] ~ dgamma(delta_mu,delta_sigma)
gamma[i] ~ dgamma(gamma_mu,gamma_sigma)
}
# Priors on hyperparameters
delta_mu ~ dgamma(1000,1000)
gamma_mu ~ dgamma(1000,1000)
delta_sigma ~ dgamma(1000,1000)
gamma_sigma ~ dgamma(1000,1000)
}
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