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Abstract

We study bandit problems in which a decision-maker
gets reward-or-failure feedback when choosing repeat-
edly between two alternatives, with fixed but unknown
reward rates, over a short sequence of trials. We col-
lect data across a number of types of bandit problems
to analyze five heuristics—four seminal heuristics from
machine learning, and one new model we develop—as
models of human and optimal decision-making. We find
that the new heuristic, known asτ-switch, which assumes
a latentsearchstate is followed by a latentstand state
to control decision-making on key trials, is best able to
mimic optimal decision-making, and best account for the
decision-making of the majority of our experimental par-
ticipants. We shows how these results allow human and
optimal decision-making to be characterized and com-
pared in simple, psychologically interpretable ways, and
discuss the theoretical and practical implications of this
general approach.

Keywords: Bandit problems, heuristic models, reinforce-
ment learning, human decision-making, optimal decision-
making

Introduction
In Bandit problems, a decision-maker chooses repeatedly
between a set of alternatives. They get feedback after ev-
ery decision, either recording a reward or a failure. They
also know that each alternative has some fixed, but un-
known, probability of providing a reward each time it
is chosen. The goal of the decision-maker is to obtain
the maximum number of rewards over all the trials they
complete. In some bandit problems, known as infinite
horizon versions, the number of trials is not known in
advance, but there is some probability any trial will be
the last. In other bandit problems, known as finite hori-
zon versions, the number of trials is fixed and known.

Because bandit problems provide a simple task that
addresses fundamental issues of learning and optimality
in decision-making, they have been widely studied in the
machine learning and cognitive science literatures (e.g.,
Berry, 1972; Berry & Fristedt, 1985; Brezzi & Lai, 2002;
Gittins, 1979, 1989; Kaebling, Littman, & Moore, 1996;
Macready & Wolpert, 1998; Sutton & Barto, 1988). In
particular, bandit problems provide an interesting for-
mal setting for studying the balance between exploration
and exploitation in decision-making. In early trials, it
makes sense to explore different alternatives, searching

for those with the highest reward rates. In later trials,
it makes sense to exploit those alternatives known to be
good, by choosing them repeatedly. How exactly this
balance between exploration and exploitation should be
managed, and should be influenced by factors such as
the distribution of reward rates, the total number of tri-
als, and so on, raises basic questions about adaptation,
planning, and learning.

In this paper, we focus on finite-horizon bandit prob-
lems. We also restrict ourselves to the most basic, and
most often considered, case where of there being only
two alternatives to choose between. For this class of ban-
dit problems, there is a well known optimal decision pro-
cess, able to implemented using dynamic programming
(see, for example Kaebling et al., 1996, p. 244). In-
tuitively, the approach recognizes that, on the last trial,
the alternative with the greatest expected reward should
be chosen. On the second-last trial, the alternative that
leads to the greatest expected total reward over the re-
maining two trials should be chosen, given that the last
trial will be chosen optimally. On the third-last trial, the
alternative that leads to the greatest total reward for the
remaining three trials should be chosen, given that the
final two choices will be optimal, and so on. By contin-
uing backwards through the trial sequence in this way,
it is possible to establish a recursive process that makes
optimal decisions for entire problem.

A motivating challenge for our work involves in-
terpreting, evaluating and potentially improving human
decision-making. Using the optimal benchmark, it is
possible to evaluate how well a person solves bandit
problems. The conclusion might be something like “you
got 67% rewards, but optimal behavior would have given
you 75% rewards, so you are falling short”. This seems
like only a partial evaluation, because it does not explain
why their decisions were sub-optimal, and it is not clear
how to relate the recursive algorithm to their data to pro-
vide this information.

Instead, to help us understand human and optimal
decision-making on bandit problems, we evaluate a set of
heuristic models. These include several heuristics from
the existing reinforcement learning and machine learn-
ing literature, as well as a new one we develop. The at-
traction of the heuristic models is that they provide sim-
ple process accounts of how a decision-maker should be-
have, depending on a small set of parameters. We choose



heuristic models whose parameters have clear and useful
psychological interpretations. This means that, when we
fit the models to data, and estimating the parameters, we
obtain interpretable measure of key aspects of decision-
making. Instead of just telling people they are falling
short of optimal, we now aim also to tell them “the prob-
lem seems to be you are exploring for too long: the opti-
mal thing to do is stop exploring at about the 5th trial”, or
“you are not shifting away quickly enough from a choice
that is failing to reward you: the optimal thing to do is
leave a failed choice about 80% of the time.”

Of course, before we can understand, interpret and
compare human and optimal decision-making using
heuristic models, we need to find heuristics that can de-
scribe bandit problem behavior. Only when heuristics
that provide a good approximation to optimal behavior
does it make sense to interpret their parameters as guides
to good decision-making. And only for heuristics that fit
human data does it make sense to use their parameters to
understand human behavior.

Accordingly, the structure of this paper is as follows.
First, we introduce the five heuristics used in this study.
We then evaluate their ability to mimic optimal decision-
making, and their ability to fit human data we collected
for this study. Having found some heuristics that are able
to describe human and optimal behavior, we finish by
discussing the psychological characteristics of optimal
behavior in bandit problems, and the properties of hu-
man decision-making we observed.

Five Heuristics
Win-Stay Lose-Shift
Perhaps the simplest reasonable heuristic for making
bandit problem decisions is the Win-Stay Lose-Shift
(WSLS) heuristic. In its deterministic form, it assumes
that the decision-maker continues to choose an alterna-
tive following a reward, but shifts to the other alterna-
tive following a failure to reward. In the stochastic form
we use, the probability of staying after winning, and the
probability of shifting after losing, are both parameter-
ized by the same probabilityγ.

Psychologically, the win-stay lose-shift heuristic does
not require a memory, because its decisions only depend
on the presence or absence of a reward on the previous
trial. Nor is the heuristic sensitive to the horizon (i.e., the
finite number of trials) in the bandit problem version we
consider, because its decision process is the same for all
trials.

ε-Greedy
The ε-greedy heuristic is a standard approach coming
from reinforcement learning. It assumes that decision-
making is driven by a parameterε that controls the bal-
ance between exploration and exploitation. On each trial,
with probability ε the decision-maker chooses the alter-
native with the greatest estimated reward rate (i.e., the
greatest proportion of rewards obtained for previous tri-
als where the alternative was chosen). This can be con-

ceived as an ‘exploitation’ decision. With probability
1− ε, the decision-maker chooses randomly. This can
be conceived as an ‘exploration’ decision.

Psychologically, theε-greedy heuristic does require
a limited form of memory, because it has to remember
counts of previous successes and failures for each alter-
native. It is not, however, sensitive to the horizon, and
uses the same decision process on all trials.

ε-Decreasing
Theε-decreasing heuristic is an interesting variant of the
ε-greedy heuristic, in which the probability of an explo-
ration move decreases as trials progress. In its most com-
mon form, which we use, theε-decreases heuristic start
with an exploration probability 1− ε0 on the first trial,
and then uses an exploration probability of(1− ε0)/i on
theith trial. In all other respects, theε-decreasing heuris-
tic is identical to theε-greedy heuristic.

This means theε-decreasing heuristic does more ex-
ploration on early trials, and focuses on its estimate of
expected reward more on later trials. Psychologically,
the innovation of theε-decreasing heuristic means it is
sensitive to the horizon, making different decisions over
different trials.

π-First
The π-first heuristic is usually called theε-first heuris-
tic in the literature. It is, however, quite different from
theε-decreasing andε-greedy heuristics, and we empha-
size this with the different name. Theπ-first heuristic
assumes two distinct stages in decision-making. In the
first stage, choices are made randomly. In the second
stage, the alternative with the greatest estimated reward
rate is always chosen. The first stage can be conceived
as ‘exploration’ and the second stage as ‘exploitation’.
A parameterπdetermines the number of exploration tri-
als, so that theπ-th trial marks the change between the
stages.

Psychologically, theπ-first requires both the memory
of previous successes and failures needed in the explo-
ration stage, and has a clear sensitivity to the horizon.
The notion of two decision-making stages is a psycho-
logically plausible and interesting approach to capturing
how a decision-making might balance the tradeoff be-
tween exploration and exploitation.

τ-Switch
The τ-switch is a new heuristic, motivated by the idea
of latent decision-making stages used by theπ-first
heuristic. Theτ-switch heuristic also assumes an initial
‘search’ stage, followed by a later ‘stand’ stage. The trial
number at which the change in stages takes place is deter-
mined by the parameterτ, similarly to the role of the pa-
rameterπ. The different decision-making strategies em-
ployed in each stage in theτ-switch heuristic, however,
rely on an analysis of different possible states in bandit
problems.

Figure 1 provides a graphical representation of three
possible cases. In Case I, both alternatives have the same



A B

Case I

S
am

e 

S
am

e 

A B

Case II

B
et

te
r 

W
or

se
 

A B

Case III

S
ta

nd
 

S
ea

rc
h 

Alternative

R
ew

ar
d 

H
is

to
ry

Figure 1: The three different possible cases for a bandit
problem considered by theτ-switch heuristic.

reward history. Theτ-switch heuristic assumes both al-
ternatives are chosen with equal probability when con-
fronted with this state. In Case II, one alternative has
more successes and the same or fewer failures than the
other alternative (or, symmetrically, it has fewer failures
and the same or more successes). This means one alter-
native is clearly ‘better’, because it dominates the other
in terms of successes and failures. Theτ-switch heuristic
assumes the ‘better’ alternative with (high) probabilityγ.

The crucial situation is Case III, in which one alter-
native has more successes but also more failures, when
compared to the other alternative. This means neither
alternatively can clearly to be preferred. Instead, the al-
ternative chosen more often previously can be conceived
as an ‘stand’ choice, because it is relatively well known.
The alternative chosen less often can be conceived as an
‘search’ choice, because it is relatively unknown. The
τ-switch assumes that, faced with an observed State III,
the decision-maker chooses the ‘search’ alternative when
they are in the initial latent ‘search’ stage, with the same
(high) probabilityγ. But, the decision-maker is assumed
to choose the ‘stand’ alternative once they have switched
to the latent ‘stand’ stage.

Psychologically, theτ-switch heuristic has the same
memory requirements as theε-greedy,ε-first andπ-first
heuristics. Theτ-switch heuristic also takes into account
the horizon, using the same latent stage approach as the
π-first heuristic. It is the detail of the decisions it makes,
depending on how its internal state relates to the state of
reward history observed, that makes theτ-switch heuris-
tic new and interesting.

Human and Optimal Decision Data

Subjects Data were collected from 10 naive partici-
pants (6 males, 4 females).

Stimuli There were six different types of bandit prob-
lems, all involving just two alternatives. These six
conditions varied two trial sizes (8 trials and 16 trials)
and three different environmental distributions (‘plenti-
ful’, ‘neutral’ and ‘scarce’). Following Steyvers, Lee,
and Wagenmakers (in press), the environments were de-
fined in terms of Beta(α,β) distributions, whereα cor-
responds to a count of ‘prior successes’ andβ to a count
of ‘prior failures’. The plentiful, neutral and scarce en-
vironments used, respectively, the valuesα = 4, β = 2,
α = β = 1, andα = 2, β = 4. Within each condition,
the reward rates for each alternative in each problem
were sampled independently from the appropriate envi-
ronmental distribution.

Procedure Within-participant data were on 50 prob-
lems for all six bandit problem conditions, using a slight
variant of the experimental interface shown in Steyvers
et al. (in press). The order of the conditions, and of
the problems within the conditions, was randomized for
each participant. All 6×50= 300 problems (as well as
5 practice problems per condition) were completed in a
single experimental session, with breaks taken between
conditions.

Optimal Decision Data We generated decision data
for the optimal decision-process on each problem com-
pleted by each participant. In generating these optimal
decisions, we used the trueα andβ values for the en-
vironment distribution. Obviously, this gives the opti-
mal decision-maker an advantage, because participants
have to learn the properties of the reward environment.
However, our primary focus is not on measuring people’s
shortcomings as decision-makers, but rather in charac-
terizing what people do when making bandit problem
decisions, and comparing this to the best possible deci-
sion. From this perspective, it makes sense to use an opti-
mal decision process with perfect environmental knowl-
edge.1

Analysis With Heuristic Models
We implemented all five heuristic models as probabilistic
graphical models using WinBUGS (Lunn, Thomas, Best,
& Spiegelhalter, 2000). All of our analyses are based
on 1,000 posterior samples, collected after a burn-in of
1,000 samples, and using multiple chains to assess con-
vergence using the standard̂R statistic (Brooks & Gel-
man, 1997).

Characterization of Optimal Decision-Making
We applied the heuristics to behavior generated by the
optimal decision process. Table 1 shows the expected
value of the inferred posterior distribution for the key pa-
rameter in each heuristic model. These parameter values
constitute single numbers that characterize how optimal
decision-making within the constraints of each heuris-

1It would also be interesting, in future work, to develop and
use an optimal decision process that optimallylearnsthe prop-
erties of its environment.



Table 1: Expected posterior values for the key parameter
in each heuristic model, based on inferences from op-
timal decision-making, for plentiful, neutral and scarce
environments, and 8 and 16 trial problems.

Plentiful Neutral Scarce

Heuristic 8 16 8 16 8 16
WSLS (γ) .87 .85 .85 .78 .72 .65

Greedy (ε) .91 .93 .95 .95 .94 .93
Decay (ε0) .62 .76 .57 .75 .56 .63

First (π) 1.0 1.0 1.0 1.0 1.0 1.0
Switch (τ) 5.1 7.0 4.1 5.0 2.0 2.0

tic. They are shown for each of the plentiful, neutral and
scarce environments for both 8 and 16 trial problems.

For WSLS, the parameter values shown in Table 1 cor-
respond to the optimal rate at which a decision-maker
should stay if they are rewarded, and shift if they are not.
The patterns across environments and trial sizes are intu-
itively sensible, being higher in more plentiful environ-
ments and for shorter trial sizes.

Forε-greedy probability of choosing the most reward-
ing alternative is high, and very similar for all environ-
ments and trial sizes. Forε-first, the starting probabil-
ity of random explorationε0, which decreases as trials
progress, is higher for more rewarding environments, and
also for problems with more trials.

The π-first parameter is the trial at which the switch
from random exploration to choosing the most reward-
ing alternative. This is always the first trial in Table 1,
which is essentially a degenerate result. We interpret this
as suggesting not that the notion of an exploration fol-
lowed by an exploitation stage is ineffective, but rather
that initial random decisions in a problem with few trials
is so sub-optimal that it needs to be minimized.

Finally, the results for theτ-switch heuristic detail
the optimal trial to switch moving from ‘standing’ to
‘searching’ in the Case III scenario described in Fig-
ure 1. This optimal switching trial becomes earlier in
a problem as the environment becomes less rewarding,
which makes sense. More plentiful environments should
be searched more thoroughly for high yielding alterna-
tives. The number of searching trials generally extends
moving from 8 to 16 trial problems, but not by much.
This also makes sense, since in the fixed environments
we consider, longer sequences of exploitation will give
many rewards, as long as sufficient exploratory search
has been conducted.

All of these optimal parameter settings make sense,
and demonstrate how a heuristic can give a straightfor-
ward psychology characterization of optimal decision-
making for bandit problems. For example, in a neutral
environment with 8-trial problems, an optimal decision-
maker constrained in their cognitive processing capabili-
ties to applying WSLS should win-and-stay or lose-and-
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Figure 2: Posterior predictive average agreement of the
heuristic models with the optimal decision process for 40
training problems (red) and 10 test problems (green).

shift 85% of the time. Alternatively, a more cognitive
elaborate decision-maker, able to apply the two-stageτ-
shift heuristic, should switch from searching to standing
after the fourth trial.

How Optimal Are the Heuristics?

Of course, knowing what constitutes optimal behavior
within the bounds of a heuristic does not take into ac-
count how well decisions will match unboundedly opti-
mal decision-making.

To analyze this aspect of the heuristics’ performance,
Figure 2 shows the posterior predictive average agree-
ment of the heuristic models with the optimal decision
process. The red bars correspond to a training set of the
first 40 problems seen by all participants in which the
parameters of the heuristic models were inferred by ob-
serving the optimal decisions. The green bars correspond
to a test set of the final 10 problems seen by all partic-
ipants, where the inferred parameters for the heuristic
models were directly applied with observing the optimal
decisions. The relative results between the heuristics are
consistent over environments and trial sizes, and so are
averaged to give a simple and general conclusion, but in-
clude error bars showing one standard error caused by
the averaging.

It is clear that training and test performance are very
similar for all of the heuristics. This is because the
agreement is measured by a complete posterior pre-
dictive, which averages across the posterior distribu-
tion of the parameters. This means th measure of
agreement—unlike measures of fit based on optimized
point-estimates for parameters—automatically controls
for model complexity. Thus, it is not surprising test per-
formance is essentially the same as training performance.

Most importantly, Figure 2 shows that the WSLS
heuristic is not able to mimic optimal decision-making
very well, that theε-greedy, ε-decreasing andπ-first
heuristics are able to do much better, and that the new
τ-switch heuristic is clearly the best.
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Figure 3: Posterior predictive average agreement of the
heuristic models with human decision-making for 40
training problems (red) and 10 test problems (green).

Heuristics Modeling of Human Performance

We now apply the heuristics to the human data, and ex-
plore their ability to account for the way people solve
bandit problems. Figure 2 shows the posterior predictive
average agreement of the heuristic models with the hu-
man decisions. As before, the red bars correspond to a
training set of the first 40 problems completed by each
participant, and were used to infer posterior parameter
distributions for each heuristic. The green bars corre-
spond to agreement on the test set of the final 10 prob-
lems, integrating over the already inferred posterior dis-
tributions, and without knowing the participants’ behav-
ior on the test problems.

Figure 2 shows the ability of the heuristics to model
human decision-making follows the same ordering as
their ability to mimic optimal decision-making. WSLS is
the worst, followed by the three reinforcement learning
heuristics, which are approximately the same, and then
slightly (although not significantly) improved by the new
τ-first heuristic.

Figure 4 examines the ability of the heuristics to ac-
count for human decision-making at the level of the in-
dividual participants. Each participant is shown as a bar
against each of the heuristics. For the first 8 of the 10
participants shown (in blue), the overall pattern seen in
Figure 3, holds at the individual level. That is, theτ-
switch heuristic provides the greatest level of agreement.
For the last 2 of the 10 participants shown (in yellow),
this result is not observed, but it is clear that none of the
heuristics is able to model these participants well at all.
We speculate that these participants may have changed
decision-making strategies significantly often to prevent
any single simple heuristic from providing a good ac-
count of their performance.

Whatever the case for these participants, our results
show that, for the large majority of participants well de-
scribed by any heuristic, theτ-switch heuristic is the best.
And the complexity control offered by the posterior pre-
dictive measure, and verified by the training and test sets,
shows that this conclusion takes into account the differ-
ent model complexity of the heuristics.
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Figure 4: Posterior predictive average agreement of the
heuristic models with each individual participant. Two
‘outlier’ participants, not modeled well by any of the
heuristics, are highlighted in yellow.

Characterization of Human Decision-Making
The analysis in Figure 2 shows theτ-switch heuristic
can closely emulate optimal decision-making for ban-
dit problems, and the analysis in Figure 4 shows it can
also describe most participants’ behavior well. Taken to-
gether, these results let us use theτ-switch heuristic the
realize our original motivating goal of comparing peo-
ple’s decisions to optimal decisions in psychologically
meaningful ways. The key psychological parameters of
a well-performed heuristic likeτ-switch provide a mea-
sure that relates people to optimality.

Figure 5 gives a concrete example of this approach.
Each panel corresponds to one of the 8 participants from
Figure 4 who were well modeled by theτ-switch heuris-
tic. Within each panel, the large green curves show the
switch trial (i.e., the expected posterior value of the pa-
rameterτ) inferred from optimal decision-making. These
optimal parameter values are shown for each of the plen-
tiful, neutral and scarce environments, for both8- and 16-
trial problems. Overlayed in each panel, using smaller
black curves, are the patterns of change in this parameter
for the individual participants.

The commensurability of the switch point parameter
between people and optimality, and its ease of interpre-
tation, allow for quick and insightful analyses of each
participant’s performance. For example, participants like
B and F are choosing near optimally, especially in the
8-trial problems, and seem sensitive to the reward rates
of the environments in the right ways. Their deviations
from optimality seem more a matter of ‘fine tuning’ ex-
actly how early or late they switch away from exploratory
search behavior. Participants like A and D, in contrast,
are reacting to the changes in environment in qualita-
tively inappropriate ways. Participants like C, E, and H
seem to perform better on the 8- than the 16-trial prob-
lems, and do not seem to be adjusting to the different
environments in the 16-trial case. But C is switching at
roughly the optimal trial on average, while E is switch-
ing too early, and H is too early for the shorter problems
and too late for the longer ones. Finally, participant G
seems to be employing a ‘degenerate’ version of theτ-
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Figure 5: Relationship between the optimal switching
point under theτ-first heuristic in (larger, green markers)
and inferred switch points for 8 subjects A–H in (smaller,
black markers). Comparisons are shown for P=plentiful,
N=neutral and S=scarce environments, and 8-trial (cir-
cle) and 16-trial (square) environments.

switch heuristic that involves no initial search, but simply
stands on the highest success rate alternative throughout
the problem.

This analysis is not intended to be complete or exact.
Potentially, the other heuristics could provide alternative
characterizations with some level of justification. And
there may be more that could be learned by jointly ex-
amining the ‘accuracy of execution’ parameter for theτ-
switch heuristic together with the key trial switch param-
eter. What the sketched analysis does provide a concrete
illustration of the way human and optimal performance
can be characterized by parametric variation using our
best-fitting heuristic model.

Discussion
One finding from our results is that theτ-switch heuristic
is a useful addition to current models of finite-horizon
two-arm bandit problem decision-making. Across the
three environments and two trial sizes we studied, it con-
sistently proved better able to mimic optimal decision-
making than classic rivals from the statistics and machine
learning literatures. It also provided a good account of
human decision-making, for the majority of the partici-
pants in our study.

A potential theoretical implication of the success of
the τ-switch heuristic is that people may use something
like latent states to control their search behavior, or man-
age the exploration versus exploitation trade-off. We
think these sorts of models deserve as much attention as
those, likeε-greedy, based more directly on reinforce-
ment learning.

One potential practical application of theτ-switch

heuristic is to any real-world problem where a short se-
ries of decisions have to made be made with limited feed-
back, and with limited computational resources. Theτ-
switch heuristic is extremely simple to implement and
fast to compute, and may be a useful surrogate for the
optimal recursive decision process in some niche appli-
cations. A second, quite different, potential practical ap-
plication, relates to training. The ability to interpret op-
timal and human decision-making using one or two psy-
chologically meaningful parameters could help instruc-
tion in training people to make better decisions. It would
be an interesting topic of future research to take the sorts
of analysis accompany Figure 5, for example, and see
whether feedback along these lines could improve their
decision-making on future bandit problems.

More generally, we think our results illustrate a use-
ful general approach to studying decision-making using
heuristic models. Three basic challenges in studying
any real-world decision-making problem are to charac-
terize how people solve the problem, characterize the op-
timal approach to solving the problem, and then char-
acterize the relationship between the human and opti-
mal approach. Our results show how the use of sim-
ple heuristic models, using psychologically interpretable
decision processes, and based on psychologically inter-
pretable parameters, can aid in all three of these chal-
lenges.

While our specific results are for small-horizon two-
alternative bandit problems, and involve a small set of
heuristics, we think our basic approach has much more
general applicability. Heuristic models can be assessed
in terms of their ability to model human or optimal
decision-making, and their inferred parameter values can
be used to understand and compare how those decisions
are made.
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