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Abstract
The reported experiments explore two
mechanisms by which object descriptions are
flexibly adapted to support concept learning:
selective attention and dimension
differentiation.  Arbitrary dimensions were
created by blending photographs of faces in
different proportions.  Consistent with learned
selective attention, positive transfer was found
when initial and final categorizations shared
either relevant or irrelevant dimensions.
Unexpectedly good transfer was observed both
when irrelevant dimensions became relevant and
relevant dimensions became irrelevant, and was
explained in terms of participants learning to
isolate one dimension from another.  This
account was further supported by experiments
indicating that conditions expected to produce
positive transfer via dimension differentiation
produced better transfer than conditions
expected to produce positive transfer via
selective attention, but only when stimuli were
composed of highly integral and spatially
overlapping dimensions.

The Sensitization and Differentiation of
Dimensions During Category Learning

People’s ability to learn new concepts is a
critical part of their ability to flexibly
accommodate to their world and tasks.  Concept
learning allows children to develop similar
conceptions of their world to the adults of their
community (Gershkoff-Stowe, Thal, Smith, &
Namy, 1997),  individuals to coordinate their
shared understanding of a situation (Markman &
Makin, 1998), and experts to organize their
world in useful ways (Estes, 1994).  At times,
this conceptual flexibility can be achieved by
simply combining and rearranging existing
perceptual features, such as when concepts are
acquired by learning logic-based rules involving
pre-established features (Nosofsky, Palmeri, &
McKinley, 1994).  At other times, conceptual
flexibility must be accompanied by flexibility
from perceptual and attentional processes

(Goldstone, 1998; Hock, Tromley, & Polmann,
1988; Schyns, Goldstone, & Thibaut, 1998).
That is, the perceptual features that are used as
inputs to concept learning processes are,
themselves, adapted to the concepts being
learned.  The experiments reported here
examine how perceptual descriptions of objects
are influenced by the acquired categories that
make use of the descriptions.  Evidence for both
selective attention and differentiation of
dimensions is found, with additional constraints
placed on the mechanisms that these processes
use.
Selective Attention During Category Learning

When people learn to make a new
categorization, they often have to selectively
attend to some features of the objects to be
categorized and ignore other features.  To
categorize an object as a book, color is
irrelevant but shape must be attended.  To
categorize an object as a banana, both shape and
color are relevant.  One can selectively attend to
color and ignore shape to distinguish ripe
avocados from those that are not ready to eat.
Effective categorization depends on our ability
to flexibly attend to different features on
different occasions.  The first reported study
explores our ability to flexibly attend arbitrary
dimensions, and how learned attention to
dimensions transfers positively and negatively
to a subsequent a categorization task.

One way that perception becomes adapted
to tasks and environments is by increasing the
attention paid to perceptual dimensions and
features that are important, and/or by decreasing
attention to irrelevant dimensions and features.
A feature is a unitary stimulus element, whereas
a dimension is a set of linearly ordered values.
“3 centimeters” and “gray” are features; length
and brightness are dimensions.  Despite the
apparently clear-cut definitional difference
between dimensions and features, deciding
whether a psychological structure (such as
shape) is a feature or dimension is often difficult
and perhaps even arbitrary.  In the following
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discussions, evidence for selective attention
(and later, differentiation) to dimensions and
features will be combined together, even though
the two types of selective attention may
dissociate.  For example, Kersten, Goldstone,
and Schaffert (1998) find that training on a
particular dimension value may cause attention
to be subsequently increased to the dimension
while at the same time decreased to the
particular dimension value.

Most successful theories of categorization
and learning incorporate some notion of
selective attention.  In Sutherland and
Mackintosh’s (1971) analyzer theory, learning a
discrimination involves strengthening the
tendency to attend to relevant “analyzers.”  In
Nosofsky’s (1986, 1991) exemplar model of
categorization, the categorization of an object
depends on its similarity to previously stored
category members in a multidimensional space
(see also Medin & Shaeffer, 1978).  Critically,
distances between objects are compressed and
expanded along dimensions in this space
depending on the categorization required.
Dimensions that are relevant for a categorization
are expanded while the distances between
objects on irrelevant dimensions are
compressed.  For example, Nosofsky finds that
if participants are given a categorization where
the angle of a line embedded in a circular form
is relevant while the size of the circular form is
irrelevant, then distances between objects on
this dimension are increased.  This process will
be called “attention weighting” and refers to the
flexible allocation of attention to stimulus
analyzers, features, or dimensions.  Further
work in this line has shown how neural
networks acquire task-appropriate weights for
stimulus dimensions (Kruschke, 1992).

Researchers in animal learning and human
categorization have described shifts toward the
use of dimensions that are useful for tasks
(Blough & Blough, 1997; Nosofsky, 1986) or
have previously been useful (Lawrence, 1949).
Lawrence describes these situations as examples
of stimulus dimensions “acquiring

distinctiveness” if they have been diagnostic in
predicting rewards.  The stimulus aspects that
are selectively attended may be quite complex;
even pigeons can learn to selectively attend to
the feature “contains human” in photographs
(Herrnstein, 1990).  In addition to important
dimensions acquiring distinctiveness, irrelevant
dimensions also acquire equivalence, becoming
less distinguishable (Honey & Hall, 1989).  For
example, in a phenomena called “latent
inhibition,” stimuli that are originally varied
independently of reward are harder to later
associate with a reward than those that are not
initially presented at all (Lubow & Kaplan,
1997; Pearce, 1987).  Haider and Frensch (1996)
find that improvements in performance are
frequently due to reduced processing of
irrelevant dimensions.  Thus, there is evidence
that learning involves both increasing attention
to relevant dimensions, and decreasing attention
to irrelevant dimensions.

The above studies illustrate shifts in the
use of dimensions as a function of their task
relevance, but from these studies it is not clear
how mandatory or strategic these shifts are.
One source of evidence that allocation of
attention is not completely under voluntary
control is that attentional highlighting of
information occurs even if it is to the detriment
of the observer.  When a letter consistently
serves as the target in a detection task, and then
later becomes a distracter  (a stimulus to be
ignored) it still automatically captures attention
(Shiffrin & Schneider, 1977).  The converse of
this effect, negative priming, also occurs.
Targets that were once distracters are responded
to more slowly than never-before-seen items
(Tipper, 1992).  In the negative priming
paradigm, the effect of previous exposures of an
item can last upwards of two weeks (Fox, 1995),
suggesting that a relatively permanent change
has taken place.  In addition to suggesting that
attention is not completely determined by short-
term strategic demands, these studies also show
negative transfer effects due to acquired
attentional weights.  When the learned attention
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weights to a feature or dimension are
inappropriate for a subsequent task, then
performance on this task will tend to suffer (see
also Goldstone, 1994-a).
Dimension Differentiation During Category
Learning

Attention weighting is a critical
component of categorization learning, but it may
not be the only process that dynamically alters
the description of an object in a categorization
task.  A second candidate process is dimension
differentiation, by which dimensions that are
originally psychologically fused together
become separated and isolated.  Attention
weighting presumes that the different
dimensions that make up a stimulus can be
selectively attended.  To increase attention to
size but not color, one must be able to isolate
size differences from color differences.  In his
classic research on stimulus integrality and
separability, Garner argues that stimulus
dimensions differ in how easily they can be
isolated or extracted from each other (Garner,
1976, 1978; Garner & Felfoldy, 1970).
Dimensions are said to be separable if it is
possible to attend to one of the dimensions
without attending to the other.  Size and
brightness are classic examples of separable
dimensions; making a categorization on the
basis of size is not significantly slowed if there
is irrelevant variation on brightness.
Dimensions are integral if variation along an
irrelevant dimension cannot be ignored when
trying to attend a relevant dimension.  The
classic examples of integral dimensions are
saturation and brightness, where saturation is
related to the amount of white mixed into a
color, and brightness is related to the amount of
light coming off of a color.  For saturation and
brightness, it is difficult or impossible to attend
to only one of the dimensions (Burns & Shepp,
1988; Foard and Kemler, 1984; Garner, 1976;
Melara, Marks, & Potts, 1993).

From the above work distinguishing
integral from separate dimensions, one might
conclude that attention weighting processes can
proceed with separable but not integral

dimensions.  However, one interesting
possibility is that category learning can, to some
extent, change the status of dimensions,
transforming dimensions that were originally
integral into more separable dimensions.
Experience may change the underlying
representation of a pair of dimensions such that
they come to be treated as relatively
independent and non-intefering sources of
variation that compose an object.  Seeing that
stimuli in a set vary along two orthogonal
dimensions may allow the dimensions to be
teased apart and isolated, particularly if the two
dimensions are differentially diagnostic for
categorization.  There is developmental
evidence that dimensions that are easily isolated
by adults, such as the brightness and size of a
square, are treated as fused together for four-
year old children (Kemler & Smith, 1978; Smith
and Kemler, 1978).  It is relatively difficult for
children to decide whether two objects are
identical on a particular dimension, but
relatively easy for them to decide whether they
are similar across many dimensions (Smith,
1989a).  Children show considerable difficulty
in tasks that require selective attention to one
dimension while ignoring another, even if the
dimensions are separable for adults (Smith &
Evans, 1989).  When given the choice of sorting
objects by their overall similarity or by selecting
a single criterial dimension, children tend to use
overall similarity whereas adults use the single
dimension (Smith, 1989b). Whereas older
children and adults tend to organize objects into
groups by single dimensions (Regehr & Brooks,
1995), children under the age of five often
organize objects by overall similarity (Shepp,
Burns, & McDonough, 1980).  Finally,
adjectives that refer to single dimensions are
learned by children relatively slowly compared
to nouns (Smith, Gasser, and Sandhofer, 1997).

One commonly used method for
diagnosing whether a participant is treating an
object as composed out of well or poorly
differentiated dimensions has been the “triad
sorting task.”  In this task, participants are
shown three objects, and are asked to group the
objects together in a way that makes sense to
them.  If shown a blue circle (A), an orange
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circle (B), and a red ellipse (C), a participant's
grouping B with C has been taken as evidence
of responding to  relatively differentiated overall
similarity, because both color and shape
dimensions are used to create the groups, and
because B and C are overall similar across both
dimensions but have no single dimension in
common (Kemler & Smith, 1978; Shepp et al.,
1980; Smith & Kemler, 1978).  By a similar
logic, grouping A and B together is taken as
evidence for analytic, dimensionalized
processing, because the grouping selectively
focuses on the shape identity while ignoring the
large color difference.  Although shape and
color need not be completely undifferentiated
for children, the evidence from the triad sorting
and selective attention tasks suggests that color
and shape dimensions are less likely to be
isolated for children than adults.  There have
been concerns with respect to the methodology
and generality of the results from triad sorting
tasks (Aschekenasy & Odom, 1982; Cook &
Stephens, 1995; Cook & Odom, 1992; Ward &
Vela, 1986).  Still, the hypothesis that there is a
developmental trend from integral to separable
dimensions has received support.  In many
cases, perceptual dimensions seem to harder to
isolated for children than adults, such that
children cannot easily access the individual
dimensions that compose an object.

The developmental trend toward
increasingly differentiated dimensions
(dimensions that can be isolated) is echoed by
adult training studies.  Under certain
circumstances, color experts (art students and
vision scientists) are better able to selectively
attend to dimensions (e.g. hue, chroma, and
value) that comprise color than are non-experts
(Burns & Shepp, 1988).  Researchers have
found that it is possible to train participants to
categorize on the basis of saturation rather than
brightness (or vice versa) (Foard & Kemler,
1984), and once learned, categorization
judgments are well explained by attention being
selectively placed on the relevant color
dimension (Nosofsky, 1987).  Research in our

laboratory (Goldstone, 1994-a) has shown that
people who learn a categorization in which
saturation is relevant and brightness is irrelevant
(or vice versa) can learn to perform the
categorization accurately, and as a result of
category learning, they develop a selectively
heightened sensitivity at making saturation,
relative to brightness, discriminations.  That is,
categorization training that makes one
dimension diagnostic and another dimension
nondiagnostic can serve to split apart these
dimensions, even if they are traditionally
considered to be integral dimensions.  These
training studies show that to know how integral
two dimensions are, one has to know something
about the observer’s history.  Originally fused
dimensions can become at least partially split
apart with training.  Melcher and Schooler
(1996) provide suggestive evidence that expert,
but not non-expert, wine tasters isolate
independent perceptual features in wines that
closely correspond to the terminology used to
describe wines.

Research on the role of comparison in
concept learning also points to people's
increasing appreciation for the dimensional
organization underlying objects.  Gentner and
her colleagues (Gentner & Markman, 1997;
Gentner & Namy, in press; Kotovsky &
Gentner, 1996; Markman & Gentner, 1996;
Medin, Goldstone, & Gentner, 1993) have
shown that the act of comparing objects causes
their dimensional organization to become more
transparent.  Dimensions that have clear
correspondences between compared objects
become selectively emphasized.  This work
generally suggests that both dimension values
and relations between dimensions are more
efficiently isolated with age and experience.

There is a relation between the integrality
of dimensions and their salience, but these
notions can and should be kept distinct.  A
categorization involving a dimension may be
difficult either because the dimension is
psychologically fused with another dimension,
or because it is hard to detect the dimension
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because of its lack of salience.   Mathematical
analyses have suggested that what can be
modeled by assuming dimensional integrality
can frequently also be modeled by including
noise that interferes with the detection of small
differences along separable dimensions (Ennis,
1988).  In addition, one reason why a
dimensional difference may be difficult to detect
is because of the noise added by the intrusion of
other dimensions that cannot be ignored.
However, the integrality of a dimension is not
equivalent to its subtlety.  Dimension salience is
a property of the dimension itself, but integrality
is always a relation between two or more
dimensions.

Concerns have been raised about some of
the most common methods for assessing the
degree of differentiation between dimensions.
One technique diagnosing undifferentiated
dimensions has been to compare a category
learning situation in which the two categories
can be differentiated on the basis of a single
dimension (a horizontal or vertical
categorization rule) to a situation in which both
dimensions must be considered (a diagonal
categorization rule).  If the former
categorization is as accurate and fast as the
rotated, diagonal categorization, then there is
some grounds for believing that the dimensions
are not psychologically necessary descriptions
of the objects.  Conversely, if an upright,
horizontal or vertical categorization is easier
than the rotated categorization, then the
dimensions are viewed as subjectively
represented or “psychologically privileged”
(Grau & Nelson, 1988).  However, by this
measure, even apparently integral dimensions
such as saturation and brightness show evidence
of being psychologically privileged (Foard &
Kemler, 1984; Melara, Marks, & Potts, 1993) in
that the rotated categorization is more difficult
than the upright categorization.  This measure
may still be useful in a relative, not absolute,
sense.  That is, the more differentiated two
dimensions are, the greater the difference
between rotated and upright categorizations

(Kemler-Nelson, 1993).  This interpretation is
consistent with the existing literature suggesting
that multiple-dimension categorization rules are
especially harder than single-dimension
categorization rules when the dimensions are
separable rather than integral (Kruschke, 1993;
Maddox, 1992).

A second technique for assessing the
degree of differentiation between dimensions
has been to find best fitting values of r in the
distance formula:

Di, j = X ik − X jk

r

k =1

n

∑ 
 
  

 

1
r

,

where Di,j is the subjective dissimilarity
between objects i and j, n is the number of
dimensions, Xik is the value of item i on
dimension k, and r is a parameter that allows
different spatial metrics to be used (if r=1, then
the distance between items is equal to the sum
of their dimensional differences; if r=2, then the
distance is the length of shortest line that
connects the items).  A typical finding is that
dissimilarities between stimuli composed out of
undifferentiated dimensions are best fit by
letting r equal 2, whereas dissimilarities between
stimuli composed out of differentiated
dimensions are best fit by letting r equal 1
(Handel & Imai, 1972; Maddox, 1992; Melara,
1989).  However, difficulties arise with this
technique as well.  The value of r that best fits
human similarity assessments depends on
participants’ strategies as manipulated by
instructions (Melara, Marks, & Lesko, 1992).
Stimuli that are composed of dimensions with
very small value differences are often better fit
with r=2 than r=1 even if the dimensions are
separable (Nosofsky, 1987).  Furthermore, the
relation between model/data fit and r value is
often times non-linear (even nonmonotonic) and
extremely noisy.

In summary, there is a large body of
evidence that dimension differentiation occurs
with learning and may characterize child-to-
adult development and novice-to-expert
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training.  At the same time, there are
methodological reasons to search for new ways
to asssses dimension differentiation.  The
current experiments (particularly, Experiments
2, 3, and 4) were designed to explore dimension
differentiation with a new paradigm based on
transfer between category learning tasks.
The Current Investigation

The current experiments explore both
processes of dynamic selective attention to
dimensions and differentiation of dimensions.
Rather than using previously established and
possibly innate dimensions such as hue and size,
the first three experiments use arbitrary
dimensions.  Other researchers have also studied
concept learning using arbitrary dimensions
(e.g. Schyns & Rodet, 1997).  For example, in
classic studies of dot pattern classification,
randomly generated prototypes are often created
by  assigning random locations to a set of dots
(Posner & Keele, 1968).  Hock, Tromley, &
Polmann (1988) argue that arbitrary
configurations of dots can be learned if they are
diagnostic for a learned categorization.
Arbitrary dimensions are used in the current
experiments because learned dimension
differentiation should only be observed when
participants do not initially organize the stimuli
into the dimensions in question.  If subjects
possess the differentiated dimensions before the
start of the experiment, as is the case for
brightness and size, then dimension weighting,
but not dimension differentiation, should be
observed.  Saturation and brightness, the
dimensions used in Experiment 4, are more
integral dimensions, but Grau and Nelson (1988;
see also Melara, Marks, & Potts, 1993) have
argued that even these dimensions are not
genuinely arbitrary.  By creating arbitrary
dimensions in the first experiments, we can
hopefully obtain stimuli that participants do not
originally organize according to these
dimensions.  Instead, the dimensional
organization may be learned during category
learning.  It is possible, however, that
participants pre-experimentally possess

dimensions that are correlated with the arbitrary
dimensions.  This possibility will be discussed
in the General Discussion.

Arbitrary dimensions are created by taking
two randomly selected bald heads, and creating
a morph sequence between them.  For example,
one dimension is created by morphing between
Faces 1 and 2 in Figure 1, and a second
dimension is created by morphing between
Faces 3 and 4.  Using a technique described by
Steyvers (1999), a 4 by 4 matrix of faces can be
created from these two dimensions such that
each face is defined half by its value on
Dimension A and half by its value on
Dimension B.  Although participants may not
originally characterize faces by their values on
these two dimensions because they have been
arbitrarily constructed, with sufficient practice
people may use these dimensions if they are
relevant for a categorization, or if they vary
systematically within a set of faces.  By creating
these arbitrary dimensions, we can explore
whether selective attention processes can
operate on arbitrary dimensions, and whether
people can learn to organize stimuli according to
arbitrary dimensions.  Faces were used as the
endpoints for our dimensions because of
evidence suggesting that faces are processed in a
particularly configural manner (Farah, 1992;
Tanaka & Farah, 1993).  We should have the
greatest chance of finding evidence for
dimension differentiation with stimuli that are
not naturally decomposed into delineated parts.

Our dimensions dimensions requires a
closer examination of what is meant by a
psychological dimension and arbitrariness.
Routinely, people use the term "psychological
dimension" when there is a relatively
straightforward connection between an
internally represented stimulus aspect and a
relatively easily specified physical characteristic
of an external object.  For example, the
psychological dimension of brightness is
related, although not necessarily linearly, to the
amount of light coming off of an object, which
can be measured in candelas per meter squared.
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In our experiments, we do not know the exact
physical properties that are related to the
psychological dimensions that are created by
morphing between faces.  When one object is
gradually morphed into another object, many
changes occur simultaneously throughout the
object and these changes are perfectly correlated
with each other.  For example, as Person A's lips
become wider to match Person B's lips, Person
A's eyes may simultaneously become smaller to
match B's eyes.  An observer may represent the
morph-based dimension in terms of either of
these changes, or both.  However, we still
consider the dimensions that are sensitized and
differentiated to be psychological dimensions
despite the difficulty in associating them with
simple physically measurable properties.
Certainly other psychological dimensions,
including "beauty," "shyness," and
"abstractness" are similarly difficult to directly
link to specific physical properties.

We will adopt a functional rather than
extrinsic approach to identifying psychological
dimensions.  A psychological dimension is any
ordered set of mutually exclusive values that can
be selectively attended.  That is, stimulus
elements are processed as a unified
psychological dimension to the extent that they
can be processed independently of other
stimulus properties (Goldstone, Steyvers,
Spencer-Smith, & Kersten, 2000).  Thus, while
saturation and brightness are not strong
psychological dimensions for most people, they
may be for color experts (Burns & Shepp, 1988)
if the color expert can demonstrate that they can
attend to saturation without being very
influenced by brightness.  For our purposes, the
status of brightness and saturation as
psychological dimensions does not depend on
their having direct physical descriptions because
rotated versions of these same dimensions
would still count as psychological dimensions as
long as people could selectively attend to the
rotated dimensions.

In calling the morph-generated dimensions
arbitrary, we mean simply that the dimension

that is relevant for categorization is selected at
random from a large set of potential dimensions
(see Goldstone, 2000).  That is, our
categorization rules are randomly selected, and
for different categorizations, different
dimensions would be relevant.  As suggested
above, dimensions need not be arbitrary in the
sense of having no relation at all to pre-
experimentally possessed dimensions.  Rather,
the important notion is that no matter which
faces are selected as endpoints of a dimension,
some aspect will be relevant for the
categorization, and the issue is whether this
aspect can come to be isolated and selectively
weighted.  Given the large number of
dimensions that can be created by pairing each
face from a set with every other face (there are
62 faces in our sample), if an arbitrary
dimension from this set can be isolated and
weighted, then these processes will need to be
highly flexible.

If people can develop an ability to
selective attend to arbitrary, laboratory-
constructed dimensions, then learning that a
particular dimension is relevant should facilitate
learning subsequent categories for which this
same dimension is relevant, and may interfere
with the learning of categories for which the
dimension is irrelevant.  If people learn not only
to selectively attend to arbitrary dimensions, but
also learn to differentiate arbitrary dimensions,
then this may also be reflected in transfer across
categorizations.  In particular, positive transfer
is not only expected when the same dimension
is relevant for two categorizations, but is also
predicted when the two categorizations require
the same differentiation of the stimuli into
dimensions.  The current experiments go beyond
previous studies in that we are not only
interested in how to tell whether two dimensions
are treated as unitary or are differentiated, but
we are also interested in the effect that category
learning has on dimension differentiation.  Thus,
Experiment 1 was designed to test the influence
of category learning on the isolation and
selection of dimensions.  These processes were
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explored by transferring participants from one
categorization rule to another.  Positive transfer
by selective attention were predicted when the
initial and final categorization rules shared
relevant or irrelevant dimensions, and negative
transfer was predicted if initially relevant
dimensions became irrelevant or vice versa.
Positive transfer by dimension differentiation
was predicted when the initial and final
categorization required the same isolation of
dimensions, and negative transfer by dimension
differentiation was predicted when the two
categorizations required incompatible
organizations of stimuli into dimensions.

Experiment 1
The primary goal of the Experiment 1 was

to explore selective attention toward relevant,
and away from irrelevant, arbitrary dimensions
during a category learning task, and to observe
the transfer of attention to subsequent
categorizations.  By comparing transfer
performance on the second categorization as a
function of the first categorization, we can
discover whether learned relevance and learned
irrelevance both arise, and whether one type of
learning is significantly stronger than the other.
In addition, we can observe whether selective
attention to arbitrary dimensions results in
positive transfer when the learned attention
weights are appropriate, negative transfer when
learned attention weights are inappropriate, and
if both occur, which type of learning is stronger.

In this experiment, participants learned
two categorizations, an initial and transfer
categorization.  The transfer categorization was
identical for all participants, and involved a
categorization in which Dimension A was
relevant and Dimension B was irrelevant.  The
initial and transfer categorizations were related
to each other in one of seven ways.  A
dimension that was initially relevant could
continue to be relevant, could become
irrelevant, or could be replaced altogether.  The
same alterations were applied to the irrelevant
dimension.  Thus, by observing transfer

categorization performance, we can assess how
appropriate the initial attention weights to
dimensions were for subsequent categorization
tasks.  By giving all seven groups of participants
the same transfer categorization, we can be
confident that any systematic differences
between the groups on final categorization
performance must be due to differences in how
well the initial categorization prepared them for
this final categorization.
Method

Participants.  199 undergraduate students
from Indiana University served as participants
in order to fulfill a course requirement.  The
students were split approximately evenly into
seven conditions.

Materials.  The stimuli were faces that
were generated by morphing between
photographs of bald heads selected from Kayser
(1997).  Sample photographs that were used in
generating the 16 morphs of a set are shown on
the sides of Figure 1 and are labeled Faces 1, 2,
3, and 4.  Each presented face varied along two
arbitrary dimensions, where dimensions were
generated by creating negative contingencies
between two faces — the more of Face 1 that
was present in a particular morphed face, the
less of Face 2 there was.  The horizontal
dimension shown in Figure 1, Dimension A,
might be called the “The proportion of Face 1
relative to Face 2” dimension, where the two
faces were randomly paired.  The vertical
dimension, Dimension B, might be called the
“The proportion of Face 3 relative to Face 4”
dimension.  The two dimensions were
orthogonal - the proportion of Face 1 relative to
Face 2 was independent of the proportion of
Face 3 relative to Face 4.  Thus, each face was a
blend between different faces, and different
faces only varied in the proportion of each of the
four faces.  Each face consisted of equal
proportions of the horizontal and vertical
dimensions.

A subset of eight from the full 4 X 4 array
of faces was used for stimuli.  This subset was
selected so as to form an octagon around the
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center of the array, and is exemplified in Figure
2.  For the half of the face that represents the
horizontal Dimension A, the four columns
possess 100% Face 1 (0% Face 2), 67% Face 1
(33% Face 2), 33% Face 1 (67% Face 2), and
0% Face 1 (100% Face 2).  For the half of the
face that represents the vertical Dimension B,
the four rows possess 100% Face 3 (0% Face 4),
67% Face 3 (33% Face 4), 33% Face 3 (67%
Face 4), and 0% Face 3 (100% Face 4).  Thus,
the leftmost face on the top row of Figure 2 is a
blend of Face 1 (67% of 50%, or .335), Face 2
(33% of 50%, or .165), and Face 3 (50%).  An
advantage of using 8 rather than the full 4 X 4
set of faces is that the structure of the faces does
not strongly suggest a dimensional organization.
As such, if evidence for a dimensional
organization exists, it can likely be traced to the
categorization feedback provided to participants
rather than the unsupervised two-dimensional
array structure for the faces shown in Figure 1.

In the experiment, seven different 4 X 4
arrays of faces were created by pairing four
different dimensions together.  Each of the four
dimensions was generated by creating a
continuum between two unique faces.  The eight
original faces were selected from a larger
database of sixty-two bald faces.  The subjective
similarity between each pair of these sixty-two
faces was obtained by a method described by
Goldstone (1994-b).  The eight faces were
selected because each possible pair from this set
of faces received an average subjective
similarity rating that was within 15% of any
other pair.  When faces were randomly paired
together to form dimensions, the dimensions
were likely to be of roughly equal salience
because the endpoint faces were roughly equally
similar to each other.

Each of the morphs was automatically
generated using a morphing technique described
by Steyvers (1999).  Applying this technique,
the main contours in the face images were
delineated by 127 control lines.  These control
lines served to align the features of the four
faces.  In the warping phase of this morphing

algorithm, correspondences were calculated
between the pixels of all the images to be
morphed.  Then, in the cross-dissolving phase,
the gray scale values of corresponding pixels
were blended to create the gray scale values of
the resulting morph image.

Each face was displayed in grayscale with
256 possible brightness values per pixel (one
pixel = .034 cm), and measured 14.48 cm tall by
11.68 cm wide.  Each face was photographed
against a dark background and displayed on a
white Macintosh II SI computer screen.  The
average viewing distance was 46 cm.

Procedure. Learned sensitivity to morph-
based dimensions was tested using a category
learning paradigm in which participants
received an initial and transfer category learning
task.  Category rules involved dividing a set of
eight faces either horizontally or vertically into
equal halves.  For a vertical categorization
boundary that divided the faces into left and
right sets, Dimension B was irrelevant for the
categorization and Dimension A was relevant.
On each trial of both intial and final
categorizations, participants saw a face and
categorized it by pressing either “A” or “B” on
the keyboard, with feedback on each trial from
the computer indicating with a check or an “X”
whether or not the participant was correct, and
also indicating the correct category assignment
for the face.  Participants were instructed: "Your
task will be to categorize faces as accurately as
possible into different categories (clubs) that are
based purely on physical appearance.  If you
believe the face belongs to Club A, press the
"A" key.  Press the "B" key for Club B.  You
will received feedback indicating whether your
guess is correct."

Participants completed 200 trials in each of
the two category learning tasks.  The initial and
transfer categorizations were related to each
other in one of seven ways.  In the
representation used in Table 1, the dimension
left of the dividing line is relevant and the
dimension to the right of the line is irrelevant.
A vertical category boundary for the set of faces
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in Figure 1 would be represented as A|B;
Dimension A is relevant and Dimension B is
irrelevant.

Across the seven conditions, there were
four different dimensions, and for each of these
dimensions, two unique faces were used as the
anchoring endpoints.  As shown in Table 1, the
seven different conditions involved the same
transfer condition, in which Dimension A was
relevant and B was irrelevant.  Dimensions that
were relevant or irrelevant during the initial
categorization could become relevant,
irrelevant, or absent altogether during the
transfer categorization.  This produces seven
different initial categorization rules because
there are three possible dimension types
(relevant, irrelevant, and novel) and two
dimensions (yielding 23 conditions) but two of
these (A|A, and B|B) are impossible because the
same dimension would have to be both relevant
and irrelevant.  First, starting with the control
condition (C|D), the initial and transfer stages
involved completely different generating faces
for their dimensions.  Dimensions C and D were
created by using completely different faces as
endpoints than were used for Dimensions A and
B, and thus the actual displayed stimuli and
categorizations were unrelated across the two
phases of the experiment.  The next three
conditions might be expected to produce
beneficial transfer relative to the control
condition.  The first involves identity transfer, in
which the dimension that was relevant
continued to be relevant, and the dimension that
was irrelevant continued to be irrelevant.  Even
here, the initial and transfer stages did not
involve exactly the same categorization.
Whenever the relevant dimension was the same
during initial and transfer stages, the category
labels were reversed from A to B and from B to
A, so that any observed transfer could be
attributed to changes in selective attention to
dimensions rather than acquiring specific
stimulus-to-category associations.  Thus, the
identity transfer condition was equivalent to a
"reversal shift" (Tighe & Tighe, 1969) in which

successive categorization rules are based on the
same categories, but the labels given to those
categories have been reversed.

In the next condition A|C, the same
dimension A was relevant in the initial and
transfer conditions, but different dimensions
were irrelevant.  This condition is called the
“acquired distinctiveness” condition because if
participants are better in the transfer condition
when it is preceded by A|C than by the control
condition, then it is likely because participants
learned to attend the relevant dimension A and
this helped them to distinguish subsequent
categories that differed on the same dimension.
The next condition (C|B) is the complement of
this; the irrelevant dimension B was the same
between initial and transfer conditions, but the
relevant dimension changed.  This is called an
“acquired equivalence” condition because it
tests whether participants can learn to ignore an
irrelevant dimension, and if so, whether this
learning transfers to ignoring the same
dimension when it is later irrelevant. Evidence
for learning to ignore irrelevantly varying
dimensions would be found if C|B produces
better transfer to A|B than does C|D.

If these three conditions produce better
transfer than the control condition, it may
simply be because their faces are, overall, more
similar to the transfer faces due to the shared
dimensions.  However, it is possible to design
conditions that have the same number of
overlapping dimensions between the two
categorization stages,  but with a potentially
detrimental effect.  With the fourth condition
(B|C), the dimension B that was initially
relevant becomes irrelevant.  This condition can
be labeled “attentional capture,” making
reference to Shiffrin and Schneider’s (1977)
results showing that when participants are
trained to respond to a particular letter as a
target, performance is quite poor when that
letter later becomes a distracter to be ignored.
Transfer performance is predicted to be poorer
for B|C than the control if participants continue
to attend the formerly relevant dimension even
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after it has become irrelevant.  The complement
of this condition is C|A, in which Dimension A,
which was formerly irrelevant, becomes
relevant.  This situation is reminiscent of
negative priming, in which items that were
distracters on an earlier trial and then become
targets are responded to more slowly than items
that were not previously distracters.  Participants
should be hindered at learning the transfer
categorization if they continue to ignore
Dimension A because it was previously
irrelevant.  Finally, both of the transferred
dimensions of the negative priming and
attentional capture conditions are combined
together to create the B|A condition.  The
irrelevant dimension becomes relevant and the
relevant dimension becomes irrelevant.  Another
way of conceptualizing this condition is that the
same 8 faces were used as stimuli in the two
categorization phases, but the categorization
rule is rotated 90 degrees.  For this 90 degree
condition, half of the faces from the initial
categorization phase received the same category
label on the final phase, and half received the
opposite label.

The 200 categorization trials within each
phase of the experiment were divided into 25
repetitions of each of the eight faces.  Within
each block of 8 faces, the order in which the
faces were presented was randomized.
Participants received short breaks every 50
trials.  During these breaks, the computer
displayed the participants’ accuracy and average
response time on the previous block of trials.  At
the end of the first block of 200 trials,
participants were explicitly warned that the
categories were going to change for the second
categorization task, and that they would have to
learn new categories that might not have any
relation to their previously learned categories.
Results

The average accuracy over all of the initial
categorization trials was 73.2%. When
transferred to the categorization rule A|B,  the
average accuracy over all categorization trials
was 80.2%. For these transfer categorization

trials, participants differed significantly in their
categorization accuracy over the seven
conditions, F(6,198) = 6.02, MSE = 0.0717, p <
0.001, as shown in Figure 3.  The most
appropriate comparison for the first six groups
in Figure 3 is the neutral control condition C|D
in which none of the faces underlying the
stimulus dimensions in the transfer task were
used for the initial categorization dimensions.
The condition A|B produced better transfer than
the control condition, p<0.001, (the significance
of all post-hoc comparisons are calculated using
a two-tailed version of Fisher's LSD), as well as
producing better transfer than any other
condition.  This is not surprising given that for
the A|B condition, the initial and final
categorizations involve the same faces and
dimensions, and only differ in their assignment
of labels to faces.  The conditions A|C and C|B
also produced better transfer to the A|B
condition than did the control condition, (p< .05
for each comparison), but did not significantly
differ from each other.  These conditions reveal
both categorization advantages when relevant
dimensions continue to be relevant (A|C) and
when irrelevant dimensions continue to be
irrelevant (C|B).

The next three conditions in Figure 3 were
designed to reveal potentially negative transfer
effects from the initial to final categorization.  In
Condition C|A, the dimension that was initially
irrelevant later became relevant.  This condition
did not yield significant worse transfer
performance than the control condition, p>0.1.
Compared to the control condition, marginally
significantly worse performance for Condition
B|C was found, p=0.054.  Relative to the
condition C|A, the performance in condition B|C
was not significantly worse, p>0.1.  The
Condition B|A did not significantly differ in its
transfer to the A|B categorization relative to the
control group, p>0.1.  Finally, the condition B|A
did produce significantly  better transfer than
did condition B|C, p <.05, but did not produce
significantly better transfer than condition C|A,
p>.1.
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Discussion
With the exception of one of the seven

conditions, the results from Experiment 1 are
generally consistent with the role of selective
attention in promoting beneficial and
detrimental transfer across categorizations.
Selective attention can be directed toward
arbitrary dimensions created by randomly
pairing faces, and once a participant has learned
to direct selective attention toward or away from
a dimension, this learning extends to new
categorizations involving different stimuli.  Two
conditions that show strong transfer effects
(A|C, C|B) do not repeat any of the same faces
across initial and transfer conditions, but rather
only involve the same dimensions.  For
example, none of the faces belonging to the A|B
set are the same as faces from the C|B set.  The
only similarity between these sets is that
Dimension B is irrelevant for both sets.  Thus,
our results suggest sensitization of dimensions
rather than simply sensitization of particular
faces.

Experiment 1 also allowed the
contributions of learning to ignore irrelevant and
attend relevant dimensions to be separately
assessed.  Somewhat surprisingly, the positive
transfer associated with a shared irrelevant
dimension (C|B) is just as strong as the transfer
due to a relevant dimension (A|C).  In an
informal post-experimental interview, most of
our participants indicated that during category
learning they learned to attend to diagnostic
aspects of the faces that allowed them to
discriminate between the two categories.  No
participant spontaneously reported learning to
ignore irrelevant dimensions.  Yet, given the
strong transfer from C|B to A|B, two
categorizations that only share an irrelevant
dimension,  it appears that our participants do in
fact learn what dimension not to attend, and that
this learning transfers to ignoring the same
dimension when it is later irrelevant.  Given the
equivalent objective transfer for relevant and
irrelevant dimensions despite the intuition that

learning generally involves attending to relevant
dimensions, an interesting speculation is that
learning not to attend to irrelevant dimensions is
a relatively implicit skill compared to learning
to attend to relevant dimensions.

An alternative account for the above
positive transfer effects that does not involve
learned selective attention at all is that transfer
is based on the similarity between initial and
transfer faces.  That is, participants develop
facility with processing particular faces, and
show beneficial transfer to subsequent
categorizations to the extent that the new faces
are similar to the familiarized faces.  By this
account, the A|B categorization yields the best
transfer because the faces are identical across
the two categorizations.  The A|C and C|B
conditions produce better transfer than the
control C|D categorization because the faces in
these two sets are similar to the A|B faces.  This
similarity is due to the component dimension
that these two conditions have in common with
the A|B faces.

However, the conditions testing negative
transfer do not support this “transfer based on
familiarized faces” account.  The conditions C|A
and B|C have the same similarity to the A|B
faces as the conditions A|C and C|B, but showed
no evidence of positive transfer.  In fact, if one
averages across the four conditions that have
one common dimension shared with the A|B
condition, accuracy for the A|B condition is not
any higher than it is for the control condition
(F(1,176)=0.414, MSE=0.0055, p>0.1).  This
suggests that there is no significant transfer
based on face similarity per se.

The one condition that is problematic for
an account that relies solely on learned selective
attention is the B|A condition. The results from
this condition seem quite surprising at first.  In
this condition, the relevant dimension becomes
irrelevant and the irrelevant dimension becomes
relevant, and yet performance is no worse than it
is for the control condition and is significantly
better than for  the B|C condition. One might
have expected performance to be worse for this
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condition than it was for either the C|A or the
B|C conditions given that it combines both of
their disadvantages.

It is for this B|A condition that we believe
a dimension differentiation account may be
useful.  Our explanation for the beneficial
transfer, relative to the negative transfer
conditions, from B|A to A|B categorizations
rests on the observation that they both involve
the same set of 16 faces.  The categorization
rules are orthogonal (separated by 90 degrees),
splitting the stimuli horizontally in one case and
vertically in the other.  As such, both
categorization rules depend on separating the
horizontal dimension from the vertical
dimension in order to selectively attend only one
of these dimensions.  Effective performance on
the A|B categorization requires isolating
Dimension A from B, and once accomplished,
this may be useful in acquiring the B|A
categorization because this categorization also
requires the same differentiation of dimensions,
albeit for opposite purposes.  Although A|B and
B|A have opposite requirements as far as
selective attention to component dimensions,
they are consistent with each other in requiring
that Dimensions A and B be isolated from each
other.  The opposing transfer results predicted
from selective attention and from dimension
differentiation may in fact both be operating.
Negative transfer driven by selective attention
may be canceling out most of the positive
transfer driven by dimension differentiation,
leaving only an insignificant positive transfer
from B|A to A|B relative to the control
condition.

Experiment 2A
One of the most surprising results from

Experiment 1 was that when a formerly
irrelevant dimension became relevant and at the
same time a relevant dimension became
irrelevant, transfer performance was better than
when only one of these changes occurred,
significantly so in one case.  Our account of this
result is that there is a tendency for B|A learning

to  facilitate an A|B categorization because both
categorizations are facilitated by learning to
successfully isolate the two Dimensions A and
B.  Another potential account for the
surprisingly good transfer from B|A to A|B is
that these conditions involve the same eight
faces, and that participants become familiarized
with the faces during B|A training, and can then
easily learn new assignments to the familiar
faces during the second categorization.  This
account is cast into some doubt by Experiment
1, which found no evidence for transfer based
on face similarity.  Conditions with one
overlapping dimension in common with the
transfer task did not produce better transfer, on
average, than did the condition with no
overlapping dimensions.  However, it is possible
that the case of exactly identical faces across
categorizations is a special case that promotes
transfer based on familiarity even though
intermediate levels of similarity do not.

In Experiment 2, we controlled for the
familiarity of the faces by using the same faces
during initial and transfer categorizations for all
conditions.  We manipulated whether the initial
and transfer categorizations encouraged the
same organization of stimuli into dimensions, or
whether incompatible, cross-cutting
dimensionalizations were required.
Specifically, we compared a situation where the
initial and final categorization rules were
separated by 90 or 45 degrees.  We created
categorization rules for the 8 faces in Figure 2
that divided these faces into two categories
either horizontally, vertically, or diagonally.
The straight lines in Figure 4 illustrate the four
categorization rules used, and also provide two
example pairs of initial and final categorization
rules.  In one example, the initial categorization
rule has a horizontal category boundary such
that the top four faces belong to Category A and
the bottom four faces belong to Category B.  In
the 45 degree rotation condition, the transfer
categorization rule following this horizontal rule
would involve a diagonal categorization, in
either a forward-slash “/” or backward-slash “\”



Dimension Sensitization and Differentiation   

form.  In the 90 degree rotation condition, the
transfer rule would be a vertical category
boundary.  In the second example, the initial
categorization is a diagonal rule such that the
upper-right faces belong to Category A and the
lower-left faces belong to Category B.  The
transfer rule in the 45 degree rotation condition
would either be vertical or horizontal.  The
transfer rule in the 90 degree rotation condition
would be the diagonal rule facing the opposite
direction as the initial rule.  The point of the
examples is to stress that the difference between
the 45 and 90 degree rotations is unrelated to the
actual orientation of the line that defines the
transfer categorization rule.  As shown in Figure
4, whether the transfer diagonal rule counts as a
45 or 90 degree condition depends on the
orientation of the initial categorization rule.  The
difference between the 45 and 90 degree
conditions involves the relation between two
categorizations, not the absolute orientation of a
categorization rule.

The 45 and 90 degree rotation conditions
have complementary costs and benefits with
respect to transfer to the final categorization.
The conditions can be considered with respect to
transfer based on selective attention demands
and dimensional organization.  Considering
selective attention demands, two categorizations
are compatible to the extent that the weights
given to the dimensions for optimal
categorization efficiency are similar.
Categorizations related by 90 degrees are
completely incompatible as far as selective
attention demands because for one
categorization Dimension X should receive an
attention weight of 0 and Dimension Y a weight
of 1, and for the other categorization X should
receive an attention weight of 1 and Y a weight
of 0. The average difference between attentional
weights would be 0 if two categorizations were
completely compatible.  Categorizations related
by 45 degrees are partially compatible by
selective attention, because for one
categorization Dimension X should receive a
weight of 0 and Dimension Y a weight of 1, and

for the other categorization both Dimensions X
and Y should receive weights of 0.5.  These
attentional similarity relations depend only on
the relation between the two categorization
rules, holding irrespective of the rules' specific
orientations.

Considering dimensional organization, two
categorizations are compatible to the extent that
the dimensions that they require are independent
and therefore able to co-exist.   For example, in
terms of dimensional organization, categorizing
rectangles on the basis of height is compatible
with categorizing them on the basis of width
because these two dimensions can each be
separately registered and do not interfere with
each other.  Someone who thought about
rectangles in terms of height would also be
likely to think about them in terms of width.
Organizing rectangles in terms of shape (ratio of
width to height) and area is an alternative
dimensional organization, as shown in Figure 5.
A person who thinks in terms of rectangle shape
(e.g. the ratio of the height to the width) might
also be expected to think in terms of area
because this is the remaining dimension along
which rectangles vary once shape has been
extracted.  However, organizing rectangles in
terms of height is incompatible with organizing
them in terms of area because area is partially
dependent on height.  In fact, results have been
equivocal on whether rectangles are properly
viewed as being psychologically represented in
terms of height and width, or in terms of area
and shape (Feldman & Richard, 1998;
Shoenemann, 1977).  However, researchers
agree that if a person tends to view rectangles in
terms of height, then they would also view
rectangles in terms of width rather than area or
shape.  In assessing the compatibility of
dimensional organization, two dimensions are
compatible if they involve independent sources
of variation, and are incompatible if they do not.
If dimensions involve related sources of
variation, then some of the variation that is
accounted for by one dimension need not be
accounted for by the other dimension, making
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that second dimension less pertinent to the task
of fully describing a stimulus set.

If the only thing that participants learn
during the initial categorization is how much to
selectively attend to pre-existing and pre-
differentiated dimensions, then we would expect
the 45 degree rotation to produce better transfer
to the final categorization than the 90 degree
rotation.  In the 45 degree rotation condition, the
dimension that is relevant during the initial
categorization is partially relevant for the final
categorization, and similarity in terms of
attentional weights is 0.5.  In the 90 degree
condition, the dimension relevant during the
initial categorization is completely irrelevant for
transfer, and the similarity in terms of
attentional weights is 0.  However, in terms of
dimensional organization, the 90 degree rotation
may show better transfer, because the initial and
transfer categorization rules are compatible in
promoting the same differentiation of
dimensions.  In half of the categorization
conditions, this differentiation will imply an
organization of stimuli into horizontal and
vertical dimensions.  In the remaining
conditions, this differentiation will imply an
organization of the stimuli that cuts across this
organization, organizing the faces into two
dimensions that are separated by 45 degrees
from the horizontal-vertical dimensionalization.
Both dimensional descriptions are possible ways
of viewing the set of stimuli and it is likely that
neither is a priori privileged due to the arbitrary
manner in which the dimensions were originally
created.
Method

Participants.  131 undergraduate students
from Indiana University served as participants
in order to fulfill a course requirement. The
number of students in the 45 and 90 degree
rotation conditions were 65 and 66 respectively.

Procedure.  The stimuli were faces
constructed in the same manner as in
Experiment 1.  A 4 X 4 matrix of faces was
obtained by blending values on two dimensions,
with each dimension defined by two faces.  The

four faces selected as dimension endpoints were
chosen to be roughly equally similar to each
other in a multidimensional scaling solution
(Goldstone, 1994-b).  From this 4 X 4 matrix,
the eight faces shown in Figure 4 were selected
as stimuli.

Experiment 2A used the same general
procedure as was used in Experiment 1.
Participants received two categorizations that
were related to each other by a 45 or 90 degree
rotation.  During each trial of a categorization
task, participants saw a face, guessed its
category (“club membership”) and received
feedback from the computer indicating their
accuracy.  After the first categorization task was
completed, participants were warned that the
categories had changed and that they would
have to learn new categories in the second phase
of the experiment.  Each phase contained 56
trials, consisting of 7 repetitions of eight faces.

For the initial categorization phase, one of
four categorization rules was randomly chosen
for each participant: horizontal, vertical, forward
diagonal, or backward diagonal.  The category
boundary line split the eight faces into two
categories, and the assignment of the two sets to
Categories A and B was randomized.  In the
transfer categorization, the category boundary
was rotated by either 45 or 90 degrees,
depending upon the participant’s condition.
Whether a rotation was counter-clockwise or
clockwise was randomly determined.  Thus, the
90 degree rotation of an initial diagonal
boundary was always a diagonal boundary
facing the other direction, and the 45 degree
rotation was either a horizontal or vertical
boundary.  Assigning the two sets to category
labels was again randomized.  As such, in the 90
degree rotation condition, four out of the eight
faces received the same label in the initial and
transfer phases, and the remaining four faces
received a label of “Category A” during one
phase and “Category B” during the other phase.
However, in the 45 degree rotation condition,
there are two equally probable ways that the
labels may be assigned.  In the first way, six out
of eight faces received the same label during the
two phases.  In the second way, two out of eight
faces received the same label.
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Results
Categorization accuracy for the two groups

did not significantly differ in the initial
categorization phase of the experiment, F(1,
129) = 0.744, MSE = 0.0342,  p > 0.1.  The
primary result of interest concerns the
categorization accuracies for the transfer portion
of the experiment, and are shown on the left side
of Figure 6.  For comparison purposes, a
summary of the results from Experiments 2-4
are shown in Table 2.  As described in the
methods section, rotating a category rule by 45
degrees produced categorizations with either
two or six labels in common across initial and
transfer conditions.  However, with either
method of assigning categories to labels,
transfer performance was worse for the 45
degree condition than the 90 degree condition.
Overall, the 90 degree condition produced better
transfer than the 45 degree condition, F(1, 129)
= 4.013, MSE = 0.185,  p < 0.05.  Within the 45
degree condition, the average categorization
accuracies when two and six labels were in
common across categorizations were 59.7% and
63.2% respectively, which did not significantly
differ, T (63)=0.97, p > .1.  A second way in
which common category assignments across the
categorization phases might influence accuracy
is through assignments to specific items rather
than through the overall number of shared
category assignments.  When an item received
the same category assignment across the two
phases of the experiment, the average
categorization accuracy for it was 66.0% in the
second phase, and this was significantly
different from the 61.1% categorization
accuracy for an item the received different
category assignments, paired T (1,130)=2.3, p <
.05.

Initial categorization performance was not
significantly better for horizontal and vertical
boundaries (63.5%) than diagonal boundaries
(66.3%), F(1, 130)=1.48, MSE = 0.0248, p >
.10.  These accuracy rates are significantly
below what they were in Experiment 1, but this
difference may largely be due to the relatively

small number of trials per categorization phase.
Across the two categorization phases, there was
no significant difference in categorization
accuracy for the 90 degree rotation condition,
T(65)= 0.39, p>0.1 and for the 45 degree
condition, categorization accuracy decreased
from the initial to transfer condition, although
this effect was only marginally significant, T
(64)=1.65, p=.10.
Discussion

Transfer across categorizations was better
when the categorizations were related by 90
rather than 45 degrees.  This is a surprising
result from the perspective of learned selective
attention, given that categorizations that are
related by 45 degrees partially overlap in the
dimensions that are relevant, whereas there is no
overlap at all in the 90 degree condition.  It
would, however, be premature to conclude that
our results are evidence against Thorndike’s
(1903) principle of common elements, which
states that there is positive transfer between
skills to the extent that the two skills involve the
same procedural elements.  Our results are
consistent with transfer by common elements if
one includes elements that extend beyond
selective attention processes.  More specifically,
our results are reconciled with transfer by
common elements if the notion of dimension
differentiation is incorporated.  Categorizations
that are separated by 90 degrees encourage the
same isolation of dimensions from each other,
whereas categorizations that are separated by 45
degrees require cross-cutting dimensional
organizations.

An account of the advantage of 90 over 45
degree transfer in terms of dimension
differentiation could take two forms.  One form
emphasizes the hindrance caused by inconsistent
dimensional organizations from initial to
transfer phases.  The other form emphasizes the
facilitation caused by congruent dimensional
organizations.  Our results lend more support to
the hindrance account.  Relative to initial
categorization performance, transfer
performance was worse in the 45 degree rotation
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condition, and was not significantly better in the
90 degree rotation condition.  As such, when
dimensional organizations are incompatible with
each other across tasks, negative transfer occurs.
Furthermore, this negative transfer is apparently
strong enough to counteract the presumed
positive transfer from the partially shared
relevant dimensions in the 45 degree rotation
condition.

An important result from Experiment 2A
was that the diagonal categorization rules were
not any harder than the vertical or horizontal
rules.  This confirms that our morphing
technique produced genuinely arbitrary
dimensions.  In situations where stimuli have
privileged dimensions, categorization is faster
and more accurate when the categorization rule
is orthogonal to these dimensions rather than at
a 45 degree angle (Grau & Nelson, 1988;
Kruschke, 1993; Melara et al., 1993).  Our
results do not reveal a similar pattern of
privileged dimensions.  This is also consistent
with our participants’ informal reports.  They
did not experience a clear dimensional
organization to the faces.  We seem to have
successfully developed a set of materials that are
intrinsically ambiguous as far as their
dimensional structure.  If the eight faces are
grouped according to a diagonal categorization
rule, then participants apparently do not show a
bias to interpret them as being composed out of
the horizontal and vertical dimensions shown in
Figure 4.  Rather, the perceived dimensional
organization is influenced by the categorization
rule itself.  This pattern of results contrasts
markedly to what is found with stimuli
composed out of clearly delineated, separable
dimensions.  For these materials, diagonal
categorization rules are notably more difficult
than horizontal or vertical rules (Ashby &
Maddox, 1994; Kruschke, 1993), as one might
expect if the diagonal categorization rules
involve integration across two dimensions that
are normally separated while the horizontal and
vertical rules involve only one dimension.  The
failure to find this difference implies that our

diagonal categorization rules are not more
complex than the vertical and horizontal rules.
The dimensional status of horizontal, vertical,
and diagonal axes is equal prior to
categorization training.  Although we, as
experimenters, can provide simpler descriptions
for the horizontal and vertical axes than for the
diagonal axes, these descriptions are apparently
not serving as the basis for participants'
categorizations (see also Cheng and Pachella,
1984).

Experiment 2A lends support to
Experiment 1’s conclusion that dimension
differentiation may explain the surprisingly
good transfer from B|A to A|B.  In supporting
this conclusion, the experiment eliminates an
explanation of the transfer (more precisely, the
lack of negative transfer) that is based on
stimulus familiarity.  All of the faces in the
second phase of Experiment 2 were exposed to
participants in the initial phase, regardless of the
participants’ transfer condition.  Furthermore,
accounts in terms of transfer by common labels
can also not fully explain Experiment 2.  Better
transfer was observed in the condition that
preserved 4 category assignments (the 90 degree
condition) than in conditions that preserved
either 2 or 6 category assignments.

Experiment 2B
Experiment 2A found better transfer

between category rules related by 90 than by 45
degrees, a surprising fact from the perspective
of selective attention given that rules related by
90 degrees are completely non-overlapping in
their attentional requirements whereas rules
related by 45 degrees partially agree on what
dimensions are relevant and irrelevant.  Our
account for the advantage of a 90 over 45 degree
rule rotation is that only the former rotation
encourages a compatible dimensional
interpretation of the stimuli.  If the good transfer
in the 90 degree rotation condition is because
the two categorizations encourage the same
differentiation of the faces into dimensions
rather than cross-cutting dimensions, then  we
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should not expect the 90 degree rotation
condition to produce better performance when
dimension differentiation is not required -- that
is, with more separable stimuli.  With more
separable dimensions, participants should be
able to selectively attend one dimension without
much need to differentiate fused dimensions.  If
dimension differentiation was the cause of the
relatively good transfer observed in the 90
degree rotation condition, then using relatively
separable dimensions should reduce or eliminate
the advantage of the 90 degree rotation
condition.  Experiment 2B explored this
prediction by testing whether the 90 degree
rotation advantage can be eliminated by using
stimuli with more cleanly delineated
dimensions.

Experiment 2B used the same face stimuli
of the previous experiments, but generated more
separable dimensions by isolating and morphing
specific face parts.  Dimension A morphed from
the mouth of one face (call him “Joe”) to the
mouth of another face (“David”).  Dimension B
morphed from the eyes of Joe to the eyes of
David.  Thus, the two dimensions involved the
appearance of separated face parts rather than
superimposed, overlapping whole-face
dimensions.  If these stimulus dimensions are
more differentiated than the whole-face
dimensions of the previous experiments, then
we would not predict as large an advantage of
the 90 over 45 degree transfer.

Figure 7 depicts the stimuli used in
Experiment 2B, in which the mouth (vertical
dimension) or eyes (horizontal dimension) of
one face were selectively morphed into the
mouth or eyes of another face while preserving
the rest of the face features.  The face part is
seamlessly joined with the rest of the face using
a morphing technique described by Steyvers
(1999).  With this technique, faces can be
constructed that vary on two spatially separated
dimensions.  Such stimuli allow us to compare
perceptual categorization tasks that involve
overlapping (Experiment 2A) and separated
(Experiment 2B) dimensions, controlling for the
nature of the stimuli.  Although mouth and eye
features may be processed configurally (Farah,
1992), a study using Garner interference

(Garner, 1976, 1978) from our laboratory has
revealed that the dimensions of Figure 4 are
more strongly integral than are the mouth and
eye dimensions of Figure 7.

The logic of the Garner interference
measure of integrality is that if two dimensions
are relatively integral, then it will be relatively
difficult to attend to one of the dimensions while
ignoring irrelevant variation on the other
dimension.  This is operationalized by
comparing the efficiency of two categorizations
– one which requires a binary classification
along a single dimension (the control task), and
one which requires a binary classification along
a single dimension while irrelevant variation
exists along on a second dimension (the filter
task).  When dimensions are relatively
separable, the filter and control tasks are
approximately equally fast and accurate.  When
dimensions are integral, the filter task is much
more difficult than the control task, consistent
with the notion that participants have a hard
time ignoring variation along an irrelevant
dimension if the two dimensions are
psychologically fused.  With the face
dimensions shown in Figure 4, categorization
responses based on one of the dimensions
increased from 740 to 1125 milliseconds when
irrelevant variation on the other dimension was
introduced, whereas for the mouth and eye
dimensions of Figure 7, variation on an
irrelevant dimension only slowed responses
from 717 to 778 milliseconds.  Thus, based on
response times for categorizations, it is much
more difficult for participants to selectively
attend to the dimensions of Figure 4 than Figure
7.  The logic for Experiment 2B does not require
us to claim that faces are perceived as composed
out of separable dimensions.  Indeed, a large
body of research suggests that faces are
perceived configurally.  Face parts influence the
perception of other face parts, and selective
attention to individual face parts is difficult
(Farah, 1992; Tanaka & Farah, 1993).
However, our claim, supported by the observed
interference between dimensions, is that prior to
extensive training, the dimensions of Figure 7
are more isolated and pre-differentiated for our
participants than are the dimensions of Figure 4.
Method

Participants.  120 undergraduate students
from Indiana University served as participants
in order to fulfill a course requirement. The
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number of students in the 45 and 90 degree
rotation conditions were 62 and 58 respectively.

Procedure.  The face dimensions were
constructed in the same manner as in
Experiment 2A, but were composed of spatially
separated, non-overlapping face parts.  Thus, a
subset of 8 faces was selected from a 4 X 4
matrix of faces varying on two dimensions.  A
standard face was generated by blending the two
original faces shown on the sides of Figure 7.
These were two of the same faces (Faces 3 and
4) used to generate the stimuli in Experiment
2A.  Then, dimensions were created by
selectively altering the mouth or eye regions of
the standard face.  Four values of the mouth
dimension were used: 100% Face 3, 67% Face 3
and 33% Face 4, 33% Face 3 and 67% Face 4,
and 100% Face 4.  The analogous values were
used in constructing the vertical, eye dimension.
From the 4 X 4 matrix of faces, the 8 faces that
were chosen to be stimuli all had a 67%
contribution of Face 3 or 4 along the two
dimensions.  Thus, the faces are arranged in the
octagonal form shown in Figure 7.

The same two-phase category learning
procedure used in Experiment 2A was used
again.  Initial categorization rules were selected
at random from one of four possibilities:
horizontal, vertical, diagonal-/, and diagonal-\.
Final categorizations were again related to these
initial rules by either 45 or 90 degrees.
Results

Like Experiment 2A, categorization
accuracy varied as a function of the form of the
categorization boundary.  Unlike Experiment
2A, the initial diagonal category boundaries
were significantly harder (62.6% accuracy) than
the horizontal and vertical boundaries (69.7%),
T (118)= 3.086, p < 0.01.  As such, in addition
to the results cited for Garner interference, the
categorization results gave independent grounds
for believing that the two dimensions of
Experiment 2B were more separable than those
of Experiment 2A.  Consistent with previous
studies (e.g. Kruschke, 1993; Shepard, Hovland,
& Jenkins, 1961), when two dimensions are

psychologically separable, it is difficult to attend
to both dimensions while learning a
categorization.

Overall, categorization accuracy did not
vary significantly as a function of transfer
condition, with the 45 and 90 degree rotation
conditions producing 65.2% and 65.0%
accuracies, respectively, on the final
categorization, T (118) = 0.082, p > .5.  Going
from the initial to transfer categorizations, there
was no significant difference in categorization
accuracy for the 90 degree rotation condition,
T(57)= 0.282, p>0.5, or for the 45 degree
condition, T (61)=1.41, p>.10.  As with
Experiment 2A, we conducted a more detailed
analysis by considering how many items
received the same category assignment across
the initial and transfer conditions.  This number
must always be 4 out of 8 in the 90 degree
rotation condition, but will be either 2 or 6 in the
45 degree rotation condition.  Final
categorization accuracy did not significantly
depend on the number of unchanged category
assignments, F(2, 119)=0.039, MSE=0.00073, p
> 0.5.  Similarly, categorization accuracy was
not significantly different for items that received
the same category assignment across the two
phases relative to items that received different
assignments, paired T(1, 118)=0.4, p> 0.1.
Discussion

Experiment 2B eliminated some possible
counter explanations of Experiment 2A that do
not involve the notion of compatible and
incompatible dimensional organizations.  In
Experiment 2B, an advantage of the 90 over 45
degree rotation condition was not found.  The
faces of Experiments 2A and 2B were highly
similar.  The major difference between the
experiments was that the experimental
dimensions used to construct the faces in
Experiment 2B were more psychologically
separable than those used in Experiment 2A.
This difference was confirmed both by a pilot
experiment showing greater Garner interference
for the dimensions used in Figure 4 than Figure
7, and also by the significantly worse
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categorization accuracies for rules that were
diagonal rather than orthogonal to the
dimensional axes for Experiment 2B but not
Experiment 2A.  For Experiment 2B, the
horizontal and vertical axes shown in Figure 7
were psychologically privileged axes, and
categorization rules involving rotations of these
axes were difficult to learn.

Dimensional separability is predicted to
influence categorization accuracies for the 45
and 90 degree rotation conditions.  If the
advantage of 90 over 45 degree rotations
observed in Experiment 2A is due to dimension
differentiation, then the advantage should not
persist if dimension differentiation is not
required.  Exactly this result was obtained in
Experiment 2B.  The dimensions used in
Experiment 2B were not completely separable,
but they were apparently more separable than
the dimensions of Experiment 2A.

The lack of an advantage of the 90 degree
rotation condition in Experiment 2B argues
against general learning accounts of Experiment
2A that do not depend on the nature of the
dimensions.  For example, it is possible to give
post-hoc accounts of Experiment 2A whereby if
categorization rules are too similar (2 identical
category assignments) or too different (6
identical category assignments) then transfer
performance suffers.  It might be that if initial
and final rules are too similar, participants have
a tendency to continue using their imperfect
initial rule during transfer.  If the two rules are
too dissimilar, then participants might either try
to reverse the rule or might generally give up on
the possibility of transferring anything learned
from the initial phase.  Apart from the inelegant
and post-hoc nature of this nonmonotonic
account, it also does not correctly predict the
outcome from Experiment 2B.  General learning
accounts for the results from Experiment 2A
that depend solely on the nature of the initial
and final rules cannot account for the
discrepancy between Experiments 2A and 2B.

Our results suggest that the degree of
transfer between categorization depends not just

on the relation between the categorization rules,
but also on the nature of the dimensions
underlying the stimuli.  Experiments 2A and 2B
are the first results to our knowledge that
suggest that the strength of transfer from one
categorization to another depends on the
perceptual integrality of the stimulus
dimensions.  Such a dependency is predicted if
transfer between categorizations is based not
only on their similar requirements for selective
attention, but also on the compatibility of their
dimensional organizations.  Categorization rules
related by a 45 degree rotation are incompatible
in the dimensional organizations that they
require.  Rules related by 90 degrees are
incompatible in terms of their selective attention
requirements, but are compatible in encouraging
the same isolation of one dimension from
another.  This compatibility in terms of
dimensional organization is expected, and
found, to be of particular importance when the
dimensional organization of the category
members is ambiguous.

Experiment 3
The dimension differentiation process

observed in Experiment 2A could be directed by
either supervised or unsupervised information.
Unsupervised information is provided by the
stimuli themselves, and their statistical
properties across the entire set of stimuli.  For
example, if stimuli such as AAQ, ARA, SAA,
BBT, BUB, VBB are presented, even without
any information about the categories from
which these stimuli are drawn, one might
deduce that there are two categories and that the
first three objects belong to one category and the
last three objects belong to the other category.
The basis for this induction is present in the
stimuli themselves, given their natural clustering
into two categories.  Previous research has
shown that people do in fact form categories on
the basis of such unsupervised information
(Clapper & Bower, 1994).  Supervised
information is the feedback given to a person
once they have categorized the object.  When
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different patterns of perception occur when the
same stimuli are used but are categorized
according to different rules, then we can
conclude that supervised feedback is affecting
perceptual change (Goldstone, 1994-a;
Goldstone et al., 2000).

Experiment 2A provides suggestive but
not definitive evidence that dimension
differentiation is caused by supervised rather
than unsupervised information.  In this
experiment, all of the categorization groups
were presented with the same eight faces, and
better transfer was found between
categorizations related by a 90 degree rotation.
However, the stimuli themselves weakly suggest
a dimensional organization, because each face
shares exactly the same value along the
horizontal and vertical dimensions of Figure 4
with one other face.   If people were sensitive to
these shared identical values on a dimension and
if they assumed that the underlying dimensions
of the stimuli should have identical values for
different stimuli, then even without any category
feedback, they would be able to reconstruct the
horizontal and vertical dimensions in Figure 4.
This cannot explain the results from Experiment
2A because we found dimension differentiation
for diagonal as well as horizontal and vertical
categorization rules separated by 90 degrees.
Still, the stimuli in Figure 4 do potentially have
privileged dimensions, and it is possible to
create equivalent face sets that do not.  As such,
the purpose of Experiment 3 was to replicate
Experiment 2A’s results using stimuli with no
unsupervised information that could bias the
formation of dimensional structures.  The faces
for Experiment 3 were created by using
dimension values that were circularly arranged.
The octagonal structure of Experiment 2A
approximates such a circular arrangement, but
Experiment 3 used trigonometric relations to
more precisely capture the circular arrangement.
With such an arrangement, any of the eight
linear categorization rules should produce
equally difficult categorizations, and there is no

bias toward one of these categorizations from
unsupervised information.
Method

Participants.  161 undergraduate students
from Indiana University served as participants
in order to fulfill a course requirement.  The
students were randomly assigned to the 45 and
90 degree conditions.

Materials.  The stimuli were faces that
were generated by morphing between the same
photographs used in Experiment 2A.  The set of
16 faces that all participants saw are shown in
Figure 8.  These faces, rather than being
selected from a 4 X 4 matrix of faces as was true
in the previous experiments, were arranged
along a circle.  The horizontal and vertical
dimensions in Figure 8 both represent the
relative proportion of two faces, similar to the
axes shown in Figure 2.  A variable D was
created that was assigned 16 different values for
degrees from 0 to 360 in 22.5 degree steps.  For
each value assigned to D, the vertical dimension
value for a face was equal to cosine(D) and the
horizontal dimension value was sin(D).  In this
manner, we can be assured that the statistical
structure of the set of faces does not itself
suggest a dimensional organization.  The
circularly arranged stimuli have no privileged
dimensional axes until the categorization
feedback is given.  In all other respects, the
appearance of the faces was identical to that
used in Experiment 2A.

Procedure.  The experimental procedure
closely followed that of Experiment 2.  For each
participant, a randomly constructed initial
category boundary was selected by choosing a
random number between 1 and 16 inclusively.
This number determined the first face from
Figure 8 that belonged to Category A.  The
block of eight faces, starting with this first face
and going around the circle clockwise, were all
assigned to Category A, and the remaining faces
were assigned to Category B.  For the
participants in the 45 degree condition, the final
categorization rule shifted the initial
categorization clockwise by two faces.  For the



Dimension Sensitization and Differentiation   

participants in the 90 degree condition, the final
categorization rule shifted the initial
categorization boundary clockwise by four
faces.  For both the 45 and 90 degree conditions,
the category labels were swapped from “A” to
“B” and from “B” to “A” for half of the
participants, randomly determined.  Thus, the 90
degree condition always led to eight faces
receiving the same categorization and eight
receiving the opposite categorization across the
two category learning stages, whereas the 45
degree conditions led to either four or twelve
faces receiving the same categorization across
the two stages.

During each of the two category learning
stages, participants were given 4 repetitions of
the 16 faces.  The display durations, feedback,
and randomizations were identical to that of
Experiment 2.  Participants received rest breaks
after every 32 trials.
Results

Categorization accuracy for the 45 and 90
degree conditions did not significantly differ in
the initial categorization phase of the
experiment, and were 58.6% and 59.4%
respectively, F(1, 160) = .177, MSE = 0.00253,
p > 0.5.  The primary result of interest concerns
the categorization accuracies during the transfer
portion of the experiment.  Overall,
categorization performances in the second stage
of the experiment were 53.7% and 58.9% for
participants in the 45 and 90 degree rotation
conditions, respectively, F(1, 160) = 10.25,
MSE = .113,  p < 0.01. Going from the initial to
transfer categorizations, there was no significant
difference in categorization accuracy for the 90
degree rotation condition, T(78)= 0.135, p>0.5,
and for the 45 degree condition categorization
accuracy was significantly lower in the transfer
phase, T (81)=3.75, p<.001.  Transfer in the 90
degree condition surpassed either of the labeling
conditions of the 45 degree condition.  Within
the 45 degree condition, categorization
accuracies were 53.6% and 53.5% when four
and twelve faces received the same
categorization, T(80) =0.016, p >.5.

Categorization accuracy was not significantly
different for items that received the same
category assignment across the two phases
relative to items that received different
assignments, paired T(1, 160)=0.3, p> 0.1.

For both the initial and transfer
categorizations, and both the 45 and 90 degree
conditions, there was a strong influence on
accuracy of the distance of a face from the
category boundary, F(3,643) = 20.39, MSE =
.274, p < 0.001, but no higher order interactions
involving distance from category boundary.
Overall, for faces that were located one, two,
three, and four positions away from the
boundary, categorization accuracies were
52.6%, 56.3%, 59.6%, and 62.0% respectively.
Discussion

Experiment 3 replicated the results from
Experiment 2A, the other experiment that
involved arbitrary and completely overlapping
dimensions.  In both experiments, performance
on the transfer categorization was better when
its category boundary was related by 90, rather
than 45, degrees to an earlier categorization.  In
Experiment 3, the circular arrangement of the
faces prevents any source of information other
than categorization feedback from producing the
superior transfer performance in the 90 degree
condition.  The advantage of the 90 degree over
45 degree condition in Experiment 3 was just as
large as the difference found in Experiment 2A,
suggesting that the small amount of
unsupervised statistical information present in
Experiment 2A was not responsible for the
superiority of the 90 degree condition in this
experiment either.  This conclusion is consistent
with our participants' and our own introspection
that it is virtually impossible to tell whether two
faces have the same value on one of the
arbitrary dimensions in Figure 4.

The advantage of the  90 degree over 45
degree condition was apparently largely due to
negative transfer caused by the 45 degree
condition rather than positive transfer in the 90
degree condition.  This is suggested by the
significantly worse categorization performance
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in the transfer than initial categorization stage
for the 45 degree condition.  Negative transfer in
the 45 degree condition was also found in
Experiment 2A.

Experiment 4
Until now, the dimensions under inquiry have
been dimensions created by blending arbitrarily
paired faces in different proportions.  As
indicated in Experiment 2, these dimensions
appear to pass the Garner tests for integrality.
For example, responding to one of two
dimensions is slowed by the presence of
irrelevant variation along the other dimension.
However, we would have a more compelling
case for dimension differentiation if the results
from Experiment 3 could be replicated with
other materials.  There are at least four reasons
why a replication is desirable.

First, results from previous experiments
were statistically reliable, but weak.  One reason
for relatively small effect sizes may be that
overall categorization accuracy was fairly poor.
For example, in Experiment 3, categorization
accuracy in the initial category learning phase
was only 59%.  Evidence for strong transfer
between categorization conditions is only
expected if substantial learning occurs during
the initial categorization phase.  Second, if
dimension differentiation exists, it should be
possible to obtain evidence for it using
classically integral dimensions.  While the
dimensions of Experiments 2A and 3 are
apparently integral, far more empirical evidence
exists that saturation and brightness are integral
(Foard & Kemler, 1984; Nosofsky & Palmeri,
1996; Shepp, Burns, & McDonough, 1980).
Third, the face-based dimensions used in the
previous experiments may themselves have
components.  Participants who learn to
accurately categorize faces grouped by an
arbitrary dimension may not be basing their
judgments on the entire dimension.   Instead,
they may be responding to a local region of the
face that covaries with the dimension.  Some of
the local regions may not have arbitrary

characterization, and in fact may correspond to
pre-existing dimensions such as "happiness,"
"age," and "adiposity."  This is true of any
morph-based dimension given that many parts
simultaneously change as the dimension value
changes.  As such, we can only conclude that
participants learn to differentiate between the
morph-based dimensions or between correlates
of these dimensions.  Fourth, given that several
authors have suggested that face processing may
be an important special case of perception with
unique processes associated with it (Farah,
1992), it is important to know whether the
dimension differentiation observed with face
dimensions generalizes to other objects, or
whether it is a peculiarity restricted to faces.
Face dimensions were used because of the
integral nature of facial dimensions, but faces
are not the only materials that possess this
property.

Experiment 4 used the same circular
arrangement of stimuli used in Experiment 3,
with 45 and 90 degree transfer conditions.  In
order to address the four points above, the
morph-based dimensions were replaced with
two classic examples of integral dimensions,
saturation and brightness.  Saturation is related
to the amount of white mixed into a color, and
brightness is related to the amount of light
coming off of a color, but to most people they
are fused together to form a unified perception
of color.  If the results from Experiment 3
replicate in Experiment 4, then this is evidence
that the advantage found for dimensionally
consistent categorizations does not depend on a
special property of faces per se.  Unlike morph-
based dimensions, saturation and brightness do
not involve correlated changes across many
different kinds of parts.  People may examine
the saturation or brightness of a small region of
a stimulus, but an accurate assessment requires
the same kind of evidence anywhere on the
stimulus, as long as the stimulus has a uniform
color.  To increase the overall accuracy of
participants' categorization, they were given a
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larger number of trials in both the initial and
final categorization phases.

Method
Participants.  Fifty-six undergraduate

students from Indiana University served as
participants in order to fulfill a course
requirement.  The students were randomly
assigned to the 45 and 90 degree conditions,
with 28 participants in each group.

Materials.  The stimuli were squares with
slightly different colors.  Sixteen colors were
created in a circular arrangement, with
approximately equal similarity between every
pair of neighboring colors. A variable D was
created that was assigned 16 different values for
degrees from 0 to 360 in 22.5 degree steps.  For
each value assigned to D, the brightness
dimension value for a square was equal to
cosine(D) and the saturation dimension value
was sin(D).  These values were passed to
internal routines on an Apple computer
(PowerMac 7200) for color production.  The
saturation and brightness values for the sixteen
colors were subsequently confirmed with a
Spectra Scan 714 chromometer.  The resulting
Commission Internationale de L'Eclairage (CIE)
1976 model color coordinates are presented in
Table 3.  Although the resulting saturation and
brightness values no longer positioned on a
perfect circle once converted to CIE
coordinates, the average deviation from values
that would lie on a circle in CIE space was less
than 5%.

Each color was presented on a 6 cm2

square patch with a red hue with primary
wavelength of 680 nm.  The colors were
presented in darkened cubicle illuminated only
by a 7.5 watt overhead light bulb.  Colors were
presented on a white screen background.

Procedure.  The experimental procedure
closely followed that of Experiment 3.  For each
participant, a randomly constructed initial
category boundary was selected by choosing a
random number between 1 and 16 inclusively.
This number determined the first colors from the

circularly arranged colors that belonged to
Category A.  The block of eight colors, starting
with this first colors and going around the circle
clockwise, were all assigned to Category A, and
the remaining colors were assigned to Category
B.  For the participants in the 45 degree
condition, the final categorization rule shifted
the initial categorization clockwise by two
colors.  For the participants in the 90 degree
condition, the final categorization rule shifted
the initial categorization boundary clockwise by
four colors.  For both the 45 and 90 degree
conditions, the category labels were swapped
from “A” to “B” and from “B” to “A” for half of
the participants, randomly determined.  Thus,
the 90 degree condition always led to eight
colors receiving the same categorization and
eight receiving the opposite categorization
across the two category learning stages, whereas
the 45 degree conditions led to either four or
twelve colors receiving the same categorization
across the two stages.

During each of the two category learning
stages, participants were given 15 repetitions of
the 16 colors, yielding 240 trials.  The display
durations, feedback, and randomizations were
identical to that of Experiment 3.  Participants
received rest breaks after every 48 trials.
Results

Categorization accuracies for both initial
and final phases of the categorization are shown
in Figure 9.  Categorization accuracies did not
significantly differ in the initial categorization
phase of the experiment, and were 79.1% and
80.2% for participants in the 45 and 90 degree
rotation conditions respectively.  Categorization
accuracies in the second stage of the experiment
were 74.4% and 82.1% for participants in the 45
and 90 degree rotation conditions respectively,
F(1, 54) =9.2 , MSE = .083,  p < 0.01. Going
from the initial to transfer categorizations, there
was not a significant difference in categorization
accuracy for the 90 degree rotation condition,
F(1,54)= 0.54, MSE=0.0057, p>0.1, and for the
45 degree condition categorization accuracy was
marginally significantly lower in the transfer
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phase, F (1,54)=2.98, MSE=0.03, p=.09.
Transfer in the 90 degree condition surpassed
either of the labeling conditions of the 45 degree
condition.  Within the 45 degree condition,
categorization accuracies were74.1% and 74.8%
when four and twelve faces received the same
categorization, F(1,80) =0.016, MSE=0.011, p
>.5. Categorization accuracy was not
significantly different for items that received the
same category assignment across the two phases
relative to items that received different
assignments, paired T(1, 80)=0.5, p> 0.1.

For both the initial and transfer
categorizations, and both the 45 and 90 degree
conditions, there was a strong influence on
accuracy of the distance of a face from the
category boundary, F(3, 220) = 71.3, MSE =
0.972, p < 0.001, but no higher order
interactions involving distance from category
boundary.  Overall, for faces that were located
one, two, three, and four positions away from
the boundary, categorization accuracies were
61.0%, 79.6%, 88.2%, and 89.6% respectively
during the initial categorization, and were
60.8%, 74.4%, 85.8%, and 88.0% during the
second categorization.

As with Experiment 3, categorization rules
based on saturation or brightness were not
significantly easier than rules based on rotated
versions of these dimensions.  From the initial
categorization phase, we identified four
categorization rules that were predominantly
based on saturation, four based on saturation,
and eight that were predominantly based on 45
degree rotations of saturation and brightness.
The average categorization accuracy for
saturation and brightness rules (79%), was not
significantly different from categorization
accuracy involving 45 degree rotations of these
rules (81%), F(1, 49), MSE = 0.0098, p>0.1.  As
such, our results do not suggest that brightness
and saturation are privileged axes of
dimensional organization for colors.
Discussion

Using classic examples of integral
dimensions rather than face-based dimensions,

the results from Experiment 4, shown in Figure
9, largely replicated the major trends found in
Experiment 3.  Specifically, better transfer was
found for categorization rules related by 90
rather than 45 degrees.  As with the earlier
experiments, the difference between the
conditions seems to be at least as much due to
difficulties in the 45 degree condition as to
beneficial transfer in the 90 degree case.  That
is, the final categorization rule in the 45 degree
condition was learned significantly less
successfully than was the initial rule, even
though the initial and final categorization rules
sampled equally from the same set of 16 rules
for defining category boundaries.  This result is
consistent with the notion that categorization
rules related by 45 degrees are incompatible in
the dimensional organizations that they require,
and consequently negative transfer exists
between them.  Rules related by 90 degrees
require very different selective attention to
dimensions, but can be successively learned
without changing the essential description of
stimuli in terms of dimensions.

General Discussion
The reported experiments explored how

the processing of perceptual dimensions is
adapted to category learning tasks.  The source
of evidence for adaptation was participants’
performance on a category learning task that
was preceded by different initial categorization
tasks.  The results provide support for both the
sensitization and differentiation of dimensions.
For both mechanisms, the dimensions were
created by arbitrarily pairing and blending faces.
As such, these mechanisms can be observed
even when the relevant dimensions were not
easily described and a priori , as they are in the
case of brightness, size, and orientation.  By
sensitization, participants learn to selectively
attend to dimensions based on their category
relevance.  Extending beyond previous
demonstrations of category-induced selective
attention (Kruschke, 1992; Nosofsky, 1986), the
transfer conditions of the current experiments
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distinguish between sensitization of relevant
dimensions and desensitization of irrelevant
dimensions.  Evidence for both effects were
found, and were found to be equally strong in
the positive transfer conditions.

Results from all four experiments suggest
that selective attention is not the only process of
adaptation.  In addition to learning to selectively
attend to dimensions, participants also
apparently learn to differentiate between
dimensions in the first place.  Differentiation of
dimensions involves the isolation of dimensions,
but is not equivalent to selectively attending to
these dimensions.  Rather, isolation of
dimensions precedes efficient selective
attention.  Some selective attention may be
possible to integral dimensions such as
saturation and brightness, given that the best
fitting categorization model requires relatively
high attention weight for the relevant dimension
(Nosofsky, 1987).  On the other hand, Nosofsky
and Palmeri (1996) find that with integral
dimensions, even when a categorization rule
specifies the relevance of only one of the
dimensions, the best fitting attention weights for
the two dimensions are approximately equal.  A
partial reconciliation of these results is that
selective attention to one of a pair of integral
dimensions may be possible, but it is not highly
efficient.  Even in the Nosofsky (1987) study,
the attention weight given to the irrelevant
dimension was not zero, as would be expected if
the dimension could be completely ignored.  To
selectively attend to Dimension X and ignore
Dimension Y with efficiency, one must be able
to isolate Dimension X in the stimulus.  Once
isolated, one can then choose to either attend or
ignore it.  In Experiments 2 and 3, conditions
expected to produce positive transfer via
dimension differentiation produced better
transfer than conditions expected to produce
positive transfer via selective attention, but only
when stimuli were composed of highly integral,
overlapping dimensions.  For such materials,
particularly strong positive transfer was found in
situations in which originally Dimension X was

relevant and Dimensions Y was irrelevant, and
subsequently Dimension X was irrelevant and
Dimension Y was relevant.  This positive
transfer can be explained in terms of learning to
isolate Dimensions X and Y from each other.
Selective Attention During Category Learning

There is strong evidence that learning new
categorizations entails altering selective
attention to the features or dimensions that
comprise stimuli (Kruschke, 1996; Nosofsky,
1991; Sutherland & Mackintosh, 1971).  The
current investigation extends this research in
three ways.  First, we have shown that the
pattern of attention learned during one
categorization is transferred to a subsequent
categorization, giving rise to positive transfer.
Positive transfer is found when the attention
weights required for an earlier categorization are
consistent with those required for the transfer
categorization.  We did not find strong evidence
for negative transfer when the two attention
weight patterns were inconsistent.  Thus, one
way of viewing Experiment 1 is as an extension
of selective attention experiments to arbitrary
dimensions.

The second extension beyond the existing
literature’s attentional effects in category
learning has been to distinguish the importance
of learning to attend to relevant dimensions and
learning to ignore irrelevant dimensions.
Although both effects have been observed (see
the Introduction, or the extended review by Hall,
1991), their relative influences with controlled
stimuli has not been studied.  The current results
indicated equally strong positive transfer effects
when initial and transfer categorizations shared
either relevant or irrelevant dimensions.  This
result is somewhat counterintuitive.  When
asked to describe how they learned to perform
well on the categorization tasks, our participants
generally mentioned features that they attended
(e.g. “Faces in Club A were happier”) rather
than features that they ignored (e.g. “I learned
that the apparent age of a face was irrelevant”).
However, based on the equivalent amounts of
transfer in the “acquired equivalence” and
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“acquired distinctiveness” conditions,
participants learn to both attend and ignore
dimensions.  Future research may well indicate
that there is a dissociation between the
importance of relevant and irrelevant
dimensions as measured by their role in transfer
and verbalizations about them.  If so, then
borrowing from Schooler’s verbal
overshadowing procedure (Brandimonte,
Schooler, & Gabbino, 1997; Schooler &
Engsler-Schooler, 1990), we would predict that
asking participants to verbally describe the
dimensions that they use to categorize faces
should particularly interfere with positive
transfer based on shared irrelevant dimensions.
Irrelevant dimensions apparently exert more
influence on categorization than is suggested by
participants’ own accounts of their performance.

A third extension to research on attention
in category learning has been to explore learned
selective attention to hard-to-describe, arbitrary
dimensions.  Most of the work on selective
attention in human category learning has
focused on separable, easily delineated
dimensions (Nosofsky, 1986).  The reason for
this is clear; it is for such dimensions that
selective attention is most efficient (Garner,
1976, 1978).  However, the current work finds
that selective attention is applied even when two
dimensions are integral in Garner’s sense that
categorizing on the basis one dimension is
hindered by the presence of irrelevant variation
on the second dimension.  We are not claiming
that the arbitrary dimensions have no correlates
to dimensions possessed by participants prior to
the experiment.  When creating dimensions by
blending two faces in different proportions, it is
certainly possible that participants can identify
dimension values by detecting a local cue.  For
example, if one face seems to be slightly happier
than the other, then the value along the morphed
dimension may be identified by apparent
happiness.  Still, each face is composed out of
two dimensions, and the same stimulus regions
that specify the value along one dimension are
also specifying the value along the other

dimension.  That is, the information that is
relevant for one dimension is distributed over
the entire stimulus, and overlaps completely
with the information relevant for the other
dimension.  This is true even more obviously
with the saturation and brightness dimensions of
Experiment 4.  This is a different situation than
occurs when the two dimensions can be
identified by examining different parts of an
object, as with color and shape for example.
The type of selective attention that appears to be
operating in our stimuli is like that required
when two events are completely superimposed
on one another (DeSchepper & Treisman, 1996;
Neisser & Becklen, 1975).  Furthermore, the
observed selective attention was not limited to
the trained stimuli and dimensions, but
transferred to new stimuli when the transferred
dimension was paired with new dimensions.
The negative transfer conditions from
Experiment 1 provide evidence that transfer was
not based on similarity between stimuli used in
the initial and transfer categorizations, but was
instead due to the compatibility of learned
selective attention to dimensions in the two
categorizations.
Dimension Differentiation

Although our results strongly indicate a
role for selective attention to arbitrary
dimensions, selective attention alone is not
sufficient to account for the pattern of transfer
between categorizations.  We propose that our
participants also learned to organize faces into
dimensions that combine to create the faces.
Organizing faces into dimensions involves
isolating independent sources of information in
the faces, and is apparently informed by the
category assignments given to the faces.  When
Dimension A was relevant for a categorization
and Dimension B was irrelevant, participants
apparently learned to isolate these two
dimensions, so as to more effectively attend to
Dimension A.  Once Dimensions A and B are
isolated, subsequent categorizations are
facilitated if they make use of the same
dimensional organization, and are impeded if



Dimension Sensitization and Differentiation   

they make use of an incompatible organization.
The pieces of evidence for this dimension
differentiation process are: (1) surprisingly good
performance when the irrelevant dimension
becomes relevant and the relevant dimension
becomes irrelevant, compared with situations in
which only one of these changes is made
(Experiment 1); (2) better transfer for
categorization rules related by 90 than 45
degrees (Experiments 2, 3, and 4); (3) the
advantage of categorization rules related by 90
rather than 45 degrees is only found when
dimensions are overlapping and highly integral
(Experiment 2); and 4) the 90 degree advantage
is replicated when the stimuli offer no privileged
dimensional axes (Experiment 3) and when
classic examples of integral dimensions are used
(Experiment 4).  Categorization rules related by
45 degrees overlap partially in their selective
attention requirements, but are completely
incompatible in the dimensions that they
encourage to be extracted.  Conversely,
categorization rules related by 90 degrees
require the same dimensions to be isolated from
each other, but are completely incompatible in
their selective attention requirements.  Thus, the
relative superiority of transfer between rules
related by 90 degrees indicates that the
advantage due to consistent dimensional
organization is sometimes stronger than the
advantage due to consistent selective attention.
This superiority is found only when highly
overlapping dimensions are to be extracted, as is
expected if the superiority is caused by
dimension differentiation.

The results were generally consistent in
suggesting that the transfer advantage for
consistent dimensional organizations over
inconsistent ones is largely due to difficulties
caused by incompatible organizations.
Particularly poor transfer performance was
observed when the dimensions that needed to be
isolated for a categorization were partially
correlated with  previously extracted
dimensions.  With these partially correlated
dimensions, participants continue to try to

interpret objects in terms of previously helpful
dimensions despite their inadequacy.  Although
our dimensions are hard to describe, an intuition
for this negative transfer can be generated with
the rectangle stimuli in Figure 5.  It is easy to
see how an understanding of the rectangles in
terms of height or width might interfere with a
task that later required coding them in terms of
area or shape.  The former dimensions are
incompatible with the latter dimensions in that
they form cross-cutting organization of the
stimulus space.  An impressive outcome of this
negative transfer is that category learning on the
second categorization is often slower than initial
category learning.

A critic might argue that dimension
differentiation is a logical impossibility.  By this
argument, if two dimensions are fused together
at some point in perceptual processing, then
they can never be later split apart.  By analogy,
once red ink has been blended with blue ink,
there is no simple procedure for later isolating
only the blue ink.  Fortunately, several
computational models have recently been
proposed that explain how a dimension
differentiation mechanism might operate.
Competitive learning networks differentiate
inputs into categories by specializing detectors
to respond to classes of inputs.  Random
detectors that are slightly more similar to an
input than other detectors will learn to adapt
themselves toward the input and will inhibit
other detectors from doing so (Rumelhart &
Zipser, 1985).  The end result is that originally
similar detectors that respond almost equally to
all inputs become increasingly specialized and
differentiated over training.  Detectors develop
that respond selectively to particular classes of
input patterns or dimensions within the input.
Smith, Gasser, and Sandhofer (1997) present a
neural network simulation of the development
of separated dimensions in children.  In the
network, dimensions become separated by
detectors developing strong connections to
specific dimensions while weakening their
connections to all other dimensions.  The model
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captures the empirical phenomenon that
dimension differentiation is greatly facilitated
by providing comparisons of the sort “this red
square and this red triangle have the same
color.”

The neural network approach for
developing diagnostic dimensions which is
perhaps most relevant to our experiments is the
Expectation Maximization algorithm for
factorial learning (Dempster, Laird, & Rubin,
1977; Ghahramani, 1995; Hinton, Dayan, Frey,
& Neal, 1995; Tenenbaum, 1996).  When
presented with a set of inputs, this approach
finds an underlying set of  independent
components that, when combined in different
arrangements, reproduce the set of inputs.  For
example, imagine a set of 64 patterns that are
generated by combining a horizontal line in any
one of 8 positions with a vertical line in any one
of 8 positions.  From these patterns, an EM
algorithm could generate the set of 16 horizontal
and vertical lines that suffice for generating the
64 patterns (Ghahramani, 1995).  It does so by
finding the weightings of different hidden
dimensions that would be most likely to have
produced each of the 64 patterns.  Impressively,
the algorithm is able to discover both the hidden
dimensions and their weightings by iterating
between two steps: 1) computing the expectated
hidden dimensions given the current weights,
and 2) maximizing the likelihood of the weights
given these expected dimensions.  Such an
algorithm could uncover dimensions underlying
our set of bald faces.  However, as the EM
algorithm is unsupervised, it would have to be
extended so that the dimensions that it extracted
would be influenced by the category feedback
supplied with the faces.  That is, our results
indicate that people have a mechanisms that
allows them to create part descriptions that are
guided by the needed categorizations.  In short,
recent advances in neural networks can
potentially supply us with an answer to our
imaginary critic.  The separate contributions of
red and blue ink can be isolated if one has not
only a single sample of mixed ink, but several

samples with different proportions of red and
blue ink.

Although we have argued that dimension
differentiation is a different phenomenon than
selective attention, similar mechanisms may
underlie them.  In particular, associative
learning accounts of selective attention (e.g.
Kruschke, 1992, 1996) are candidate accounts to
explain dimension differentiation, as long as
they operate at different levels.  That is, the way
a system learns to selectively attend to a
detector for a categorization may be similar to
the way that the detector learns to select
particular stimulus elements.  Imagining a
system with connections from the external
world to hypothetical detectors and connections
from the detectors to categories is a helpful way
of seeing the similarities and differences
between selective attention and dimension
differentiation. Learning the former connections
involves dimension differentiation whereas
learning the latter connections involves selective
attention.  Selectively attending to a particular
property for categorization is only possible if a
detector has already isolated that property.
Having a detector develop a specialized
response to a single property may be a rather
slow process, but once it has become
specialized, selective attention to that property
may be rather fast.  Goldstone et al. (2000)
present more details on how a single network
can develop specialized detectors at the same
time that associations between the detectors and
categories are acquired.
Mechanisms of Flexibility in Category Learning

We have hypothesized two distinctive
mechanisms that flexibly adapt object
descriptions to the requirements imposed by
category learning.  The difference between
selective attention and dimension differentiation
may be difficult to understand because both
involve flexibly focusing on a specific source of
information.  If one observes that a person's
categorization based on one dimension becomes
less sensitive to variation along another
dimension, it may be due to either changes in
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selective attention or dimension differentiation,
or both.  The difference, in essence, is between
learning appropriate weights for dimensions,
and learning how to learn appropriate weights
for dimensions.   People have difficulty in
learning to appropriately attend to some
dimensions, such as brightness and saturation,
because they cannot even isolate these
dimensions from each other.  However, integral
dimensions are not necessarily doomed to
remain inextricably fused.  Training can help
people isolate the two dimensions (Burns &
Shepp, 1988; Goldstone, 1994-a), and once
isolated, selective attention can operate with
greater efficiency.  The current experiments
have described a new source of evidence for
dimension differentiation that does not suffer
from some of the problems of previous methods.
Perceptual dimensions that are not originally
privileged for interpreting objects can become

privileged when they reliably predict important
categories.

The current work fits with recent efforts to
describe how learned categories affect
subsequent cognitive processes (Ross, 1999).  In
particular, perceptual and attentional processes
are modified by category learning.  Arbitrary
dimensions can be selectively attended, and can
be isolated from other dimensions.  Attentional
and perceptual processes provide object
descriptions that serve as the foundational basis
for our visual concepts.  However, these are
foundational processes that adapt to the
concepts that they support (Goldstone &
Barsalou, 1998; Goldstone et al., 2000; Schyns
et al., 1998).  To be foundational does not mean
to be static and rigid.  Rather, like a good pair of
shoes that provides support by flexibly
conforming to the foot, the processes that
produce object descriptions support our
concepts by conforming to these concepts.



Dimension Sensitization and Differentiation   32

References

Brandimonte, M. A., Schooler, J. W, & Gabbino, P. (1997).  Attenuating verbal overshadowing
through color retrieval cues.  Journal of Experimental Psychology: Learning, Memory, and Cognition, 23,
915-931.

Blough, D. S., & Blough, P. M.  (1997).  Form perception and attention in pigeons.  Animal Learning
and Behavior, 25, 1-20.

Burns, B., & Shepp, B. E. (1988).  Dimensional interactions and the structure of psychological space:
The representation of hue, saturation, and brightness.  Perception and Psychophysics, 43, 494-507.

Cheng, P. W., & Pachella, R. G. (1984). A psychophysical approach to dimensional separability.
Cognitive Psychology, 16, 279-304.

Clapper, J. P., & Bower, G. H. (1994).  Category invention in unsupervised learning.  Journal of
Experimental Psychology: Learning, Memory, and Cognition, 20, 443-460.

Cook, G., & Stephens, J. T. (1995). The priority of separable perception in stimulus classifications of
children with mental retardation.  Child Development, 66, 1057-1071.

Dempster, A., Laird, N. & Rubin, D. (1977).  Maximum likelihood from incomplete data via the EM
algorithm.  Journal of the Royal Statistical Society Series B, 39, 1-38.

DeSchepper, B., & Treisman, A. (1996).  Visual memory for novel shapes: Implicit coding without
attention.  Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 27-47.

Edelman, S.  (1999).  Representation and recognition in vision.  Cambridge, MA:  Bradford Books,
MIT Press.

Ennis, D. M. (1988).  Confusable and discriminable stimuli: Comment on Nosofsky (1986) and
Shepard (1986).  Journal of Experimental Psychology: General, 117, 408-411.

Estes, W. K. (1994).  Classification and cognition.  New York: Oxford University Press.

Farah, M. J. (1992).  Is an object an object an object?  Cognitive and neuropsychological
investigations of domain-specificity in visual object recognition.  Current Directions in Psychological
Science, 1, 164-169.

Feldman, J., & Richards, W. (1998).  Mapping the mental space of rectangles.  Perception, 27, 1191-
1202.  Perception, 27, 1191-1202.

Foard, C. F., & Kemler, D. G. (1984).  Holistic and analytic modes of processing: The multiple
determinants of perceptual analysis.   Journal of Experimental Psychology: General, 113, 94-111.

Fox, E. (1995).  Negative priming from ignored distracters in visual selection: A review.
Psychonomic Bulletin and Review, 2, 145-173.



Dimension Sensitization and Differentiation   33

Garner, W. R. (1976).  Interaction of stimulus dimensions in concept and choice processes.  Cognitive
Psychology, 8, 98-123.

Garner, W. R. (1978). Selective attention to attributes and to stimuli.  Journal of Experimental
Psychology: General, 107, 287-308.

Garner, W. R., & Felfoldy, G. L. (1970).  Integrality of stimulus dimensions in various types of
information processing.  Cognitive Psychology, 1, 225-241.

Gentner, D., & Markman, A. B. (1997).  Structure mapping in analogy and similarity.  American
Psychologist, 52, 45-56.

Gentner, D. & Namy, L.L. (in press).  Comparison in the development of categories,  Cognitive
Development.

Gershkoff-Stowe, L., Thal, D. J., Smith, L. B., & Namy, L. L. (1997).  Categorization and its
developmental relation to early language, Child Development, 68, 843-859.

Ghahramani, Z. (1995).  Factorial learning and the EM algorithm.  In G. Tesauro, D. S. Touretzky, &
T. K. Leen (Eds.), Advances in Neural Information Processing Systems 7.  Cambridge, MA: MIT Press,
617-624.

Goldstone, R. L. (2000).  Unitization during category learning.  Journal of Experimental Psychology:
Human Perception and Performance, 26, 86-112.

Goldstone, R. L. (1994-a).  influences of categorization on perceptual discrimination.  Journal of
Experimental Psychology: General, 123, 178-200.

Goldstone, R. L. (1994-b).  An efficient method for obtaining similarity data.  Behavior Research
Methods, Instruments, & Computers, 26, 381-386.

Goldstone, R. L., & Barsalou, L. (1998).  Reuniting perception and conception. Cognition, 65,
231-262.

Goldstone, R. L., Steyvers, M., Spencer-Smith, J., & Kersten, A. (2000).  Interactions between
perceptual and conceptual learning.  in E. Diettrich & A. B. Markman (Eds.) Cognitive Dynamics:
Conceptual Change in Humans and Machines.  (pp. 191-228).  Lawrence Erlbaum and Associates.

Grau, J. W., & Nelson, D. K. (1988).  The distinction between integral and separable dimensions:
Evidence for the integrality of pitch and loudness.  Journal of Experimental Psychology: General, 117,
347-370.

Haider, H., & Frensch, P. A. (1996).  The role of information reduction in skill acquisition.  Cognitive
Psychology, 30, 304-337.Hall, G. (1991).  Perceptual and Associative Learning.  Oxford: Clarendon Press.

Hall, G. (1991).  Perceptual and Associative Learning.  Oxford: Clarendon Press.



Dimension Sensitization and Differentiation   34

Handel, S., & Imai, S. (1972).  The free classification of analyzable and unanalyzable stimuli.
Perception & Psychophysics, 12, 108-116.

Herrnstein, R. J. (1990).   Levels of stimulus control: A functional approach. Special Issue: Animal
cognition.  Cognition, 37, 133-166.

Hinton, G. E., Dayan, P., Frey, B. J., & Neal, R. M. (1995).  The “wake-sleep” algorithm for
unsupervised neural networks.  Science, 268, 1158-1161.

Hock, H. S., Tromley, C., & Polmann, L. (1988).  Perceptual units in the acquisition of visual
categories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 75-84.

Honey, R. C., & Hall, G. (1989).  The acquired equivalence and distinctiveness of cues.  Journal of
Experimental Psychology: Animal Behavior Processes, 15, 338-346.

Kayser, A. (1997).  Heads.  New York: Abbeville Press.
Kemler-Nelson, D. G., (1993).  Processing integral dimensions: The whole view.  Journal of

Experimental Psychology: Human Perception and Performance, 19, 1105-1113.
Kemler, D. G., & Smith, L. B. (1978).  Is there a developmental trend from integrality to separability

in perception?  Journal of Experimental Child Psychology, 26, 498-507.

Kersten, A. W., Goldstone, R. L., & Schaffert, A. (1998).  Two competing attentional mechanisms in
category learning.  Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 1437-
1458.

Kotovsky, L., & Gentner, D. (1996). Comparison and categorization in the development of relational
similarity. Child Development, 67, 2797-2822.

Kruschke, J. K. (1992).  ALCOVE: An exemplar-based connectionist model of category learning.
Psychological Review, 99, 22-44.

Kruschke, J. K. (1993).  Human category learning: Implications for backpropagation models.
Connection Science, 5, 3-36

Kruschke, J. K. (1996).  Dimensional relevance shifts in category learning.  Connection Science, 8,
225-247.

LaBerge, D., & Samuels, S. J. (1974).  Toward a theory of automatic information processing in
reading.  Cognitive Psychology, 6, 293-323.

Lawrence, D.H. (1949). Acquired distinctiveness of cues: I. Transfer between discriminations on the
basis of familiarity with the stimulus. Journal of Experimental Psychology, 39, 770-784.

Lubow, R. E., & Kaplan, O. (1997).  Visual search as a function of type of prior experience with target
and distracter, Journal of Experimental Psychology: Human Perception and Performance, 23, 14-24.

Maddox, W. T. (1992).  Perceptual and decisional separability.  In F. G. Ashby (Ed.),
Multidimensional models of perception and cognition (pp. 147-180).  Hillsdale, NJ: Erlbaum.



Dimension Sensitization and Differentiation   35

Markman, A. B., & Gentner, D. (1996).  Commonalities and differences in similarity comparisons.
Cognitive Psychology, 25, 431-467.

Markman, A. B., & Makin, V. S. (1998).  Referential communication and category acquisition.
Journal of Experimental Psychology: General, 127, 331-354.

Medin, D. L., Goldstone, R. L., & Gentner, D. (1993). Respects for similarity. Psychological Review,
100, 254-278.

Medin, D. L.,  & Shaeffer, M. M. (1978).  A context theory of classification learning.  Psychological
Review, 85, 207-238.

Melara, R. D. (1989).  Similarity relations among synesthetic stimuli and their attributes.  Journal of
Experimental Psychology: Human Perception and Performance, 115, 212-231.

Melara, R. D., Marks, L. E., & Potts, B. C. (1993).  Primacy of dimensions in color perception.
Journal of Experimental Psychology: Human Perception and Performance, 19, 1082-1104.

Melcher, J. M., & Schooler, J. W. (1996).  The misremembrance of wines past: Verbal and perceptual
expertise differentially mediate verbal overshadowing of taste memory.  Journal of Memory and
Language, 35, 231-245.

Neisser, U., & Becklen, R. (1975).  Selective looking: Attending to visually specified events.
Cognitive Psychology, 7, 480-494.

Nosofsky, R. M. (1986).  Attention, similarity, and the identification-categorization relationship.
Journal of Experimental Psychology: General, 115, 39-57.

Nosofsky, R. M. (1987).  Attention and learning processes in the identification and categorization of
integral stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 87-108.

Nosofsky, R. M. (1991).  Tests of an exemplar model for relating perceptual classification and
recognition memory.  Journal of Experimental Psychology: Human Perception and Performance, 17, 3-27.

Nosofsky, R. M., & Palmeri, T. J. (1996).  Learning to classify integral-dimension stimuli.
Psychonomic Bulletin & Review, 3, 222-226.

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994).  Rule-plus-exception model of
classification learning.  Psychological Review, 101, 53-79.

Pearce, J. M. (1987).  A model for stimulus generalization in Pavlovian conditioning.  Psychological
Review, 94, 61-73.

Pevtzow, R., & Goldstone, R. L. (1994).  Categorization and the parsing of objects.    Proceedings of
the Sixteenth Annual Conference of the Cognitive Science Society.  (pp. 717-722).  Hillsdale, New Jersey:
Lawrence Erlbaum Associates.



Dimension Sensitization and Differentiation   36

Posner, M. I., & Keele, S. W. (1968).  On the genesis of abstract ideas.  Journal of Experimental
Psychology, 77, 353-363.

Regehr, G., & Brooks, L. R. (1995). Category organization in free classification: The organizing effect
of an array of stimuli.  Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 347-
363.

Rescorla, R. A., & Wagner, A. R. (1972).  A theory of Pavlovian conditioning: Variations in the
effectiveness of reinforcement and nonreinforcement.  In A. H. Black and W. F. Prokasy (Eds.) Classical
conditioning II: Current research and theory (pp. 64-99).  Appleton-Century-Crofts: New York.

Ross, B. H. (1999).  Postclassification category use: The effects of learning to use categories after
learning to classify.  Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 743-
757.

Rumelhart, D. E., & Zipser, D. (1985).  Feature discovery by competitive learning.  Cognitive Science,
9, 75-112.

Schoenemann, P. H. (1977).  Similarity of rectangles.  Journal of Mathematical Psychology, 16, 161-
165.

Schooler, J. W., & Engstler-Schooler, T. Y. (1990). Verbal overshadowing of visual memories: Some
things are better left unsaid.  Cognitive Psychology, 22, 36-71.

Schyns, P. G., Goldstone, R. L, & Thibaut, J. (1998).  Development of features in object concepts.
Behavioral and Brain Sciences, 21, 1-54.

Schyns, P. G., & Murphy, G. L.  (1994).  The ontogeny of part representation in object concepts.  In D.
L. Medin (Ed.).  The Psychology of Learning and Motivation, 31, 305-354.  Academic Press:  San Diego,
CA.

Schyns, P. G., & Rodet (1997).  Categorization creates functional features.     Journal of Experimental
Psychology: Learning, Memory, and Cognition    ,     23    , 681-696.

Shepard, R. N., Hovland, C. L., & Jenkins, H. M. (1961).  Learning and memorization of
classification.  Psychological Monographs, 75 (13), Whole No. 517.

Shepp, B. E., Burns, B., & McDonough, D. (1980).  The relation of stimulus structure to perceptual
and cognitive development: Further tests of a separability hypothesis.  In F. Wilkening, J. Becker, & T.
Trabasso (Eds.),  Information integration by children.  (pp. 113-146).  Hillsdale, NJ: Erlbaum.

Shiffrin, R. M., & Lightfoot, N. (1997).  Perceptual learning of alphanumeric-like characters. In R. L.
Goldstone, P. G. Schyns, & D. L. Medin (Eds.) The Psychology of Learning and Motivation, Volume 36.
San Diego: Academic Press. (pp. 45-82).

Shiffrin, R. M. & Schneider, W. (1977).  Controlled and automatic human information processing: II.
Perceptual Learning, automatic attending and a general theory.  Psychological Review, 84, 127-190.



Dimension Sensitization and Differentiation   37

Smith, L. B. (1989a). From global similarity to kinds of similarity: The construction of dimensions in
development. In S. Vosniadou and A. Ortony (Eds.), Similarity and analogical reasoning (pp. 146 -178).
Cambridge: Cambridge University Press.

Smith, L. B. (1989b).  A model of perceptual classification in children and adults.  Psychological
Review, 96, 125-144.

Smith, L. B., & Evans. P. (1989).  Similarity, identity, and dimensions: Perceptual classification in
children and adults.  In B. E. Shepp & S. Ballesteros (Eds.), Objects perception: Structure and process.
Hillsdale, NJ: Erlbaum

Smith, L. B., Gasser, M., & Sandhofer, C. (1997).  Learning to talk about the properties of objects: A
network model of the development of dimensions.  (pp. 220-256).  In R. L. Goldstone, P. G. Schyns, & D.
L. Medin (Eds.)  Psychology of Learning and Motivation, Vol. 36.  San Diego, CA: Academic Press.

Smith, L. B., & Kemler, D. G. (1978).  Levels of experienced dimensionality in children and adults.
Cognitive Psychology, 10, 502-532.

Sutherland, N. S., & Mackintosh, N. J. (1971).  Mechanisms of animal discrimination learning.  New
York: Academic Press.

Steyvers, M. (1999). Morphing techniques for generating and manipulating face images. Behavior
Research Methods, Instruments, & Computers, 31, 359-369.

Tanaka, J. W., & Farah, M. J. (1993).  Parts and wholes in face recognition.  Quarterly Journal of
Experimental Psychology, 46A, 225-245.

Tenenbaum, J. B. (1996).  Learning the structure of similarity. In G. Tesauro, D. S. Touretzky, & T. K.
Leen (Eds.), Advances in Neural Information Processing Systems 8.  Cambridge, MA: MIT Press, 4-9.

Thorndike, E. L. (1903).  Education psychology.  New York: Lemke & Buechner.

Tighe, T. J., & Tighe, L. S. (1969).  Facilitation of transposition and reversal learning in children by
prior perceptual training.  Journal of Experimental Child Psychology, 8, 366-374.

Tipper, S. P. (1992).  Selection for action: The role of inhibitory mechanisms.  Current Directions in
Psychological Science, 1, 105-109.

Ward, T. B., & Vela, E. (1986). Classifying color materials: Children are less holistic than adults.
Journal of Experimental Child Psychology, 42, 273-302.



Dimension Sensitization and Differentiation   38

Author Notes
Many useful comments and suggestions were provided by Nick Chater, Geoffrey Hall, Stevan

Harnad, Evan Heit, John Kruschke, Robert Nosofsky, John Pearce, David Shanks, Rich Shiffrin, Linda
Smith, and Jim Townsend.  This research was funded by NIH grant R01 MH56871, a James McKeen
Cattell award, and a Gill fellowship.  Correspondence concerning this article should be addressed to
rgoldsto@indiana.edu or Robert Goldstone, Psychology Department, Indiana University, Bloomington,
Indiana 47405.  Further information about the laboratory can be found at
http://cognitrn.psych.indiana.edu/.



Dimension Sensitization and Differentiation   39

Table 1.  Initial and Transfer Categorizations of Experiment 1

Transfer Condition Initial Phase Transfer Phase
Relevant Irrelevant Relevant Irrelevant

Identity (A|B) A B A B
Acquired Distinctiveness (A|C) A C A B
Acquired Equivalence (C|B) C B A B
Negative Priming  (C|A) C A A B
Attentional Capture (B|C) B C A B
90 Degree Rotation (B|A) B A A B
Neutral Control (C|D) C D A B
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Table 2.  Summary of Results from Experiments 2-4.

Experiment  Condition     Phase
1st                                                 2nd                                

Perserved Assignments    Item Assignment
25% 50% 75% Different Same

2a 45-degrees 65.4 59.7 63.2    62.1 61.2
90-degrees 64.7 65.7 60.0 70.7

2b              45-degrees 67.9 65.6 64.7 67.5 63.1
                90 -degrees 64.3 65.0 65.9 64.1

3              45-degreees 59.4 54.1 53.2 53.6 53.7
               90-degrees 58.6 58.9 58.2 60.4

4 45-degrees 79.1 74.1 74.8 75.7 73.0
90-degreees 80.2 82.1 81.3 82.9

Note: Preserved assignments refers to the percentage of category assignments that were preserved between
the first and second phases of the experiment across the 8 (Experiments 2A and 2B) or 16 (Experiments 3
and 4) stimuli.  Item assignment refers to whether a particular stimulus received the same or different
assignment between the two phases.
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Table 3. Commission Internationale de L'Eclairage (CIE) color coordinates for the 16 stimuli used in
Experiment 4.
Stimulus Luminance Purity
1 39 52
2 38 62
3 34 71
4 31 77
5 28 80
6 22 77
7 17 71
8 15 62
9 14 52
10 15 40
11 17 31
12 22 27
13 28 24
14 31 27
15 34 31
16 38 40

Note: Luminance values are expressed in cd/m2; purity values are percentages



Figure 1. The four Faces 1, 2, 3 and 4 are blended in different proportions to create a 4 X 4 matrix of
faces.  The proportions of Faces 1 and 2 are negatively correlated such that the more of Face 1 present in
one of the 16 center faces, the less of Face 2 there will be.  This negative correlation establishes
Dimension A, and a similar negative correlation between Faces 3 and 4 establishes Dimension B.  Each of
the 16 center faces is defined half by its value on Dimension A and half by its value on Dimension B.



Figure 2.  A subset of 8 of the faces from the 4 X 4 matrix of Figure 1 was chosen as the stimuli for
Experiment 1.  Beside each face are the proportions of Faces 1, 2, 3, and 4 that were used to generate it.



Figure 3.  Results from Experiment 1, showing average categorization accuracy on the transfer
categorization in which Dimension A was relevant and Dimension B was irrelevant.  The conditions can
be compared to the control condition on the far right.
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Figure 4.  Sample stimuli from Experiment 2, showing two of the possible initial categorization
boundaries.  For each initial categorization boundary, sample transfer boundaries are shown for 45 and 90
degree rotations.  Whether a transfer boundary is a 45 or 90 degree rotation is independent of its absolute
orientation.



Figure 5.  An illustration of how stimuli can be understood in terms of competing dimensional
organizations.  Rectangles can be understood in terms of height and width, or in terms of their area and
shape.  An analysis in terms of width is compatible with an analysis into height, but is incompatible with
an analysis in terms of shape because width and shape are not independent sources of variation.
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Figure 6.  Results from Experiment 2A and 2B.  The 90 degree rotation condition produced better transfer
on the final categorization than the 45 degree condition, but only for overlapping dimensions (Experiment
2A) and not separated dimensions (Experiment 2B).
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Figure 7.  Stimuli from Experiment 2B.  The dimensions were defined by the relative contributions from
two faces to particular regions of a morphed face.  The two dimensions were defined by the eyes and
mouths of the faces.  The contributing faces are shown on the ends of the dimension axes, and the
presented stimuli are the eight faces in the middle.



Figure 8    .  Sample stimuli from Experiment 3.  The circularly arranged set of faces do not imply a
preferred orientation for the dimensional axes.



Figure 9.  Results from Experiment 4, involving saturation and brightness as component dimensions of
color.
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