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Abstract
Many memory models assume that the semantic and physical features of words can be represented by collections of
features abstractly represented by vectors. Most of these memory models are process oriented; they explicate the
processes that operate on memory representations without explicating the origin of the representations themselves;
the different attributes of words are typically represented by random vectors that have no formal relationship to the
wordsin our language. In Part | of this research, we develop Word Association Spaces (WAS) that capture aspects
of the meaning of words. This vector representation is based on a statistical analysis of alarge database of free
association norms. In Part [1, this representation al ong with a representation for the physical aspects of words such
as orthography is combined with REM, a process model for memory. Three experiments are presented in which
distractor similarity, the length of studied categories and the directionality of association between study and test
words were varied. With only afew parameters, the REM model can account qualitatively for the resuilts.
Devel oping a representation incorporating features of actual words makes it possible to derive predictions for
individual test words. We show that the moderate correl ations between observed and predicted hit and false darm
rates for individual words are larger than can be explained by models that represent words by arbitrary features. In
Part |11, an experiment is presented that tests a prediction of REM: words with uncommon features should be better
recognized than words with common features, even if the words are equated for word frequency.
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Part I:
Creating Semantic Spacesfor Words
based on Free Association Norms

It has been proposed that various aspects of words
can be represented by separate collections of features
that code for temporal, spatial, frequency, modality,
orthographic, acoustic, and associative aspects of the
words (Anisfeld & Knapp, 1968; Bower, 1967
Herriot, 1974; Underwood, 1969; Wickens, 1972). In
part | of this research, we will focus on the
associ ative/semanti c aspects of words.

A common assumption isthat the meaning of a
word can be represented by a vector which places a
word in amultidimensional semantic space (Bower,
1967; Landauer & Dumais, 1997; Lund & Burgess,
1996; Morton, 1970; Norman, & Rumelhart, 1970;
Osgood, Suci, & Tannenbaum, 1957; Underwood,
1969; Wickens, 1972). The main requirement of such
spacesisthat words that are similar in meaning
should be represented by similar vectors.
Representing words as vectors in amultidimensional
space allows simple geometric operations such asthe
Euclidian distance or inner product to compute the
semantic similarity between arbitrary pairs or groups
of words. Thismakesit possible to make predictions
about performancein psychological tasks where the
semantic distance between pairs or groups of words
isassumed to play arole.

The main goa of part | of thisresearchisto
introduce a new method for creating psychological
spacesthat is based on an analysis of alarge free
association database collected by Nelson, McEvoy,
and Schreiber (1998) containing norms for first
associates for over 5000 words. This method places
over 5000 wordsin apsychological space that we
will call Word Association Space (WAS).

We believe such a construct will be very useful in
the modeling of episodic memory phenomenasince it
has been shown that associative structure of words
playsacentra roleinrecall (e.g. Bousfield, 1953;
Cramer, 1968; Deese, 1959a,b, 1965; Jenkins, Mink,
& Russdll, 1958), cued recall (e.g. Nelson, Schreiber,
& McEvoy, 1992) and priming (e.g. Canas, 1990; see
also Neely, 1991). For example, Deese (1959a,b)
found that the inter -item associative strength for the
words on astudy list can predict the number of words
recalled, the number of intrusions, and the frequency
with which certain words intrude.

In this paper, we will first introduce four methods
to create semantic spaces. These are based on the
semantic differential, multidimensional scaling on
similarity ratings, LSA, and HAL. Then, we will
introduce WAS, the approach of placing wordsin a
high dimensional space by analyzing free association

norms. The similarity and differences between WAS
and free association norms are discussed. Two
demonstrations are given that WAS isuseful in
predicting memory performance. First, we will show
that the intrusion ratesin free recall experiments
observed in Deese (1959b) can be predicted on the
basis of the similarity structure in the vector space.
Second, we will show that WAS can predict to some
degree the percentage of correctly recalled wordsin
extralist cued recall tasks (Nelson & Schreiber,
1992; Nelson, Schreiber, & McEvoy, 1992; Nelson,
McKinney, Gee, & Janczura, 1998; Nelson & Xu,
1995). Wewill contrast the predictions from WAS
with predictions made by the LSA approach.

Methodsto Construct Semantic Spaces

Semantic differential . This method was developed
by Osgood, Suci, and Tannenbaum (1957). Words
arerated on aset of bipolar rating scales. The bipolar
rating scales are semantic scales defined by pairs of
polar adjectives (e.g. “good-bad”, “dtruistic-
egotistic”, “hot-cold”). Each word that one wants to
place in the semantic spaceisjudged on these scales.
If numbers are assigned from low to high for the left
to right word of abipolar pair, then the word
“dictator” for example, might be judged high on the
“good-bad”, high on the “dtruistic-egotistic” and
neutral on the “hot-cold” scale. For each word, the
ratings averaged over alarge number of subjects
define the coordinates of the word in the semantic
space. Because semantically similar words are likely
to receive similar ratings, they arelikely to be located
in similar regions of the semantic space. The
advantage of the semantic differential method is the
simplicity and intuitive appeal. The problem inherent
to this approach isthe arbitrariness in choosing the
set of semantic scales aswell asthe number of
semantic scales.

MDS on similarity ratings. In this method,
participants rate the semantic similarity for pairs of
words. Then, those similarity ratings can be subjected
to multidimersional scaling analyses to derive vector
representations in which similar vectors represent
words similar in meaning (Caramazza, Hersch, &
Torgerson, 1976; Rips, Shoben, & Smith, 1973;
Schwartz & Humphreys, 1973). While this method is
graightforward and has led to interesting applications
(e.g. Caramazzaet d; Romney et a., 1993)), itis
clearly impractical for large number of words as the
number of ratings that must be collected goes up
quadratically with the number of stimuli.

Latent Semantic Analysis (LSA). A method to
derive high-dimensional semantic spacesthat does
not rely on judgments by participantsis Latent
Semantic Analysisor LSA (Derweester, Dumais,
Furnas, Landauer, & Harshman, 1990; Landauer &




Dumais, 1997; Landauer, Foltz, & Laham, 1998).
The assumption Landauer and Dumais (1997) make
isthat similar words occur in similar contexts. A
context can be defined by any connected set of text
from a corpus such as an encyclopedia, or samples of
texts from textbooks. For example, atextbook witha
paragraph about “cats’ might aso mention “dogs”’,
“fur”, “pets’ etc. This knowledge can be used to
assumethat “cats’ and “dogs’ are related in meaning.
However, some words are clearly related in meaning
such as“cats’ and “felines’ but they might never
occur simultaneously in the same context. There
might be indirect links between “cats’ through its
context words with “felines’, i.e., the words share
similar contexts. The technique of singular value
decomposition (SVD) can be applied on the matrix of
word-context co-occurrence statistics. This methods
anayzesthe direct and indirect relationships between
words and contexts in the matrix based on simple
matrix-algebraic operations. The result of the SVD
analysisisahigh dimensional space in which words
that appear in similar contexts are placed in similar
regions of the space. Landauer and Dumais (1997)
applied the LSA approach on the 68,000 words of a
large encyclopedia and placed these wordsin ahigh
dimensiona space with the number of dimensions
chosen between 100 and 400. The LSA
representation has been successfully applied to
multiple choice vocabulary tests, domain knowledge
tests and content evaluation (see Landauer &
Dumais, 1997; Landauer, Foltz, & Laham, 1998).
Hyperspace Analogue to Language (HAL). The
HAL model develops high dimensional vector
representations for wordsthat like LSA isbased ona
co-occurrence analysisof large samples of written
text (Burgess, Livesay, & Lund, 1998; Lund &
Burgess, 1996; see Burgess & Lund, 2000 for an
overview). For 70,000 words, the co-occurrence
dtatistics were calculated in a 10 word window that
was did over the text from a corpus of over 320
million words (gathered from Usenet newsgroups).
For each word, the co-occurrence statistics were
calculated of the 70,000 words appearing before or
after that word in the 10 word window. The resulting
140,000 values for each word were the feature values
for the words in the HAL representation. Because the
representation is based the context in which words
gppear, the HAL vector representation is also referred
to as a contextual space: words that appear in similar
contexts are represented by similar vectors. The HAL
and LSA approach are similar in one magjor
assumption: similar words occur in similar contexts.
Inboth HAL and LSA, the placement of wordsin a
high dimensional semantic spaceisbased on an
analysis of the co-occurrence statistics of wordsin
their contexts. In LSA, a context isdefined by a

relatively large segment of text whereasin HAL, the
context is defined by awindow of 10 words®.

One great advantage of LSA and HAL over
approaches depending on human judgments s that
almost any number of words can be placed ina
semantic/contextual space. Thisis possible because
the method relies uniquely on samples of written text
(of which thereisavirtualy unlimited amount) as
opposed to ratings provided by participants. Even
though aworking vocabulary of 5000 wordsin WAS
is much smaller than the 70,000 word long
vocabularies of LSA and HAL, we beliee it islarge
enough for our purpose of modeling performancein
memory tasks.

Word Association Spaces

Deese (1962,1965) asserted that free associations
are not haphazard processesin our brain and that
thereis regularity underneath them. Helaid the
framework for studying the meaning of linguistic
formsthat can be derived by analyzing the
correspondences between distributions of responses
to free association stimuli: "The most important
property of associationsistheir structure- their
patterns of intercorrelations' (Deese, 1965, p.1). The
SVD method has been successfully applied in LSA to
uncover the patterns of intercorrelations of the co-
occurrence statistics for words appearing in contexts.
We will aso usethe SVD method but apply it on a
different database: alarge database of free
association norms collected by Nelson, McEvoy, and
Schreiber (1998) containing normsfor first associates
for over 5000 words.

In total, more than 6000 peopl e participated in the
collection of this database. An average of 149 (SD =
15) participants were presented with 100-120 English
words. These words served as cues (e.g. “cat”) for
which participants had to write down the first word
that came to mind (e.g. “dog”). These experiments
were performed on many participants so that for each
cue the relative associative strengths could be
calculated for responses by the proportion of subjects
that elicited the response to the cue (e.g. 60%
responded with “dog”, 15% with “pet”, 10% with
“tiger”, etc).

Theideaisto apply the SVD method to place
words in ahigh dimensiona space by analyzing the
direct and indirect associative relationships between
words. While the details of this procedure are
discussed in the Appendix, the basic approach is
illustrated in Figure 1. The free association norms
were represented in matrix form. The rows represent
the cues and the columns represent the responses. An
entry in the matrix represents the relative frequency
with which aresponse was generated for the



particular cue (i.e., associative strength). Before SVD
was applied to the matrix, it was preprocessed in two
ways. Firgt, the indirect associative strengths between
words were cal culated and added to the matrix’.
Then, the matrix was symmetrized such that the
associative strength between cue A and response B
equal ed the associative strength between cue B and
response A. After these preprocessing steps, the
matrix was subjected to SVD. Theresult of SVD is
the placement of words in ahigh dimensional space,
which we called Word Association Space (WAYS).
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Figurel. lllustration of the creation of Word Association
Spaces (WAS). By singular value decomposition on alarge
database of free association norms, words are placed in ahigh
dimensional semantic space. Words with similar associative
relationships are placed in similar regions of the space.

In WAS, words that have similar associative
structures are represented by similar vectors. Words
that are not direct associates of each other can aso be
represented by similar vectorsif their associates are
related (or if the associates of the associates of the
words are rel ated).

The representation of wordsin WAS is dependent
on the method with which the free association norms
are analyzed. By using the SVD method, words are
represented by vectors with continuous feature values
that have a symmetric distribution around zero. A
suitable measure for the similarity between two
wordsistheinner product of the two word vectors.
Theideaisthat two wordsthat are similar in meaning
or that have similar associative structures have high
similarity as defined by the inner product of the two
word vectors.

An important variable (which we will call k) is
the number of dimensions of the space?. One can
think of k asthe number of feature valuesfor the
words. We vary k between 10 and 400. The number

of dimensionswill determine how much the
information of the free association databaseis
compressed. With too few dimensions, the similarity
structure of the resulting vectors does not capture
enough detal of the original associative structurein
the database. With too many dimensions, the
similarity structure of the vectors does not capture
enough of theindirect relationshipsin the
associations between words.

To get an understanding of what the similarity
structure of WAS s like, we performed four
analyses. In thefirst analysis, the similarity structure
of low and high frequency is compared and it is
shown that in WAS, high frequency words are more
similar to other high frequency words than to low
frequency words. In the second analysis, we
compared the ordering of neighborsin WASto the
ordering of the strength of associatesin the free
association norms. In the third analysis, the issue of
whether WAS captures semantic or associative
relationships (or both) is addressed. It is argued that it
is difficult to make a distinction between the two
kinds of relationships. In the fourth analysis, we
analyze the ability of WA Sto capture the differences
between and within semantic categories. We will
now discuss these four analysesin turn.

Word Frequency and the Similarity Structurein WAS

Word frequency can be defined by the number of
timeswords occur in large samples of written text
(Kucera& Francis). The frequency of wordsin
samples of written text correlates with the frequency
with which words are produced in free association
norms. High frequency words are produced more
often as responses in free association norms®. We
investigated the similarity structure of low and high
frequency wordsin WAS by calculating the
similarity between groups of words with different
frequency ranges. In Figure 2, top panel, the average
inner product is cal culated between random words
from different Kucera and Francis frequency ranges.
The highest similarity was obtained between high
frequency words. Lower similarities were obtained
between high and low frequency words and the
lowest similarity was obtained between low
frequency words. The reason for the average
similarity being higher between high frequency
words is that high frequency word vectorsin WAS
have larger magnitudes than low frequency word
vectors. Thisisshownin Figure 2, bottom panel.
Vectors with larger magnitudes, on average lead to
larger inner products.
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Figure 2. The effect of word frequency on the similarity
structure of WAS and the length of the word vectors. In the top
panel, the average similarity (measured by inner product) between
random words from different Kucera and Francis word frequency
rangesis plotted. The similarity is highest when high frequency

words are compared with high frequency Words.

Table 1

The similarity decreases when the word
frequencies of the words compared decreases. In the
bottom panel, the figure shows that the vector
lengths are bigger for high frequency words than low
frequency words. Of course, it is the combination of
the vector magnitudes and the correlation between
the feature values that determine the similarity as
computed by the inner product. Because high
frequency words on average have larger magnitudes,
they are placed more at the outskirts of the semantic
space while low frequency words are placed morein
the center of the space. Because an inner product
measure for similarity is used, the average similarity
between the high frequency words that lie at the
outskirts of the space is higher than between words
that lie more in the center of the space. Of course,
using adifferent similarity measure should lead to
different results. For example, using Euclidian
distance as ameasure for (inverse) similarity, should
|ead to lower similarities between high than low
frequency words. This observation becomes
important for part |1 of thisresearch.

Predicting the Output Order of Free Association
Norms

Because the word vectorsin WAS are based
explicitly on the free associ ation norms, it is of
interest to check whether the output order of

responses (in terms of associative strength) can be
predicted by WAS. Wetook the 10 strongest
responses to each of the cuesin the free association
norms and ranked them according to associative
strengths. For example, the response ‘ crib’ isthe 8th

Median rank of the output-order in WAS and L SA of response words to given cues for the

10 strongest responses in the free association norms.

rank of response in free association

k 1 2

3

4 5 6 7 8 9 10

Word Association Space (WAS)

10 86 187
50 13 36
100 6 17
200 3 8
300 2 6
400 1 5

213
49
26
15
12
10

318 348 334 337
106 113 125 132
36 43 62 65 73 78 85
20 28 39 40 48 56 58

14 19 27 32 35 38 44

Latent Semantic Analysis (LSA)

10 678 701
50 270 375
100 171 280
200 140 223
300 132 207

683
388
327
272
239

738 810 863 839 861 887 939
426 495 600 594 565 596 687
373 455 515 481 455 567 622
370 395 447 418 444 511 581
355 397 451 418 459 528 557



strongest associate to ‘baby’ in the free association
norms, so ‘crib’ hasrank 8 for the cue ‘baby’. Using
the vectors from WAS, the rank of the similarity of a
specific cue-response pair was computed by ranking
the similarity among the similarities of the specific
cueto al other possible responses. For example, the
word ‘crib’ isthe 2™ closest neighbor to ‘baby’ in
WAS, so ‘crib’ hasrank 2 for the cue ‘baby’. In this
example, WAS has put ‘baby’ and ‘crib’ closer
together than might be expected on the basis of free
association norms. In Table 1, we compare the ranks
from WAS to the ranks in the free association norms
by computing the average of the ranksin WAS for

the 10 strongest responses in the free association
norms. The averaging was computed by the median
to avoid excessive skewing of the average by afew
high ranks. An additiond variable that istabulated in
Table 1 isk, the number of dimensions of WAS.
There arethreetrendsto be discerned in Table 1.
First, it can be observed that for 400 dimensions, the
strongest responses to the cuesin free association
norms are predominantly the closest neighborsto the
cuesin WAS. Second, responses that have higher
ranksin free associaion have on average higher
ranksin WAS. However, the output ranksin WAS
arein many cases far higher than the output ranksin

Table 2
Thefive nearest neighbors in WAS for the first 40 cues in the Russell & Jenkins (1954)
norms.

neighbor
Cue 1 2 3 4 5
Afraid scare(1)[7] fright(4)[14] fear(2)[1] scared[2] ghost(5)[106]
Anger mad(1)[1] angry rage(5)[4] enrage fury[21]
Baby child(2)[2] crib(8)[13] infant(6)[ 7] cradle diaper(13)
bath clean(2)[1] s0ap(7)[3] water(3)[2] dirty[7] suds[49]
beautiful  pretty(1)[2]  ugly(2)[1] cute[39] girl(4) flowerg[10]
bed deep([1] tired(11)[13] nap rest[5] doze
bible god(1)[1] church(3)[3] reigion(4)[4]  Jesus(5)[8] book(2)[2]
bitter sweet(1)[1]  sour(2)[2] candy lemon(5)[7]  chocolate[4]
black white(1)[1] bleach color(3)[7] dark(2)[2] minority
blossom  flower(1)[1] petalg46] rose(5)[7] tulip daisy
blue color(5)[4] red(3)[2] jeans crayon pants
boy airl(D[1 guy man(4)[2] woman nephew[54]
bread butter(1)[1]  toast[19] rye[26] loaf(3)[16] margarine
butter bread(1)[1] toast(6)[18] rye peanut margarine(2)[34]
butterfly  bug(15)[10]  insect(6)[2] fly(4)[5] roach[76] beetle
cabbage green(4)[7]  food(10)[4] vegetable(2)[3] sdad(12)[5]  vegetables
carpet floor(2)[2] tile(15) rug(1)[1] ceiling sweep[14]
chair table(1)[1] seat(4)[4] sit(2)[2] couch(3)[20] recliner
cheese cracker(2) cheddar(6)[23] Swiss(7)[19] macaroni[39] pizza
child baby(1)[1] kid(2)[7] adult(3)[3] young(8)[6]  parent(6)[11]
citizen person(1)[3] country(3)[5] people[7] flag[12] American(2)[4]
city town(2)[1] state(2)[3] country(9)[4] New York(4) Florida
cold hot(1)[1] ice(2)[5] warm(6)[3] chill pepsi
comfort  chair(3)[1] table seat couch(2)[26] sleep[7]
command tell(4)[7] army(5)[2] rules navy[17] ask[22]
cottage house(1)[1]  home(4)[4] cheese(2)[3] cheddar Swiss
dark light(1)[1] bulb night(2)[2] lamp day
deep water(3)[3] ocean(2)[6] faucet pool[53] splash
doctor nurse(1)[1] physician(5)[15] surgeon(6) medical[83]  stethoscope[21]
dream deep(1)[1] fantasy(4)[19] bed[7] nap tired[92]
eagle bird(1)[1] chirp bluejay nest(10)[5] sparrow[30]
earth planet(2)[8] marg14] Jupiter[97] Venug[50] Uranus
eating food(1)[1] eat[30] hungry(3)[4] restaurant[75] meal[30]
foot shoe(1)[1] sock[16] toe(2)[3] sneaker leg(5)[4]
fruit orange(2)[3] apple(1)[1] juice(9)[12] citrus[35] tangerine[55]
girl boy(1)[1] guy(6) man[9] woman(3)[2]  pretty(4)[6]
green grass(1)[1] lawn[41] cucumber vegetable]76]  spinach[76]
hammer  nail(1)[1] tool(2)[7] wrench screwdriver plierg[21]
hand finger(1)[2] am(3)[3] foot(2)[1] leg(13)[11] glove(4)[4]
hard soft(1)[1] essy(3)[3] difficult[19] difficulty simple

Note: numbers in parentheses and square brackets indicate ranks of responsesin norms
of Nelson et al. (1998) and Russall & Jenkins (1954) respectively.



free association. For example, with 400 dimensions,
the third largest response in free association ison
average the 10" closest neighbor in WAS. Third, for
smaller dimensionalities, the difference between the
output order in free association and WAS becomes
larger.

To summarize, given a sufficiently large number
of dimensions, the strongest responsein free
association is represented (in most cases) asthe
closest neighbor in WAS. The other close neighbors
in WAS are not necessarily associatesin free
association (at least not direct associates).

To get a better idea of the kinds of neighbors
words have in WAS, in Table 2, welist thefirst five
neighborsin WAS (using 400 dimensions) to 40 cue
words. For al neighbors listed in the table, if they
were associates in the free association norms of
Nelson et al., then the corresponding rank in the
normsis given between parentheses. Since all the 40
cue words are cue words used in the free association
norms of Russell and Jenkins (1954), we also list the
ranks in those norms between sgquare brackets. The
comparison between these two databasesis
interesting because Russell and Jenkins allowed
participants to generate as many responses they
wanted for each cue while the norms of Nelson et al.
contain first responses only. We suspected that some
close neighborsin WAS are not direct associatesin
the Nelson et a. norms but that they would have been
valid associatesif participants were allowed to give
more than one association per cue. In Table 3, we list
the percentages of neighborsin WAS of the 100 cues
of the Russell and Jenkins norms (only 40 were
shown in Table 2) that are valid/invalid associates
according to the norms of Nelson et al. and/or the
norms of Russell and Jenkins.

The last row showsthat athird of the 5™ closest
neighborsin WAS are not associates according to the
norms of Nelson et a. but that are associates
according to the norms of Russell and Jenkins.

Table3
Percentages of responses of WAS model that are valid/invalid
in Russell & Jenkins (1954) and Nelson et al. (1998) norms

neighbor
word associ ation norms 1 2 3 4 5
valid in Nelson et a. 96 73 61 45 33
valid in Jenkins et a. 96 83 79 69 o4
valid in either Nelson et al. 99 86 8 73 66
or Jenkinset a.
invalid in Nelson et a. but 3 13 21 28 33

validin Jenkins et d.

Therefore, some close neighborsin WAS are valid
associates depending on what norms are consulted.

However, some close neighborsin WAS are not
associates according to either norms. For example,
‘angry’ isthe 2™ neighbor of ‘anger’ in WAS. These
words are obvioudy related by word form but they do
not to appear as associates in free association tasks
because associations of the same word form tend to
be edited out by participants. Because these words
have similar associative structures, WAS puts them
close together in the vector space.

Also, some close neighborsin WAS are not direct
associates of each other but are indirectly associated
through a chain of associates. For example, the pairs
‘blue-pants’ , ‘butter-rye’, ‘comfort-table’ are close
neighborsin WAS but are not directly associated
with each other. Itislikely that because WASIis
sensitive to the indirect relationshipsin the norms,
these word pairs were put close together in WAS
because of theindirect associative links through the
words ‘jeans’, ‘bread’ and ‘chair’ respectively. Ina
similar way, ‘cottage’ and ‘ cheddar’ are close
neighborsin WAS because cottageis related (in one
meaning of the word) to ‘ cheese', whichisan
associate of ‘cheddar’.

In Table 1, we also analyzed the correspondence
between the similaritiesin the LSA space by
Landauer and Dumais (1997) with the order of output
in free association. As can be observed in thetable,
the rank of the response strength of the free
association norms clearly has an effect on the
ordering of similaritiesin LSA: strong associates are
closer neighborsin LSA than weak associates.
However, the overall correspondence between
predicted output ranksin LSA and ranksin the
normsisweak. The overall weaker correspondence
between the norms and similarities for the LSA
approach than the WAS approach highlights one
obvious difference between the two approaches.
Because WAS is based explicitly on free association
norms, it is expected and shown here that words that
are strong associates are placed close together in
WASwhereasin LSA, words are placed in the
semantic spacein away more independent from the
norms.

Semantic/ Associative Similarity Relations

In the priming literature, severa authors have
tried to make a distinction between semantic and
associative word relationsin order to tease apart
different sources of priming (e.g. Burgess & Lund,
2000; Chiarello, Burgess, Richards & Pollock, 1990;
Shelton & Martin, 1992). Burgess and Lund (2000)
have argued that the word association norms
confound many types of word relations, among them,
semantic and associative word relations. Chiarello et




a. (1990) give “music” and “art” as examples of
words that are semantically related because the words
arerated to be members of the same semantic
category (e.g. Battig & Montague, 1969). However,
they claim these words are not associatively related
because they are not direct associates of each other
(according to the various norm databases that they
used). The words “bread” and “mold” were given as
examples of wordsthat are not semantically related
because they are not rated to be members of the same
semantic category but only associatively related
(since“bread” is an associate of “mold”). Finaly,
“cat” and “dog” were given as examples of words
that are both semantically and associatively related.

We agree that the responses in free association
norms can be related to the cuesin many different
ways, but it seems very hard and perhaps
counterproducti ve to classify responses as purely
semantic or purely associative®. For example, word
pairs might not be directly but indirectly associated
through a chain of associates. The question then
becomes, how much semantic information do the free
association norms contain beyond the direct
associations? Since WAS is sensitive to the indirect
associative rel ationships between words, we took the
various examples of word pairs given by Chiarello et
a. (1990) and Shelton and Martin (1992) and
computed the WAS similarities between these words
for different dimensionalities as shownin Table 4.

In Table 4, the interesting comparison is between
the similarities for the semantic only related word
pairs’ (aslisted by Chiarello et al., 1990) and 200

random word pairs. The random word pairs were
selected to have zero forward and backward
associative strength.

It can be observed that the semantic only related
word pairs have higher similarity in WAS than the
random word pairs. Therefore, even though Chiarello
et a. (1990) have tried to create word pairs that were
only semantically related, WAS can distinguish
between these not directly associated word pairs and
not directly associated random word pairs. Thisis
because WAS is sengitive to indirect associative
rel ationships between words. The Table also shows
that for low dimensionalities, thereis not as much
difference between the similarity of word pairsthat
are semantically only and associatively only related.
For higher dimensionalities, this difference becomes
larger as WAS becomes more sensitivein
representing more of the direct associative
relationships.

To conclude, it isdifficult to distinguish between
pure semantic and pure associative relationships.
What some researchers previoudly have considered to
be pure semantic word relations, were word pairs that
were related in their meaning but that were not
directly associated with each other. This does not
mean however that these words are not associatively
related because the information in free association
norms goes beyond that of direct associative
strengths. In fact, the similarity structure of WAS
turns out to be sensitive to the similarities that were
argued by some researchersto be purely semantic.

Table4
Average similarity between word pairs with different relations: semantic, associative, and semantic
+ associative
k

Relation #pairs Byt 10 50 200 400
Random 200 .000(.000)  .340 (.277) .075 (.178) .024 (.064) .017 (.048)

Word pairs from Chiarello et al. (1990)
Semantic only 33 .000(.000) .730 (.255) 457 (.315) .268 (.297) .215 (.321)
Associativeonly 43 .169(.153)  .902 (.127) .830 (.178) 712 (262)  .666 (.289)
Semantic +
Associgtive 44 .290(.198)  .962 (.053) .926 (.097) .879 (.180)  .829 (.209)

Semantic only 26 .000 (.000)
Semantic +
Associative 35 .367 (.250)

724 (.235)

926 (.088)

Word pairs from Shelton and Martin (1992)

448 (311) 245 (291) 166 (.281)

929 (155)  .874 (204) .836 (.227)

Note: standard deviations given between parentheses
1. B;;= average forward and backward associative strength = (A;; + A;) / 2
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Table5

Average Between and Within Category Similaritiesin WAS of Murdock's (1976)

Semantic Categories

normalize Between Within ratio (between/within)
N .0003 (.0012) .0061 (.0471) 17.8
Y .0182 (.0107) .3418 (.3459) 18.8

Note: standard deviations between parentheses

Capturing Between/Within Semantic Category
Differencesin WAS

In this section, we give an additional
demonstration that the space formed by WAS s
sensitive to semantic information. Murdock’ s (1976)
collected 32 semantic categories with each 32
category members. Examples of categories are ‘ body
parts, ‘ships, ‘birds’, ‘fruits’, and ‘tools’. Members
of thefirst category were for example‘leg’, ‘arms’,
‘head’, ‘eye’ and members of the second category
were for example ‘sailboat’, ‘ destroyer’, * battleship’.
If WAS s sensitive to the categorical structure of
these semantic norms, then the within category
similarity should on average be higher than the
between category similarity. Similarity was
computed by the inner product between word vectors.
Thewithin category similarity was calculated by
averaging the similarities of al possible word pairs
within a category. Similarly, the between category
similarity was calculated by averaging the similarities
of al possible word pairsthat fell in different
categories. In Table 5, the between and within
category similarities are shown. Note that the within
category similarity is 18 times higher than the
between category similarity suggesting that the
similarity structure of WAS iswell suited to
represent semantic categorical information. The row
labeled ‘not normalized’ refersto the space used in
part | of the research where the vector lengths are not
normalized. In the second row, the table shows that
when the vector lengths are normalized, the ratio of
within to between category similarity isequally high.
This observation becomes important in part |1 of this
research, where we do normalize the vector lengths.

Predicting Memory Performance

Predicting Results from Deese

In aclassic study by Deese (1959b), the goal
was to predict the intrusion rates of wordsin free
recall. Participants studied the 15 strongest
associatesto each of 36 critical lureswhilethe

critical lures themselves were not studied. In afree
recall test, some critical lures (e.g. “sleep”) were
falsely recalled about 40% of the time while other
critical lures (e.g. “butterfly”) were never falsely
recalled. Deese was able to predict the intrusion rates
for the critical lures on the basis of the average
associative strength from the studied associates to the
critical lures and obtained a corrdation of R=0.8.
Since Deese could predict intrusion rates with word
association norms, it was expected that that the WAS
vector space derived from the association norms
could also predict intrusion rates. Theideahereis
that critical itemsthat are closely related to list words
aremore likely to appear asintrusionsin free recall
than critical itemsthat are not closely related to list
words. The average similarity was computed between
each critical lure vector and list word vectors using
different dimensionalities. In Figure 3, a scatter plot
shows the relationship between the similarity and the
intrusion rates as observed by Deese (here, the
number of dimensions was 400). The obtained
correlation was R=0.775. In Table 6, the correlations
for other dimensionalities are listed. The correlation

Table 6

Correlations between the average
similarity of critical and list words and
the intrusion rates observed by Deese

(1959b)

k  WAS LSA
10 .386 210
50 .519** .189

100  .617** 154
200 .691** 204
300 .682** 174
400 775 -

Note: ** Correlation is significant at the
0.01 leve (2-tailed)
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3. The average similarity between critical item and list item in
WAS can predict the intrusion rates for the critical item as
observed by Deese (1959b).

decreases with decreasing number of
dimensions. This might happen because a smaller
dimensional space has less room to place 5000 words
so that the resulting similarity structure does not
capture aswell the differencesin observed intrusion
rates. The table also shows the correlations when the
vectors aretaken from LSA. It can be seen that
similarity structure of LSA does not correlate as well
with the intrusion rates as WAS. Also, the effect of
varying the number of dimensions does not seem to
affect the correlations.

Predicting Extralist Cued Recall

In extralist cued recall experiments, after
studying a list of words, subjects are presented with
cuesthat can be used to retrieve words from the study
list. The cues themselves are novel words that were
not presented during study and they typically are
associatively related to one of the studied words. The
degree to which acueis successful in retrieving a
particular target word is ameasure of interest because
this might be related to the associative/semantic
overlap between cues and their targets. Research in
this paradigm (e.g. Nelson & Schreiber, 1992;
Nelson, Schreiber, & McEvoy, 1992; Nelson,
McKinney, Gee, & Janczura, 1998; Nelson & Xu,
1995) has already shown that the associative strength
between cue and target is one important predictor for
the percentage correctly recalled targets. Therefore,
we expect that the WAS similarity between cues and
targets are correlated to the percentages of correct
recall in these experiments. We used a database

containing the percentages correct recall for 1115
cue-target pairs from over 29 extralist cued recall
experiments from Doug Nelson’ s laboratory (Nelson
& Zhang, submitted; Nelson, persona
communication). The correlations between the WAS
similarity and observed recall rates for different
dimensionalitiesare shownin Table 7.

The best result was asmall but significant
correlation of .36 using 400 dimensions. The
correlations decreased with decreasing number of
dimensions. Since a smaller number of dimensions
limits the ways in which 5000 words can be placed in
the space, it is possible that thisfactor explainsthe
limiting effect on the correlation. The table also
shows the correl ations when vectors from the LSA
space were taken. The correlations with the LSA
vectors were less high than with WAS but were
relatively closein value at 300 dimensions. This
suggests that both WAS and LSA can be used as part
of aprocess model to predict cued recall results.

Table 7

Correlations between the similarity of
cued recall word pairs and percentage
correct recal ratesusing WAS and LSA

k WAS LSA
10 .051 .004
50 .214** 119**

100  .274** 67
200  .335** 220%*
300 .342** 252%*
400 .360** -

Note: ** Correlation issignificant at the
0.01 level (2-tailed)

Discussion

By astatistical analysis of alarge database of free
association norms, the Word A ssociation Space
(WAS) was developed. In this space, words that have
similar associative structures are placed in similar
regions of the space. We showed that the output order
of wordsin free association normsis preserved to
some degreein WAS: first associates in the norms
arelikely to be close neighborsin WAS. There are
some interesting differences between the similarity
structure of WAS and the associative strengths of the
words in the norms. Words that are not directly



associated can be close neighborsin WAS when the
words are indirectly associatively related through a
chain of associates. Also, in some cases, words that
are directly associated in the norms are not close
neighborsin WAS at al (although these are
exceptions). This makes WAS not agood model for
the task of predicting free association data. However,
it isimportant to realize that WA S was not devel oped
asamodel of free association (e.g. Nelson &
McEvoy, Dennis, in press) but rather as a model
based on free association.

The WAS approach is an additional method
available to place wordsin apsychological space. It
differs from the LSA and HAL approachesin severd
ways. LSA and HAL are automatic methods and do
not require any extensive data collection of ratings or
free associations. With LSA and HAL, tens of
thousands of words can be placed in the space,
whereasin WAS, the number of words that can be
placed depends on the number of wordsthat can be
normed. It took Nelson et a. (1998) more than a
decade to collect the norms, highlighting the
enormous human overhead of the method.

Another differenceisthat LSA and HAL havethe
potential to model the learning process alanguage
learner goes through. For example, by feeding the
LSA or HAL model successively larger chunks of
text, it can be simulated what the effect learning has
on the similarity structures of wordsin LSA or HAL.
InWAS, itisin principle possible to model a
language learning process by collecting free
association norms for participants at different stages
of thelearning process. In practice however, such an
approach would not easily be accomplished.

Wethink that the WAS, LSA, and HAL
approachesto creating semantic spaces are al useful
for theoretical and empirical research. It might be that
the usefulness of a particular space will depend on
thetask it is applied to. Since the free association
norms have been an integral part in predicting
episodic memory phenomena (e.g. Cramer, 1968;
Deese, 1965; Nelson, Schreiber, & McEvoy, 1992), it
was assumed that a vector space based on free
association norms would be an especially useful
construct to model memory phenomena. In this
research, we have aready shown with simple
geometric operations how the similarity structure of
WAS can predict to some degree the intrusion rates
observed by Deese (1959b) in hisclassic false
memory experiment aswell as the percentages of
correct recall in cued recall experiments. This
suggeststo usthat WA S forms a useful
representational basis for memory models that are
designed to store and retrieve words as vectors of
feature values. In part Il of this research, we will
combine the semantic space of WAS with a process
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model for recognition memory. Thiswill alow usto
model the processes of recognition memory and gives
us a principled way to represent words by vectors.
The assumption of representing words by vectorsin
memory modelsisrelatively old. However, in most
memory modeling, the vectors representing words are
arbitrarily chosen and are not based on or derived by
some analysis of the meaning of actual wordsin our
language. In part 11, it is expected that a memory
model based on these semantic vectorsfrom WAS
will be useful to make predictions about the effects of
varying semantic similarity in memory experiments.

Appendix

L et the matrix A represent the information from
the free association norms with A;; representing the
relative frequency with which participants generate
responsej with cuei. Theideaisto usethe
information in the matrix of the free association
normsto place the n words in ahigh dimensional
space by applying singular value decomposition. We
first transformed A to anew matrix T by
symmetrizing A and by adding the two-step indirect
associative strengths® from the cue to response and
from response to cue:

T, = A A +é AA +é Ay A
K K
1)

The matrix T issymmetric: T = Tj;. It is possible
to decompose any square symmetric matrix T into a
product of three matrices by using a specia case of
the singular value decomposition method':

T= UoDoUo' (%]

Here, U’ denotes the transpose of Ug. When the
matrix T hassizen x n (i.e., n rows and n columns),
then U, and D, are also size n x n. The columns of
matrix U, are orthonormal and contain the N
eigenvectors. The matrix Dy is diagonal and contains
the n singular values. It is customary to let the first
diagonal entry contain the largest eigenvalue
followed by eigenvaluesin decreasing order.

The purpose of thislinear decomposition isto
approximate matrix T by matrices with amuch
smaller number of singular values and singular
Vectors:

T =UDU ©)



Here, D isthek x k diagonal matrix containing
only thek largest (k << n) singular values of Dy. U is
the n x k matrix that contains only the first k
eigenvector columns of Uy. We represent words by
the column vectors of the matrix X, whichisformed
by weighting the eigenvectors with the eigenvalues:

X =UD 4

The matrix X represents the high dimensional
vector space that is called * Word Association Space'.
Each column vector of X representsthe location of a
word in the space.

Notes

1. Thefact that HAL uses amuch smaller
window in which to calculate co-occurrence statistics
than in LSA might explain the finding that HAL is
more sensitive to the grammatical aspects of
meaning: nouns, prepositions and verbs cluster
together in the contextual space of HAL.

2. The number is dimensionsthat can be extracted
is constrained by various computational aspects. We
were able to extract only the first 400 dimensions for
WAS.

3. The correlation between the log Kuceraand
Francis frequency and the log of the number of times
aword was produced in the free association norms
was 0.53.

4. Since responsesin word association tasks are
by definition all associatively related to thecue, itis
not clear how it is possible to separate the responses
as semantically and associatively related.

5. Someword pairsin the semantic only
conditions that were not directly associated according
to various databases of free association norms were
actually directly associated using the Nelson et al.
(1998) database. These word pairs were excluded
from the analysis.

6. We have added the indirect associationsto the
word association matrix because we have found that
thisleadsto vector spaces that better preserve the
order of associative strengths of the original word
association matrix. At thistime, it is not clear what
the reason is for the advantage of adding the indirect
strengths. More research is needed to investigate the
influence of this preprocessi ng step on the similarity
structure of the resulting vector space.

7. the SVD method is more genera and can
decompose any rectangular or asymmetric matrix.
For adiscussion showing the relationship between
SVD and relationship to multidimensional scaling see
Bartell, Cottrell, and Belew (1992).
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Part I1:
Predicting Memory Performance
with Word Association Spaces

Many memory models assume that the semantic
and physical features of words can be represented by
collections of features abstractly represented by
vectors (e.g. Eich, 1982; Murdock, 1982; Pike, 1984;
Hintzman, 1988; McClelland & Chappell, 1998;
Shiffrin & Steyvers, 1997, 1998). Most of these
vector memory models are process oriented; they
explicate the processes that operate on memory
representations without explicating the origin of the
representations themsel ves: the different attributes of
words are typically represented by random vectors
that have no formal relationship to the wordsin our
language. The first goal of this research wasto
devel op vector representations that capture the
aspects of the meaning of words and vector
representations that capture the physical aspects of
words such as orthography and/or phonology. As
opposed to the vector representations used by many
memory models, the semantic and physical features
in these representations do have formal relationships
to words in the English language. The second goal of
this research was to combine these representations
with a process model for memory. This part of the
research was built on previous research with the
REM model (Shiffrin & Steyvers, 1997, 1998) in
which aframework was laid out for a process model
of episodic memory. With this processing model, we
aimed to provide a quditative account for various
recognition memory phenomenafound in the
literature, aswell asthe results of the experiments
reported in this paper. In addition to the physical and
semantic attributes, word frequency was a factor that
had to be taken into account in the modeling and
experiments, because word frequency variation
produces large effects on recognition memory
performance. In summary, we aim to provide
qualitative accounts for differencesin individual
word performance in recognition memory based on
semantic features, physical features, and the natural
language frequency of the words that are studied and
tested.

Semantic and Physical Similarity Effectsin Memory
One way to investigate the role of semantic
featuresinvolves varying the semantic similarity
between study and test words, often carried out
within the ‘false memory paradigm’. Following the
classic experiments by Deese (19593, b), Roediger
and McDermott (1995) revived interest in this
paradigm (e.g. Brainerd, & Reyna, 1998, 1999;
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Payne, Elie, Blackwell, & Neuschatz, 1996; Schacter,
Verfaedllie, & Pradere, 1996; Tussing & Green, 1997).
In the typical fal se memory experiment, participants
study words that are all associatively and/or
semantically related to a non-studied critical word.

In a subsequent recognition test, the critical word
typically lead to a higher false alarm rate than that for
unrelated foils (and sometimes quite highin
comparison to that for studied words). In afree recall
test, participants falsely intrude the critical word at a
rate higher than unrelated words (and sometimes at
rates approaching those for studied words). These
studies show that memory errors can be strongly
influenced by semantic similarity.

Phonetic and orthographic similarity has been
shown to play arolein freerecall (Watkins, Watkins,
& Crowder, 1974; Brown & McNeill, 1966) and cued
recall (Bregman, 1968; Laurence, 1970; Nelson &
Brooks, 1973; Wickens, Ory, & Graf; 1970). In
recognition memory, acoustically/orthographically
similar distractors lead to higher false alarm rates
than acoustically/orthographically dissimilar
distractors (Buschke & Lenon, 1969; Cermak,
Schnorr, Buschke & Atkinson, 1970; Davies &
Cubbage, 1976; Runquist & Blackmore, 1973). These
studies show that memory errors can be based on
similarity of orthographic, phonological, and
semantic features of words, and emphasi zes the need
to include mechanismsreflecting these factorsin
memory models.

We now discuss four of the many explanations
for semantic and orthographic/ phonological
similarity effectsin memory; these explanations are
not mutually exclusive:

Generation of episodic traces at study.
Underwood (1965) proposed that during study of
words, participants generate “implicit associative
responses’ (IAR’s) which might be stored as episodic
tracesin memory. If the study list contains many fruit
words (e.g. “apple’, “pear”, “banana’ etc.) but not
the word “fruit” itself, the word “fruit” might be so
strongly evoked in mind by all the fruit words that
theword “fruit” might be actually stored in memory
asif it had been presented during study. This
essentially locates the false memory effect at storage.
Little detail has as yet been provided for the
underlying mechanism of IAR’s. There is some
evidence that a strong version of this mechanismis
not sufficient to explain false memory effects: If itis
assumed that the fruit study list dways leads to
storage of the word “fruit” in memory, then testing
“fruit” asadistractor should lead to the same level of
familiarity astesting “fruit” as atarget when the word
was actually presented on the study list. Miller and
Wolford (1999) found that participants can
distinguish between critical words tested as




distractors and critical wordstested as targets, thus
casting doubt on the strong version of the IAR
theory. However, these results are compatible with a
mechanism in which it is assumed that IAR’s lead to
weaker traces in memory than actually presented
items.

Shiffrin, Huber, and Marinelli (1995) varied the
category size of studied words; categories either
contained semantically similar words or
orthographically similar words. They found that fd se
recognitions for both semantically and
orthographically similar distractorsincreased as
category size increased, and argued that it was
unlikely these category length effects were due to
IAR's. Firgt, the category words were spaced
throughout avery long study list, making it difficult
for participants to perceive the underlying categories.
Participants reported that they were not aware of the
underlying category structures, in ailmost al
instances. Second, it is probably less likely that the
I AR mechanism would apply in explaining false
memory effects based on physical similarity, because
most explicit or conscious coding in memory studies
appearsto be based on semantic content. For
example, when the study list contains“BEG”,
"BOG", “BIG", and “BUG" spaced 20 or more items
apartinalong list, itisrather unlikely that an
elevated false dlarm rate for “BAG” isdueto
participants explicitly thinking about the word
“BAG” during study (although such phonological
productions might well occur in massed study
situations).

Based on such results, it seemslikely that the IAR
mechanism plays a significant role especially when
similar study words are grouped together. When the
I AR mechanism operates, and produces a memory
trace for aword, such atrace would probably not be
as strong as that produced by that same word actually
presented.

Storagein lexical/semantic traces. the result of
study of acategory of related items might include not
only storage of an explicit, episodic trace for the
non-studied IAR word, but also storage in the
lexical/semantic trace for that word. For example, the
REM model for implicit memory (Schooler, Shiffrin,
& Raaijmakers, in press) posits storage of context
information in aword's lexical/semantic trace
following its study; this could occur aswell after IAR
generation. For example, during study of many fruit
words, the lexical entry for “fruit” (not presented
during study) might be activated and might gain a
small number of current context features. These
context features represent the immediate situation
and task. When the word “fruit” istested, afalse
alarm might be generated because the current context
matches the context features stored in the lexical
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trace for “fruit”. Sommers and Lewis (1999) propose
an account for phonological false memory effects that
issimilar to thisnotion of implicit activation.
Neighboring words in phonological space gain
activation from presentation of a study word. This
was implemented with the NAM model (Luce &
Pisoni, 1998). For example, studying the words
“BEG”, "BOG", “BIG", and “BUG" leads to
enhanced activation of the words“BAG” in some
phonological space. Theideaisthat because aword
such as“BAG” has extra activation, the false alarm
rate of thisword (when tested as a distractor), will be
increased relative to other words.

Storage of gist. Brainerd and Reyna (1998; 1999)
have proposed in their Fuzzy trace theory that the
presentation of study words leads to the storage of
two kinds of tracesin memory: verbatim and gist
traces. Verbatim traces relate to the surface features
(e.g. orthography, phonology) of individual words
while gist traces relate more to the collective
meaning of the studied material (Bransford & Franks,
1972). For example, studying words like “pillow”,
“dream”, “bed”, “snore” might lead to verbatim
traces for each of theseindividual wordsand also a
gist trace that could be interpreted as“ Sleep”.
Therefore, testing “deep” asadistractor leads to high
false alarms because it matches the stored gist. The
focus of this theory has been to show the independent
effects of the processes operating on the verbatim and
gist traces. To date, the fuzzy trace theory has been
implemented as a measurement model (see Brainerd,
Reyna, & Mojardin, 1999), and not as a process
model: the theory does not specify how gist and
surface traces are extracted, stored and retrieved at
test.

Global familiarity operating at retrieva . In global
familiarity models such SAM (e.g. Gillund &
Shiffrin, 1984), MINERVA (Hintzman, 1988) and
REM (Shiffrin & Steyvers, 1997), it is assumed that
study leads to separate tracesin memory for every
word presented. At retrieval, the stored traces are
activated in proportion to their similarity to atest
word, and the summed activations are used to make a
recognition decision. In the REM instantiation, for
example, words are represented by vectors of feature
values that are assumed to contain among other
attributes, phonological, orthographic and semantic
features. The episodic traces that are stored in
memory contain error-prone and/or incomplete
copies of the features of the word vectors. The
recognition processis based on a comparison of the
probe to every trace in memory: amatch valueis
calculated for each probe/trace comparison. The
recognition decision is based on afunction of the sum
of theseindividual match values. A decision “old” is
made when the sum exceeds a certain criterion,




otherwise adecision “new” is made. An incorrect
“old” recognition for a distractor can be expected
when the probe features will match the features of
several tracesto such a degree that the sum of the
match values exceeds the criterion. The global
familiarity mechanism therefore explains the false
memory effect as aretrieval effect.

Word frequency effectsin recognition memory

Word frequency can be defined by counting the
number of times aword occurs in samples of written
text (Kuceraand Francis, 1967). The number of times
aword is experienced pre-experimentally, and/or the
relative number of times aword is experienced pre-
experimentally, have alarge effect on memory
performance even though experimental frequency
and other factors are held constant. Low frequency
words are better recognized than high frequency
words (Glanzer & Bowles, 1976; Gorman, 1961;
Kinsbourne & George, 1974; McCormack &
Swenson, 1972; Shepard, 1976; Schulman &
Lovelace, 1970). In addition, the hits (responding
'old' to atarget) and false alarms (responding 'old' to
afail) typically exhibit amirror effect: hits are higher
for low than high frequency words, and false alarms
are higher for high than low frequency words (e.g.
McCormack & Swenson, 1972; Glanzer & Adams,
1990).

Word frequency is correlated with many other
measures defined for words such as feature
frequency, concreteness, the number of different
meanings, recency, and the number of contextsin
which they appear. Not surprisingly, then, quite afew
mechanisms have been proposed to explain word
frequency effects. We next discuss three of these:

Trace strength differences. One explanation for
the word frequency effect is based on the strength of
encoding. Mandler (1980) proposed that low
frequency words are rehearsed more than high
frequency words so that they are encoded better in
memory. In asimilar account, Glanzer and colleagues
(Glanzer & Adams, 1990; Kim & Glanzer 1993)
proposed that low frequency words attract more
attention so that they are better encoded. This
explanation (and others aswell) does not explain why
lists of high frequency words are free-recalled better
than lists of low-frequency words (e.g., Gregg, 1976).
However, in the SAM and REM models, recall
operates not through a process of global activation
(which appliesto recognition) but instead through a
search processinvolving steps of sampling and
recovery. In these theories, recovery is superior for
high frequency words, overcoming any other
advantage that may favor low frequency words.

Feature frequency differences. An explanation for
word frequency based on both coding and retrieval is
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based on feature frequency differences. Thisideawas
explored in Shiffrin and Steyvers (1997). Landauer
and Streeter (1973) showed that high and low
frequency words are structurally different: on
average, different features make up high and low
frequency words. In Shiffrin and Steyvers (1997), the
assumption was made that high frequency words
tended to contain high frequency features, justified
by the argument that high frequency words are
encountered more often, hence insuring that their
features are also encountered more often. In the REM
model, the feature values for high frequency words
were made more common than the feature values for
low frequency words. Since amatch of arare feature
in the probe and a trace was more diagnostic than a
match of acommon feature, the system predicted
advantages for low frequency words (in recognition
memory). In part 111 of this research, we will provide
empirical support for this explanation by
independently varying word frequency and feature
frequency. To preview the results: words with equal
word frequency are better remembered when the
words consist primarily of low than high frequency
features, aresult consistent with the feature
frequency hypothesis for word frequency effects.

Context differences. Since high frequency words
occur more often than low frequency words, on
average they also occur more recently than low
frequency words (e.g. Scarborough, Cortese, &
Scarborough, 1977). This can lead to more confusion
in recognition memory for high frequency than low
frequency words. Tha is, for high frequency words a
large value of familiarity could arise correctly for
targets, but incorrectly for foils due to apre-
experimentally recent occurrence. High frequency
words also occur in agreater variety of contexts
(Dennis, 1995) than low frequency words. In a model
by Dennis and Humphreys (1998; submitted), this
difference in context noise was used to predict word
frequency effects.

Itisentirely possiblethat al three of these word
frequency accounts are valid (along with otherswe
have not discussed) and that multiple mechanisms are
operating simultaneously. The focusin thisarticle
will be word frequency effects due to feature
frequency effects and context differences.

A memory model for semantic and orthographic
similarity effects

The memory model in this research is based on
the REM model that initsfirst inception was fit
qualitatively to various basic recognition memory
phenomena (Shiffrin & Steyvers, 1997, 1998). L ater,
Diller, Nobel, and Shiffrin (in press) fitted the model
quantitatively to recognition and cued recall



experiments. In more recent work, the model has
been extended to various implicit memory tasks (e.g.
Schooler, Shiffrin, & Raaijmakers, in press) and
short-term priming (Huber, Shiffrin, Lyle, Ruijs, in
press).

In the previous sections, it was established that
both semantic and physical similarity between probe
and memory traces are important determinants of
memory performance: both semantically and
physically similar distractor probes tend to produce
higher false alarm rates than unrelated control words.
In the three experimentsin this paper, the role of
semantic similarity, physical similarity and word
frequency in recognition memory are investigated.
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Figure 1. lllustration of the memory model. The
semantic and physical features of the probe are
compared in parale to corresponding features in al
episodic traces in memory. The model calculates a
likelihood ratio for each probe-trace comparison,
expressing the match between probe and trace. The
overall familiarity that forms the basis for recognition
judgments is caculated by the sum of likelihood
ratio’s.

We havetwo goals: 1) using aversion of the REM
model, we hope to fit qualitatively the results from
the three experiments reported in this paper. 2) we
shall investigate the degree to which it is possible to
predict differencesin performance for individua
words as opposed to groups of words. Because we
have a process model operating on a representation of
the semantic and physical attributes of wordsthat is
based on an analysis of actual words, we can makea
priori predictions for individual words. This approach
differsfrom that in which similarity constraints are
imposed on arbitrary feature vectors.
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Overview of Model

REM uses Bayesian principlesto model the
decision processin recognition memory. Words are
stored in memory as episodic traces represented by
vectors of feature values. We adopt the REM
assumption that al information related to the study
episodeis stored in onetrace; in this research, such
information is defined to consist of semantic and
physical features. At study, the presented word
contactsitslexical/semantic trace, and an attempt is
made to store the combination of the physical
features and the features recovered from the lexical
trace. The resultant episodic trace is an incomplete
and error prone copy of these feature values.
Retrieval operates by comparing in parallel the
semantic and physical features of the test word to all
traces, and measuring the featural overlap for each
trace asillustrated in Figure 1.

Thefeatural overlap for each trace contributes
evidenceto alikelihood ratio for each trace. In
Shiffrin and Steyvers (1997), it was shown that the
oddsfor ‘old’ over ‘new’ equaled the sum of the
likelihood ratios divided by the number of traces
involved in comparisons.

Two memory judgments

We borrow the procedure used by Brainerd and
Reyna (1998) in which participants were instructed to
give one of two memory judgments: standard
recognition instructions and joint recognition
instructions. With standard recognition instructions,
participants were instructed to respond “yes’ to
targets and “no” to al distractors. Withjoint
recognition instructions, participants were instructed
to respond “yes’ to targets and “yes’ to al distractors
that are related in meaning to one of the various
themes of the words on the study list. They only had
to respond “no” to unrelated distractors. We will refer
to the two memory judgments that are generated
under the standard recognition and joint recognition
instructions as recognition and similarity judgments
respectively.

Comparison of the results for recognition and
similarity judgments alows investigation of the
interplay between semantic and physical features,
especially if one assumes that similarity judgments
are based only on the matching of semantic
information, and not physical information (asthe
instructionsimply). We can test this assumption by
modeling the similarity judgments with semantic
features only, and modeling the recognition
judgments with both semantic and physical features.
Based on these assumptions, the difference between
the recognition and similarity ratings measures the
degree of reliance on physical features.




Semantic features

In part |, we showed how a semantic space was
constructed by analyzing the statistical structure of
word association norms. We borrowed the singular
value decomposition technique (SVD) of the latent
semantic analysis approach (LSA, Landauer and
Dumais, 1997) to place words in a high dimensional
semantic space. In LSA, semantic spaces are created
by analyzing co-occurrence statistics of words
appearing in different contextsin large text
documents such as encyclopedia. Theideais that

RESPONSES
c
e}
- % o
§SE85 g8
cat 2 .0 0.0
dog 0.1 0.0
CUES pet 0.0 0.0
fur 0.0 0.0
television 0.0 0.7
radio 0.0 6.0
5000 x 5000 matrix
i SVD
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[ ]
.dog
o PEt
levision
.tee SI0
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Figure 2. lllustration of the Word
Association Space (WAS) approach. The
singular value decomposition (SVD)
method is applied on a large database of
free association norms to place words in a
high dimensional space. Words are placed
in similar locations in a high dimensional
psychological space when the associative
relationships between words are similar.
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words similar in meaning appear in similar contexts
(where context is defined as segments of connected
text such asindividual encyclopedic entries).

In our approach, the SVD procedure was applied
to the matrix of free associations for over 5000 words
collected by Nelson, McEvoy, and Schreiber (1998).
The result isthat words that have similar associative
structures are placed as pointsin similar regions of a
400 dimensiona space asillustrated in Figure2. To
put it differently, each word was represented asa
vector of 400 feature values with associatively
similar words having similar feature values. Because
the space was devel oped on word association norms,
the space was named Word Association Space
(WAS).

The basic digtinction between LSA and WAS s
that in the former approach, it was assumed that
similar words occur in similar contexts, whilein the
latter approach, it was assumed that similar words
have similar associative structures. Both conceptual
frameworks are useful in empirical and theoretica
research. The WAS approach was devel oped with the
specific purpose of modeling memory phenomena.
Since it has been established that the associative
structure can predict recall (e.g. Cramer, 1968;
Deese, 1959a,b, 1965), cued recall (e.g., Nelson,
Schreiber, & McEvoy, 1992), and priming (Canas,
1990), we expected that the word association space
formed by analyzing the free association normsis
particularly useful to predict memory performance.

Asdescribed in part I, WAS s not ametric space
in which distance measures dissimilarity. The SVD
analysisthat produced WAS is based on the idea that
inner products represent similarity. Thus high
frequency words, which are more similar to each
other (as measured by inner product), are given
higher feature valuesin the final solution, placing
them farther out in WAS space as measured by
Euclidian distance. Thisfact will have important
implications for the way in which the WAS vectors
areincorporated in aBayesian andysis, and the way
in which word frequency is treated, as described
below.

Orthographic features

For convenience, the physical features of words
were represented only and simply in terms of
orthographic features. The role of physical aspects
such orthography is emphasized in this research
because the orthographic similarity of test wordsto
studied words was varied in one of the experimentsin
this paper. In principle, the present modeling effort
could easily be extended to include other aspects of
words such as phonology, or font, style, size and
capitaization.




In this research, of the many possible waysto
encode orthography, a simple representational
scheme was chosen that is based on the probabilities
of letters occurring in words. First, the distribution of
letter frequencies was computed by counting the
occurrences of lettersin alarge lexicon of CELEX
(Burnage, 1998). Let us denote the | most frequency
|letter in the aphabet with Q; and the relative

LETTER FREQ. CODE

e 0.0997 1
a 0.0823 2
r 0.0795 3

b 0.0247 16
0.0235 17
0.0197 18

X T

X 0.0025 25
0.0017 26

Figure 3. lllustration of the
representation for orthography. L etters
are encoded with the rank of the
frequency with which the letter
appearsin alarge lexicon.

frequency of Q; with h( Q, ). For example, the most
frequent letter in our frequency count is“€” so
Q,="€" and we calculated h(Q, ) =.0997. Theideais
to code words with the ranks of the letter frequencies
asillustrated in Figure 3. With this representation, the
word “bear” would be encoded with the four features
16-1-2-3 and theword “rex” with the three features
3-1-25.

The base rates of feature valuesh( Q, ) are
assumed to be known to the system. Based on these
base rates for the features, the memory model can
predict word frequency effects. High frequency
words consist on average more of high frequency
features while low frequency words consist on
average more of low frequency features. A match of
alow frequency feature between atest word and a
memory trace provides highly diagnostic evidencein
favor of amatch, whereas a match of high frequency
featuresis more likely to have occurred by chance
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and therefore provides less evidence. These
differences in diagnosticity present one way in which
the model can predict word frequency effects (similar
arguments apply in principle to diagnosticity of
semantic features and word freguency, but the
peculiarities of WAS do not lend themselves to the
appropriate Bayesian analysis--see below).

Episodic storage

Study of words leads to episodic tracesin
memory, separately for each word. The tracesin
memory are error prone and potentially incomplete
copies of the semantic and orthographic feature
vectors. With probability u, a semantic/orthographic
featureisstored in atrace. If afeatureisnot stored, it
is marked as missing and cannot be part of the
retrieval process. A high probability u leadsto
relatively complete traces in memory whereas alow
probability uleads to weak tracesin memory.

In the original REM model, the feature values
representing words were discrete. In this model, the
orthographic feature values are discrete and the
semantic feature values are continuous, so different
processes are used to add noise in the storage
process. For the discrete orthographic features, the
parameter ¢ determines the probability that feature
values are copied correctly into the episodic trace. If
afeatureis not copied correctly, it is sampled from
the distribution of feature values. Therefore, if itis
not copied correctly, the most likely value to be
storedis“1”, next most likely valueis“2", and so
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Figure 4. lllustration of the storage process for
semantic features. Normally distributed noise
with standard deviation s, was added to each
feature (or dimension).



forth.

For the continuous semantic features, normally
distributed noise is added for each feature value as
illustrated in Figure 4. The parameter s ,, the standard
deviation of the noise distribution determinesthe
amount of noise in the storage process for semantic
features. Indll, three parameters, u, cand s,
determine the storage process. In light of the peculiar
properties of WAS, one might wonder whether it is
sensibleto add constant noise to all feature values. In
principle thisis an excellent question. In practice, the
relative placement of high and low frequency items
in WAS caused us to normalize al semantic vectors
by their length (see below), thereby placing al words
on a hypersphere, and thereby making the constant
noise assumption plausible.

Calculating Familiarity

The recognition decisions are based on Bayesian
principles where thelog oddsis calcul ated that the
probed word isold over new:

P(probe isold)
P(probe isnew)

j =log @)

In REM, binary recognition decisions“old” and
“new” are made when the log oddsis bigger than
zero and smaller than zero respectively. In this
research, we will model not binary recognition
decisions, but recognition judgmentsthat lieon a
scale. For this purpose, we first took the log of the
odds, thereby making the log odds distributions at
least roughly normal for both targets and distractors
(see Shiffrin & Steyvers, 1997). These log odds could
then be transformed into ajudgment scale.

Inthe moddl, if the probe isatarget, one of the
tracesisaresult of storing that probe, but which trace
is not known to the system. If the probeisadistractor
word, none of the traces are the result of storing that
probe. Because the storage process is made noisy, it
can only be determined probabilistically whether one
of the traces match the probe. In the appendix of
Shiffrin and Steyvers (1997), it was shown with
Bayesian principles how to calculate the odds that the
probeisold over new. The calculations use the
available information: the matching of the features of
the probe to those of the stored featuresin each
memory trace. First, the oddsis expressed asasum
of thelikelihood ratio’s, | ; of theindividual trace i
matching the probe, divided by the number of traces,
n.
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Thelikeihood ratiol ;, expresses the ratio of the
probability that the test probe was stored in trace i
over the probability that the test probe was not stored
intracei.

To combine evidence from orthographic feature
matches, and semantic feature matches, one simply
multiplies likelihood ratios:

—] S| O
=1

wherel % and| ° denote the likelihood ratios
calculated for the semantic and orthographic contents
in memory respectively.

Aswith the discrete features of the original

REM model, the number of matching and
mismatching features between the probe and trace are
used to calculate the likelihood ratio’ sfor
orthographic features:

The sets N; and M; index the set of features of
tracei that match and mismatch the probe
respectively. The variable V° refers to the k"
orthographic feature stored in the ™ trace in memory.
The parameter ¢ and function h(V) wereintroduced
earlier. The parameter ¢ determines the probability
that features are stored correctly. The function h(V) is
the distribution of orthographic feature values that
was determined by the relative letter frequencies of
letters appearing in words in alarge lexicon.

Thelikelihood ratio’ s are cal culated for every
trace in memory. Therefore, the number of matching
and mismatching orthographic featuresis cal culated
for every probe-trace comparison. Because words
differ in length, it becomes an issue of how to align
probe and trace featuresin case thereisalength
mismatch. There are various solutions to this
problem. Here, the best alignment was chosen for
each probe-trace comparison; 'best' isdefined in
terms of the least number of mismatches.

For a continuous metric space in which similarity
isinversely related to distance, it would be sensible
to use the absol ute difference between two features
values as away to measure the degree of match
between features. However, in WAS high frequency
words, which are highly similar, and have common



features, are placed in the outskirts of the space (i.e.
they have larger feature values). For such a
representation, we could find no way to instantiate or
approximate a sensible Bayesian implementation. We
therefore normalized al vectorsin WAS by dividing
all feature values for aword by that word's vector
length®. This placed all words on the surface of a
hypersphere, and similarity isinversely related to
distance on this hypersphere. For this new
representation, it is plausible to measure degree of
match by absolute difference between feature values
(athough, as discussed below, an unfortunate
consequence of this change is the elimination of
feature frequency differences between words of
different frequency).

Based on Bayesian principles, it can be shown
that the likelihood cal culation for the semantic
features defined in thisway is:

S S
|s= ~ f ki~ Vvk )

i - _~,s~n (6
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Thevariable V° , refersto the K" semantic feature
stored in thei™ trace in memory, W5, refersto the k™
semantic feature in the probe and K refersto the
number of semantic features (K=400). The function f
is the probability mass distribution of the normal
distribution with standard deviation s,,. The
numerator isthe probability density of the
observation assuming the probe word had been stored
intrace i, and the denominator isthe density under
the assumption that trace i encodes some other wordf.
Theratio givestheratio of evidence for feature k, and
the product of these givesthe likelihood ratio for the
i" trace.

Recognition and Similarity Judgments

It is assumed that both semantic and orthographic
features are used when making recognition
judgments, whereas only semantic features are used
when making similarity judgments. The systemin
Equations (2)-(5) determines how the familiarity
values for recognition judgments are calculated. In
order to calculate the familiarity values for the
similarity judgments, orthographic features were
deleted, by changing Equation 3 to:

| . =1|°3
i i

In order to distinguish the log odds calculated for
the recognition and similarity judgments, they will be
referred to aSJ recognition md] similarity reSpeCUde
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Word frequency effects

Word frequency effects might well be dueto
feature frequency differences, at least in part. The
present model incorporates this factor only for
orthographic features, and hence only for recognition
judgments, not similarity judgments. To construct a
sensible Bayesian analysis for WAS, it was necessary
to normalize the vector lengths, placing al words on
a hypersphere, and eliminating feature frequency
differences between high and low frequency words.
This greatly diminished word frequency effects for
recognition (they are based only on orthographic
diagnosticity) and eliminated them for similarity
judgments.

It should be emphasized that these normalization
changes we have made to WAS are technical in
nature, and it remains quite possible that word
frequency effects are due in substantial part to feature
frequency diagnosticity. If, for example, it had been
possibleto use multidimensional scaling for a
database as large as that in the Nelson et al. (1998)
norms, it is quite possible that the resultant space
would cluster high frequency words closer than low
frequency words, and would place the features of
high frequency words closer than those of low
frequency words to the mean values on each
dimension. Due to the computational demands of
applying amultidimensiona scaling procedure on the
norms, it was not presently possibleto carry out such
analyses, unfortunately.

Bethisasit may, real datarequiresthe prediction
of word frequency effects. Because afeature
frequency basisfor such predictionsis not available
(except for the orthographic component of
recognition judgments), we decided to base such
predictions on another factor, the enhanced recency
and greater number of contexts for high frequency
items: does the test word appear familiar because it
was studied, because it was seen recently or because
the current context matches one of the many possible
contextsin which the high frequency word appears?
Dennis and Humphreys (submitted, 1998)
constructed a Bayesian model that explained word
frequency effects based on this factor. However,
adding such a system to our present modeling effort
would add a great deal of complexity and take us
quite far afield. We decided instead to approximate
the results of such a system in the following
descriptive way, away that would incorporate word
frequency effects, and a so produce mirror effects. A
reference value, g, was assumed toward which all
calculated (log) odds are regressed (i.e. squeezed).
The amount of regression is higher for high
frequency words, according to the following
equations (the values of a are between 0 and 1):




j r(ecognitio,F =aFj recognitia,F +(1_ aF)g (6)
] Smilarity =a similarity,F +(1' aF)g

The value of a; was made amonotonicaly
decreasing function of the word frequency F of the
probe:

ar = 1- Y¥o)+yVo+F @

A zero word frequency is mapped toa=1. Higher
word frequencies lead to lower a vaues where the
falloff is determined by scaling parameter b. The
parameter gin Equation (6) determinesthe centering
of the mirror effect for word frequency. Suppose the
mean distractor and target familiarity islower and
higher than grespectively. Compared to low
frequency distractors, the familiarity will be
increased toward gfor high frequency distractors.
Compared to low frequency targets, the familiarity
will be decreased toward gfor high frequency targets.
Increasing the value of g, leadsto anincreasing
frequency effect on distractors but decreasing effect
on targets. Decreasing the value of g, leadsto a
decreasing frequency effect on distractors, but
increasing effect on targets. Thus equations 6 and 7
represent apurely ad hoc, but fairly simple, method
by which to approximate the effect of a
recency/context factor for word frequency.

obsarved

Predicting Individual Word Differences.

The model utilizes the particular words for a
given trial, and makes predictions for particular test
items, based on the orthographic and similarity
relations among the various words. The ability of the
model to capture the variability in performance due
to individual word differences was measured by the
correlation between observed and predicted
judgments for individual words. The correlational
analyses were performed in two ways: single and
multiple conditions.

In the single condition analyses, only words from
asingle condition were included for each
correlational analysis: Significant correlations
indicate the model explains significant parts of
variance due to individual word differences. This
procedureis somewhat limited because some
conditions do not contain enough wordsto draw
strong statistical conclusions. Inthe multiple
condition analyses, words from different sets of
conditions were pooled to calculate the correlaion.
However, any resulting correlations are due to a
mixture of within and between condition effects, so
no conclusions can be drawn concerning the gains
dueto individual word predictions. The situation is
illustrated in Figure 5: the horizontal axis shows
some measure of similarity between test word and
studied words. Only in Figure 5a isthere awithin
condition correlation that could be interpreted as
indicating additional predictability dueto
consideration of similarities between particular

predicted

predicted

Figure 5. Two possibilities situations for calculation correlations
between observed and predicted results for individual words when
words from two different conditions are pooled. The dots represent
different words and the color differences represent condition
differences. In (a), part of the correlation between observed and
predicted results is due to the capturing part of the within as well as
the between condition variability. In (b), the correlation is solely

due to between condition differences.



words. Both panels show substantial between
condition correlations.

Overview of Experiments

We present three experimentsin which distractor
similarity, the length of studied categories and the
directionality of association between study and test
words were varied. The comparison of the results for
the recognition and similarity judgmentsisimportant
to investigate the interplay between semantic and
physical featuresin recognition memory. The
experiments address five basic predictions of the
memory model:

(1) Testing distractor words that are increasingly
semantically similar to studied words will lead to
increasingly higher false alarm rates. Thisissimply a
result of the model being a global familiarity mode:
it computes the overall match between the probe and
contents of memory. Since semantic similarity is
determined by the semantic space of WAS, for a
given set of study words, the model can make
specific predictions about which words will lead to
what level of false alarmsrelative to other words.
This prediction was addressed in Experiment 1, 2,
and 3.

(2) Increasing the orthographic similarity
between a distractor word and the stored orthographic
contentsin memory will increase thefalse darm
rates. This prediction was addressed in Experiment 2.

(3) The difference between recognition and
similarity judgments was assumed to be dueto a
reliance on different sources of information. For
similarity judgments, only semantic features were
used while for recognition judgments, both semantic
and physica features such as orthographic features
were used. Therefore, the effect of semantic
similarity of distractors should have alarger effect on
similarity judgments than recognition judgments.
Also, there should be no effect of orthographic
distractor similarity on similarity judgments (the
similarity judgmentsimply semantic similarity).
These predictions were addressed in Experiment 2.

(4) The model should capture part of the
variability in performance due to individual word
differences, above and beyond the variability due to
between condition differences. This prediction was
addressed in all three experiments.

(5) A word frequency effect is predicted: low
frequency words have higher hit rates and lower false
alarm rates than high frequency words. This
prediction isaddressed in al three experiments.

Experiment 1
This experiment tests the ability of the model to
predict the false alarm rates to semantically similar
distractors. The closer in WAS are distractors to
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studied words, the more false alarms shoul d be
produced. Four groups of distractors were created
(labeled A, B, C, and D) that were monaotonically
decreasing (from A to D) in their semantic similarity
to studied words. Each group has subgroups of low
and high frequency words. Word frequency was
varied in this experiment to investigate the interaction
between distractor similarity and distractor word

frequency.

Method

Design and Subjects. For the distractors, the
design formed a4 x 2 factorial, with word frequency
(low, high) and distractor similarity (four groups A,
B, C, and D that were increasingly less similar to
studied words) manipulated within subjects. For
targets, only word frequency (low, high) was
manipulated as a within-subject factor. Thirty-five
students from Indiana University who were enrolled
in introductory psychology courses participated in
exchange for course credit.

Materias. Appendix A shows the words from this
experiment for each level of word frequency and
distractor similarity. All words were selected from
the Nelson et al. (1998) free association horms. Word
frequency was operationally defined by the number
of times the word was produced as an associate in the
norms of Nelson et a. (1998). We defined low
frequency words as words that were produced by less
than 10 of the 5018 total cues of the norms. High
frequency words were defined as words produced by
10 or more cues. The low and high frequency words
in the experiment were produced by an average of 4.2
(SD=3.4) and 30.3 (SD=17) cues respectively. We
also measured differences of the resultant groupsin
the Kuceraand Francis frequency count, which isthe
traditional way to measure and define word
frequency. The low and high frequency words had
median Kucera and Francis frequency counts of 5
(SD=9.2) and 28 (SD=126) respectively. Therefore,
the low and high frequency words had both different
production counts and Kucera and Francis frequency
counts.

On the basis of 18 randomly selected prototype
words, 18 categorieswere created. Within WAS, the
four most similar low frequency words and the four
most similar high frequency words to each of the
prototype words were selected. Similarity between
two words was computed by the inner product of the
two vectorsin WAS (In this method section, when
werefer to WAS, we refer to the vectors whose
lengths were not normalized). The 4 low and 4 high
frequency words of each of 18 categories served as
study words in the experiment.

The distractor words varied in both word
frequency and similarity to the 18 study categories.




For each frequency level, four similarity groups were
created that varied in the similarity to studied
categories, from very high (group A) to very low
(group D). We manipulated distractor similarity by
varying the degree of similarity of wordsto specific
categories on the study list rather than to all the
words on the study list. Distractor similarity was
operationally defined by using the mean WAS
similarity of adistractor word to the words from a
specific study category. For each study category, the
mean similarity of each of the 5018 words from the
norms to the category words was computed
(excluding all study words). Four high frequency
groups, and four low frequency groups of similarity
were created by selecting words with similarity
measures ranging between .10- .45, .05- .10, .02 -
.05, and .0018 - .0045 respectively. Averaged over
word frequency, the average similarity of the four
groups was respectively .1853, .0869, .0354, and
.0027. In other words, the words from groups A to D
decreased monotonically in their mean similarity to
categories on the study list.

Procedure. An experimental session consisted of
one study-test cycle. Participants were instructed
prior to the presentation of the study words to
remember the words on the study list. Each word was
displayed in the center of the computer screen for 1.3
s. of study. The category words were presented one
after the other until all the words from a category
were presented and the next category was selected.
The order of words within a category aswell asthe
order of categories on the study list was randomized
for each participant. The study list consisted of 144
study trials, including the 18 categories of 8 items
each.

The procedure of Brainerd and Reyna (1998) was
changed in two ways. In their studies, the two
memory judgments were varied between groups. In
our experiments, each test item required two memory
judgments. Second, instead of binary “yes’, “no”
judgments, our participants were asked to give
judgmentson asix point scale. After study,
participants read detailed instructions. Participants
were informed that they would give two ratings for
each test word: arecognition rating and asimilarity
rating. For the recognition rating, participants were
instructed to rate how confident they were that a test
word had been studied by utilizing a 6-point scale (a
1 indicated high confidence that the word had not
been studied and a 6 indicated high confidence that
the word had been studied). They were also
instructed to give low ratings to distractor words that
were similar to the studied categories, if that test
word was not an exact match to a studied word. For
the similarity rating, participants were instructed to
rate how confident they were that words similar in
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meaning had been studied by utilizing a 6 point
confidence scale (a 1 indicated high confidence that
no similar words had been studied and a 6 indicated
high confidence that words similar in meaning had
been studied). They were aso instructed to give high
similarity ratings if the test word had in fact been
studied.

Therewereatota of 100 test items. Of the test
items, 28 were targets, and 72 were distractors. Of
the 28 target items, 14 were low frequency and 14
were high frequency words. The target items were
chosen randomly from the pool of study words with
the constraint that each category wastested at least
once and at most twice. The 72 distractor items
consisted of equal numbers of itemsfrom the 4
distractor groups A, B, C, and D. Each distractor
group consisted of an equal number of low and high
frequency distractors. The distractor items were
chosen randomly (sampling equally from low and
high frequency groups) from the pool of distractor
words with the constraint that each category was
tested exactly four times.

Results

For each participant, the confidence ratings for
the recognition judgments were converted to z-scores
by subtracting the mean and dividing by the standard
deviation of all the recognition confidence ratings for
that participant. The z-scores were then averaged
over participantsto get the overall z-scored ratings
for agiven condition. The same procedure was
applied to the confidence ratings of the similarity
judgments. The conversion to z-scores has the
advantage of normalizing for idiosyncratic uses of the
6 point confidence scales. For example, some
participants use one end of the scale more than the
other and some participants give wider ranges of
ratings than others. By subtracting the mean and
dividing by the standard deviation of the ratings,
much of the participant specific variance was
eliminated. Note that positive recognition and
similarity z-scores indicate more than average
confidence that theitemisold and similar,
respectively. Similarly, negative recognition and
similarity scores indicate more than average
confidence that the item is new and dissimilar
respectively.

We also computed d’ as ameasure of sensitivity:
the degree to which targets and distractors were
discriminated. In order to compute d’, we first
computed for each participant the median confidence
ratings for the recognition judgments and similarity
judgments separately. The median confidence rating
was used a criterion below which the response would
be scored asa“no” judgment and above which the
response would be scored asan “yes’ judgment. The
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probability of responding “yes’ for targets and
distractors then served as hit and false alarm rates for
agiven condition in order to compute d’ for each
participant separately. Repeated measures analyses of
variance (ANOVA's) were conducted on the z
transformed recognition and similarity judgments as
well asthe sengitivity measures. In each anaysis, the
Typel error rate was set at .05.

Recognition judgments. The means and standard
errors of the recognition and similarity z-scores for
the high and low frequency targets and for the low
and high frequency distractorsin the four similarity
groups are shown in Figure 6. This figure shows that
participants rated the distractor items from groups A
to D asincreasingly less“old”. This effectis
observed for both low and high frequency items. The
figure also shows that low frequency distractors are
rated more as “new” than high frequency distractors
whereas low frequency distractors are rated as
dightly more*“old” than high frequency distractors.
For distractors, the effect of similarity was significant
[F(1,34)=103, MSE=.0618] aswell asthe effect of
word frequency [F(1,34)=47.1, MSE=.0872]. The
interaction of both effects was not significant
[F(1,34)=1.71, MSE=.0776, p<.20]. For targets, the
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Figure 6. Observed and predicted results of Experiment 1,
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effect of word frequency was not significant
[F(1,34)<1].

Table 1 liststhemean d' results aswell asthe
standard error of d’ based on severa target and
distractor condition comparisons. The results show
that participants are increasingly more able to
discriminate between old items and new items from
groups A to D. Also, sensitivity for low frequency
itemsis higher than for high frequency items. The
effect of similarity on sensitivity was significant
[F(1,34)=48.5, MSE=.409] aswell asthe effect of
word frequency [F(1,34)=13.0, MSE=.915] while the
interaction was not significant [F(1,34)<1].

Similarity judgments. The similarity ratings
decreased progressively from group A to group D
distractors. The effect of distractor similarity was
significant [F(1,34)=207, MSE=.194]. Although the
effect of word frequency on distractors was
significant [F(1,34)=11.48, MSE=.101], Figure 6
shows that the effect is caused mainly by the
differences between low and high frequency items of
group D. Paired sampled t-tests confirm that only this
group showed a significant word frequency effect
[t(34)=4.2]. Removing this group from analysisled to
non-significant effects of word frequency
[F(1,34)=1.72, MSE=.0778, p<.2]. For targets, the
effect of word frequency was not significant
[F(1,34)<1].

The sensitivity results for the similarity ratings
follow the same pattern as the recognition ratings: the
ability to discriminate between old and new items
increases with decreasing distractor similarity. This
effect was significant [F(1,34)=170, MSE=.568]. The
effect of word frequency was marginally significant
[F(1,34)=3.87, MSE=.827, p<.057] and became non
significant after removing group D distractors
[F(1,34)=1.27].

Number of ratings per word. Each of the 35
participants was tested on different subsets of words
available for study and test. Each of the target words
from the pool of 144 words was rated by a median of
7 participants (SD=2.3). Each of the distractor words
from the pool of 144 words was rated by a median of
18 participants (SD=2.8). Because the target words
were judged by only few participants, they were
excluded from the correlational analyses of observed
and predicted results that will be discussed shortly.

Discussion.

Theresults show three clear patterns. Firgt, the
distractorsthat areincreasingly less similar to studied
categories, where similarity is defined by inner
productsin WAS, are rated as more “new” and
“dissimilar”. This suggests that the semantic space
can be helpful in predicting the false a arm rates of



Table 1l

Sensitivity results (d') for Experiments 1,2 and 3

Observed Predicted
Recognition Similarity Recognition  Similarity
Comparison M StdErr M StdErr M M
Experiment 1
low frequency
OLD vs. NEW-A 1.2 0.1 0.38 0.1 128 0.32
OLD vs. NEW-B 152 0.13 0.73 0.1 147 0.6
OLD vs. NEW-C 152 0.11 1.09 0.15 182 1.38
OLD vs. NEW-D 1.99 0.14 2.14 0.15 231 222
high frequency
OLD vs. NEW-A 0.85 0.12 0.23 0.09 118 0.17
OLD vs. NEW-B 0.99 0.14 0.54 011 127 0.71
OLD vs. NEW-C 114 0.11 1.03 0.12 155 1.29
OLD vs. NEW-D 1.6 0.14 1.69 0.18 212 2.09
Experiment 2
blocked - semantic
OLD-3-PRO vs. NEW-3-PRO 1.07 0.24 0.22 0.27 1.68 0.5
OLD-7-PRO vs. NEW-7-PRO 1.58 0.24 0.15 0.24 232 0.52
OLD-3-EXE vs. NEW-3-EXE 157 0.16 0.74 0.16 193 0.8
OLD-7-EXE vs. NEW-7-EXE 1.22 0.17 0.59 0.14 1.86 0.47
blocked - orthographic
OLD-3-PRO vs. NEW-3-PRO 0.55 0.18 0.46 0.19 16 1.15
OLD-7-PRO vs. NEW-7-PRO 121 0.2 0.67 0.23 162 1.09
OLD-3-EXE vs. NEW-3-EXE 1.06 0.13 0.73 0.15 157 1.38
OLD-7-EXE vs. NEW-7-EXE 0.85 0.1 0.6 0.1 135 1.39
spaced - semantic
OLD-3-PRO vs. NEW-3-PRO 1.09 0.26 0.39 0.27 133 0.52
OLD-7-PRO vs. NEW-7-PRO 0.75 0.3 0.07 0.23 128 0.48
OLD-3-EXE vs. NEW-3-EXE 1.25 0.13 0.67 0.14 144 0.6
OLD-7-EXE vs. NEW-7-EXE 1.05 0.19 0.51 0.14 1.46 0.66
spaced - orthographic
OLD-3-PRO vs. NEW-3-PRO 0.61 0.23 0.76 0.21 135 1.01
OLD-7-PRO vs. NEW-7-PRO 0.49 0.24 0.64 0.28 116 0.81
OLD-3-EXE vs. NEW-3-EXE 0.71 0.12 0.7 011 131 117
OLD-7-EXE vs. NEW-7-EXE 0.69 0.11 0.54 0.13 127 127
Experiment 3
OLD-A vs. NEW-LF 1.88 0.1 114 0.12 178 0.91
OLD-B vs. NEW-HF 1.24 0.11 0.72 0.12 12 0.76
OLD-A vs. NEW-F 111 0.13 0.11 0.12 0.52 0.03
OLD-B vs. NEW-G 2.02 0.14 0.21 0.15 162 0.34
OLD-C vs. NEW-H 0.82 0.09 0.05 0.09 102 0.29
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distractor words. Second, word frequency had the
predicted effect on recognition judgments for
distractors: high frequency distractors were rated as
more “old” than low frequency distractors.
Interestingly, the effect of frequency on similarity
judgments was less pronounced. Apart from group D
distractors, there was only asmall increasein the
“old” ratings for high frequency distractors compared
to low frequency distractors. Third, the participants
can distinguish between recognition and similarity
ratings. When the results for similarity and
recognition judgments are compared, the difference
between group A distractors and targets is much
smaller for the similarity ratings than for the
recognition ratings. Thisindicatesthat participants
are following instructions because they were
instructed to give high similarity ratings to test words
that were similar to studied words regardless of
whether the test words were studied or not.

Model Fitsof Experiment 1

The model as outlined in the Introduction was
applied to Experiment 1. The same study and test
words were used in the model asin the experiment.
In total, there were four parameters to model the
experiment. The two storage parameters, ¢ (0.2) and
S, (0.25) determined the amount of storage noise for
orthographic and semantic features respectively. The
parameter g (3.0) determined the centering for the
word frequency effect and the b parameter (5.0) was
used as aparameter to scale the word frequency
effect. These were al the parametersthat were
needed to generate predictions. No iterative
techniques were used to find the “best” parameter
settings to optimize the fit between observed and
predicted results. Only ahandful of parameter setting
were tried until the predicted results showed (most
of) the desired qualitative pattern of results’.

Recognition and Similarity Judgments. Figure 6
shows the predictions of the model obtained by
simulating 100 participants. In the experiments, the
recognition and similarity judgments were Z-
transformed. In the modeling, thej ’ gmiiaiy and
J " recogrition f@Miliarity values were also Z-transformed.
The model results capture three basic trendsin the
data. First, amonotonic decrease in the “old” ratings
was predicted for conditions A to D. On the one
hand, thisis not surprising because conditions A to D
contained words that are semantically increasingly
dissimilar according to the semantic space formed by
WAS. However, this does suggest that the word
vectorsin the semantic space are organized
appropriately and gives the semantic space some
psychologica plausibility. Second, the difference
between recognition and similarity judgmentsis
correctly predicted. The difference between targets
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and the semantically closest distractors (group A) is
predicted to be much smaller for the similarity than
recognition judgments. Recognition judgments use
orthographic features to help distinguish targets from
semantically similar distractors. Third, word
frequency effects were predicted mainly because of
the descriptive component in the model that squeezed
familiarity values towards the center of scaleto a
degree dependent on word frequency. This
approximation was employed to mimic the effects of
recency and context noise; athough feature
frequency effects ought to have operated as well, the
normalizing of WAS eliminated the possibility of
including this component in the model.

Sengitivity. Thed' results for the model’s
predictions were generated in the same way asin the
experiments. For each simulated participant, a
criterion for the recognition and similarity judgments
was determined by taking the median of the
j ,recognition md] 'similarity familiarities r%pectively
(over al conditions). These criteria specify the
midpoint of the recognition and similarity scale
above and below which lie 50% of the judgments.
The sensitivities were then calculated on the
probabilities of responding above the criterion for
targets and distractors respectively.

The predicted d’ results (Table 1) show the same
pattern asthe observed d' results. The sensitivity for
low frequency wordsis higher than for high
frequency words. Thisisadirect consequence of the
familiarity valuesfor high frequency target and
distractor words being squeezed toward the center of
the familiarity scale. The sensitivity monotonically
increased from group A to group D because of the
monotonically decreasing false alarm rates for these
groups.

Individual Word Correlations. Table 2 shows
correlations for the predicted and observed Z-scores
of individual words with words from single aswell as
multiple conditions. Thefirst column showswhich
conditions were used in the calculating the
correlation. The second column shows the number of
wordsin the comparison. The next three columns
show the results from the correlational analyses for
the recognition ratings while the last three columns
those for the similarity ratings. In the column
“origina”, the correlation value is shown with
potential markersfor statistical significance. The
“scrambled” column shows the correlation value
under a procedure in which the order of words
within each condition is scrambled so that the
resulting correlational value can only be attributed to
predicted between condition differences and not to
predicted individua word differences within
conditiont’. For correlations that only involve words
from asingle condition, the scrambled correlational




Table 2

Correlations between predicted and observed z-scores for recognition and similarity ratings

Recognition Similarity
Groups N MC? original scrambled  diff". original scrambled  diff®.
Experiment 1¢
all distractors 144 y B0*** 35%** ** B7*** B56*** **
all LF distractors 72 y 37r** .26%* TO*** B1x** *
all HF distractors 72 y 52k * 20%** *x .64%** ABF** *x
A-LF 18 n 0.07 0 0.18 0
A-HF 18 n 0.06 0 .39* 0 *
B-LF 18 n 0.22 0 .38* 0 *
B-HF 18 n A3+ 0 *x .32* 0 *
C-LF 18 n .36* 0 * .36* 0 *
C-HF 18 n B56*** 0 el A40* 0 *
D-LF 18 n 0.2 0 0.13 0
D-HF 18 n 0.15 0 0.12 0
Experiment 2
a“ 1234 y .63*** .58*** * %% .49*** .44*** * %%
all targets 562 y 2% * 0.05 * 20 ** J9F**
all distractors 672 y BT el 18x** A4x* 31F* i
target exemplars 371y 1%+ 0.01 *x 22%%* 19***
target prototypes 191y 13** A3k 19*** 22%%*
related exemplar distr. 384y 27%** 0.05 xex A5 ** 28*** xex
related prototype distr. 192 y 26 ** A1* *x 32k * 30 **
Experiment 3
all 180 y .86*** 85*** B3 ** .64%**
all targets 60 y 0.05 0.04 0.16 0.03
all distractors 120 y B2x** 5E*** .B4*x** B3***
all related distractors 60 y B3*** B2%** 0.01 -0.01
all unrelated distractors 60 y B3*** BLF** * A3rE* 38r**
A 20 n 0.09 0 0.19 0
B 20 n 0.17 0 0 0
C 20 n .44** 0 * % .44** 0 * %
F 20 n 0.24 0 0.12 0
G 20 n 0.23 0 0.02 0
H 20 n 0.08 0 0.06 0
LF 30 n ATH** 0 el 0.03 0
HF 30 n 0.05 0 33+ 0 **
Notes

*** n<01** p<.05* p<.10

a."y" for multiple conditions involve correlations for words of multiple conditions
b. This columnsindicates whether the difference in correlation for original and unscrambled words is significant
c. The correlations for words in the target conditions are not shown because there were not enough participants

that rated each individual target word.

valueis by definition zero because no between
condition differences can be defined. The “ diff”
column lists the statistical significance of the
difference between the original and scrambled
correlational values. If such adifferenceisfound to
be significant, it means that a significant part of the
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variability in the observed results within conditions
can be explained in the model on the basis of
individual word differences. In the present
experiment, of course, the conditions themselves
involve variations of similarity along the same
dimensions as those operating by chance within



condition. Thusthe two correlational analysesarein
asense redundant and ought to give rise to the same
conclusions.

Table 2 shows that the correlations are higher for
the similarity ratings than for the recognition ratings.
Thisisinteresting because for similarity judgments,
the variability in the model is only dueto semantic
featureswhile for the recognition judgments, an
additional source of variability is provided by the
orthographic features.

For five out of eight single condition groups, the
correlation was higher than .3. Thisisavery smal
correlation but it should be kept in mind that in these
analyses, the range of distractor similaritieswithin
condition was limited: because the stimuli were
chosen approximately to equate similarities within
condition, the differences in similarities that
remained were accidental and limited in scope. Also,
in each of these conditions, only 18 words were part
of the correlation, so that statistical significance was
harder to reach than for the multiple condition
correlations. More impressive are the correlations for
words from multiple conditions. When al low
frequency distractors or al high frequency distractors
were part of the correlational analysis, the correlation
for the similarity ratings was moderately high (>.6)
and higher than in the scrambled procedure. This
indicates that the memory model with the derived
semantic similarity relationshipsin WAS can predict
part of the variability in similarity judgments due to
individual word differences, both across and even
within condition.

Parameters. The four parameters® used to generate
predictionsfor this experiment were set at: s, =.25,
c=.2, b=5, g=3. Note that the noise distribution for
semantic features has a standard deviation five times
larger than the standard deviation of al semantic
feature valuesin WAS (.0484). Such alarge noise
value is needed because there are 400 diagnostic
feature values which together provide a good deal of
information even in the face of agreat deal of feature
noise.

It might be expected that appropriate values for g
should be around 0 because alog odds of 0 should be
the center of the familiarity scale for Bayesian
models (see Shiffrin & Steyvers, 1997). However, we
violate akey assumption of the smple Bayesian
derivation: the study words were not sampled
randomly from the pool of al possible study words.
Instead, we sampled groups of semantically similar
words. Therefore, the log odds distributions for both
targets and distractors were not centered around zero,
requiring that the centering for the mirror effect be
placed on familiarity values higher than zero. The
particular value chosen also allowed the model to
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handle the fact that word frequency affected
distractors more than targets.

Experiment 2

Several studies have shown that hits and false
alarms go up monotonically with the number of
same-category items on the study list (Hall &
Kozloff, 1970; Hintzman, 1988, Robinson &
Roediger, 1997; Shiffrin et a., 1995). For example, if
the study list contains fruit words (e.g. apple, pear,
banana, etc.), the hit rate for astudied fruit word and
the false alarm rate to new fruits will typically
increase with the number of fruit words studied.
Hintzman (1988) and Shiffrin et a. (1995) have
given quantitative accounts of this category length
effect solely on the basis of global familiarity: atest
word that isrelated to more tracesin memory results
in higher global familiarity.

Shiffrin et a. (1995) have argued that in their
study, it isunlikely that related unstudied category
words were thought of during study or were activated
by a spreading activation mechanism, because al
category words were randomly spaced over the study
list. Itismore likely that the IAR mechanism or a
spreading activation account plays arole when the
category words are studied in ablocked fashion. Itis
hard to imagine that participants will not think about
the prototype “fruit” when fifteen fruit words are
studied one after the other. Several studies have
investigated the effect of studying the category words
in ablocked or spaced fashion (Agostino, 1969;
Mather, Henkel, & Johnson, 1997; Toglia, Hinman,
Dayton, & Catalano, 1997). Mather et al. reported
that both the hit rate for studied words and false
alarm rates for unstudied prototypes were higher in
the blocked presentation conditi on but that false
alarm rates for unrelated distractors were lower in the
blocked study conditions.

While both the category length effect and the
blocked/random effect have been investigated, the
interaction of these effects have not been explored
yet. The goa of this experiment isto investigate the
effect of study presentation (blocked/random) and
category kind (semantic or
orthographic/phonological) on the category length
effect.

Method

Design and participants. The design formed a( 2
X 2Xx2x2)+ 2mixed factoria design. Study
presentation (blocked vs. spaced) was varied between
subjects. Category length (3 or 7), category type
(orthographic or semantic) and category membership
(prototype or exemplar) was varied within subjects.
Two distractor conditions were added, containing
words that were unrelated to studied categories




Table3
Within subject conditions of Experiment 2

Category Category Prototype or
Condition Tage Kind Length Exemplar #Hested
1 Y S 3 P 4
2 Y o 3 P 4
3 Y S 3 E 8
4 Y o 3 E 8
5 Y S 7 P 4
6 Y o 7 P 4
7 Y S 7 E 8
8 Y o 7 E 8
9 N S 3 P 4
10 N o 3 P 4
11 N S 3 E 8
12 N o 3 E 8
13 N S 7 P 4
14 N o 7 P 4
15 N S 7 E 8
16 N o 7 E 8
17 N S& O 0 E 8
18 N S& O 0 P 8

Note Y=yes, N=no; S=semantic category, O=orthographic category; P=prototype,

E=exemplar

a When aprototypeistested asatarget it was on the sudy list
b. These digtractor words were drawn from the pool of exemplar words of unstudied

caegories

¢. These distractor words were drawn from the pool of prototype words of unstudied

caegories

(essentially O category length) and that were either
drawn from the pool of unused prototype or exemplar
words. Table 3 summarizes the within subject
conditionsin this experiment. Thirty-seven
participants were assigned to the blocked condition
and thirty-four participants to the spaced condition.
The participants were drawn from the same pool of
participants of Experiment 1.

Materials. The words from this experiment are
listed in Appendix B. All words were part of the
Nelson et d. (1998) norms. Twenty four words were
pseudo- randomly selected from the pool of words to
serve as prototypes for the semantic categories (these
were chosen by hand so that they seemed to be
plausible candidates for category prototypes). For
each of the 24 prototype words, 9 exemplar words
were chosen that were most similar to the prototype
wordsinthe WAS space. The exemplars were picked
with the constraint that the words were not used for
other categories and that the words from the same
word formwere not used (e.g. choosing “egg” and
“eggs’ as exemplar words for the same category was
not alowed). 24 orthographic categories were
created by pseudo-randomly selecting 24 prototype
words from the pool of words. For each of the 24
prototype words, 9 exemplar words were selected
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that differed in one or two letters from the prototype
word.

Procedure. Participants studied 170 study words
for 1.3 s. each. They wereinstructed to study the
wordsfor alater memory test. The study list
consisted of 5 fillers at the beginning and end of the
list. The 160 other study words consisted of 16
categories with category length 3 and 16 categories
with category length 7. Half of categories were
sampled from the pod of semantic categories and
half were sampled from the pool of orthographic
categories. The sampling was performed such that
over dl participants, each category from the pool was
studied an approximately equal humber of times.

Half of the studied categories contained the prototype
and half did not contain the prototype (an exemplar
replaced the prototype). In the blocked condition, the
categories were presented one after the other with the
order of words within categories randomized as well
the order of categories on thelist. In the spaced
condition, the order of all 170 study words (excluding
the filler items) was randomized with the result that
the category words were scattered over the study list.
The Appendix B lists 9 exemplars per category. The
study categories aways contained the first two
exemplarslisted in Appendix B and never contained
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Figure 7. Observed and predicted results of Experiment 2,

for the semantic categories.

the last two exemplars; they were reserved for testing
asrelated distractors.

After the study list, participants were given
instructions about the test phase. These instructions
wereidentical to Experiment 1. Participants were
given 112 test words for which they had to give
recognition and similarity judgmentsasin
Experiment 1. Table 3 lists the 18 conditions that
were tested and the number of words that were tested
per condition. For the testing phase, the exemplar
words from the target conditions were aways
sampled from thefirst two exemplars from the list of
Appendix B (these were also ways sampled for the
study list). The exemplar words for the distractor
conditions of category length 3 and 7 were dways
drawn from the last two exemplarsfrom thelist.

There were two unrelated distractors conditions
which we will refer to as prototype category length
0, and exemplar category length O conditions. Inthe
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first condition, the words were sampled from the 16
prototype words from the semantic and orthographic
categories that were not studied (which categories
were not studied varied from participant to
participant). In the second category length O
condition, the words were sampled from the last two
exemplars of the 16 not studied semantic and
orthographic categories. Because the same prototype
or exemplar word could be tested asrelated
distractors (category length 3 or 7) for participants
that studied related words and as unrelated distractors
(category length O) for participantsthat did not study
any words from that category, these conditions
served asimportant controls for the related distractor
conditions.
Results

The recognition and similarity judgments were
converted to z-scores asin Experiment 1. The mean
z-scores for the semantic and orthographic categories



are shown in Figure 7 and 8 respectively. The ability
of participants to discriminate between old and new
items was computed with d' in the same manner asin
Experiment 1. Thed' resultsarelisted in Table 1.
Separate ANOV A’ s were performed on the target and
distractor z-scoresfor the recognition and similarity
ratings. Also, ANOVA'’swere performed on the
sengitivity results on the recognition and similarity
ratings. We will report the main effects of the within
subject factors, category length (3 or 7) and category
membership (exemplar or prototype) and the between
subject factor, study presentation (blocked or spaced)
and interactions between these factors. The
differencesin performance for the different category

types (semantic or orthographic) will only be
reported for the similarity ratings.

Recognition judgments. For targets, the main
effects of category length and category membership
were not significant [F(1,69)=1.50, MSE=.207, and
F(1,69)=.056, MSE=.241, respectively]. However,
Figures 7 and 8 show an interaction between category
length and category membership. For category length
3, the confidence that the target is old was lower for
prototype words than for exemplar words. However,
for category length 7, the confidence that the target is
old was higher for prototype words than for exemplar
words. Thisinteraction was significant

Orthographic Categories
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Figure 8. Observed and predicted results of Experiment 2, for the orthographic
categories. Note that the two data points for category length 0 in the four panels for
observed and predicted results are identical to the corresponding data points for the

semantic categories shown in Figure 7.



[F(1,69)=17.84, MSE=.137].

For distractors, the confidence that the words
were old increased with category length for both
prototype and exemplar words. Also, the confidence
that the distractor words were old was higher for
prototype words than exemplar words for both
category lengths. Both main effects of category
length and category membership were significant
[F(1,69)=10.6, MSE=.143, and F(1,69)=75.5,
MSE=.119, respectively] while the interaction was
not significant [F(1,69)=.364].

Table 1 shows that in the blocked condition, the
ability to discriminate between old and new prototype
words was higher for category length 7 than category
length 3. For exemplar words, the pattern was
reversed: the ability to discriminate between old and
new exemplar words was lower for category length 7
than category length 3. Thisinteraction between
category length and category membership on
sengitivity issignificant [F(1,36)=12.20, MSE=1.13].
In the spaced condition, the effect of category length
was the same on prototype and exemplar words:
category length 7 old and new items were more
difficult to discriminate than category length 3 old
and new items. The interaction between category
length and category membership was not significant
[F(1,33)<1].

To simplify the analysis of the between subject
factor of study presentation, three groups were
created: targets, related distractors and unrelated
distractors. The targets contained all target
conditions, while the related distractor conditions
contained all distractors with category length 3 or 7.
The category length O distractors were pooled into
the unrelated distractor group. Compared to spaced
study presentation, blocked study presentation
resulted in higher old ratings for targets and lower old
ratings for both related and unrelated distractors. The
average z-score ratings for blocked and spaced
targets was .496 and .413 respectively, asignificant
difference [F(1,69)=8.25, MSE=.121]. For related
distractors, the average z-score ratings for blocked
and spaced study presentation was-.278 and -.230, a
difference that did not reach statistical significance
[F(1,69)=2.95, MSE=.112, p<.09] whilefor unrelated
distractors, the average z-score ratings was-.531 and
-.412, asignificant difference [F(1,69)=5.91,
MSE=0424].

The effect of study presentation on sensitivity was
significant [F(1,69)=349, MSE=1.57]. Ascan be
observed in Table 1, for most comparisons, the
sensitivity was lower for the spaced study
presentation than the blocked study presentation.

Similarity judgments. The pattern of resultsfor
the similarity judgments was similar to the pattern of
results for the recognition judgments except for the
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effect of category length on distractors. For semantic
categories, similarity ratings for distractorsincreased
with category length. This effect was significant for
both prototype and exemplar words [F(1,69)=44.6,
MSE=.205, and F(1,69)=61.8, MSE=.164,
respectively]. For orthographic categories, similarity
ratings for distractors stayed more or less constant
with category length. For orthographic categories, the
effect of category length was not significant for either
prototype or exemplar words[F(1,69)=1.28,
MSE=.179, and F(1,69)=1.64, MSE=.117,
respectively].

Number of ratings per word. In the spaced
condition, amedian of 6 participants (SD=2.07) rated
each individual word. In the blocked condition, a
median of 6 participants (SD=2.19) rated each
individual word.

Discussion

There were severd interesting patterns
observed in the data. First, participants distinguished
between the recognition and semantic similarity
judgments. No effect of category length on semantic
similarity judgments was observed for orthographic
categories. This supports the assumption in the
memory model that physical features such as
orthographic features do not contribute in the
generation of semantic similarity ratings. Second,
effects of category length were observed for both
semantic and orthographic categories which
replicates the Shiffrin et al. (1995) results. Third, we
did not fully replicate the differences between
blocked and spaced study presentation as observed by
Mather et al. (1997). We did replicate their observed
effect of higher hit rates for targets and lower false
alarm ratesfor unrelated distractorsin the blocked vs.
spaced condition. However, Mather et a. observed
that false larm rates for related distractors were
higher in the blocked condition than in the spaced
condition. We found atrend in the opposite direction.
Itis possible that the longer category lengthin the
Mather et . study explains this difference: their
related distractors were related to moreitemsin
memory and perhaps the blocked presentation
strongly evoked the false memory of the related
distractor. The differences between blocked and
spaced study presentation in this study suggest a
recognition advantage for blocked over spaced
presentation. This difference could be dueto avariety
of factors. For example, blocked presentation might
lead to better memory organization that facilitates
recognition judgments. In the modeling of these
results, we will expand on one possible factor
explaining these differences. It will be assumed that
blocked presentation leadsto stronger tracesin
memory (i.e., traces with more features). This could



be because related words when blocked lead to better
or more organized rehearsal leading inturnin
stronger traces. Similarly, related words when
blocked can activate each other implicitly leading to
superior storage. More discussion on this assumption
will follow in the modeling section.

Asalast interesting aspect of the observed
results, for targets, a crossover interaction was
observed between category length and category
membership. Target exemplars were better
recognized than prototype exemplars when two
related words were on the study list. However, target
prototypes were better recognized than target
exemplarswhen six related words were on the study
list. This effect was observed for both orthographic
and semantic categories and for both blocked and
spaced study presentation. Based on thisresult only,
it could be argued that this difference between
prototypes and exemplarsis due to differencesin the
process of storage or retrieval or both. However, the
results for the distractors show that the difference
between exemplars and prototypesisrelatively
constant when varying category length from O to 3 to
7. If it is assumed that the advantage of prototypes
over exemplarsfor long category lengths was only
dueto retrieva differences, then aninteraction
between category length and category membership
would be expected for distractors, aresult that was
not observed. Therefore, the results suggest that the
cross-over interaction needs to be explained by
differential storage advantages for prototypesin
longer category lengths. It will be assumed that
memory traces are especially strong for prototypesin
the longer category lengths. Possible underlying
mechanisms for this assumption are similar to the
underlying mechanism for explaining the difference
between blocked and spaced presentation. It is
possible that the related exemplars implicitly activate
the prototype word so that the presentation of the
prototype word on the study list leads to strong traces
in memory. Similarly, participants upon presentation
of the prototype word could rehearse the prototype
word more because the prototype word describes the
semantic or orthographic category best. We will
discuss this more in the modeling of these resullts.

Model Fitsof Experiment 2

Two of the results from Experiment 2 require
additions to the model applied to Experiment 1. 1)
the difference between blocked and spaced study
presentation (since the order of presentation was at
first not assumed to play arole), and 2) the cross-over
interaction between category length and category
membership for targets. The second of theserequires
some discussion.

Note that the present model applied to
Experiment 2 can predict differences between target
prototypes and exemplars on the basis of word
frequency differences. In Experiment 2 the prototype
words had higher word frequency than the exemplar
words, which could explain the lower hit rates for
prototype than exemplar words for category length 3
(and higher false alarm rates for distractors). Also,
the model can predict an interaction between
category length and category membership for targets:
prototype words are similar to more words than
exemplars, and hence the log odds for these words
grows faster than for exemplars as category length
grows. However, some preliminary simulations
suggested that the observed crossover interactions
weretoo large for the model to predict adequately.
Therefore, it was decided to augment the model to
handle both thisinteraction and the blocked/spaced
differences.

First, it isassumed that wordsin the blocked
presentation condition lead to stronger tracesin
memory than in the spaced presentation condition. A
justification relies on the possibility that participants
notice the category structure, and such knowledge
allows better rehearsal and coding. The probability of
storing features in blocked and spaced words was
parameterized by Upocked AN Uspacea- TheSE
parameters were set at .8 and .7 respectively.
Therefore, in the blocked condition, more complete
traces were formed in memory than in the spaced
condition. This predicts the observed result of higher
hit rates and lower false darm rates for blocked than
spaced words. Second, it was assumed that there was
a storage advantage for prototypesin the category
length 7 condition and that this storage advantage
was larger for blocked words than spaced words. A
justification could be based on the development of
IAR'sfor the prototype, IAR's that grow more
prevalent as category length grows. Two parameters
Upjocked prot7 @10 Uspaced prot7 Were designated for the
probability of storing features for the target
prototypes of category length 7 in the blocked and
spaced condition respectively. These were set
respectively at 1.0 and .8 respectively. Together, the
four parametersintroduced in this section predict a
storage advantage for blocked words over spaced
words and prototype category length 7 words over all
other words. One other change proved helpful in
modeling in this study: the centering of responses for
recognition and similarity judgments appeared
different, so we allowed separate estimates of the
centering parameter, & Gecognitior—-2, aNd Qsmilarity=1.0.

Parameters. In addition to the parameters just
discussed, there were the three basic parameters that
were set at: c=.4, s, =.35, b=5.



Recognition and Similarity Judgments. The
model’ s predictions for Experiment 2 are shown
figure 7 and 8 for the semantic and orthographic
categories respectively. The higher false alarm rates
for prototype distractors over exemplar distractors
was predicted by word frequency differences (the
prototype words had higher word frequency than
exemplar words). The cross-over interaction between
category length and category membership for target
items was predicted because of two factors. Because
the prototype words had higher word frequency, a
lower hit rate was predicted for the prototype words
than exemplar words. However, because the
prototype words for category length 7 are stored
better than exemplar words, they are retrieved better.
Together, these two factors combined to predict the
cross-over interaction. For the semantic similarity
judgments, the model predicted no category length
effect for orthographic categories, because the
orthographic features do not participate in the
calculation of familiarity.

Sensitivity. Table 1 showsthe predicted d’
results. Overall, predicted d' was higher than
observed. Since we only sought qualitative fitsto the
observed data, other parameter settings were not tried
to lower the predicted d'. The pattern of predicted
resultsfor d’ was similar to the pattern of observed
results. Blocked presentation led to higher d' than
spaced presentation. Thiswas due to the stronger
tracesin the blocked presentation than spaced
presentation.

Individual word correlations. The between subject
factor of study presentation was collapsed for al
correlational analyses of observed and predicted z-
transformed ratings for individual words. This
increased the median number of participants that
rated each individual word to 12 (as opposed to 6
when the blocked and spaced conditions would be
analyzed separately). Table 2 shows that the
correlation between observed and predicted Z-scores
for all words of Experiment 2 was .63 for the
recognition judgments and .49 for the similarity
judgments. When the scrambling procedure was
applied, these correlations were reduced to .58 and
44 respectively. These reductions were statistically
significant. This showsthat most of the variancein
performance was explained by between condition
differences, including similarity factors, and that a
small but significant portion was explained by
similarity differences for individual wordswithin
condition.

Experiment 3
Some word pairs clearly have asymmetric
assaciations between them. For example, the cue
“fib” is strongly associated with “lie” but not vice
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versa. Ash and Ebenholtz (1962) have argued that the
differences between forward and backward
associations are not due to representational
differences but because of process differences. If A-
>B isstronger than B->A, thisis becausetheitem B
comes more readily to mind. Similarly, Nosofsky
(1991) has argued that asymmetric similarities can be
explained solely on the basis of stimulus differences
such as strength, salience or frequency rather than on
the basis of asymmetries underlying similarity
relations.

In WAS, the similarity between word A and B is
by definition equivalent to the similarity between
words B and A. One way to predict asymmetriesin
performance utilizes word frequency differences. in
the word association norms, it isalmost invariably
the case that if the association strength from A to B is
stronger than from B to A (denoted by A->B), then
the word frequency for A islower than B. Thisis
consistent with Ash and Ebenholtz (1962) and
Nosofsky’s (1991) view that the asymmetry can be
explained by stimulus differences.

In this experiment, the ideais to use distractors
that are forward, backward and bi -directional
associatively related to target words and compare the
performance for these related distractor words with
unrelated distractor words that are either low or high
frequency words. For example, suppose A isstudied
and F istested as adistractor where F is a strong
associate of A but not vice versa (i.e., A->F).
Similarly, in other conditions, the false alarm rate of
aword G istested where G is backward associated to
the studied word B but not vice versa (i.e., B<-G).
The F words are almost guaranteed to be words with
higher word frequencies than the G words. Based on
these word frequency differences, a higher false
aarm rate for the F wordsis predicted than for the G
words. The interesting comparison is of the related
distractor words F and G with unrelated distractor
words with similar word frequencies. Differences
between the false dlarm rates for F and G and the
unrelated distractor words that have similar word
frequencies, cannot be due to word frequency and can
only be explained on the basis of differencesin
semantic similarity. Specifically, the model predicts
that the F and G words have higher false alarm rates
than corresponding unrelated distractor conditions
because the semantic features of the F and G words
overlap more with the memory contents than
unrelated distractor words.

Method

Design and participants. The design formed a( 3
x 2) + 2 factorial design. The main factor was the
directionality of association between study and test
items and was varied in three levels: forward,




backward, and bi-directional. The second factor was
oldness: words were tested as targets or distractors.
The six conditions from these two factors were
labeled A, B, C, F, G, and H. Words from the three
target conditions A, B, and C, and three distractor
conditions F, G, and H were drawn from associtive
pairs

A->F, B<-G, and C<->H respectively. Two distractor
conditions were added with low and high frequency
words that were unrelated to studied words. Al
conditions were tested in awithin subject design.
Sixty-two undergraduate students from the same pool
of participants mentioned in Experiment 1
participated in the experiment.

Materias. Appendix C shows the words of this
experiment. All words were selected from the pool of
words from the production norms of Nelson et al.
(1998). Two sets of 10 asymmetric associative word
pairs, X->Y were created by selecting word pairs
with strong forward and weak or absent backward
associative strengths. The mean forward associative
strength from X to Y was .812 (SD=.063) and mean
backward associative strength from Y to X was .0301
(SD=.029). The mean Kucera and Francis frequency
count was 2.05 (SD=2.31) for the X words and 76.8
(SD=72.3) for the Y words. One set of 10 bi-
directional associative word pairs X<->Y was created
by selecting word pairs with approximately equal
forward and backward associative strengths. The
mean forward and backward associative strengths
was .356 (SD=.21). The mean Kuceraand Francis
frequency was 177 (SD=176) for these words. Two
sets of 15 control words were created that were
unrelated to the associatively related word pairs. The
two sets contained low and high frequency words
with mean frequencies of 2.00 (SD=1.13) and 306
(SD=106) respectively.

Procedure. Participants studied 120 study words
for 1.3 s. each. They were instructed to study the
words for alater memory test. The study list
contained 90 filler words that were randomly sel ected
from the pool of words from the production norms
and 30 experimental words. These words contained
an equal number of words from condition A, B, and
C. Words from condition A were words with strong
forward associations and wesk backward associations
(A->F). Words from condition B had the opposite
pattern: weak forward associations and strong
backward associations (B<-G). Words from condition
C were words with strong forward and backward
associations (C<->H). To control for word specific
effects, two sets of words A, B, and C were created
for the experiment. In set 1, the A, B, and C words
were the left words of group 1, right words of group
2, and left words of group X<->Y wordslisted in
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Appendix C. Inset 2, the A, B, and C words were the
left words of group 2, right words of group 1, and
right words of group X<->Y wordslisted in
Appendix C. The participants were randomly
assigned to one of two sets of experimental words.
The order of the words on the study list was
randomized for each participant with the constraint
that 5 filler words were presented at the start and end
of the study list.

After the study list, participants were given
instructions about the test phase. These instructions
wereidentical to Experiment 1. Participants were
given 90 test words for which they had to give
recognition and similarity judgmentsasin
Experiment 1. Thetest words consisted of 30 old
words and 60 new words. The 30 target words
consisted of the 10 words from each the conditions
A, B, and C. The 60 distractor words contained 30
digtractors that were related to the study words and
30 words that were unrelated to the study words. The
30related distractors consisted of 10 wordsfrom
each of the conditionsF, G, and H. Words from
condition F were forward associatively related to the
study words from condition A: they are produced as
associates by A but do not produce A as associates
(A->F). Words from condition G were backward
associatively related to the study words of condition
B (B<-G). Words from condition H were bi-
directional associatively related to study words of
condition H (C<->H). For participants who studied
set 1 of experimental words, the words from
conditions F, G, and H were selected from the right
words of group 1, left words of group 2 and left
words of group X<->Y from Appendix C. For
participants who studied set 2 of experimental words,
the words from conditions F, G, and H were selected
from the left words of group 1, right words of group
2 and right words of group X<->Y from Appendix C.
The 30 unrelated distractor words consisted of 15 low
and 15 high frequency control wordslisted in
Appendix C. The order of the test words was
randomized for each participant.

Results and Discussion

Asin Experiment 1 and 2, the recognition and
similarity judgments were z-score transformed. The
mean z-scores and standard errors for the three target,
three related distractor, and two unrelated distractor
conditions are shown in Figure 9. Thed' resultsfor
severa target-distractor condition comparisons are
listed in Table 1. Separate ANOVA’s were
performed on the z-scores of target and distractor
conditions. Also, ANOVA’swere performed on the
sensitivity results on the recognition and similarity
ratings.
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Figure 9. Observed and predicted results of Experiment 3.

Recognition judgments. Figure 9 shows that the
target words from conditions A, B, and C were rated
increasingly asless old. For the related distractor
conditions, the lowest old ratings were given to
words from condition G, while words from
conditions F and H were given somewhat bel ow
average old ratings. The high frequency unrelated
distractor words were rated significantly more old
than the low frequency unrelated distractor words
[F(1,61)=67.9, MSE=.0416]. The old ratings were
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significantly higher for A words than B words
[F(1,61)=5.46, MSE=.136] while the old ratings were
significantly higher for F words than G words
[F(1,61)=146, MSE=.0626]. These differences are
consistent with amirror effect explanation based on
word frequency differences. The B and F words were
high frequency words while the A and G words were
low frequency words: high frequency words tend to
lead to lower hit and higher false alarm rates than low



frequency words (i.e., the mirror effect, Glanzer &
Adams 1985).

Theinteresting comparison is between unrelated
and related distractor conditions that were similar in
word frequency. The model predicted that old ratings
should be higher for related distractors than unrelated
distractorsif the words have similar word
frequencies. The high frequency words from related
distractor conditions F and H were rated as
significantly more old than the unrelated high
frequency distractor words [F(1,61)=19.7,
MSE=.053, and F(1,61)=20.2, MSE=.0828,
respectively]. This confirms the prediction of the
model. However, the unrelated low frequency
distractor words were rated as more old than the
words from condition G, a difference that did not
reach statistical significance [F(1,61)=3.00,

M SE=.0338, p<.088]. Because the model predicts
that related distractorslead to higher old ratings than
unrelated distractors, this observed trend in the
opposite direction is an interesting finding.

Table 1 liststhe participants' ability to
discriminate between old and new words for various
target and distractor conditions. The sensitivity in
discriminating targets and distractors condition pairs
was significantly lower for pairsthat were forward
associatively related (OLD-A vs. NEW-F) than pairs
that were backward associatively related (OLD-B vs.
NEW-G), [ F(1,61)=30.9, MSE=.824].

Similarity judgments. The resultsfor the
similarity judgments were similar to the results of the
recognition judgments with the difference that related
distractors received similarity ratings that were about
as high asthe similarity ratings for target words. The
d’ resultsreflect that: the sensitivities of target and
related distractor conditions are close to zero.
Interestingly, the low frequency words from
condition G that received lower recognition ratings
than unrelated low frequency distractor words,
received higher similarity ratings than the unrelated
low frequency distractors| F(1,61)=66.1,
MSE=.158].

Number of ratings per words. There were 41 and
21 participantsthat received study and test list 1 and
2 respectively. Since each participant rated all words
from the pool of all possibletest words, there were 41
and 21 ratings for each test word from sets 1 and 2
respectively.

Model Fitsof Experiment 3
The model outlined in the Introduction, and
applied to experiment 1, was applied to Experiment 3
without the special assumptions made for Experiment
2.
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Parameters. The four parameters to generate
predictionsfor this experiment were set at: ¢=0.3, s,
=.35, b=5, AND ¢=3..

Recognition and Similarity Judgments. Figure 9
shows the predicted recognition and similarity
results. In addition to the several waysin which the
model made the correct predictions, there were some
observed effects that were not handled well by the
model. Firt, the difference between target conditions
A and B was correctly predicted. The model
predicted these differences based on word frequency.
Words from condition A had lower word frequency
than words from condition B. The difference between
the unrelated low and high frequency distractors was
also correctly predicted by word frequency
differences. For the recognition ratings, the model
predicted that related distractors from conditionsF,
G, and H have higher old ratings than the unrelated
distractor conditionswith similar word frequencies.
Thisis because the related distractors overlap more
with the memory contents than unrelated distractors.
However, aswas pointed out in the previous section,
the results showed atrend for the condition G words
to have lower old ratings than the unrelated low
frequency distractors.

Another mismatch between observed and
predicted resultsisfor the condition C words. They
were incorrectly predicted to have higher old ratings
than condition B words despite the fact that the word
frequency of condition C words was higher than
condition B words. Also, the model incorrectly
predicted that condition C words received the highest
similarity ratings. This suggests that condition C
words are not placed correctly with respect to the
other study words (condition A and B) in the
semantic space formed by WAS.

General Discussion

The memory model presented in this paper brings
together the idea of explicit representation of
orthographic and semantic features with a process
model operating on those features. Words are
represented by vectors of feature valuesthat are
based on an analysis of the semantic and
orthographic feaures of words. The vectors of
feature values representing various semantic aspects
of words came from the Word Association Space.
This space was devel oped by analyzing the
associative relationships of alarge database of free
association norms and representing words with
similar associative patterns with similar feature
vectors. To represent orthography, the letters of the
words were encoded. These representations were
coupled with a process model for recognition
memory. This model was based on the REM model,



which used Bayesian principlesto decide whether a
memory probeisold or new.

One novel aspect in this model was the distinction
between recognition and similarity judgments. The
ability of participantsto differentiate between
recognition and similarity judgments was apparent in
all experiments. Participants could distinguish
between distractors that preserved the meaning of one
of the themes on the study list versus distractors that
were not similar to any words on the study list. In the
model, the recognition judgments were assumed to
rely on both the semantic and orthographic overlap
of probe and memory contents while (semantic)
similarity judgments were assumed to rely only on
the semantic overlap of probe and memory contents.
In Experiment 2, it was found that with
orthographically related distractors, the category
length of orthographic categories had no effect on
(semantic) similarity judgments but increased the
false darmsfor the recognition judgments. Thisis
consistent with the assumption that orthographic
features are not involved in the calculation of
similarity judgments.

The three experimentsin this paper explored
various predictions of the model with afocus on the
interplay between semantic and orthographic
similarity between probe and memory contents. The
predictions of the model were tested at two different
levels: at the level of condition means and at the level
of individua word performance. In all three
experiments, the model successfully predicted most
of the qualitative differences in condition means.
This suggests that the similarity relationshipsin the
semantic space and in the orthographic representation
are useful to predict memory performance.

Even stronger evidence for the idea that similarity
relations among words explains recognition and
similarity judgment data comes from the within
condition correlation data. The correlational analyses
showed that a small but significant part of the
variance in performance was due to similarity
relations due to differences among words within
conditions, even though these words generally were
chosen so such differences would be small.

An undesirable aspect of the present approach is
the rather ad hoc fashion in which aword frequency
mechanism had to be appended to the basic model. It
may well be that afeature frequency approach would
provide a more principled account, but this would
only be possiblein conjunction with a different word
space, onein which high frequency words were
clumped together, and one in which high frequency
words had high frequency features that were clumped
near the center of each featural dimension. WAS
represented similarity by inner products, resulting in
high frequency words being pushed to the outside of
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the space. This problem was solved by normalizing
the vector lengths, but at the cost of removing word
frequency differences, in turn requiring the model to
be augmented by a different word frequency
mechanism of avery ad hoc nature. Thereis
obviously room here for further research and
improvement of the models.

There are severd areas ways in which the model
can be extended and there are several new
assumptionsthat can be tested. For example, one
major assumption in the REM model and this
memory model isthat the features that represent
different aspects of words can be stored in one trace.
Instead, it could be assumed that separate attributes
such as semantic and physical features are stored in
separate traces. Thiswould lead to asystem in which
familiarity is calculated for the semantic and physical
contents of memory separately as opposed integrally.
Preliminary simulations have suggested that thereis
not much difference between these two recognition
memory models.

Notes

1. In part | of thisresearch, Table5, it was shown
that with and without the normalization of the vector
lengths, WAS is sensitive to semantic information
because it predicts much larger within category
similarities than between category similarity where
the categories were defined semantically.

2. Thedistribution g of all stored feature values
was determined by integrating over the probe feature
distribution and noise distribution: each stored
feature value could have been produced by a
combination of each probe feature value and some
noise value.

3. Even though the model i s quite simplein its
mathematical form, the calculations are
computationally very involved because of Equation
(5), inwhich thelikelihood ratio is calculated for a
single trace with 400 semantic features. The
computational regquirements of the simulations
prevented us from applying modél fitting procedures.

4. Because the scrambling is random, the obtained
correlation obtained with the scrambling procedure is
itself astochastic variable. We report the correlation
that is an average of the correlation by performing
scrambling procedure 100 times.

5. The u storage parameter that determined the
probability that orthographic and semantic features
were stored was set at one so that this part of this
storage process that determines the strength of traces
in memory was effectively not used.
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Appendix A
Wordsof Experiment 1
# WF Study Words Test Words
1 L  RATTLE, REPTILE, VENOM, COBRA SERPENT, LIZARD, FANGS, PONY
H  BITE, WORM, GRASS, POISON SNAKE, DEATH, SLIMY, HEAL
2 L  ROYAL, PRINCE, PALACE, CHESS THRONE, EMPEROR, GROOM, RUBY
H  CASTLE, KING, RULER, PRINCESS QUEEN, CROWN, LEADER, FANTASY
3 L  OAR, ROW, VESSEL, SAILING YACHT, RAFT, CANAL, REFLECT
H CAPTAIN, SHIP, SAIL, BOAT SAILOR, NAVY, RIVER, HEAT
4 L  UNTRUTHFUL, FIB, DECEPTION, RUMOR PERJURY, FRAUD, SINCERE, IMPRESSION
H  FALSE, CHEAT, TRUE, TRUTH DENY, LIAR, FACT, SHORT
5 L  GARAGE, BUMPER, DRIVEWAY, AUTOMOBILE VAN, WINDSHIELD, COMPACT, LEVER
H TRUCK, DRIVE, DRIVER, TIRE VEHICLE, WHEEL, BUS, ICE
6 L  BLAST, ERUPT, BURST, ATOMIC EXPLOSION, DYNAMITE, NOISY, SHIVER
H BOMB, BLOW, BANG, NOISE LOUD, BOOM, SOUND, POOL
7 L MUFFIN, STALE, ROLL, CRUST BISCUIT, BAKER, SLICE, DIVER
H BUTTER, WHEAT, BREAD, TOAST DOUGH, JELLY, CAKE, WEAK
8 L  DUNGEON, CAPTIVE, CELL, PROSECUTE CONVICT, INMATE, FUGITIVE, DISGRACE
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H  PRISON, CRIMINAL, PUNISHMENT, PRISONER JAIL, CRIME, COURT, ANGRY

9 L  STEEPLE, BAPTIST, MINISTER, PRAYER CATHEDRAL, SYNAGOGUE, BLESSING,
PHILOSOPHY

H  PRIEST, CATHOLIC, RELIGION, TEMPLE CHURCH, BIBLE, FAITH, HAT

10 L  PETALS, DAISY, STEM, TULIP BLOOM, VIOLET, MEADOW, COCOON
H  GARDEN, ROSE, FLOWER, VASE PLANT, SEED, POT, LADY

n L  FLASH,BOLT, VOLT, UMBRELLA THUNDER, BEAM, FLASHLIGHT, DELAY
H CLOUD, BRIGHT, STORM, ELECTRICITY RAIN, WIND, SNOW, PENCIL

12 L  BIZARRE, UNCOMMON, ABNORMAL, ORDINARY [INSANE, IRREGULAR, AWKWARD, TWICE
H  WEIRD, UNIQUE, CRAZY, COMMON STRANGE, AVERAGE, WILD, KIND

13 L  ADORE, AFFECTION, CUDDLE, SWEETHEART PASSION, VALENTINE, AFFAIR, SNOTTY
H  CARE, LIKE, ROMANCE, MOUTH KISS, RELATIONSHIP, MARRIAGE, ROUGH

14 L MEEK, BASHFUL, TIMID, INTROVERT MODEST, WITHDRAWN, HUMILIATE, CHIME
H  SILENT, QUIET, EMBARRASS, OUTGOING SHY, CALM, SECRET, VACATION

15 L INSTRUCTOR, LEARNER, INSTRUCT, PUPIL EDUCATE, FACULTY, CHALKBOARD, ESTEEM
H INTELLIGENT, LEARN, STUDENT, TEACH PROFESSOR, COLLEGE, BRAIN, CLOCK

16 L SKUNK, SNIFF, FRAGRANCE, COLOGNE STENCH, FOUL, CIGAR, THANKSGIVING
H  TASTE, STINK, NOSE, PERFUME ODOR, SENSE, ONION, MALE

17 L  GIGGLE, PRANK, RIDDLE, COMEDIAN HILARIOUS, AMUSE, WIT, FRECKLE
H  JOKE, LAUGH, CLOWN, CRY FUNNY, COMEDY, SMILE, ANXIOUS

18 L WEAVE, SEAM, KNIT, CROCHET STITCH, SPOOL, PRICK, TREND
H  STRING, SEW, PIN, THREAD NEEDLE, YARN, CLOTH, SING

Notes: WF=word frequency; the test words appear in order of semantic similarity according to the semantic space

Appendix B
Wordsof Experiment 2

Prototypes Exemplars
Semantic Categories

LOAN CASH, FEE, FUND, BANKER, OWE, DEBT, CHECKBOOK, PROFIT, DEPOSIT
BELIEVE DECEIVE, RUMOR, TRUTH, DECEPTION, FACT, LIAR, FIB, HONESTY, BLUFF
DOOR ENTRANCE, KNOB, HALLWAY, KEY, LOCK, CORRIDOR, MAT, HINGE, THRESHOLD
DUST GRIT, FILTH, SOOT, SCUM, GROUND, DIRT, PILE, SOIL, MUD
WET MOIST, RAINY, DRENCH, DEW, GALOSHES, SLIPPERY, SOAK, PUDDLE, DAMP
KING CROWN, THRONE, EMPEROR, MONARCH, CASTLE, PALACE, PRINCESS, ROYALTY, QUEEN
AFRAID PANIC, FRIGHT, TERROR, SUPERSTITION, FEAR, MONSTER, HAUNT, SPOOK, SCARED
VICTORY CONQUER, DEFEAT, CONTEST, COMPETE, CHAMPION, AWARD, TRIUMPH, TROPHY, WIN
JUDGE LAWYER, VERDICT, ATTORNEY, WITNESS, COURT, TESTIFY, EVIDENCE, GAVEL, TRIAL
TRAIN UNDERGROUND, CONDUCTOR, CABOOSE, SUBWAY, EXPRESS, TUNNEL, WAGON,

CROSSING, STATION
HUSBAND COMPANION, ENGAGE, PARTNER, FAITHFUL, MATE, LOVER, WED, SPOUSE, MARRY
PHONE BOOTH, CORD, DIAL, COMMUNICATION, OPERATOR, SPEAKER, EXTENSION, MESSAGE, RUNG
WINTER SHIVER, FRIGID, FROST, IGLOO, ICEBERG, CHILL, ARCTIC, FREEZER, COLD
SLEEP SNOOZE, REST, HAMMOCK, WAKE, PAJAMAS, SLUMBER, DROWSY, NAP, NIGHTGOWN
EYE CONTACTS, VISION, FOCUS, SQUINT, SEE, LENS, VIEW, BLIND, LASH
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BLOOD
POLITICS

SUIT
HORSE
CHAIR
TELEVISION

DINNER
SNAKE
TEXT

BAG
HOT

SIN
DIE
TEN
BEAT
CARE
LINE
HALL
MASS
FORM
LEAD
SALE
RACE
WIDE
FILL
LOST
SHARE
GRACE
FIGHT
MATCH
PRIME
ROUND

PLASMA, DONOR, FLESH, ARTERY, VAMPIRE, PRICK, DRACULA, TRANSPLANT, VEIN
CANDIDATE, LEGISLATURE, DEMOCRACY, CONGRESS, LEADERSHIP, PRESIDENT,
CAMPAIGN, GOVERNMENT, SENATOR

BUTTON, VEST, COLLAR, BLOUSE, SHIRT, TUXEDO, JACKET, LAPEL, KNOT

SADDLE, TROT, UNICORN, COLT, MARE, RANCH, STABLE, RODEO, GALLOP

BENCH, SEAT, TABLE, WICKER, STOOL, COUCH, SOFA, RECLINER, SITTING

PROGRAM, CHANNEL, ANTENNA, NETWORK, ENTERTAINMENT, ADVERTISEMENT, CABLE, MEDIA,
COMMERCIAL

CHINESE, FEAST, BANQUET, THANKSGIVING, MEAL, CAFETERIA, SUPPER, TRAY, LUNCH
SERPENT, RATTLE, DEADLY, SLITHER, COBRA, BITE, LIZARD, VENOM, REPTILE

ALMANAC, AUTHOR, LITERATURE, PAGE, PUBLISHER, LIBRARY, READER, NOVEL, CHAPTER

Orthographic Categories

BEG, BAN, BAR, BAT, BUG, BAD, BIG, BAY, BOG

HIT, HUT, HOE, HOG, HOW, LOT, HAT, HOP, DOT

RAY, JAW, RAP, RAT, RAM, ROW, PAW, LAW, RAG

SIX, GIN, SIP, SUN, SON, FIN, SIT, PIN, KIN

ACE, TIE, PIE, DIM, LIE, DIG, DUE, DIP, DOE

TAN, BED, TON, PEN, TIN, HEN, TEA, MEN, BEE

BENT, BOAT, BEST, BEAR, BELT, BEAD, BEET, BEAN, BEAM

CASE, CAGE, CAPE, CANE, CART, CAKE, CARD, CAFE, CAVE

DINE, LIKE, LICE, LINT, LIFE, LANE, LINK, LIME, FINE

HALF, HAUL, FALL, CALL, HALT, BALL, HAIL, HALO, HELL

BASS, MESS, MARS, BASE, MISS, MASH, PASS, MOSS, MASK

FORK, DORM, FIRM, WORM, FOAM, FORT, BOOM, NORM, FARM

DEAD, LEAP, HEAD, LEAN, READ, LEAK, LEAF, LOAD, LEND

SAFE, TALE, SALT, SAVE, SAGE, MALE, SAME, PALE, SOLE

RARE, BAKE, RAGE, RACK, LACE, RICE, RAKE, RATE, FACE

WIRE, TIDE, WINE, WIPE, HIDE, RIDE, WISE, WIFE, SIDE

FILM, FELL, BILL, KILL, FULL, MILL, FILE, DILL, HILL

LAST, LOSS, COST, LOSE, MOST, LUST, LOFT, HOST, LIST

SHAPE, SCARE, SHAKE, SHAME, SHAVE, SHADE, SHARK, SHORE, SHARP
BRAKE, TRACE, BRAVE, GRADE, GRAVE, CRACK, GRAZE, GRAPE, GRATE
RIGHT, SIGHT, EIGHT, DIGIT, MIGHT, FIRST, NIGHT, TIGHT, LIGHT
DITCH, LATCH, HATCH, MARSH, MARCH, WATCH, CATCH, PATCH, HITCH
PRIDE, PRICE, BRIBE, CHIME, PRIZE, GRIME, CRIME, BRIDE, DRIVE
SOUND, COUNT, ROUGH, ROUGE, HOUND, FOUND, BOUND, WOUND, POUND

Note: the last two words of each category are only tested as new words



Appendix C

Words of Experiment 3

X->Y (Group 1)

FIB- LIE
MOO - COW
MEOW - CAT
TARDY - LATE
GLACIER- ICE

GIGGLE - LAUGH
HILARIOUS - FUNNY
BOUQUET - FLOWERS

TELLER - BANK
DESPISE - HATE

X->Y (Group 2)

KIWI - FRUIT
SWATTER - FLY

DASHBOARD - CAR
SCISSORS - CUT

TROUT - FISH

SLIPPERY - WET

BLAZE - FIRE
BRAWL - FIGHT
BUMBLE - BEE
CHIRP- BIRD

X<->Y

PRIVATE - PUBLIC
ACTION - REACTION
CAUSE - EFFECT
ALONE- LONELY
FOOD - EAT

GIRLS- BOYS
GOOD - BAD
ADMIRE - RESPECT
DECISION - CHOICE
SAD - HAPPY

Low Frequency Control

SAXOPHONE
ABUSE
CROCHET
GRANITE
SKYSCRAPER
LOSER
BURGLARY
HANDCUFFS
SURF
CAULIFLOWER
LATHER
ASHTRAY
CONCEIT
CLENCH
INSTRUCT

High Frequency Control

WIFE
THING
SHORT
COMPANY
TODAY
PROGRAM
EVIDENCE
GENERAL
LAND
SOUND
ART
COURSE
EYES
FORCE
THOUGHT
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Part I11:
Feature Frequency Effectsin Recognition
Memory

Low frequency words are better recognized than
high frequency words (Glanzer & Adams, 1985;
McCormack & Swenson, 1972; Schulman, 1967;
Shepard, 1967; but see Wixted, 1992), a phenomenon
known as theword-frequency effect. For single-item
yes-no recognition (i.e. old-new), hit rates (correctly
responding “old” to an old item) are higher for low
frequency words than for high frequency words and
false alarm rates (incorrectly responding “old” to a
new item) are higher for high frequency words than
low frequency words (McCormack & Swenson,
1972; Glanzer & Adams 1985; Schulman, 1967;
Shepard, 1967).

Several different explanations for the word-
frequency effect have been proposed; probably
because word frequency is correlated with many
variables. The advantage for low frequency words
has been attributed to elevated attention (Brown,
1976; Glanzer & Adams, 1990; Lockhart, Craik, &
Jacoby, 1976; Maddox & Estes, 1997; Shepard,
1967), extrarehearsal time (Mandler, 1980),
differencesin pre-experimental recency
(Scarborough, Cortese, & Scarborough, 1977;
Underwood & Schultz, 1960), noise from extralist
memory (Estes, 1994; Maddox & Estes, 1997;
Shiffrin & Steyvers, 1997), number of different
contexts (Dennis & Humphreys, in review) and
differencesin the variability with which words are
encoded (McClelland & Chappell, 1998). The
Retrieving Effectively from Memory theory (REM,
Shiffrin & Steyvers, 1997, 1998) accounts for the
word-frequency effect on the assumption that the
memory representations of low-frequency words tend
to be made up of less common features than the
memory representations of high-frequency words. It
isof course possiblethat severa or all of the
mechani sms proposed are operating simultaneousdly.
It should be pointed out that while Shiffrin and
Steyvers (1997) employed the feature frequency
assumption as the sole mechanism to predict word
frequency effects, they were careful to point out that
many other plausible factors could aso contribute to
word frequency effects. In this paper, however, we
empirically test the feature-frequency assumption.

Landauer and Streeter (1973) pointed out that the
frequency distributions of orthographic and phonetic
features are dependent on normative word-frequency.
For example, the letter “X” istwice aslikely to occur
in rare words than in common words. Almost al
implementations of the REM model assume that
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features vary in their environmental frequency, or
‘baserate’. Thisfeature frequency assumption can be
used to explain word frequency effects: because high
frequency words are encountered more often, the
features that make up high frequency words are also
encountered more often. This means that feature
frequency is correlated with normative word
frequency. In REM (Shiffrin & Steyvers, 1997), high
frequency words were represented with vectors
having more common feature values and low
frequency words were represented with vectors
having more rare feature values. Because the REM
model is sensitive to the diagnosticity of the features
that make up words (memory traces with rare
features that match the test features provide better
evidence), it predicted an advantage for low
frequency words over high frequency words as well
asmirror effectsfor hit and false alarm rates.

Convergent evidence for the feature-frequency
assumption comes from a set of experiments by
Zechmeister (1969, 1972) that showed that words
that wererated as orthographically distinct (e.g.
sylph) were better recognized than words rated less
orthographically distinct (e.g. parse). He also
showed that the distinctiveness ratings were related to
both the frequency of letter combinations and
orthographic distinctiveness.

In this study, instead of using ratings, we assess
feature frequency by measuresthat are directly based
on the frequencies of the individual letters that make
up words. Theresults of this study will be modeled
by two versions of the REM model. The first model
is based on the REM model as described by Shiffrin
and Steyvers (1997) in which words are represented
by arbitrary feature values. In the second model, the
representation of the wordsis directly based on the
orthography of the words used i n the experiment and
on the environmental base rates of |etters occurring in
words.

Experiment

Feature frequency and natura language word
frequency are correlated variables: the frequency of a
word determines the frequency of the letters that
occur in the word. The experiment was designed to
test the hypothesis that the frequency of occurrence
of orthographic featuresin natural language,
operationally defined as letters, affectsthe
recognition of wordsindependently of natural
language word frequency. According to the feature-
frequency account of the word-frequency effect for
recognition (Shiffrin & Steyvers, 1997; Zechmeister,
1969, 1972), words comprised primarily of low
frequency letters should be better recognized than
words comprised primarily of high-frequency |etters,
independent of other factors correlated with aword's



normative frequency. In contrast, if orthographic
feature frequency does not affect word recognition,
then words comprised of common letters and words
comprised of uncommon letters should be recognized
equally well, if both groups are of equa normative
word frequency.

Method

Participants. Fifty-three Indiana University
students who were enrolled in introductory
psychology courses participated in exchange for
course credit.

Design and Materials. Normative word frequency
and normative letter frequency were manipulated as
within-subject factorsin a2 x 2 factorial design. The
dependent variables were the probability of
responding “old” and sensitivity operationally
defined as d, (Macmillan & Creelman, 1991; Swets
& Pickett, 1982).

Two hundred and eighty-eight words were
selected from the CELEX database (Burnage, 1998).
The stimuli were organized into four groups (72in
each), according to orthographic feature frequency
and normative word frequency: low feature
frequency, low word frequency (LFF-LWF); high
feature frequency, low word frequency (HFF-LWF);
low feature frequency, high word frequency (L FF-
HWF); and high feature frequency, high word
frequency (HFF-HWF). The stimuli are listed in the
Appendix Al.

High-frequency words were operationally defined
as those occurring between 15 and 39 times per
million of wordsin the natural language and low-
frequency words were as those occurring between 3
and 7 times per million of wordsin the natura
language. Orthographic feature frequency was
operationally defined in the following manner. The
relative frequencies of letters occurring in thefirst,
interior, and the final positions of the words included
in the CELEX database were computed asfollows: in
each of these three positions, if aletter wasfound ina
word it was counted as having occurred as many
times as the frequency count of that word in the
language (per million). Thus each letter was weighted
by the normative frequencies of the wordsinwhich a
letter appeared. Table 1 lists the resultant
orthographic feature frequencies of thefirgt, interior,
and final positions. Note for example that the letter
“y” isthe fourth most frequent letter at the ending of
aword but is the fifth least frequent letter in the
interior positions of aword.

The overal orthographic feature frequency of a
given word was then measured in two different ways.
In the first measure (referred to as feature frequency
A), for each word, the product was cal culated of the
relative letter frequencies of the lettersin their
corresponding positions in the word. For example,

a7

Tablel

Relative frequencies of lettersin first,
interior and last word positions

Rank First Interior Last

1 t .139857 e .122486 e .259216
2 w .089016 a .115716 t 117966
3 s .088766 i .096613 r .093309
4 h .079308 o .089503 y .090288
5 c .060967 r .074818 n .072773
6 m .060880 h .065504 h .071692
7 a .055558 n .057845 d .063277
8 p .052553 t .055987 s .045439
9 f .050972 | .051529 | .042520
10 b .047608 u .048599 m .038000
11 r .037545 s .038642 k .026181
12 | .034530 c .038107 g .020707
13 e .032685 v .030241 w .014416
14 g .029994 m .023487 o .012077
15 d .027690 p .016436 p .010279
16 i .020588 g .016296 f .006968
17 o .018880 d .014560 a .006837
18 n .016847 k .009320 c .004000
19 k .013337 f .008601 b .002173
20 y .011314 b .008154 X .000839
21 v .009297 w .007493 i .000530
22 u .008798 y .004212 u .000321
23 j .008651 x .003001 z .000159
24 g .004043 z .001149 g .000022
25 z .000309 g .000926 v .000012
26 X .000006 j .000775 j  .000000

Note: letter counts were weighted with the Kucera &
Francis (1967) frequency counts of the words they
appeared in.

using Table 1, the word “bane” would get a measure
of (.0476)(.1157)(.0578)(.2592) = 0.000082 and the
word “gar” would get a measure of
(.0556)(.00078)(.1157)(.0933) = 0.0000047. Ina
second measure (referred to as feature frequency B),
the average relative | etter-frequencies of thelettersin
their corresponding positions was cal cul ated.
According to this measure, the words “bane” and
“gar” would get measures of
((.0476)+(.1157)+(.0578)+(.2592))/4 = .12 and
((.0556)+(.00078)+(.1157)+(.0933))/4 = .066
respectively. According to both measures A and B,
theword “bane” consists of more high frequency
letters than the word “gjar”. The words* bane” and
“gar” are examples of wordsin the HFF-LWF and
LFF-LWF respectively since the words differ in their
feature frequencies (by measures A and B) and both
words have low word frequency (3 per million).
Words were selected for the four conditionsto
simultaneously satisfy two constraints. First, the
means of the word frequenciesin the high- and low-



feature frequency conditions were matched. Second,
the means of the feature frequencies A of the high-
and low-frequency words were matched. In addition,
each of the four conditions included approximately
equal numbersof 4-,5-, 6-, and 7-letter words. Since
the range of feature frequency A isdifferent for
different word lengths, the matching was performed
separately for the 4, 5, 6 and 7 | etter words. We also
verified that the words selected were still matched in
feature frequency when we used feature frequency B
asameasure. The means and standard deviations of
the word frequencies, and feature frequencies A and
B arelisted for the four conditionsin Appendix A2.

Each study list consisted of 130 words: 24 words
from each of thefour conditions and 34 filler items.
Study position was randomly determined for each
word for each subject, except for thefirst five words
and the last five words, which were always filler

OBSERVED MODEL A MODEL B
arbitrary orthographic
features features
2.0
LNF HNF
—e— —O0—
15F + \ + 4
< 10f + 1 ‘\v i,
0.5} 9\{ + 1 i
1 1 1 1 1 1
LNF HNF
—v— —v OLD
o8l 1 1 1| —e&— —o— NEW

[

0.6 - 1 + g

P(old)

Y

02

0.0

LFF HFF LFF HFF LFF  HFF

feature frequency

Figure 1 The results of the Experiment varying feature frequency
and word frequency are shown in the left panels. The predicted
results of model A and model B are shown in the middle and right
panels respectively. The sensitivity results d, are shown in the upper
panels while the hit and false alarm rates are shown in the lower
panels.
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items. Twelvetargetsand 12 distractors selected
randomly from each condition were randomly
assigned a serial position on the 96-item test lists.

Procedure. An experimental session consisted of
two study-test cycles. Participants were instructed
prior to each study-test cycle to remember the words
on the study list for alater memory test. Each word
was displayed in uppercase form in the center of the
computer screen for 1.3 s. of study. At test,
participants performed a series of single-item ratings.
Test items were presented one at atime, and
participants were instructed to rate how confident
they were that atest item was studied by utilizing a 6-
point scale (a1 indicated high confidence that an
item had not been studied and a 6 indicated high
confidence that an item had been studied).
Responses were made by utilizing amouse to click
the appropriate button in the computer display. Each
response was followed immediately by the
presentation of anew item. At theend of the
experiment, participants were given feedback
concerning their performance on the task.
Results

The 6-point confidence ratings were converted to
binary ‘old'-‘new’ responses by choosing acriterion
and marking ratings higher or equal to the criterion as
‘old’ responses and ratings lower than the criterion as
‘new’ responses. For each participant, a criterion
was chosen to equalize the overall number of ‘old’
and ‘new’ responses as much as possible’. The
confidence ratings were used to compute ratings z-
ROC curves by plotting the z transformed hit and
fase darm ratesusing five criteria (1.5, 2.5, 3.5, 4.5
and 5.5) that were spaced between the confidence
ratings. The z-ROC curvesfor each subject for each
condition were used to compute sensitivity, d,
(Macmillan & Creelman, 1991; Swets & Pickett,
1982). Analphaof .05 wasthe standard of
significance for all statistical analyses. In Figure 1
(Ieft panel), d,isshown for the four conditionsin the
top left panel. In the lower left panel, the mean
probability of responding “old” is shown for the
targets and distractorsin the four conditions.

Wordfrequency Effects. A typical word
frequency effect was observed. Mean d, was greater
for low-frequency than for high-frequency words
[F(1,52) = 45.78, MSE = .42]. Hit rateswere
significantly higher for low-frequency words than for
high-frequency words [F(1,52) = 11.77. MSE = .01],
and the false-alarm rates were significantly lower for
low-frequency words than for high-frequency words
[F(1, 52) = 11.65, MSE = .01].

Feature-frequency Effects. Words consisting
primarily of low-frequency letters were better
recoghized than words consisting primarily of high-




frequency letters. Mean d, for low feature-frequency
words was greater than for high feature-frequency
words[F(1, 52) = 103.2, MSE = .13], and the
interaction between word and feature frequency
factorswas significant [F(1, 52)=4.47, MSE=.21]: the
feature frequency effect was larger for low than high
frequency words. Hit rates showed asmall trend to
be higher for words with low-frequency words than
for words with high-frequency features [F(1, 52) =
2.56, MSE = .01, p=0.12], and the false-alarm rates
were significantly lower for words with low-
frequency features than words with high-frequency
features [F(1, 52) = 31.10, MSE = .01].

Discussion

The results confirm the prediction made by the
REM model: words composed of primarily low
frequency letters should be recognized better than
words with primarily high frequency letters when the
word frequenci es are matched. The results also show
that independent of feature frequency, at least aswe
measured this variable, word frequency also hasa
significant effect on performance: low frequency
words are recognized better than high frequency
words even if the feature frequencies of thewords are
matched. This suggests that feature frequency isone
but not the only factor underlying the word frequency
effect. Of course, feature frequency and other
explanations for word frequency effects as mentioned
in the Introduction are not mutually exclusive.

Itisin principle possible that other word variables
correlate with the feature frequency manipulation and
that these other variables are causing the effects.
Several variables such as concreteness and number of
associations do not (wholly) explain the word
frequency effect (Gorman, 1961; Kinsbourne &
George, 1974), but could along with a potentially
unlimited number of other variables (e.g.
emotionality, imagery) correlate with the feature
frequency manipulation. It would be no easy matter
to explore such possihilities. An advantage of the
present account isthat feature frequency iseasy to
quantify objectively, and is easy to incorporatein a
theoretical framework (aswas donein REM).

M odel Fits

REM uses Bayesian principles to model the
decision processin recognition memory. This model
as described by Shiffrin and Steyvers (1997, 1998)
assumed events are represented as vectors of feature
values, that episodic storage consists of forming
incomplete and error prone copies of such events,
that memory probes consist of vectors of feature
values, and that retrieval is based on parallel
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matching of the features of the probesto the features
of each memory trace. The matches and mismatches
for each trace contribute evidence to alikelihood
ratio for each trace and the odds for ‘old’ over ‘ new’
turns out to be the sum of the likelihood ratios
divided by the number of traces. This model wasfit
qualitatively to data from recognition memory
experiments. Later, Diller, Nobel, and Shiffrin (in
press) fit the model quantitatively to recognition and
cued recall experiments. Even more recent work
extended the model to variousimplicit memory tasks
(e.g. Schooler, Shiffrin, & Raaijmakers, in press) and
short-term priming (Huber, Shiffrin, Lyle, Ruijs, in
press).

We modeled the results from this study in two
ways. Thefirst model, based on the REM model
described by Shiffrin and Steyvers (1997), represents
words with vectors of arbitrary feature values. The
second model uses vectors of features based on the
actual orthography of words, allowing the model to
simulate performance by using models of the same
words used in the experiment.

We opted not to model the effects of word
frequency. Although the results showed effects of
word frequency that were independent of feature
frequency, there are many candidate mechanismsto
model these additional effects, as described in the
Introduction, and we are not ready to choose between
these.

Model A, arbitrary features

Inour first REM model, a vector of feature
values, V, represents each word. The features are
assumed to represent various attributes of words such
as orthography (the number of features was set to 5).
The values differ in their environmental base rates
where the probability of choosing afeaturevalueV is
determined by the geometric distribution, based on a
parameter, g

Pv=il=(-g)'g, j=1..¥
€]

The parameter g determines how common the
average feature values drawn from the distribution
will be: increasing g leads to word vectors with more
common and less variable feature values.

To simulate the experiment for each subject, a
lexicon of LFF and HFF words was generated to
serve astarget and distractor words. The stimulus
vectors for the LFF and HFF conditions were
generaed with base rate parameters g, g and Qyer
respectively where g, g < guee. Thus, LFF features
are less common than the HFF features. To give an
example, if we set g, r=.1 and gy==.8, then
(exaggerating a bit for the sake of the example) two
likely word vectors for the LFF condition are




[9,4,14,25,6] and [7,27,2,15,8] and two likely word
vectorsfor the HFF condition are[2,1,1,1,2] and
[3,2,1,1,1]. Note that there are fewer features that
overlap for the L FF vectors that the HFF vectors.

In REM, it is assumed that a separate image or
traceis stored for each unique word studied. During
study, copying feature values from the stimulus
vectors to memory over occurs with a probability of
c. With probability (1-c), arandom feature is
sampled from the geometric distribution defined by g,
and stored”. To simulate the experiment, 130 images
were stored in memory, 65 LFF and 65 HFF words®.

At test, a probe vector representing thetest itemis
compared in paralld to al imagesin memory by
counting the number of matching and mismatching
features, m; and g; respectively, for each image, ..
For each probe-image comparison, alikelihood ratio

| iscalculated: ( ) 6/ )
~ Cc+(1- c)f V..
| =(-c) i
J ( ) kic'aj fwkj)
()

This expressestheratio of the probability that the
image | matches the probe vector over the probability
that the image does not match the probe vector.

In Equation (2), M; isthe set of matching features
for imagej and V,; isthe K" feature valuein image;j.
The valuef(V) isthe probability that feature valueV
was stored by chance. In this model, f(V) was set to
(1-g,)""'g,, the geometric distribution of Equation 1
using g, as the base rate parameter.

The decision “old” or “new” is based on the odds
| that the probeis“old” over “new”. A decision
“old” and “new” ismade when | _isbigger than 1 and
smaller or equal than 1 respectively. In Shiffrin and
Steyvers (1997), it was shown that this oddsis equal
to the sum of the likelihood ratio’s| ; divided by the
number of imagesn:

P("old") _1 o

P\oa) _ |
PMnew') ng,’
)

Thismodel uses four parameters and we tried a
few sets of parameter valuesto model the observed
results qualitatively (g, g = 0.3; guer = 0.4; g, = 0.32.
¢ =0.75). Thetop panel of themiddle columnin
Figure 1 showsthat sensitivity, d,, is predicted to be
greater for words comprised of low frequency
features than for words comprised of high-frequency
features'. The lower panel of the middle column of
Figure 1 shows that amirror effect for feature
frequency is predicted: hitsrates are lower for HFF
words than LFF words and false darms rates are
higher for HFF words than L FF words.
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The model predicts higher average false alarms
rates for HFF than for LFF words because they have
more featuresin common and because accessto
memory is assumed to be global. Asaresult aHFF
word will tend to match the images of other wordsto
agreater degree than do LFF words, which leads to
higher likelihood ratio’s and higher odds. A lower hit
rate for HFF than LFF words is predicted because
when features match, it is possible that they match by
chance. Matching feature values will increase the
likelihood ratiosin Equation (1) to the degree that it
isunlikely that the features match due to chance.
Thus, even though HFF targets will lead to more
matches than L FF targets, the matching values for
HFF words contribute less to the likelihood ratios
than the matching values for L FF words.

Model B: orthographic features

In Modd A, the vectorsfor the LFF and HFF
words differed in their environmental base rates of
feature values but otherwise, these feature values
were arbitrarily related to the stimulus features. In
model B, we attempted to model more closely the
stimulus structure of the experiment by choosing a
representation for the words that is directly based on
the orthography of the words. This enables usto
make specific predictions based on the stimulus
materials employed in this study.

The coding for the words in the experiment is
directly based on the relative frequencieslisted in
Table 1. The most frequent letter is encoded with
feature value “1”, the second most frequent letter
with feature values“ 2", and so on. For example, the
vector [10,2,7,1] represents the word “bane”, and the
word “gjar” isencoded as[7,26,2,3]. Note that the
initia letter “a@’ in“gar” is encoded by value 7 and
that the third letter “a” is encoded by value 2 because
we distinguish between relative frequencies for
different letter positions. This representationisa
simple way to represent the orthographic structure of
the stimulus materials and to capture the differences
between the LFF and HFF words used in the
experiment. Note that the LFF word “gjar” hasarare
feature“j” while the word “bane” mostly consists of
common features. The feature frequency differences
in the stimulus materials will be reflected in the
coding of the words, because common letters will be
encoded by common feature values while rare | etters
will be encoded by rare feature vaues.

The same procedure for creating images was used
asinmodel A. Error prone images of the study word
vectors were created by storing the correct feature
value with probability c. With probability (1-¢), a
random feature value was stored by sampling from
the distribution of letter frequencieslisted in Table 1.
Thisisan empirical distribution of |etter frequencies
asthey occur in the learning environment of an




English speaker. Because an explicit representation
for words was available, the structure of the study list
could be modeled: the 24 words from each of the four
conditions and 24 filler items formed the 130-item
study list.

At test, the probe vector was compared in parallel
to each image in memory, and the number of matches
and mismatches were cal culated for each probe-
image comparison. Because most of the probe and
images consist of an unequal number of features, a
choice has to be made of how to align the vectors and
count matches and mismatches. A simple procedure
was used in which the words were aligned at the
beginning and ending of each word, and the best
alignment in terms of number of matching features
was chosen. Also, the difference in the number of
features counted toward the number of mismatching
features. For example, [1, 2, 3,4, 5] and [6, 3, 4, 5]
would have abest alignment at the end of the word
and would give 3 matching features and 2
mismatching features (one due to the length
mismatch). Other comparison procedures were also
tried (such as no alignment at the end of the word or
not counting the length mismatch between words)
and gave qualitatively similar results.

With the number of matches and mismatches
available, Equation (2) was applied to calculate the
likelihood ratios for each image. The function f(V)
cal culates the probability of matching the feature
value V by chance, and its value is dependent on the
relative feature frequencieslisted in Table 1. Let
h(V), denote the relative frequency of letter Vin
position p of the word (first, interior or last). Then,
we set f(V),, (it will be indexed with p because it will
now also depend on letter position) not equal to h(V),
but on aless skewed distribution according to:

__It),
f(V)p - é_ h(V)p a 4)

j=1.26

where the parameter a determines the
(un)skewing of the empirical distribution h(V),. We
set a<1, to make the frequencies of the common and
rare letters more similar. We will discuss this aspect
of the model in more detail in amoment.

In Figure 1, left panels, the predicted results are
shown for model B. With only two parameters,
(c=0.5, a=0.6), thismodel can make predictions that
are similar to both the observed data and the
predicted datafrom model A. It predicts amirror
effect for the false alarm and hit rate for the same
reasons as mentioned for model A: HFF words have
more common features so HFF probes tend to match
more features by chance which increases the false
aarm rate. At the sametime, thereis a compensating
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factor that the common matching features will
increase the likelihood ratio’ s less than rare matching
features. The tradeoff between thesetwo factors
givesthe predicted mirror effect.

Thismodel can predict the effect of feature
frequency based on a vector representation that is
directly related to the stimulus material of the
experiment and to the environmental base rates of the
letters. Interestingly, to make this model work, it was
necessary to make the environmental base rates less
extreme so that the rare features were not asrare and
common features were not as common®. One way to
justify setting the base rates used by the model to
va ues |ess extreme than the environmental base rates
isbased on the structure of the study list. Because the
study list consists of many LFF words, the
occurrence of rare letterssuch as“j”, “z" and “X” is
lessrare than outside this experimental setting.
Participants might adjust their base rates to reflect
these changes sothat a“j”, “Z” or “X” isless
surprising than the environmental base rates suggest.

Another justification is based on work by
Schooler and Anderson (1997) who argued and
shown that rare items or features tend to clump
together when they do occur: for example, arare
word seldom occurs, but when it occurs, it tends to
reoccur shortly thereafter with a much higher
probability than that given by the base rate. E.g.,
‘flan’ seldom occurs but when it does it might do so
because of a cooking context and would tend to
reoccur. A generalization of this argument might be
used to justify the higher than normal clumping of
rare features generaly (e.g. a scientific text might
contain many rare feature values). If such clumping
occurs, then the conditional probability that arare
feature value has been encountered recently, given
that it is presented (in this case, for test) is much
higher than the overall base rates would suggest.

Conclusion

Severa recent global matching memory models
explain the word frequency effect (Dennis &
Humphreys, in review; Estes, 1993; Hintzman, 1997;
McClelland & Chappell, 1998; Murdock, 1997) for a
variety of reasons. This study suggests that these
memory models need a component for feature
frequency to explain part of the word frequency
effect. In this article, we accounted for the feature
frequency effects by assuming that the features that
represent words differ in their base rates and that the
recognition memory performance depends on these
base rates. rare features are more diagnostic in the
matching of the probe to the contents of memory than
common features so performanceis better for words
with rare features than words with common features.



Thefirst REM modd assumed that the features of
words comprised of primarily high or low frequent
letters are represented by arbitrary features differing
intheir base rates. The second model employed a
simple representation with which the letters of the
experimental words were directly represented. Also,
this model assumed that the diagnosticity of the
features were directly dependent on the
environmental letter frequencies.

There is one way in which the differencesin
feature frequency can be explained without using
differencesin the representation but rather
differences in the amount of attention paid to words
comprised of low and high frequent features.
Participants might pay more attention to words with
unusual features so that the encoding for the words
with unusual featuresis better than words with
common features. Inthis hypothesis, it still needs to
be explained why participants pay more attention to
words with unusual featuresin the first place.
Second, implementing thisideain amodel like REM
by assuming that words with uncommon features lead
to images with more features than words with
common features leads to the prediction that the hit
rates are affected by feature frequency but not the
false alarm rates. In such amodd, differencesin false
alarm rates can only be predicted if the participants
can adjust the familiarity calculations (or an internal
criterion) for probes (old or new) based on aguess as
to what the encoding strength would have been were
the probe stored in memory. Regardless of the
plausibility of such assumptions, in order to model
the experimental results based on differencesin
attention, atheory is needed in which feature
frequency plays a central role because participants
are assumed to notice differencesin feature
frequency and are assumed to adjust the familiarity
calculations based on feature frequency.

Footnotes

Footnote 1. An alternative procedureisto use one
criterion for all subjects such asthe criterion between
the first three and last three confidence ratings. With
this alternative procedure all statistical results remain
qualitatively the same. We choose the procedure of
selecting criteria separately for each subject for two
different reasons. First, this procedure correct for
idiosyncratic use of the confidence scale(i.e., some
participants use one end of the scale more than other
participants). Second, a participant specific criterion
leads to smaller standard errorsin sensitivity, hitsand
false darmsthan auniversal criterion.

Footnote 2. In the Shiffrin and Steyvers (1997)
REM model, there was an additional storage variable
U*. Thisinfluenced the number of features that
would be copied over from the probe and uncopied
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features were represented by the zero feature values.
This variable was needed to explain study time and
number of repetitions manipulations. Since this
experiment did not involve these manipulations, we
omitted this variable by assuming that all features of
the words were stored.

Footnote 3. The experiment had 34 filler items
and we choose not to model these separately and
replaced them by 17 LFF and 17 HFF words.

Footnote 4. In order to computed,, five criteria
were chosen (€% €°,e*,) and hits and false alarms
were computed to construct az-ROC curve.

Footnote 5. Using the original base rates for f(V)
or equivaently, setting the parameter a=1 in Equation
(4) had the interesting effect that the false dlarm rate
for LFF words was higher than for HFF words. This
is because a“new” LFF probe such as VORTEX
containsthe letter “x” and theletter “x” occursin
severd other LFF images (e.g. PREFIX). The
matching “x” contributesto alargeincreasein the
likelihood ratio.
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Appendix A
Words of Experiment 1

LFF-LNF
ABLAZE CHIMP ERGO JAGGED LIEU OPOSSUM  QUICKEN TYPHOQID
ACRYLIC  CHOMP EXCERPT JOGGING LOCKS OUTBACK QUIP UPTIGHT
AJAR CHUBBY EXHALE JOWL LYRICS OUTGROW QUIRK UTOPIA
ALFALFA  CONVEX EXHAUST JUNO MAYFLY OZONE REVAMP  VERB
APEX DYNAMIC FLUX KILO MIDRIFF  PREFIX SKIMP VIVA
AVOCADO ELYSIUM GAWKY KIOSK NOVA PSYCHE SQUID VORTEX
AVOW ENCAMP  GUSTO KNACK NUMBLY  PUFFY STANZA  WHACK
AZALEA EPIC HUMP KNOBBLY ODYSSEY QUAKE SWAB YANK
BOXING EPOCH IMPEL KNOWING OOZE QUIBBLE TWITCH YOLK

HFF-LNF
ALERT BROILER CURLY FAINT PARROT  PETITE SEARING SOLID
BANE BRUTE CURRANT FERRET PASTE PLIANT SEDATE  SOOT
BARTER CALLER DALE FLIER PATE PORE SENSORY SPORE
BASTE CENSURE DEAREST GALORE PATRIOT RELIANT  SHEAR STEROID
BEET COERCE DECREE LEARNER PEAT RILE SHINE STRUT
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BILE COOLER DELETE  MANE PELLET  SAIL SILT SUNRISE
BOILER ~ CORNET DILATE  MARINER PENAL  SAUCY SINNER  TANNERY
BRAID CORONER DINER  MIRE PENANCE SAUNTER SMEAR  TENSE
BRAY COTE DIRE PALETTE  PERT SCARLET  SNOOTY  TINE
LFF-HNF
AMAZING DOZEN  EXPLODE KICK MAJOR  OTTO TAXI UNIQUE
ATOMIC ~ EGYPT  EYEBROW KINGDOM MIXED  OXYGEN  THIGH  UNKNOWN
AWFULLY ELBOW  GHETTO KNIGHT  MYTH PHOTO THOU UPWARDS
AWKWARD EVOLVE GOLF LAMB NATO PHYSICS THUMB  VACUUM
BUREAU  EXAM GULF LIMB NETWORK PUZZLED TOBACCO WAYS
CLIFF EXCEED HAZARD LIQUID  ODDS RHYTHM  TOMB WHIP
CLIMB EXCLAIM INDEX  LOBBY OFFEND RUBBER  UNDERGO WHISKY
COMPLEX EXERT  INJURY  LOGIC OMEGA  SYMBOL  UNHAPPY WIDOW
DIFFER EXIT JACKAL  LUXURY OPERA  SYMPTOM UNIFORM ZERO
HFF-HNF

AIRLINE ~ BLEED  CURE GREET PENALTY POLE SEAL STRAIN
BAIT CANAL  CURRENT MALE PILE PRAY SECURE  TALE
BALLET  CATTLE DAISY  MINER PILOT PRESENT  SENATOR TENURE
BARREL ~ CELLAR DEALER MINERAL PINE RALLY SHEER  TERRACE
BARRIER  CLAY DENSE ~ MIRACLE PLAIN RELATE ~ SHORE  TERROR
BEAR CLIENT  FARE PAINTER ~PLANET RELEASE  SPINE TOILET
BEAST CORE FLEET  PANEL PLANNER RETIRE  STARTLE TRACE
BETRAY  CORRECT FREE PARADE ~PLEAD  SAME STATUE  TRAY
BITE CRUELTY GALLERY PEASANT POET SCENT STORAGE TREATY

Note. LFFLNF = low orthographic feature frequency, low normative word frequency; HFF-LNF = high
orthographic feature frequency, low normative word frequency; LFF-HNF = low orthographic feature frequency,
high normative word frequency; HFF-HNF = high orthographic feature frequency, high normative word frequency.



Appendix B
Means and standar d deviations of theword frequenciesand featurefrequencies A and B

FF Condition
Measure WEF Condition LFF HFF
Word Fregquency LWF 4.10 (1.22) 4.56 (1.412)
HWF 23.56 (661) 25.29 (7.17)
Feature Frequency A LWF 217E-7 (3.38E7) 2.18E-5 (3.59E-5)
HWF 217E-7 (4.21E7) 2.21E-5 (3.66E-5)
Feature Frequency B LWF .0501 (.0173) 0770 (.0163)
HWF .0531 (.0167) .0805 (.0194)

Note: standard deviations are given between parentheses
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