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Abstract 
Many memory models assume that the semantic and physical features of words can be represented by collections of 
features abstractly represented by vectors. Most of these memory models are process oriented; they explicate the 
processes that operate on memory representations without explicating the origin of the representations themselves; 
the different attributes of words are typically represented by random vectors that have no formal relationship to the 
words in our language. In Part I of this research, we develop  Word Association Spaces (WAS) that capture aspects 
of the meaning of words. This vector representation is based on a statistical analysis of a large database of free 
association norms. In Part II, this representation along with a representation for the physical aspects of words such 
as orthography is combined with REM, a process model for memory. Three experiments are presented in which 
distractor similarity, the length of studied categories and the directionality of association between study and test 
words were varied. With only a few parameters, the REM model can account qualitatively for the results. 
Developing a representation incorporating features of actual words makes it possible to derive predictions for 
individual test words. We show that the moderate correlations between observed and predicted hit and false alarm 
rates for individual words are larger than can be explained by models that represent words by arbitrary features. In 
Part III, an experiment is presented that tests a prediction of REM: words with uncommon features should be better 
recognized than words with common features, even if the words are equated for word frequency.  
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Part I: 
Creating Semantic Spaces for Words  

based on Free Association Norms 
 
It has been proposed that various aspects of words 

can be represented by separate collections of features 
that code for temporal, spatial, frequency, modality, 
orthographic, acoustic, and associative aspects of the 
words (Anisfeld & Knapp, 1968; Bower, 1967; 
Herriot, 1974; Underwood, 1969; Wickens, 1972). In 
part I of this research, we will focus on the 
associative/semantic aspects of words. 

A common assumption is that the meaning of a 
word can be represented by a vector which places a 
word in a multidimensional semantic space (Bower, 
1967; Landauer & Dumais, 1997; Lund & Burgess, 
1996; Morton, 1970; Norman, & Rumelhart, 1970; 
Osgood, Suci, & Tannenbaum, 1957; Underwood, 
1969; Wickens, 1972). The main requirement of such 
spaces is that words that are similar in meaning 
should be represented by similar vectors. 
Representing words as vectors in a multidimensional 
space allows simple geometric operations such as the 
Euclidian distance or inner product to compute the 
semantic similarity between arbitrary pairs or groups 
of words.  This makes it possible to make predictions 
about performance in psychological tasks where the 
semantic distance between pairs or groups of words 
is assumed to play a role.  

The main goal of part I of this research is to 
introduce a new method for creating psychological 
spaces that is based on an analysis of a large free 
association database collected by Nelson, McEvoy, 
and Schreiber (1998) containing norms for first 
associates for over 5000 words. This method places 
over 5000 words in a psychological space that we 
will call Word Association Space (WAS).  

We believe such a construct will be very useful in 
the modeling of episodic memory phenomena since it 
has been shown that associative structure of words 
plays a central role in recall (e.g. Bousfield, 1953; 
Cramer, 1968; Deese, 1959a,b, 1965; Jenkins, Mink, 
& Russell, 1958), cued recall (e.g. Nelson, Schreiber, 
& McEvoy, 1992) and priming (e.g. Canas, 1990; see 
also Neely, 1991). For example, Deese (1959a,b) 
found that the inter-item associative strength for the 
words on a study list can predict the number of words 
recalled, the number of intrusions, and the frequency 
with which certain words intrude.  

In this paper, we will first introduce four methods 
to create semantic spaces. These are based on the 
semantic differential, multidimensional scaling on 
similarity ratings, LSA, and HAL. Then, we will 
introduce WAS, the approach of placing words in a 
high dimensional space by analyzing free association 

norms. The similarity and differences between WAS 
and free association norms are discussed. Two 
demonstrations are given that WAS is useful in 
predicting memory performance. First, we will show 
that the intrusion rates in free recall experiments 
observed in Deese (1959b) can be predicted on the 
basis of the  similarity structure in the vector space. 
Second, we will show that WAS can predict to some 
degree the percentage of correctly recalled words in 
extra list cued recall tasks (Nelson & Schreiber, 
1992; Nelson, Schreiber, & McEvoy, 1992; Nelson, 
McKinney, Gee, & Janczura, 1998; Nelson & Xu, 
1995). We will contrast the predictions from WAS 
with predictions made by the LSA approach.  

 
Methods to Construct Semantic Spaces  

Semantic differential. This method was developed 
by Osgood, Suci, and Tannenbaum (1957). Words 
are rated on a set of bipolar rating scales. The bipolar 
rating scales are semantic scales defined by pairs of 
polar adjectives (e.g. “good-bad”, “altruistic-
egotistic”, “hot-cold”). Each word that one wants to 
place in the semantic space is judged on these scales. 
If numbers are assigned from low to high for the left 
to right word of a bipolar pair, then the word 
“dictator” for example, might be judged high on the 
“good-bad”, high on the “altruistic-egotistic” and 
neutral on the “hot-cold” scale. For each word, the 
ratings averaged over a large number of subjects 
define the coordinates of the word in the semantic 
space. Because semantically similar words are likely 
to receive similar ratings, they are likely to be located 
in similar regions of the semantic space. The 
advantage of the semantic differential method is the 
simplicity and intuitive appeal. The problem inherent 
to this approach is the arbitrariness in choosing the 
set of semantic scales as well as the number of 
semantic scales.  

MDS on similarity ratings. In this method, 
participants rate the semantic similarity for pairs of 
words. Then, those similarity ratings can be subjected 
to multidimensional scaling analyses to derive vector 
representations in which similar vectors represent 
words similar in meaning (Caramazza, Hersch, & 
Torgerson, 1976; Rips, Shoben, & Smith, 1973; 
Schwartz & Humphreys, 1973). While this method is 
straightforward and has led to interesting applications 
(e.g. Caramazza et al; Romney et al., 1993.), it is 
clearly impractical for large number of words as the 
number of ratings that must be collected goes up 
quadratically with the number of stimuli.  

Latent Semantic Analysis (LSA). A method to 
derive high-dimensional semantic spaces that does 
not rely on judgments by participants is Latent 
Semantic Analysis or LSA (Derweester, Dumais, 
Furnas, Landauer, & Harshman, 1990; Landauer & 
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Dumais, 1997; Landauer, Foltz, & Laham, 1998).  
The assumption Landauer and Dumais (1997) make 
is that similar words occur in similar contexts. A 
context can be defined by any connected set of text 
from a corpus such as an encyclopedia, or samples of 
texts from textbooks. For example, a textbook with a 
paragraph about  “cats” might also mention “dogs”, 
“fur”, “pets” etc. This knowledge can be used to 
assume that “cats” and “dogs” are related in meaning. 
However, some words are clearly related in meaning 
such as “cats” and “felines” but they might never 
occur simultaneously in the same context.  There 
might be indirect links between “cats” through its 
context words with “felines”, i.e., the words share 
similar contexts. The technique of singular value 
decomposition (SVD) can be applied on the matrix of 
word-context co-occurrence statistics. This methods 
analyzes the direct and indirect relationships between 
words and contexts in the matrix based on simple 
matrix-algebraic operations. The result of the SVD 
analysis is a high dimensional space in which words 
that appear in similar contexts are placed in similar 
regions of the space. Landauer and Dumais (1997) 
applied the LSA approach on the 68,000 words of a  
large encyclopedia and placed these words in a high 
dimensional space with the number of dimensions 
chosen between 100 and 400. The LSA 
representation has been successfully applied to 
multiple choice vocabulary tests, domain knowledge 
tests and content evaluation (see Landauer & 
Dumais, 1997; Landauer, Foltz, & Laham, 1998). 

Hyperspace Analogue to Language (HAL). The 
HAL model develops high dimensional vector 
representations for words that like LSA is based on a 
co-occurrence analysis of  large samples of written 
text (Burgess, Livesay, & Lund, 1998; Lund & 
Burgess, 1996; see Burgess & Lund, 2000 for an 
overview). For 70,000 words, the co-occurrence 
statistics  were calculated in a 10 word window that 
was slid over the text from a corpus of over 320 
million words (gathered from Usenet newsgroups). 
For each word, the co-occurrence statistics were 
calculated of the 70,000 words appearing before or 
after that word in the 10 word window. The resulting 
140,000 values for each word were the feature values 
for the words in the HAL representation. Because the 
representation is based the context in which words 
appear, the HAL vector representation is also referred 
to as a contextual space: words that appear in similar 
contexts are represented by similar vectors. The HAL 
and LSA approach are similar in one major 
assumption: similar words occur in similar contexts. 
In both HAL and LSA, the placement of words in a 
high dimensional semantic space is based on an 
analysis of the co-occurrence statistics of words in 
their contexts. In LSA, a context is defined by a 

relatively large segment of text whereas in HAL, the 
context is defined by a window of 10 words 1.   

One great advantage of LSA and HAL over 
approaches depending on human judgments is that 
almost any number of words can be placed in a 
semantic/contextual space. This is possible because 
the method relies uniquely on samples of written text 
(of which there is a virtually unlimited amount) as 
opposed to ratings provided by participants. Even 
though a working vocabulary of 5000 words in WAS 
is much smaller than the 70,000 word long 
vocabularies of LSA and HAL, we believe it is large 
enough for our purpose of modeling performance in 
memory tasks. 

 
Word Association Spaces 

 
Deese (1962,1965) asserted that free associations 

are not haphazard processes in our brain and that 
there is regularity underneath them. He laid the 
framework for studying the meaning of linguistic 
forms that can be derived by analyzing the 
correspondences between distributions of responses 
to free association stimuli: "The most important 
property of associations is their structure - their 
patterns of intercorrelations" (Deese, 1965, p.1). The 
SVD method has been successfully applied in LSA to 
uncover the patterns of intercorrelations of the co-
occurrence statistics for words appearing in contexts. 
We will also use the SVD method but apply it on a 
different database: a large database  of free 
association norms collected by Nelson, McEvoy, and 
Schreiber (1998) containing norms for first associates 
for over 5000 words.  

In total, more than 6000 people participated in the 
collection of this database. An average of 149 (SD = 
15) participants were presented with 100-120 English 
words. These words served as cues (e.g. “cat”) for 
which participants had to write down the first word 
that came to mind (e.g. “dog”). These experiments 
were performed on many participants so that for each 
cue the relative associative strengths could be 
calculated for responses by the proportion of subjects 
that elicited the response to the cue (e.g. 60% 
responded with “dog”, 15% with “pet”, 10% with 
“tiger”, etc).    

The idea is to apply the SVD method to place 
words in a high dimensional space by analyzing the 
direct and indirect associative relationships between 
words. While the details of this procedure are 
discussed in the Appendix, the basic approach is 
illustrated in Figure 1. The free association norms 
were represented in matrix form. The rows represent 
the cues and the columns represent the responses. An 
entry in the matrix represents the relative frequency 
with which a response was generated for the 
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particular cue (i.e., associative  strength). Before SVD 
was applied to the matrix, it was preprocessed in two 
ways. First, the indirect associative strengths between 
words were calculated and added to the matrix6. 
Then, the matrix was symmetrized such that the 
associative strength between cue A and response B 
equaled the associative strength between cue B and 
response A. After these preprocessing steps, the 
matrix was subjected to SVD. The result of SVD is 
the placement of words in a high dimensional space, 
which we called Word Association Space (WAS). 
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Figure 1. Illustration of the creation of Word Association 

Spaces (WAS). By singular value decomposition on a large 
database of free association norms, words are placed in a high 
dimensional semantic space. Words with similar associative 
relationships are placed in similar regions of the space. 
 
 
     In WAS, words that have similar associative 
structures are represented by similar vectors. Words 
that are not direct associates of each other can also be 
represented by similar vectors if their associates are 
related (or if the associates of the associates of the 
words are related).  

The representation of words in WAS is dependent 
on the method with which the free association norms 
are analyzed. By using the SVD method, words are 
represented by vectors with continuous feature values 
that have a symmetric distribution around zero. A 
suitable measure for the similarity between two 
words is the inner product of the two word vectors. 
The idea is that two words that are similar in meaning 
or that have similar associative structures have high 
similarity as defined by the inner product of the two 
word vectors. 

An important variable (which we will call k) is 
the number of dimensions of the space2. One can 
think of k as the number of feature values for the 
words. We vary k between 10 and 400. The number 

of dimensions will determine how much the 
information of the free association database is 
compressed. With too few dimensions, the similarity 
structure of the resulting vectors does not capture 
enough detail of the original associative structure in 
the database. With too many dimensions, the 
similarity structure of the vectors does not capture 
enough of the indirect relationships in the 
associations between words. 

To get an understanding of what the similarity 
structure of WAS is like, we performed four 
analyses. In the first analysis, the similarity structure 
of low and high frequency is compared and it is 
shown that in WAS, high frequency words are more 
similar to other high frequency words than to low 
frequency words. In the second analysis, we 
compared the ordering of neighbors in WAS to the 
ordering of the strength of associates in the free 
association norms. In the third analysis, the issue of 
whether WAS captures semantic or associative 
relationships (or both) is addressed. It is argued that it 
is difficult to make a distinction between the two 
kinds of relationships. In the fourth analysis, we 
analyze the ability of WAS to capture the differences 
between and within semantic categories. We will 
now discuss these four analyses in turn.  
 
Word Frequency and the Similarity Structure in WAS 

 
Word frequency can be defined by the number of 

times words occur in large samples of written text 
(Kucera & Francis). The frequency of words in 
samples of written text correlates with the frequency 
with which words are produced in free association 
norms. High frequency words are produced more 
often as responses in free association norms 3. We 
investigated the similarity structure of low and high 
frequency words in WAS by calculating the 
similarity between groups of words with different 
frequency ranges. In Figure 2, top panel, the average 
inner product is calculated between random words 
from different Kucera and Francis frequency ranges. 
The highest similarity was obtained between high 
frequency words. Lower similarities were obtained 
between high and low frequency words and the 
lowest similarity was obtained between low 
frequency words. The reason for the average 
similarity being higher between high frequency 
words is that high frequency word vectors in WAS 
have larger magnitudes than low frequency word 
vectors. This is shown in Figure 2, bottom panel. 
Vectors with larger magnitudes, on average lead to 
larger inner products.  
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Figure 2. The effect of word frequency on the similarity 
structure of WAS and the length of the word vectors. In the top 
panel, the average similarity (measured by inner product) between 
random words from different Kucera and Francis word frequency 
ranges is plotted. The similarity is highest when high frequency 
words are compared with high frequency words.  

 

The similarity decreases when the word 
frequencies of the words compared decreases. In the 
bottom panel, the figure shows that the vector 
lengths are bigger for high frequency words than low 
frequency words. Of course, it is the combination of 
the vector magnitudes and the correlation between 
the feature values that determine the similarity as 
computed by the inner product. Because high 
frequency words on average have larger magnitudes, 
they are placed more at the outskirts of the semantic 
space while low frequency words are placed more in 
the center of the space. Because an inner product 
measure for similarity is used, the average similarity 
between the high frequency words that lie at the 
outskirts of the space is higher than between words 
that lie more in the center of the space. Of course, 
using a different similarity measure should lead to 
different results. For example, using Euclidian 
distance as a measure for (inverse) similarity, should 
lead to lower similarities between high than low 
frequency words. This observation becomes 
important for part II of this research. 

 
Predicting the Output Order of Free Association 
Norms 

 
Because the word vectors in WAS are based 

explicitly on the free association norms, it is of 
interest to check whether the output order of 

responses (in terms of associative strength) can be 
predicted by WAS. We took the 10 strongest 
responses to each of the cues in the free association 
norms and ranked them according to associative 
strengths. For example, the response ‘crib’ is the 8th 

Table 1            
Median rank of the output-order in WAS and LSA of response words to given cues for the 
10 strongest responses in the free association norms. 
            
 rank of response in free association 

k  1 2 3 4 5 6 7 8 9 10
            
  Word Association Space (WAS)  
            

10  86 187 213 249 279 291 318 348 334 337
50  13 36 49 62 82 98 106 113 125 132

100  6 17 26 36 43 62 65 73 78 85
200  3 8 15 20 28 39 40 48 56 58
300  2 6 12 16 21 31 35 38 43 49
400  1 5 10 14 19 27 32 35 38 44

                        
            
  Latent Semantic Analysis (LSA) 
            

10  678 701 683 738 810 863 839 861 887 939
50  270 375 388 426 495 600 594 565 596 687

100  171 280 327 373 455 515 481 455 567 622
200  140 223 272 370 395 447 418 444 511 581
300  132 207 239 355 397 451 418 459 528 557
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strongest associate to ‘baby’ in the free association 
norms, so ‘crib’ has rank 8 for the cue ‘baby’. Using 
the vectors from WAS, the rank of the similarity of a 
specific cue-response pair was computed by ranking  
the similarity among the similarities of the specific 
cue to all other possible responses. For example, the 
word ‘crib’ is the 2nd closest neighbor to ‘baby’ in 
WAS, so ‘crib’ has rank 2 for the cue ‘baby’. In this 
example, WAS has put ‘baby’ and ‘crib’ closer 
together than might be expected on the basis of free 
association norms.  In Table 1, we compare the ranks 
from WAS to the ranks in the free association norms 
by computing the average of the ranks in WAS for 

the 10 strongest responses in the free association 
norms. The averaging was computed by the median 
to avoid excessive skewing of the average by a few 
high ranks. An additional variable that is tabulated in 
Table 1 is k, the number of dimensions of WAS.  

There are three trends to be discerned in Table 1. 
First, it can be observed that for 400 dimensions, the 
strongest responses to the cues in free association 
norms are predominantly the closest neighbors to the 
cues in WAS. Second, responses that have higher 
ranks in free association have on average higher 
ranks in WAS. However, the output ranks in WAS 
are in many cases far higher than the output ranks in 

Table 2       
The five nearest neighbors in WAS for the first 40 cues in the Russell & Jenkins (1954) 
norms. 
      neighbor     
Cue  1 2 3 4 5 
Afraid  scare(1)[7] fright(4)[14] fear(2)[1] scared[2] ghost(5)[106] 
Anger  mad(1)[1] angry rage(5)[4] enrage  fury[21] 
Baby  child(1)[2] crib(8)[13] infant(6)[7] cradle diaper(13) 
bath  clean(2)[1] soap(7)[3] water(3)[2] dirty[7] suds[49] 
beautiful  pretty(1)[2] ugly(2)[1] cute[39] girl(4) flowers[10] 
bed  sleep(1)[1] tired(11)[13] nap rest[5] doze 
bible  god(1)[1] church(3)[3] religion(4)[4] Jesus(5)[8] book(2)[2] 
bitter  sweet(1)[1] sour(2)[2] candy lemon(5)[7] chocolate[4] 
black  white(1)[1] bleach color(3)[7] dark(2)[2] minority 
blossom  flower(1)[1] petals[46] rose(5)[7] tulip daisy 
blue  color(5)[4] red(3)[2] jeans crayon pants 
boy  girl(1)[1] guy man(4)[2] woman nephew[54] 
bread  butter(1)[1] toast[19] rye[26] loaf(3)[16] margarine 
butter  bread(1)[1] toast(6)[18] rye peanut margarine(2)[34] 
butterfly  bug(15)[10] insect(6)[2] fly(4)[5] roach[76] beetle 
cabbage  green(4)[7] food(10)[4] vegetable(2)[3] salad(12)[5] vegetables 
carpet  floor(2)[2] tile(15) rug(1)[1] ceiling sweep[14] 
chair  table(1)[1] seat(4)[4] sit(2)[2] couch(3)[20] recliner 
cheese  cracker(2) cheddar(6)[23] Swiss(7)[19] macaroni[39] pizza 
child  baby(1)[1] kid(2)[7] adult(3)[3] young(8)[6] parent(6)[11] 
citizen  person(1)[3] country(3)[5] people[7] flag[12] American(2)[4] 
city  town(1)[1] state(2)[3] country(9)[4] New York(4) Florida 
cold  hot(1)[1] ice(2)[5] warm(6)[3] chill pepsi 
comfort  chair(3)[1] table seat couch(2)[26] sleep[7] 
command  tell(4)[7] army(5)[2] rules navy[17] ask[22] 
cottage  house(1)[1] home(4)[4] cheese(2)[3] cheddar Swiss 
dark  light(1)[1] bulb night(2)[2] lamp day 
deep  water(3)[3] ocean(2)[6] faucet pool[53] splash 
doctor  nurse(1)[1] physician(5)[15] surgeon(6) medical[83] stethoscope[21] 
dream  sleep(1)[1] fantasy(4)[19] bed[7] nap tired[92] 
eagle  bird(1)[1] chirp blue jay nest(10)[5] sparrow[30] 
earth  planet(2)[8] mars[14] Jupiter[97] Venus[50] Uranus 
eating  food(1)[1] eat[30] hungry(3)[4] restaurant[75] meal[30] 
foot  shoe(1)[1] sock[16] toe(2)[3] sneaker leg(5)[4] 
fruit  orange(2)[3] apple(1)[1] juice(9)[12] citrus[35] tangerine[55] 
girl  boy(1)[1] guy(6) man[9] woman(3)[2] pretty(4)[6] 
green  grass(1)[1] lawn[41] cucumber vegetable[76] spinach[76] 
hammer  nail(1)[1] tool(2)[7] wrench screwdriver pliers[21] 
hand  finger(1)[2] arm(3)[3] foot(2)[1] leg(13)[11] glove(4)[4] 
hard  soft(1)[1] easy(3)[3] difficult[19] difficulty simple 
 Note: numbers in parentheses and square brackets indicate ranks of responses in norms 
of Nelson et al. (1998) and Russell & Jenkins (1954) respectively. 
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free association. For example, with 400 dimensions, 
the third largest response in free association is on 
average the 10th closest neighbor in WAS. Third, for 
smaller dimensionalities, the difference between the 
output order in free association and WAS becomes 
larger. 

To summarize, given a sufficiently large number 
of dimensions, the strongest response in free 
association is represented (in most cases) as the 
closest neighbor in WAS. The other close neighbors 
in WAS are not necessarily associates in free 
association (at least not direct associates).   

To get a better idea of the kinds of neighbors 
words have in WAS, in Table 2, we list the first five 
neighbors in WAS (using 400 dimensions) to 40 cue 
words. For all neighbors listed in the table, if they 
were associates in the free association norms of 
Nelson et al., then the corresponding rank in the 
norms is given between parentheses. Since all the 40 
cue words are cue words used in the free association 
norms of Russell and Jenkins (1954), we also list the 
ranks in those norms between square brackets. The 
comparison between these two databases is 
interesting because Russell and Jenkins allowed 
participants to generate as many responses they 
wanted for each cue while the norms of Nelson et al. 
contain first responses only. We suspected that some 
close neighbors in WAS are not direct associates in 
the Nelson et al. norms but that they would have been 
valid associates if participants were allowed to give 
more than one association per cue. In Table 3, we list 
the percentages of neighbors in WAS of the 100 cues 
of the Russell and Jenkins norms (only 40 were 
shown in Table 2) that are valid/invalid associates 
according to the norms of Nelson et al. and/or the 
norms of Russell and Jenkins.       

The last row shows that a third of the 5 th closest 
neighbors in WAS are not associates according to the 
norms of Nelson et al. but that are associates 
according to the norms of Russell and Jenkins. 

Therefore, some close neighbors in WAS are valid 
associates depending on what norms are consulted.  

However, some close neighbors in WAS are not 
associates according to either norms. For example, 
‘angry’ is the 2nd neighbor of ‘anger’ in WAS. These 
words are obviously related by word form but they do 
not to appear as associates in free association tasks 
because associations of the same word form tend to 
be edited out by participants. Because these words 
have similar associative structures, WAS puts them 
close together in the vector space.  

Also, some close neighbors in WAS are not direct 
associates of each other but are indirectly associated 
through a chain of associates. For example, the pairs 
‘blue-pants’ , ‘butter-rye’, ‘comfort-table’ are close 
neighbors in WAS but are not directly associated 
with each other.  It is likely that because WAS is 
sensitive to the indirect relationships in the norms, 
these word pairs were put close together in WAS 
because of the indirect associative links through the 
words ‘jeans’, ‘bread’ and ‘chair’ respectively.  In a 
similar way, ‘cottage’ and ‘cheddar’ are close 
neighbors in WAS because cottage is related (in one 
meaning of the word) to ‘cheese’, which is an 
associate of ‘cheddar’. 

In Table 1, we also analyzed the correspondence 
between the similarities in the LSA space by 
Landauer and Dumais (1997) with the order of output 
in free association.  As can be observed in the table, 
the rank of the response strength of the free 
association norms clearly has an effect on the 
ordering of similarities in LSA: strong associates are 
closer neighbors in LSA than weak associates. 
However, the overall correspondence between 
predicted output ranks in  LSA and ranks in the 
norms is weak. The overall weaker correspondence 
between the norms and similarities for the LSA 
approach than the WAS approach highlights one 
obvious difference between the two approaches. 
Because WAS is based explicitly on free association 
norms, it is expected and shown here that words that 
are strong associates are placed close together in 
WAS whereas in LSA, words are placed in the 
semantic space in a way more independent from the 
norms.  

  
Semantic/ Associative Similarity Relations  

In the priming literature, several authors have 
tried to make a distinction between semantic and 
associative word relations in order to tease apart 
different sources of priming (e.g. Burgess & Lund, 
2000; Chiarello, Burgess, Richards & Pollock, 1990; 
Shelton & Martin, 1992). Burgess and Lund (2000) 
have argued that the word association norms 
confound many types of word relations, among them, 
semantic and associative word relations. Chiarello et 

Table 3        
Percentages of responses of WAS model that are valid/invalid  
in Russell & Jenkins (1954) and Nelson et al. (1998) norms 
                
             
       neighbor   
word association norms 1 2 3 4 5
        
valid in Nelson et al.   96 73 61 45 33
        
valid in Jenkins et al.  96 83 79 69 64
        
valid in either Nelson et al. 99 86 82 73 66
or Jenkins et al.       
        
invalid in Nelson et al. but  3 13 21 28 33
valid in Jenkins et al.             
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al. (1990) give “music” and “art” as examples of 
words that are semantically related because the words 
are rated to be members of the same semantic 
category (e.g. Battig & Montague, 1969). However, 
they claim these words are not associatively related 
because they are not direct associates of each other 
(according to the various norm databases that they 
used). The words “bread” and “mold” were given as 
examples of words that are not semantically related 
because they are not rated to be members of the same 
semantic category but only associatively related 
(since “bread” is an associate of “mold”). Finally, 
“cat” and “dog” were given as examples of words 
that are both semantically and associatively related.  

We agree that the responses in free association 
norms can be related to the cues in many different 
ways, but it seems very hard and perhaps 
counterproductive to classify responses as purely 
semantic or purely associative 4. For example, word 
pairs might not be directly but indirectly associated 
through a chain of associates. The question then 
becomes, how much semantic information do the free 
association norms contain beyond the direct 
associations? Since WAS is sensitive to the indirect 
associative relationships between words, we took the 
various examples of word pairs given by Chiarello et 
al. (1990) and Shelton and Martin (1992) and 
computed the WAS similarities between these words 
for different dimensionalities as shown in Table 4.    

In Table 4, the interesting comparison is between 
the similarities for the semantic only related word 
pairs5 (as listed by Chiarello et al., 1990) and 200 

random word pairs. The random word pairs were 
selected to have zero forward and backward 
associative strength.  

 It can be observed that the semantic only related 
word pairs have higher similarity in WAS than the 
random word pairs. Therefore, even though Chiarello 
et al. (1990) have tried to create word pairs that were 
only semantically related, WAS can distinguish 
between these not directly associated word pairs and 
not directly associated random word pairs. This is 
because WAS is sensitive to indirect associative 
relationships between words. The Table also shows 
that for low dimensionalities, there is not as much 
difference between the similarity of word pairs that 
are semantically only and associatively only related. 
For higher dimensionalities, this difference becomes 
larger as WAS becomes more sensitive in 
representing more of the direct associative 
relationships.  

To conclude, it is difficult to distinguish between 
pure semantic and pure associative relationships. 
What some researchers previously have considered to 
be pure semantic word relations, were word pairs that 
were related in their meaning but that were not 
directly associated with each other. This does not 
mean however that these words are not associatively 
related because the information in free association 
norms goes beyond that of direct associative 
strengths. In fact, the similarity structure of WAS 
turns out to be sensitive to the similarities that were 
argued by some researchers to be purely semantic.   

 

Table 4 
Average similarity between word pairs with different relations: semantic, associative, and semantic 
+ associative 
                    
         k        

Relation #pairs        Bij
1 10 50 200 400 

      
Random 200 .000 (.000) .340 (.277) .075 (.178) .024 (.064) .017 (.048) 
      
   Word pairs from Chiarello et al. (1990)  
      
Semantic only 33 .000 (.000) .730 (.255) .457 (.315) .268 (.297) .215 (.321) 
Associative only 43 .169 (.153) .902 (.127) .830 (.178) .712 (.262) .666 (.289) 
Semantic + 
Associative 44 .290 (.198) .962 (.053) .926 (.097) .879 (.180) .829 (.209) 
      
    Word pairs from Shelton and Martin (1992)  
      
Semantic only 26 .000 (.000) .724 (.235) .448 (.311) .245 (.291) .166 (.281) 
Semantic + 
Associative 35 .367 (.250) .926 (.088) .929 (.155) .874 (.204) .836 (.227) 
                     
Note: standard deviations given between parentheses 
1: B ij = average forward and backward associative strength = ( A ij + Aji ) / 2  
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Capturing Between/Within Semantic Category 
Differences in WAS  

In this section, we give an additional 
demonstration that the space formed by WAS is 
sensitive to semantic information. Murdock’s (1976) 
collected 32 semantic categories with each 32 
category members. Examples of categories are ‘body 
parts’, ‘ships’, ‘birds’, ‘fruits’,  and ‘tools’. Members 
of the first category were for example ‘leg’, ‘arms’, 
‘head’, ‘eye’ and members of the second category 
were for example ‘sailboat’, ‘destroyer’, ‘battleship’. 
If WAS is sensitive to the categorical structure of 
these semantic norms, then the within category 
similarity should on average be higher than the 
between category similarity. Similarity was 
computed by the inner product between word vectors. 
The within category similarity was calculated by 
averaging the similarities of all possible word pairs 
within a category. Similarly, the between category 
similarity was calculated by averaging the similarities 
of all possible word pairs that fell in different 
categories. In Table 5, the between and within 
category similarities are shown. Note that the within 
category similarity is 18 times higher than the 
between category similarity suggesting that the 
similarity structure of WAS is well suited to 
represent semantic categorical information. The row 
labeled ‘not normalized’ refers to the space used in 
part I of the research where the vector lengths are not 
normalized. In the second row, the table shows that 
when the vector lengths are normalized, the ratio of 
within to between category similarity is equally high. 
This observation becomes important in part II of this 
research, where we do normalize the vector lengths.  
 

 
Predicting Memory Performance 

 
Predicting Results from Deese  
 

In a classic study by Deese (1959b), the goal 
was to predict the intrusion rates of words in free 
recall.  Participants studied the 15 strongest 
associates to each of 36 critical lures while the 

critical lures themselves were not studied. In a free 
recall test, some critical lures (e.g. “sleep”) were 
falsely recalled about 40% of the time while o ther 
critical lures (e.g. “butterfly”) were never falsely 
recalled. Deese was able to predict the intrusion rates 
for the critical lures on the basis of the average 
associative strength from the studied associates to the 
critical lures and obtained a correlation of R=0.8. 
Since Deese could predict intrusion rates with word 
association norms, it was expected that that the WAS 
vector space derived from the association norms 
could also predict intrusion rates. The idea here is 
that critical items that are closely related to list words 
are more likely to appear as intrusions in free recall 
than critical items that are not closely related to list 
words. The average similarity was computed between 
each critical lure vector and list word vectors using 
different dimensionalities. In Figure 3, a scatter plot 
shows the relationship between the similarity and the 
intrusion rates as observed by Deese (here, the 
number of dimensions was 400). The obtained 
correlation was R=0.775. In Table 6, the correlations 
for other dimensionalities are listed. The correlation  

Table 5    
Average Between and Within Category Similarities in WAS of Murdock's (1976) 
Semantic Categories 
    
normalize Between Within ratio (between/within) 

    
N .0003  (.0012) .0061  (.0471) 17.8 
Y .0182  (.0107) .3418  (.3459) 18.8 

        
Note: standard deviations between parentheses 
 

Table 6 
Correlations between the average 
similarity of critical and list words and 
the intrusion rates observed by Deese 
(1959b)  
 
   

k WAS LSA 
    
   

10 .386 .210 
50 .519** .189 

100 .617** .154 
200 .691** .204 
300 .682** .174 
400 .775** - 

    
Note: ** Correlation is significant at the 
0.01 level (2-tailed) 
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3. The average similarity between critical item and list item in 
WAS can predict the intrusion rates for the critical item as 
observed by Deese (1959b). 

 
decreases with decreasing number of 

dimensions. This might happen because a smaller 
dimensional space has less room to place 5000 words 
so that the resulting similarity structure does not 
capture as well the differences in observed intrusion 
rates. The table also shows the correlations when the 
vectors are taken from LSA. It can be seen that 
similarity structure of LSA does not correlate as well 
with the intrusion rates as WAS. Also, the effect of 
varying the number of dimensions does not seem to 
affect the correlations.  

 
 
Predicting Extralist Cued Recall 

 
In extralist cued recall experiments, after  

studying a  list  of words, subjects are presented with 
cues that can be used to retrieve words from the study 
list. The cues themselves are novel words that were 
not presented during study and they typically are  
associatively related to one of the studied words. The 
degree to which a cue is successful in retrieving a 
particular target word is a measure of interest because 
this might be related to the associative/semantic 
overlap between cues and their targets. Research in 
this paradigm (e.g. Nelson & Schreiber, 1992; 
Nelson, Schreiber, & McEvoy, 1992; Nelson, 
McKinney, Gee, & Janczura, 1998; Nelson & Xu, 
1995) has already shown that the associative strength 
between cue and target is one important predictor for 
the percentage correctly recalled targets. Therefore, 
we expect that the WAS similarity between cues and 
targets are correlated to the percentages of correct 
recall in these experiments. We used a database 

containing the percentages correct recall for 1115 
cue-target pairs from over 29 extralist cued recall 
experiments from Doug Nelson’s laboratory (Nelson 
& Zhang, submitted; Nelson, personal 
communication). The correlations between the WAS 
similarity and observed recall rates for different 
dimensionalities are shown in Table 7. 

The best result was a small but significant 
correlation of .36 using 400 dimensions. The 
correlations decreased with decreasing number of 
dimensions. Since a smaller number of dimensions 
limits the ways in which 5000 words can be placed in 
the space, it is possible that this factor explains the 
limiting effect  on the correlation. The table also 
shows the correlations when vectors from the LSA 
space were taken. The correlations with the LSA 
vectors were less high than with WAS but were 
relatively close in value at 300 dimensions. This 
suggests that both WAS and LSA can be used as part 
of a process model to predict cued recall results.   

Discussion 
 
By a statistical analysis of a large database of free 

association norms, the Word Association Space 
(WAS) was developed. In this space, words that have 
similar associative structures are placed in similar 
regions of the space. We showed that the output order 
of words in free association norms is preserved to 
some degree in WAS: first associates in the norms 
are likely to be close neighbors in WAS. There are 
some interesting differences between the similarity 
structure of WAS and the associative strengths of the 
words in the norms. Words that are not directly 
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Table 7 
Correlations between the similarity of 
cued recall word pairs and percentage 
correct recall rates using WAS and LSA  
 
   

k WAS LSA 
    
   

10 .051        .004 
50 .214** .119** 

100 .274** .167** 
200 .335** .220** 
300 .342** .252** 
400 .360** - 

    
Note: ** Correlation is significant at the 
0.01 level (2-tailed)  
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associated can be close neighbors in WAS when the 
words are indirectly associatively related through a 
chain of associates. Also, in some cases, words that 
are directly associated in the norms are not close 
neighbors in WAS at all (although these are 
exceptions). This makes WAS not a good model for 
the task of predicting free association data. However, 
it is important to realize that WAS was not developed 
as a model of free association (e.g. Nelson & 
McEvoy, Dennis, in press) but rather as a model 
based on free association.   

The WAS approach is an additional method 
available to place words in a psychological space. It 
differs from the LSA and HAL approaches in several 
ways. LSA and HAL are automatic methods and do 
not require any extensive data collection of ratings or 
free associations. With LSA and HAL, tens of 
thousands of words can be placed in the space, 
whereas in WAS, the number of words that can be 
placed depends on the number of words that can be 
normed. It took Nelson et al. (1998) more than a 
decade to collect the norms, highlighting the 
enormous human overhead of the method. 

Another difference is that LSA and HAL have the 
potential to model the learning process a language 
learner goes through. For example, by feeding the 
LSA or HAL model successively larger chunks of 
text, it can be simulated what the effect learning has 
on the similarity structures of words in LSA or HAL. 
In WAS, it is in principle possible to model a 
language learning process by collecting free 
association norms for participants at different stages 
of the learning process. In practice however, such an 
approach would not easily be accomplished.   

We think that the WAS, LSA, and HAL 
approaches to creating semantic spaces are all useful 
for theoretical and empirical research. It might be that 
the usefulness of a particular space will depend on 
the task it is applied to. Since the free association 
norms have been an integral part in predicting 
episodic memory phenomena (e.g. Cramer, 1968; 
Deese, 1965; Nelson, Schreiber, & McEvoy, 1992), it 
was assumed that a vector space based on free 
association norms would be an especially useful 
construct to model memory phenomena. In this 
research, we have already shown with simple 
geometric operations how the similarity structure of 
WAS can predict to some degree the intrusion rates 
observed by Deese (1959b) in his classic false 
memory experiment as well as the percentages of 
correct recall in cued recall experiments. This 
suggests to us that WAS forms a useful 
representational basis for memory models that are 
designed to store and retrieve words as vectors of 
feature values.  In part II of this research, we will 
combine the semantic space of WAS with a process 

model for recognition memory. This will allow us to 
model the processes of recognition memory and gives 
us a principled way to represent words by vectors. 
The assumption of representing words by vectors in 
memory models is relatively old. However, in most 
memory modeling, the vectors representing words are 
arbitrarily chosen and are not based on or derived by 
some analysis of the meaning of actual words in our 
language. In part II, it is expected that a memory 
model based on these semantic vectors from WAS 
will be useful to make predictions about the effects of 
varying semantic similarity in memory experiments. 

 
Appendix 

Let the matrix A represent the information from 
the free association norms with Aij representing the 
relative frequency with which participants generate 
response j with cue i.  The idea is to use the 
information in the matrix of the free association 
norms to place the n words in a high dimensional 
space by applying singular value decomposition. We 
first transformed A to a new matrix T by 
symmetrizing A and by adding the two-step indirect 
associative strengths6 from the cue to response and 
from response to cue: 

 

∑∑ +++=
k

kijk
k

kjikjiijij AAAAAAT

 (1) 
 
The matrix T is symmetric: Tij = Tji. It is possible 

to decompose any square symmetric matrix T into a 
product of three matrices by using a special case of  
the singular value decomposition method7: 

 
'

000 UDUT =  (2) 
 
Here, U’0 denotes the transpose of U0. When the 

matrix T has size n x n (i.e., n rows and n columns), 
then U0 and D0 are also size n x n. The columns of 
matrix U0 are orthonormal and contain the N 
eigenvectors. The matrix D0 is diagonal and contains 
the n singular values. It is customary to let the first 
diagonal entry contain the largest eigenvalue 
followed by eigenvalues in decreasing order.  

 
The purpose of this linear decomposition is to 

approximate matrix T by matrices with a much 
smaller number of singular values and singular 
vectors: 

 
'ˆ UDUT =  (3) 
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Here, D is the k x k diagonal matrix containing 
only the k largest (k << n) singular values of D0. U is 
the n x k matrix that contains only the first k 
eigenvector columns of U0. We represent words by 
the column vectors of the matrix X, which is formed 
by weighting the eigenvectors with the eigenvalues: 

 

UDX =   (4) 
 
The matrix X represents the high dimensional 

vector space that is called ‘Word Association Space’. 
Each column vector of X represents the location of a 
word in the space.  

 
 Notes 

1. The fact that HAL uses a much smaller 
window in which to calculate co-occurrence statistics 
than in LSA might explain the finding that HAL is 
more sensitive to the grammatical aspects of 
meaning: nouns, prepositions and verbs cluster 
together in the contextual space of HAL. 

2. The number is dimensions that can be extracted 
is constrained by various computational aspects. We 
were able to extract only the first 400 dimensions for 
WAS.  

3. The correlation between the log Kucera and 
Francis frequency and the log of the number of times 
a word was produced in the free association norms 
was 0.53. 

4. Since responses in word association tasks are 
by definition all associatively related to the cue, it i s 
not clear how it is possible to separate the responses 
as semantically and associatively related.  

5. Some word pairs in the semantic only 
conditions that were not directly associated according 
to various databases of free association norms were 
actually directly associated using the Nelson et al. 
(1998) database. These word pairs were excluded 
from the analysis. 

6. We have added the indirect associations to the 
word association matrix  because we have found that 
this leads to vector spaces that better preserve the 
order of associative strengths of the original word 
association matrix. At this time, it is not clear what 
the reason is for the advantage of adding the indirect 
strengths. More research is needed to investigate the 
influence of this preprocessing step on the similarity 
structure of the resulting vector space.   

7. the SVD method is more general and can 
decompose any rectangular or asymmetric matrix. 
For a discussion showing the relationship between 
SVD and relationship to multidimensional scaling see 
Bartell, Cottrell,  and Belew (1992).  
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Part II: 
Predicting Memory Performance  

with Word Association Spaces  
 
Many memory models assume that the semantic 

and physical features of words can be represented by 
collections of features abstractly represented by 
vectors (e.g. Eich, 1982; Murdock, 1982; Pike, 1984; 
Hintzman, 1988; McClelland & Chappell, 1998; 
Shiffrin & Steyvers, 1997, 1998). Most of these 
vector memory models are process oriented; they 
explicate the processes that operate on memory 
representations without explicating the origin of the 
representations themselves: the different attributes of 
words are typically represented by random vectors 
that have no formal relationship to the words in our 
language. The first goal of this research was to 
develop vector representations that capture the 
aspects of the meaning of words and vector 
representations that capture the physical aspects of 
words such as orthography and/or phonology. As 
opposed to the vector representations used by many 
memory models, the semantic and physical features 
in these representations do have formal relationships 
to words in the English language. The second goal of 
this research was to combine these representations 
with a process model for memory. This part of the 
research was built on previous research with the 
REM model (Shiffrin & Steyvers, 1997, 1998) in 
which a framework was laid out for a process model 
of episodic memory. With this processing model, we 
aimed to provide a qualitative account for various 
recognition memory phenomena found in the 
literature, as well as the results of the experiments 
reported in this paper. In addition to the physical and 
semantic attributes, word frequency was a factor that 
had to be taken into account in the modeling and 
experiments, because word frequency variation 
produces large effects on recognition memory 
performance. In summary, we aim to provide 
qualitative accounts for differences in individual 
word performance in recognition memory based on 
semantic features, physical features, and the natural 
language frequency of the words that are studied and 
tested.  

 
Semantic and Physical Similarity Effects in Memory  

One way to investigate the role of semantic 
features involves varying the semantic similarity 
between study and test words, often carried out 
within the ‘false memory paradigm’. Following the 
classic experiments by Deese (1959a, b), Roediger 
and McDermott (1995) revived interest in this 
paradigm (e.g. Brainerd, & Reyna, 1998, 1999; 

Payne, Elie, Blackwell, & Neuschatz, 1996; Schacter, 
Verfaellie, & Pradere, 1996; Tussing & Green, 1997). 
In the typical false memory experiment, participants 
study words that are all associatively and/or 
semantically related to a non-studied critical word.  
In a subsequent recognition test, the critical word 
typically lead to a higher false alarm rate than that for  
unrelated foils (and sometimes quite high in 
comparison to that for studied words). In a free recall 
test, participants falsely intrude the critical word at a 
rate higher than unrelated words (and sometimes at 
rates approaching those for studied words). These 
studies show that memory errors can be strongly 
influenced by semantic similarity.  

Phonetic and orthographic similarity has been 
shown to play a role in free recall (Watkins, Watkins, 
& Crowder, 1974; Brown & McNeill, 1966) and cued 
recall (Bregman, 1968; Laurence, 1970; Nelson & 
Brooks, 1973; Wickens, Ory, & Graf; 1970). In 
recognition memory, acoustically/orthographically 
similar distractors lead to higher false alarm rates 
than acoustically/orthographically dissimilar 
distractors (Buschke & Lenon, 1969; Cermak, 
Schnorr, Buschke & Atkinson, 1970; Davies & 
Cubbage, 1976; Runquist & Blackmore, 1973). These 
studies show that memory errors can be based on 
similarity of orthographic,  phonological, and 
semantic features of words, and emphasizes the need 
to include mechanisms reflecting these factors in 
memory models.  

 We now discuss four of the many explanations 
for semantic and orthographic/ phonological 
similarity effects in memory; these explanations are 
not mutually exclusive: 

Generation of episodic traces at study. 
Underwood (1965) proposed that during study of 
words, participants generate “implicit associative 
responses” (IAR’s) which might be stored as episodic 
traces in memory. If the study list contains many fruit 
words (e.g. “apple”, “pear”, “banana” etc.) but not 
the word “fruit” itself, the word “fruit” might be so 
strongly evoked in mind by all the fruit words that 
the word “fruit” might be actually stored in memory 
as if it had been presented during study. This 
essentially locates the false memory effect at storage. 
Little detail has as yet been provided for the 
underlying mechanism of IAR’s. There is some 
evidence that a strong version of this mechanism is 
not sufficient to explain false memory effects: If it is 
assumed that the fruit study list always leads to 
storage of the word “fruit” in memory, then testing 
“fruit” as a distractor should lead to the same level of 
familiarity as testing “fruit” as a target when the word 
was actually presented on the study list. Miller and 
Wolford (1999) found that participants can 
distinguish between critical words tested as 
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distractors and critical words tested as targets, thus 
casting doubt on the strong version of the IAR 
theory. However, these results are compatible with a 
mechanism in which it is assumed that IAR’s lead to 
weaker traces in memory than actually presented 
items.  

Shiffrin, Huber, and Marinelli (1995) varied the 
category size of studied  words; categories either 
contained semantically similar words or 
orthographically similar words. They found that false 
recognitions for both semantically and 
orthographically similar distractors increased as 
category size increased, and argued that it was 
unlikely these category length effects were due to 
IAR’s. First, the category words were spaced 
throughout a very long study list, making it difficult 
for participants to perceive the underlying categories. 
Participants reported that they were not aware of the 
underlying category structures, in almost all 
instances. Second, it is probably less likely that the 
IAR mechanism would apply in explaining false 
memory effects based on physical similarity, because 
most explicit or conscious coding in memory studies 
appears to be based on semantic content. For 
example, when the study list contains “BEG”, 
”BOG”, “BIG”, and “BUG” spaced 20 or more items 
apart in a long list, it is rather unlikely that an 
elevated false alarm rate for “BAG” is due to 
participants explicitly thinking about the word 
“BAG” during study (although such phonological 
productions might well occur in massed study 
situations).  

Based on such results, it seems likely that the IAR 
mechanism plays a significant role especially when 
similar study words are grouped together. When the 
IAR mechanism operates, and produces a memory 
trace for a word, such a trace would probably not be 
as strong as that produced by that same word actually 
presented.  

Storage in lexical/semantic traces. the result of 
study of a category of related items might include not 
only storage of an explicit,  episodic trace for the 
non-studied IAR word, but also storage in the 
lexical/semantic trace for that word. For example, the 
REM model for implicit memory (Schooler, Shiffrin, 
& Raaijmakers, in press) posits storage of context 
information in a word's  lexical/semantic trace 
following its study; this could occur as well after IAR 
generation. For example, during study of many fruit 
words, the lexical entry for “fruit” (not presented 
during study) might be activated and might gain a 
small number of current context features. These 
context features represent the immediate situation 
and task. When the word “fruit” is tested, a false 
alarm might be generated because the current context 
matches the context features stored in the lexical 

trace for “fruit”. Sommers and Lewis (1999) propose 
an account for phonological false memory effects that 
is similar to this notion of implicit activation. 
Neighboring words in phonological space gain 
activation from presentation of a study word. This 
was implemented with the NAM model (Luce & 
Pisoni, 1998). For example, studying the words 
“BEG”, ”BOG”, “BIG”, and “BUG” leads to 
enhanced activation of the words “BAG” in some 
phonological space. The idea is that because a word 
such as “BAG” has extra activation, the false alarm 
rate of this word (when tested as a distractor), will be 
increased relative to other words.  

Storage of gist. Brainerd and Reyna (1998; 1999) 
have proposed in their Fuzzy trace theory that the 
presentation of study words leads to the storage of 
two kinds of traces in memory: verbatim and gist 
traces. Verbatim traces relate to the surface features 
(e.g. orthography, phonology) of individual words 
while gist traces relate more to the collective 
meaning of the studied material (Bransford & Franks, 
1972). For example, studying words like “pillow”, 
“dream”, “bed”, “snore” might lead to verbatim 
traces for each of these individual words and also a 
gist trace that could be interpreted as “sleep”. 
Therefore, testing “sleep” as a distractor leads to high 
false alarms because it matches the stored gist.  The 
focus of this theory has been to show the independent 
effects of the processes operating on the verbatim and 
gist traces. To date, the fuzzy trace theory has been 
implemented as a measurement model (see Brainerd, 
Reyna, & Mojardin, 1999), and not as a process 
model: the theory does not specify how gist and 
surface traces are  extracted, stored and retrieved at 
test. 

Global familiarity operating at retrieval. In global 
familiarity models such SAM (e.g. Gillund & 
Shiffrin, 1984), MINERVA (Hintzman, 1988) and 
REM (Shiffrin & Steyvers, 1997), it is assumed that 
study leads to separate traces in memory for every 
word presented. At retrieval, the stored traces are 
activated in proportion to their similarity to a test 
word, and the summed activations are used to make a 
recognition decision. In the REM instantiation, for 
example, words are represented by vectors of feature 
values that are assumed to contain among other 
attributes, phonological, orthographic and semantic 
features. The episodic traces that are stored in 
memory contain error-prone and/or incomplete 
copies of the features of the word vectors. The 
recognition process is based on a comparison of the 
probe to every trace in memory: a match value is 
calculated for each probe/trace comparison. The 
recognition decision is based on a function of the sum 
of these individual match values. A decision “old” is 
made when the sum exceeds a certain criterion, 



 

 16 
 

otherwise a decision “new” is made. An incorrect 
“old” recognition for a distractor can be expected 
when the probe features will match the features of 
several traces to such a degree that the sum of the 
match values exceeds the criterion. The global 
familiarity mechanism therefore explains the false 
memory effect as a retrieval effect.  
 
Word frequency effects in recognition memory 

Word frequency can be defined by counting the 
number of times a word occurs in samples of written 
text (Kucera and Francis, 1967). The number of times 
a word is experienced pre-experimentally, and/or the 
relative number of times a word is experienced pre-
experimentally, have a large effect on memory 
performance even though experimental frequency 
and other factors are held constant. Low frequency 
words are better recognized than high frequency 
words (Glanzer & Bowles, 1976; Gorman, 1961; 
Kinsbourne & George, 1974; McCormack & 
Swenson, 1972; Shepard, 1976; Schulman & 
Lovelace, 1970). In addition, the hits (responding 
'old' to a target) and false alarms (responding 'old' to 
a foil) typically exhibit a mirror effect: hits are higher 
for low than high frequency words, and false alarms 
are higher for high than low frequency words (e.g. 
McCormack & Swenson, 1972; Glanzer & Adams, 
1990).   

Word frequency is correlated with many other 
measures defined for words such as feature 
frequency, concreteness, the number of different 
meanings, recency, and the number of contexts in 
which they appear. Not surprisingly, then, quite a few 
mechanisms have been proposed to explain word 
frequency effects. We next discuss three of these:  

Trace strength differences. One explanation for 
the word frequency effect is based on the strength of 
encoding. Mandler (1980) proposed that low 
frequency words are rehearsed more than high 
frequency words so that they are encoded better in 
memory. In a similar account, Glanzer and colleagues 
(Glanzer & Adams, 1990; Kim & Glanzer 1993) 
proposed that low frequency words attract more 
attention so that they are better encoded. This 
explanation (and others as well) does not explain why 
lists of high frequency words are free-recalled better 
than lists of low-frequency words (e.g., Gregg, 1976). 
However, in the SAM and REM models, recall 
operates not through a process of global activation 
(which applies to recognition) but instead through a 
search process involving steps of sampling and 
recovery. In these theories, recovery is superior for 
high frequency words, overcoming any other 
advantage that may favor low frequency words. 

Feature frequency differences. An explanation for 
word frequency based on both coding and retrieval is 

based on feature frequency differences. This idea was 
explored in Shiffrin and Steyvers (1997). Landauer 
and Streeter (1973) showed that high and low 
frequency words are structurally different: on 
average, different features make up high and low 
frequency words. In Shiffrin and Steyvers (1997), the 
assumption was made that high frequency words 
tended to contain high frequency features, justified 
by the argument that  high frequency words are 
encountered more often, hence insuring that their 
features are also encountered more often. In the REM 
model, the feature values for high frequency words 
were made more common than the feature values for 
low frequency words. Since a match of a rare feature 
in the probe and a trace was more diagnostic than a 
match of a common feature, the system predicted 
advantages for low frequency words (in recognition 
memory). In part III of this research, we will provide 
empirical support for this explanation by 
independently varying word frequency and feature 
frequency. To preview the results: words with equal 
word frequency are better remembered when the 
words consist primarily of low than high frequency 
features, a result consistent with the feature 
frequency hypothesis for word frequency effects.   

Context differences. Since high frequency words 
occur more often than low frequency words, on 
average they also occur more recently than low 
frequency words (e.g. Scarborough, Cortese, & 
Scarborough, 1977). This can lead to more confusion 
in recognition memory for high frequency than low 
frequency words. That is, for high frequency words a 
large value of familiarity could arise correctly for 
targets, but incorrectly for foils due to a pre-
experimentally recent occurrence. High frequency 
words also occur in a greater variety of contexts 
(Dennis, 1995) than low frequency words. In a model 
by Dennis and Humphreys (1998; submitted), this 
difference in context noise was used to predict word 
frequency effects.  

It is entirely possible that all three of these word 
frequency accounts are valid (along with others we 
have not discussed) and that multiple mechanisms are 
operating simultaneously. The focus in this article 
will be word frequency effects due to feature 
frequency effects and context differences.  

 
A memory model for semantic and orthographic 

similarity effects  
 
The memory model in this research is based on 

the REM model that in its first inception was fit 
qualitatively to various basic recognition memory 
phenomena (Shiffrin & Steyvers, 1997, 1998). Later, 
Diller, Nobel, and Shiffrin (in press) fitted the model 
quantitatively to recognition and cued recall 
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experiments. In more recent work, the model has 
been extended to various implicit memory tasks (e.g. 
Schooler, Shiffrin, & Raaijmakers, in press) and 
short-term priming (Huber, Shiffrin, Lyle, Ruijs, in 
press). 

In the previous sections, it was established that 
both semantic and physical similarity between probe 
and memory traces are important determinants of 
memory performance: both semantically and 
physically similar distractor probes tend to produce 
higher false alarm rates than unrelated control words. 
In the three experiments in this paper, the role of 
semantic similarity, physical similarity and word 
frequency in recognition memory are investigated. 

We have two goals: 1) using a version of the REM 
model, we hope to fit qualitatively the results from 
the three experiments reported in this paper.  2) we 
shall investigate the degree to which it is possible to 
predict differences in performance for individual 
words as opposed to groups of words. Because we 
have a process model operating on a representation of 
the semantic and physical attributes of words that is 
based on an analysis of actual words, we can make a 
priori predictions for individual words. This approach 
differs from that in which similarity constraints are 
imposed on arbitrary feature vectors.  

 
Overview of Model 

REM uses Bayesian principles to model the 
decision process in recognition memory. Words are 
stored in memory as episodic traces represented by 
vectors of feature values. We adopt the REM 
assumption that all information related to the study 
episode is stored in one trace; in this research, such 
information is defined to consist of semantic and 
physical features. At study, the presented word 
contacts its lexical/semantic trace, and an attempt is 
made to store the combination of the physical 
features and the features recovered from the lexical 
trace. The resultant episodic trace is an incomplete 
and error prone copy of these feature values.  
Retrieval operates by comparing in parallel the 
semantic and physical features of the test word to all 
traces, and measuring the featural overlap for each 
trace as illustrated in Figure 1.  

The featural overlap for each trace contributes 
evidence to a likelihood ratio for each trace. In 
Shiffrin and Steyvers (1997), it was shown that the 
odds for ‘old’ over ‘new’ equaled the sum of the 
likelihood ratios divided by the number of traces 
involved in comparisons. 

 
Two memory judgments 

We borrow the procedure used by Brainerd and 
Reyna (1998) in which participants were instructed to 
give one of two memory judgments: standard 
recognition  instructions and joint recognition 
instructions. With standard recognition instructions, 
participants were instructed to respond “yes” to 
targets and “no” to all distractors. With joint 
recognition instructions, participants were instructed 
to respond “yes” to targets and “yes” to all distractors 
that are related in meaning to one of the various 
themes of the words on the study list. They only had 
to respond “no” to unrelated distractors. We will refer 
to the two memory judgments that are generated 
under the standard recognition and joint recognition 
instructions as recognition and similarity judgments 
respectively.  

Comparison of the results for recognition and 
similarity judgments allows investigation of the 
interplay between semantic and physical features, 
especially if one assumes that similarity judgments 
are based only on the matching of semantic 
information, and not physical information (as the 
instructions imply). We can test this assumption by 
modeling the similarity judgments with semantic 
features only, and modeling the recognition 
judgments with both semantic and physical features. 
Based on these assumptions, the difference between 
the recognition and similarity ratings measures the 
degree of reliance on physical features. 

Figure 1. Illustration of the memory model. The 
semantic and physical features of the probe are 
compared in parallel to corresponding features in all 
episodic traces in memory. The model calculates a 
likelihood ratio for each probe-trace comparison, 
expressing the match between probe and trace. The 
overall familiarity that forms the basis for recognition 
judgments is calculated by the sum of likelihood 
ratio’s. 
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Semantic features 

In part I, we showed how a semantic space was 
constructed by analyzing the statistical structure of 
word association norms. We borrowed the singular 
value decomposition technique (SVD) of the latent 
semantic analysis approach (LSA, Landauer and 
Dumais, 1997) to place words in a high dimensional 
semantic space. In LSA, semantic spaces are created 
by analyzing co-occurrence statistics of words 
appearing in different contexts in large text 
documents such as encyclopedia. The idea is that 

words similar in meaning appear in similar contexts 
(where context is defined as segments of connected 
text such as individual encyclopedic entries).  

In our approach, the SVD procedure was applied 
to the matrix of free associations for over 5000 words 
collected by Nelson, McEvoy, and Schreiber (1998). 
The result is that words that have similar associative 
structures are placed as points in similar regions of a 
400 dimensional space as illustrated in Figure 2. To 
put it differently, each word was represented as a 
vector of 400 feature values with associatively 
similar words having similar feature values. Because 
the space was developed on word association norms, 
the space was named Word Association Space 
(WAS). 

The basic distinction between LSA and WAS is 
that in the former approach, it was assumed that 
similar words occur in similar contexts, while in the 
latter approach, it was assumed that similar words 
have similar associative structures. Both conceptual 
frameworks are useful in empirical and theoretical 
research. The WAS approach was developed with the 
specific purpose of modeling memory phenomena. 
Since it has been established that the associative 
structure can predict recall (e.g. Cramer, 1968; 
Deese, 1959a,b, 1965), cued recall (e.g., Nelson, 
Schreiber, & McEvoy, 1992), and priming (Canas, 
1990), we expected that the word association space 
formed by analyzing the free association norms is 
particularly useful to predict memory performance.  

As described in part I, WAS is not a metric space 
in which distance measures dissimilarity. The SVD 
analysis that produced WAS is based on the idea that 
inner products represent similarity. Thus high 
frequency words, which are more similar to each 
other (as measured by inner product), are given 
higher feature values in the final solution, placing 
them farther out in WAS space as measured by 
Euclidian distance. This fact will have important 
implications for the way in which the WAS vectors 
are incorporated in a Bayesian analysis, and the way 
in which word frequency is treated, as described 
below. 

 
Orthographic features 

For convenience, the physical features of words 
were represented only and simply in terms of 
orthographic features. The role of physical aspects 
such orthography is emphasized in this research 
because the orthographic similarity of test words to 
studied words was varied in one of the experiments in 
this paper. In principle, the present modeling effort 
could easily be extended to include other aspects of 
words such as phonology, or font, style, size and 
capitalization.  
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Figure 2. Illustration of the Word 
Association Space (WAS) approach. The 
singular value decomposition (SVD) 
method is applied on a large database of 
free association norms to place words in a 
high dimensional space. Words are placed 
in similar locations in a high dimensional 
psychological space when the associative 
relationships between words are similar.  
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In this research, of the many possible ways to 
encode orthography, a simple representational 
scheme was chosen that is based on the probabilities 
of letters occurring in words. First, the distribution of 
letter frequencies was computed by counting the 
occurrences of letters in a large lexicon of CELEX 
(Burnage, 1998). Let us denote the jth most frequency 
letter in the alphabet with Qj and the relative 

frequency of Qj with h( Qj ). For example, the most 
frequent letter in our frequency count is “e” so 
Q1=“e” and we calculated h(Q1 ) = .0997. The idea is 
to code words with the ranks of the letter frequencies 
as illustrated in Figure 3. With this representation, the 
word “bear” would be encoded with the four features 
16-1-2-3  and the word “rex” with the three features 
3-1-25. 

The base rates of feature values h( Qj ) are 
assumed to be known to the system. Based on these 
base rates for the features, the memory model can 
predict word frequency effects. High frequency 
words consist on average more of high frequency 
features while low frequency words consist on 
average more of low frequency features. A match of 
a low frequency feature between a test word and a 
memory trace provides highly diagnostic evidence in 
favor of a match, whereas a match of high frequency 
features is more likely to have occurred by chance 

and therefore provides less evidence. These 
differences in diagnosticity present one way in which 
the model can predict word frequency effects (similar 
arguments apply in principle to diagnosticity of 
semantic features and word frequency, but the 
peculiarities of WAS do not lend themselves to the 
appropriate Bayesian analysis--see below). 

 
Episodic storage 

Study of words leads to episodic traces in 
memory, separately for each word. The traces in 
memory are error prone and potentially incomplete 
copies of the semantic and orthographic feature 
vectors. With probability u, a semantic/orthographic 
feature is stored in a trace. If a feature is not stored, it 
is marked as missing and cannot be part of the 
retrieval process. A high probability u leads to 
relatively complete traces in memory whereas a low 
probability u leads to weak traces in memory. 

In the original REM model, the feature values 
representing words were discrete. In this model, the 
orthographic feature values are discrete and the 
semantic feature values are continuous, so different 
processes are used to add noise in the storage 
process. For the discrete orthographic features, the 
parameter c determines the probability that feature 
values are copied correctly into the episodic trace. If 
a feature is not copied correctly, it is sampled from 
the distribution of feature values. Therefore, if it is 
not copied correctly, the most likely value to be 
stored is “1”, next most likely value is “2”, and so 

 LETTER FREQ. CODE

e 0.0997 1
a 0.0823 2
r 0.0795 3

… …

b 0.0247 16
p 0.0235 17
k 0.0197 18

… …

x 0.0025 25
q 0.0017 26

Figure 3. Illustration of the 
representation for orthography. Letters 
are encoded with the rank of the 
frequency with which the letter 
appears in a large lexicon.  
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Figure 4. Illustration of the storage process for 
semantic features. Normally distributed noise 
with standard deviation σn was added to each 
feature (or dimension). 
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forth.  
For the continuous semantic features, normally 

distributed noise is added for each feature value as 
illustrated in Figure 4. The parameter σn, the standard 
deviation of the noise distribution determines the 
amount of noise in the storage process for semantic 
features.  In all, three parameters, u, c and σn 
determine the storage process. In light of the peculiar 
properties of WAS, one might wonder whether it is 
sensible to add constant noise to all feature values. In 
principle this is an excellent question. In practice, the 
relative placement of high and low frequency items 
in WAS caused us to normalize all semantic vectors 
by their length (see below), thereby placing all words 
on a hypersphere, and thereby making the constant 
noise assumption plausible. 
 
Calculating Familiarity 

 
The recognition decisions are based on Bayesian 

principles where the log odds is calculated that the 
probed word is o ld over new: 
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In REM, binary recognition decisions “old” and 

“new” are made when the log odds is bigger than 
zero and smaller than zero respectively. In this 
research, we will model not binary recognition 
decisions, but recognition judgments that lie on a 
scale. For this purpose, we first took the log of the 
odds, thereby making the log odds distributions at 
least roughly normal for both targets and distractors 
(see Shiffrin & Steyvers, 1997). These log odds could 
then be transformed into a judgment scale. 

In the model, if the probe is a target, one of the 
traces is a result of storing that probe, but which trace 
is not known to the system. If the probe is a distractor 
word, none of the traces are the result of storing that 
probe. Because the storage process is made noisy, it 
can only be determined probabilistically whether one 
of the traces match the probe. In the appendix of 
Shiffrin and Steyvers (1997), it was shown with 
Bayesian principles how to calculate the odds that the 
probe is old over new. The calculations use the 
available information: the matching of the features of 
the probe to those of the stored features in each 
memory trace. First, the odds is expressed as a sum 
of the likelihood ratio’s, λi of the individual trace i 
matching the probe, divided by the number of traces, 
n: 
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The likelihood ratio λi, expresses the ratio of the 

probability that the test probe was stored in trace i 
over the probability that the test probe was not stored 
in trace i.  

To combine evidence from orthographic feature 
matches, and semantic feature matches, one simply 
multiplies likelihood ratios:  
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where λs

i  and λo
i denote the likelihood ratios 

calculated for the semantic and orthographic contents 
in memory respectively.  

 As with the discrete features of  the original 
REM model, the number of matching  and 
mismatching features between the probe and trace are 
used to calculate the likelihood ratio’s for 
orthographic features:  
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The sets Ni and Mi index the set of features of 

trace i that match and mismatch the probe 
respectively. The variable Vo

i,k refers to the kth 
orthographic feature stored in the ith trace in memory. 
The parameter c and function h(V) were introduced 
earlier. The parameter c determines the probability 
that features are stored correctly. The function h(V) is 
the distribution of orthographic feature values that 
was determined by the relative letter frequencies of 
letters appearing in words in a large lexicon.  

The likelihood ratio’s are calculated for every 
trace in memory. Therefore, the number of matching 
and mismatching orthographic features is calculated 
for every  probe-trace comparison. Because words 
differ in length, it becomes an issue of how to align 
probe and trace features in case there is a length 
mismatch. There are various solutions to this 
problem. Here, the best alignment was chosen for 
each probe-trace comparison; 'best' is defined in 
terms of the least number of mismatches.   

For a continuous metric space in which similarity 
is inversely related to distance, it would be sensible 
to use the absolute difference between two features 
values as a way to measure the degree of match  
between features. However, in WAS high frequency 
words, which are highly similar, and have common 
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features, are placed in the outskirts of the space (i.e. 
they have larger feature values). For such a 
representation, we could find no way to instantiate or 
approximate a sensible Bayesian implementation. We 
therefore normalized all vectors in WAS by dividing 
all feature values for a word by that word's vector 
length1. This placed all words on the surface of a 
hypersphere, and similarity is inversely related to 
distance on this hypersphere. For this new 
representation, it is plausible to measure degree of 
match by absolute difference between feature values 
(although, as discussed below, an unfortunate 
consequence of this change is the elimination of 
feature frequency differences between words of 
different frequency). 

Based on Bayesian principles, it can be shown 
that the likelihood calculation for the semantic 
features defined in this way is:  
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The variable Vs

i,k refers to the kth semantic feature 
stored in the ith trace in memory, Ws

k refers to the kth 
semantic feature in the probe and K refers to the 
number of semantic features (K=400). The function f 
is the probability mass distribution of the normal 
distribution with standard deviation σn. The 
numerator is the probability density of the 
observation assuming the probe word had been stored 
in trace i, and the denominator is the density under 
the assumption that trace i encodes some other word2.  
The ratio gives the ratio of evidence for feature k, and 
the product of these gives the likelihood ratio for the 
ith trace.  

 
Recognition and Similarity Judgments 

It is assumed that both semantic and orthographic 
features are used when making recognition 
judgments, whereas only semantic features are used 
when making similarity judgments. The system in 
Equations (2)-(5) determines how the familiarity 
values for recognition judgments are calculated. In 
order to calculate the familiarity values for the 
similarity judgments, orthographic features were 
deleted, by changing Equation 3 to:  

 
s
ii λλ =  

In order to distinguish the log odds calculated for 
the recognition and similarity judgments, they will be 
referred to as ϕrecognition and ϕsimilarity respectively. 

 

Word frequency effects 
Word frequency effects might well be due to 

feature frequency differences, at least in part. The 
present model incorporates this factor only for 
orthographic features, and hence only for recognition 
judgments, not similarity judgments. To construct a 
sensible Bayesian analysis for WAS, it was necessary 
to normalize the vector lengths, placing all words on 
a hypersphere, and eliminating feature frequency 
differences between high and low frequency words. 
This greatly diminished word frequency effects for 
recognition (they are based only on orthographic 
diagnosticity) and eliminated them for similarity 
judgments. 

 It should be emphasized that these normalization 
changes we have made to WAS are technical in 
nature, and it remains quite possible that word 
frequency effects are due in substantial part to feature 
frequency diagnosticity. If, for example, it had been 
possible to use multidimensional scaling for a 
database as large as that in the Nelson et al. (1998) 
norms, it is quite possible that the resultant space 
would cluster high frequency words closer than low 
frequency words, and would place the features of 
high frequency words closer than those of low 
frequency words to the mean values on each 
dimension. Due to the computational demands of 
applying a multidimensional scaling procedure on the 
norms, it was not presently possible to carry out such 
analyses, unfortunately. 

Be this as it may, real data requires the prediction 
of word frequency effects. Because a feature 
frequency basis for such predictions is not available 
(except for the orthographic component of 
recognition judgments), we decided to base such 
predictions on another factor, the enhanced recency 
and greater number of contexts for high frequency 
items: does the test word appear familiar because it 
was studied, because it was seen recently or because 
the current context matches one of the many possible 
contexts in which the high frequency word appears? 
Dennis and Humphreys (submitted, 1998) 
constructed a Bayesian model that explained word 
frequency effects based on this factor. However, 
adding such a system to our present modeling effort 
would add a great deal of complexity and take us 
quite far afield. We decided instead to approximate 
the results of such a system in the following 
descriptive way, a way that would incorporate word 
frequency effects, and also produce mirror effects. A 
reference value,  γ, was assumed toward which all  
calculated (log) odds are regressed (i.e. squeezed). 
The amount of regression is higher for high 
frequency words, according to the following 
equations (the values of α are between 0 and 1): 
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( )γαϕαϕ FFnrecognitioFFnrecognitio −+=′ 1,,  (6) 

( )γαϕαϕ FFsimilarityFFsimilarity −+=′ 1,,  

  
The value of αf was made a monotonically 

decreasing function of the word frequency F of the 
probe: 

 

( ) FbbF ++−= 111α  (7)  
 
A zero word frequency is mapped to α=1. Higher 

word frequencies lead to lower α values where the 
falloff is determined by scaling parameter b.  The 
parameter γ in Equation (6) determines the centering 
of the mirror effect for word frequency. Suppose the 
mean distractor and target familiarity is lower and 
higher than γ respectively. Compared to low 
frequency distractors, the familiarity will be 
increased toward γ for high frequency distractors. 
Compared to low frequency targets, the familiarity 
will be decreased toward γ for high frequency targets. 
Increasing the value of γ, leads to an increasing 
frequency effect on distractors but decreasing effect 
on targets. Decreasing the value of γ, leads to a 
decreasing frequency effect on distractors, but 
increasing effect on targets. Thus equations 6 and 7 
represent a purely ad hoc, but fairly simple, method 
by which to approximate the effect of a 
recency/context factor for word frequency. 

 

Predicting Individual Word Differences.  
The model utilizes the particular words for a 

given trial, and makes predictions for particular test 
items, based on the orthographic and similarity 
relations among the various words. The ability of the 
model to capture the variability in performance due 
to individual word differences was measured by the 
correlation between observed and predicted 
judgments for individual words. The correlational 
analyses were performed in two ways: single and 
multiple conditions.  

In the single condition analyses, only words from 
a single condition were included for each 
correlational analysis: Significant correlations 
indicate the model explains significant parts of 
variance due to individual word differences. This 
procedure is somewhat limited because some 
conditions do not contain enough words to draw 
strong statistical conclusions. In the multiple 
condition analyses, words from different sets of 
conditions were pooled to calculate the correlation. 
However, any resulting correlations are due to a 
mixture of within and between condition effects, so 
no conclusions can be drawn concerning the gains 
due to individual word  predictions. The situation is 
illustrated in Figure 5: the horizontal axis shows 
some measure of similarity between test word and 
studied words. Only in Figure 5a  is there a within 
condition correlation that could be interpreted as 
indicating additional predictability due to 
consideration of similarities between particular 

 
Figure 5. Two possibilities situations for calculation correlations 
between observed and predicted results for individual words when 
words from two different conditions are pooled. The dots represent 
different words and the color differences represent condition 
differences. In (a), part of the correlation between observed and 
predicted results is due to the capturing part of the within as well as 
the between condition variability. In (b), the correlation is solely 
due to between condition differences. 
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words. Both panels show substantial between 
condition correlations.   

 
Overview of Experiments 

We present three experiments in which distractor 
similarity, the length of studied categories and the 
directionality of association between study and test 
words were varied. The comparison of the results for 
the recognition and similarity judgments is important 
to investigate the interplay between semantic and 
physical features in recognition memory. The 
experiments address five basic predictions of the 
memory model:  

(1) Testing distractor words that are increasingly 
semantically similar to studied words will lead to 
increasingly higher false alarm rates. This is simply a 
result of the model being a global familiarity model: 
it computes the overall match between the probe and 
contents of memory. Since semantic similarity is 
determined by the semantic space of WAS, for a 
given set of study words, the model can make 
specific predictions about which words will lead to 
what level of false alarms relative to other words. 
This prediction was addressed in Experiment 1, 2, 
and 3. 

(2)  Increasing the orthographic similarity 
between a distractor word and the stored orthographic 
contents in memory will increase the false alarm 
rates. This prediction was addressed in Experiment 2. 

 (3) The difference between recognition and 
similarity judgments was assumed to be due to a 
reliance on different sources of information. For 
similarity judgments, only semantic features were 
used while for recognition judgments, both semantic 
and physical features such as orthographic features 
were used. Therefore, the effect of semantic 
similarity of distractors should have a larger effect on 
similarity judgments than recognition judgments. 
Also, there should be no effect of orthographic 
distractor similarity on similarity judgments (the 
similarity judgments imply semantic similarity).  
These predictions were addressed in Experiment 2. 

(4) The model should capture part of the 
variability in performance due to individual word 
differences, above and beyond the variability due to 
between condition differences. This prediction was 
addressed in all three experiments. 

 (5) A word frequency effect is predicted: low 
frequency words have higher hit rates and lower false 
alarm rates than high frequency words. This 
prediction is addressed in all three experiments. 

 
Experiment 1 

This experiment tests the ability of the model to 
predict the false alarm rates to semantically similar 
distractors. The closer in WAS are distractors to 

studied words, the more false alarms should be 
produced. Four groups of distractors were created 
(labeled A, B, C, and D) that were monotonically 
decreasing (from A to D) in their semantic similarity  
to studied words. Each group has subgroups of low 
and high frequency words. Word frequency was 
varied in this experiment to investigate the interaction 
between distractor similarity and distractor word 
frequency.  

 
Method 

Design and Subjects. For the distractors, the 
design formed a 4 x 2 factorial, with  word frequency 
(low, high) and distractor similarity (four groups A, 
B, C, and D that were increasingly less similar to 
studied words) manipulated within subjects. For 
targets, only word frequency (low, high) was 
manipulated as a within-subject factor. Thirty-five 
students from Indiana University who were enrolled 
in introductory psychology courses participated in 
exchange for course credit.   

Materials. Appendix A shows the words from this 
experiment for each level of word frequency and 
distractor similarity. All words were selected from 
the Nelson et al. (1998) free association norms. Word 
frequency was operationally defined by the number 
of times the word was produced as an associate in the 
norms of Nelson et al. (1998).  We defined low 
frequency words as words that were produced by less 
than 10 of the 5018 total cues of the norms. High 
frequency words were defined as words produced by 
10 or more cues. The low and high frequency words 
in the experiment were produced by an average of 4.2 
(SD=3.4) and 30.3 (SD=17) cues respectively.  We 
also measured differences of the resultant groups in 
the Kucera and Francis frequency count, which is the 
traditional way to measure and define word 
frequency. The low and high frequency words had 
median Kucera and Francis frequency counts of 5 
(SD=9.2) and 28 (SD=126) respectively. Therefore, 
the low and high frequency words had both different 
production counts and Kucera and Francis frequency 
counts.  

On the basis of 18 randomly selected prototype 
words, 18 categories were created.  Within WAS, the 
four most similar low frequency words and the four 
most similar high frequency words to each of the 
prototype words were selected. Similarity between 
two words was computed by the inner product of the 
two vectors in WAS (In this method section, when 
we refer to WAS, we refer to the vectors whose 
lengths were not normalized). The 4 low and 4 high 
frequency words of each of 18 categories served as 
study words in the experiment.  

The distractor words varied in both word 
frequency and similarity to the 18 study categories.  
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For each frequency level, four similarity groups were 
created that varied in the similarity to studied 
categories, from very high (group A) to very low 
(group D). We manipulated distractor similarity by 
varying the degree of similarity of words to specific 
categories on the study list rather than to all the 
words on the study list. Distractor similarity was 
operationally defined by using the mean WAS 
similarity of a distractor word to the words from a 
specific study category. For each study category, the 
mean similarity of each of the 5018 words from the 
norms to the category words was computed 
(excluding all study words). Four high frequency 
groups, and four low frequency groups of similarity 
were created by selecting words with similarity 
measures ranging between .10 - .45, .05 - .10, .02  - 
.05, and .0018 - .0045 respectively. Averaged over 
word frequency, the average similarity of the four 
groups was respectively .1853, .0869, .0354, and 
.0027.  In other words, the words from groups A to D 
decreased monotonically in their mean similarity to 
categories on the study list.  

Procedure. An experimental session consisted of 
one study-test cycle. Participants were instructed 
prior to the presentation of the study words to 
remember the words on the study list. Each word was 
displayed in the center of the computer screen for 1.3 
s. of study. The category words were presented one 
after the other until all the words from a category 
were presented and the next category was selected. 
The order of words within a category as well as the 
order of categories on the study list was randomized 
for each participant. The study list consisted of 144 
study trials, including the 18 categories of 8 items 
each.  

The procedure of Brainerd and Reyna (1998) was 
changed in two ways. In their studies, the two 
memory judgments were varied between groups. In 
our experiments, each test item required two memory 
judgments. Second, instead of binary “yes”, “no” 
judgments, our participants were asked to give 
judgments on a six point scale.  After study, 
participants read detailed instructions. Participants 
were informed that they would give two ratings for 
each test word: a recognition rating and a similarity 
rating. For the recognition rating, participants were 
instructed to rate how confident they were that a test 
word had been studied by utilizing a 6-point scale (a 
1 indicated high confidence that the word had not 
been studied and a 6 indicated high confidence that 
the word had been studied). They were also 
instructed to give low ratings to distractor words that 
were similar to the studied categories, if that test 
word was not an exact match to a studied word. For 
the similarity rating, participants were instructed to 
rate how confident they were that words similar in 

meaning had been studied by utilizing a 6 point 
confidence scale (a 1 indicated high confidence that 
no similar words had been studied and a 6 indicated 
high confidence that words similar in meaning had 
been studied). They were also instructed to give high 
similarity ratings if the test word had in fact been 
studied.  

There were a total of 100 test items. Of the test 
items, 28 were targets, and 72 were distractors. Of 
the 28 target items, 14 were low frequency and 14 
were high frequency words. The target items were 
chosen randomly from the pool of study words with 
the constraint that each category was tested at least 
once and at most twice. The 72 distractor items 
consisted of equal numbers of items from the 4 
distractor groups A, B, C, and D. Each distractor 
group consisted of an equal number of low and high 
frequency distractors. The distractor items were 
chosen randomly (sampling equally from low and 
high frequency groups) from the pool of distractor 
words with the constraint that each category was 
tested exactly four times.  

 
Results 

For each participant, the confidence ratings for 
the recognition judgments were converted to z-scores 
by subtracting the mean and dividing by the standard 
deviation of all the recognition confidence ratings for 
that participant. The z-scores were then averaged 
over participants to get the overall z-scored ratings 
for a given condition. The same procedure was 
applied to the confidence ratings of the similarity 
judgments. The conversion to z-scores has the 
advantage of normalizing for idiosyncratic uses of the 
6 point confidence scales. For example, some 
participants use one end of the scale more than the 
other and some participants give wider ranges of 
ratings than others. By subtracting the mean and 
dividing by the standard deviation of the ratings, 
much of the participant specific variance was 
eliminated. Note that positive recognition and 
similarity z-scores indicate more than average 
confidence that the item is old and similar,  
respectively. Similarly, negative recognition and 
similarity scores indicate more than average 
confidence that the item is new and dissimilar 
respectively.  

We also computed d’ as a measure of sensitivity: 
the degree to which targets and distractors were 
discriminated. In order to compute d’, we first 
computed for each participant the median confidence 
ratings for the recognition judgments and similarity 
judgments separately. The median confidence rating 
was used a criterion below which the response would 
be scored as a “no” judgment and above which the 
response would be scored as an “yes” judgment. The 
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probability of responding “yes” for targets and 
distractors then served as hit and false alarm rates for 
a given condition in order to compute d’ for each 
participant separately. Repeated measures analyses of 
variance (ANOVA’s) were conducted on the z 
transformed recognition and similarity judgments as 
well as the sensitivity measures. In each analysis, the 
Type I error rate was set at .05.   

Recognition judgments. The means and standard 
errors of the recognition and similarity z-scores for 
the high and low frequency targets and for the low 
and high frequency distractors in the four similarity 
groups are shown in Figure 6. This figure shows that 
participants rated the distractor items from groups A 
to D as increasingly less “old”. This effect is 
observed for both low and high frequency items. The 
figure also shows that low frequency distractors are 
rated more as “new” than high frequency distractors 
whereas low frequency distractors are rated as 
slightly more “old” than high frequency distractors. 
For distractors, the effect of similarity was significant 
[F(1,34)=103, MSE=.0618] as well as the effect of 
word frequency [F(1,34)=47.1, MSE=.0872]. The 
interaction of both effects was not significant 
[F(1,34)=1.71, MSE=.0776, p<.20]. For targets, the  

effect of word frequency was not significant 
[F(1,34)<1].  

Table 1 lists the mean d’ results as well as the 
standard error of d’ based on several target and 
distractor condition comparisons. The results show 
that participants are increasingly more able to 
discriminate between old items and new items from 
groups A to D. Also, sensitivity for low frequency 
items is higher than for high frequency items. The 
effect of similarity on sensitivity was significant 
[F(1,34)=48.5, MSE=.409] as well as the effect of 
word frequency [F(1,34)=13.0, MSE=.915] while the 
interaction was not significant  [F(1,34)<1].   

 
Similarity judgments. The similarity ratings 

decreased progressively from group A to group D 
distractors. The effect of distractor similarity was 
significant [F(1,34)=207, MSE=.194]. Although the 
effect of word frequency on distractors was 
significant [F(1,34)=11.48, MSE=.101], Figure 6 
shows that the effect is caused mainly by the 
differences between low and high frequency items of 
group D. Paired sampled t-tests confirm that only this 
group showed a significant word frequency effect 
[t(34)=4.2]. Removing this group from analysis led to 
non-significant effects of word frequency 
[F(1,34)=1.72, MSE=.0778, p<.2]. For targets, the 
effect of word frequency  was not significant 
[F(1,34)<1].  

The sensitivity results for the similarity ratings 
follow the same pattern as the recognition ratings: the 
ability to discriminate between old and new items 
increases with decreasing distractor similarity. This 
effect was significant [F(1,34)=170, MSE=.568]. The 
effect of word frequency was marginally significant 
[F(1,34)=3.87, MSE=.827, p<.057] and became non 
significant after removing group D distractors 
[F(1,34)=1.27].  

Number of ratings per word. Each of the 35 
participants was tested on different subsets of words 
available for study and test. Each of the target words 
from the pool of 144 words was rated by a median of 
7 participants (SD=2.3). Each of the distractor words 
from the pool of 144 words was rated by a median of 
18 participants (SD=2.8). Because the target words  
were judged by only few participants, they were 
excluded from the correlational analyses of observed 
and predicted results that will be discussed shortly. 

 
Discussion.  

The results show three clear patterns. First, the 
distractors that are increasingly less similar to studied 
categories, where similarity is defined by inner 
products in WAS, are rated as more “new” and 
“dissimilar”. This suggests that the semantic space 
can be helpful in predicting the false alarm rates of  

 

Figure 6. Observed and predicted results of Experiment 1. 
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Table 1

Recognition Similarity
Comparison M StdErr M M M

low frequency

OLD  vs. NEW-A 1.2 0.1 0.38 1.28 0.32
OLD  vs. NEW-B 1.52 0.13 0.73 1.47 0.6
OLD  vs. NEW-C 1.52 0.11 1.09 1.82 1.38
OLD  vs. NEW-D 1.99 0.14 2.14 2.31 2.22

high frequency

OLD  vs. NEW-A 0.85 0.12 0.23 1.18 0.17
OLD  vs. NEW-B 0.99 0.14 0.54 1.27 0.71
OLD  vs. NEW-C 1.14 0.11 1.03 1.55 1.29
OLD  vs. NEW-D 1.6 0.14 1.69 2.12 2.09

blocked - semantic

OLD-3-PRO vs. NEW-3-PRO 1.07 0.24 0.22 1.68 0.5
OLD-7-PRO vs. NEW-7-PRO 1.58 0.24 0.15 2.32 0.52
OLD-3-EXE vs. NEW-3-EXE 1.57 0.16 0.74 1.93 0.8
OLD-7-EXE vs. NEW-7-EXE 1.22 0.17 0.59 1.86 0.47

blocked - orthographic

OLD-3-PRO vs. NEW-3-PRO 0.55 0.18 0.46 1.6 1.15
OLD-7-PRO vs. NEW-7-PRO 1.21 0.2 0.67 1.62 1.09
OLD-3-EXE vs. NEW-3-EXE 1.06 0.13 0.73 1.57 1.38
OLD-7-EXE vs. NEW-7-EXE 0.85 0.1 0.6 1.35 1.39

spaced - semantic

OLD-3-PRO vs. NEW-3-PRO 1.09 0.26 0.39 1.33 0.52
OLD-7-PRO vs. NEW-7-PRO 0.75 0.3 0.07 1.28 0.48
OLD-3-EXE vs. NEW-3-EXE 1.25 0.13 0.67 1.44 0.6
OLD-7-EXE vs. NEW-7-EXE 1.05 0.19 0.51 1.46 0.66

spaced - orthographic

OLD-3-PRO vs. NEW-3-PRO 0.61 0.23 0.76 1.35 1.01
OLD-7-PRO vs. NEW-7-PRO 0.49 0.24 0.64 1.16 0.81
OLD-3-EXE vs. NEW-3-EXE 0.71 0.12 0.7 1.31 1.17
OLD-7-EXE vs. NEW-7-EXE 0.69 0.11 0.54 1.27 1.27

OLD-A vs. NEW-LF 1.88 0.1 1.14 1.78 0.91
OLD-B vs. NEW-HF 1.24 0.11 0.72 1.2 0.76

OLD-A vs. NEW-F 1.11 0.13 0.11 0.52 0.03
OLD-B vs. NEW-G 2.02 0.14 0.21 1.62 0.34
OLD-C vs. NEW-H 0.82 0.09 0.05 1.02 0.29

StdErr

0.09

0.12
0.12

0.12
0.15

Experiment 3

0.11
0.13

0.21
0.28

0.23
0.14
0.14

0.27

0.19
0.23
0.15
0.1

0.14

0.27
0.24
0.16

Experiment 2

0.11
0.12
0.18

0.09

0.1
0.1

0.15
0.15

Experiment 1

Recognition Similarity
Observed  Predicted

Sensitivity results (d') for Experiments 1,2 and 3
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distractor words. Second, word frequency had the 
predicted effect on recognition judgments for 
distractors: high frequency distractors were rated as 
more “old” than low frequency distractors. 
Interestingly, the effect of frequency on similarity 
judgments was less pronounced. Apart from group D 
distractors, there was only a small increase in the 
“old” ratings for high frequency distractors compared 
to low frequency distractors. Third, the participants 
can distinguish between recognition and similarity 
ratings. When the results for similarity and 
recognition judgments are compared, the difference 
between group A distractors and targets is much 
smaller for the similarity ratings than for the 
recognition ratings. This indicates that participants 
are following instructions because they were 
instructed to give high similarity ratings to test words 
that were similar to studied words regardless of 
whether the test words were studied or not.  

 
Model Fits of Experiment 1  

The model as outlined in the Introduction was 
applied to Experiment 1. The same study and test 
words were used in the model as in the experiment. 
In total, there were four parameters to model the 
experiment. The two storage parameters, c (0.2) and 
σn (0.25) determined the amount of storage noise for 
orthographic and semantic features respectively. The 
parameter γ (3.0) determined the centering for the 
word frequency effect and the b parameter (5.0) was 
used as a parameter to scale the word frequency 
effect. These were all the parameters that were 
needed to generate predictions. No iterative 
techniques were used to find the “best” parameter 
settings to optimize the fit between observed and 
predicted results.  Only a handful of parameter setting 
were tried until the predicted results showed (most 
of) the desired qualitative pattern of results3. 

Recognition and Similarity Judgments. Figure 6 
shows the predictions of the model obtained by 
simulating 100 participants. In the experiments, the 
recognition and similarity judgments were Z-
transformed. In the modeling, the ϕ’similarity and 
ϕ’recognition familiarity values were also Z-transformed. 
The model results capture three basic trends in the 
data. First, a monotonic decrease in the “old” ratings 
was predicted for conditions A to D. On the one 
hand, this is not surprising because conditions A to D 
contained words that are semantically increasingly 
dissimilar according to the semantic space formed by 
WAS. However, this does suggest that the word 
vectors in the semantic space are organized 
appropriately and gives the semantic space some 
psychological plausibility. Second, the difference 
between recognition and similarity judgments is 
correctly predicted. The difference between targets 

and the semantically closest distractors (group A) is 
predicted to be much smaller for the similarity than 
recognition judgments. Recognition judgments use 
orthographic features to help distinguish targets from 
semantically similar distractors. Third, word 
frequency effects were predicted mainly because of 
the descriptive component in the model that squeezed 
familiarity values towards the center of scale to a 
degree dependent on word frequency. This 
approximation was employed to mimic the effects of 
recency and context noise; although feature 
frequency effects ought to have operated as well, the 
normalizing of WAS eliminated the possibility of 
including this component in the model. 

Sensitivity. The d’ results for the model’s 
predictions were generated in the same way as in the 
experiments. For each simulated participant, a 
criterion for the recognition and similarity judgments 
was determined by taking the median of the 
ϕ’recognition and ϕ’similarity familiarities respectively 
(over all conditions). These criteria specify the 
midpoint of the recognition and similarity scale 
above and below which lie 50% of the judgments. 
The sensitivities were then calculated on the 
probabilities of responding above the criterion for 
targets and distractors respectively.  

The predicted d’ results (Table 1) show the same 
pattern as the observed d’ results. The sensitivity for 
low frequency words is higher than for high 
frequency words. This is a direct consequence of the 
familiarity values for high frequency target and 
distractor words being squeezed toward the center of 
the familiarity scale. The sensitivity monotonically 
increased from group A to group D because of the 
monotonically decreasing false alarm rates for these 
groups. 

Individual Word Correlations. Table 2 shows 
correlations for the predicted and observed Z-scores 
of individual words with words from single as well as 
multiple conditions. The first column shows which 
conditions were used in the calculating the 
correlation. The second column shows the number of 
words in the comparison. The next three columns 
show the results from the correlational analyses for 
the recognition ratings while the last three columns 
those for the similarity ratings. In the column 
“original”, the correlation value is shown with 
potential markers for statistical significance. The 
“scrambled” column shows the correlation value 
under a procedure in which  the order of words 
within each condition is scrambled so that the 
resulting correlational value can only be attributed to 
predicted between condition differences and not to 
predicted individual word differences within 
condition4. For correlations that only involve words 
from a single condition, the scrambled correlational 



 

 28 
 

value is by definition zero because no between 
condition differences can be defined. The “diff” 
column lists the statistical significance of the 
difference between the original and scrambled 
correlational values. If such a difference is found to 
be significant, it means that a significant part of the 

variability in the observed results within conditions 
can be explained in the model on the basis of 
individual word differences. In the present 
experiment, of course, the conditions themselves 
involve variations of similarity along the same 
dimensions as those operating by chance within 

Table 2

Groups N original diffb. original

Experiment 1c

all distractors 144 .50*** .35*** ** .67***
all LF distractors 72 .37*** .26** .70***
all HF distractors 72 .52*** .29*** ** .64***

A-LF 18 0.07 0 0.18
A-HF 18 0.06 0 .39*
B-LF 18 0.22 0 .38*
B-HF 18 .43** 0 ** .32*
C-LF 18 .36* 0 * .36*
C-HF 18 .56*** 0 *** .40*
D-LF 18 0.2 0 0.13
D-HF 18 0.15 0 0.12

Experiment 2

all 1234 .63*** .58*** *** .49***
all targets 562 .12*** 0.05 * .21***
all distractors 672 .37*** .18*** .44***
target exemplars 371 .11** 0.01 ** .22***
target prototypes 191 .13** .13** .19***
related exemplar distr. 384 .27*** 0.05 *** .45***
related prototype distr. 192 .26*** .11* ** .32***

Experiment 3

all 180 .86*** .85*** .63***
all targets 60 0.05 0.04 0.16
all distractors 120 .62*** .56*** .64***
all related distractors 60 .63*** .62*** 0.01
all unrelated distractors 60 .63*** .51*** * .43***

A 20 0.09 0 0.19
B 20 0.17 0 0
C 20 .44** 0 ** .44**
F 20 0.24 0 0.12
G 20 0.23 0 0.02
H 20 0.08 0 0.06
LF 30 .47*** 0 *** 0.03
HF 30 0.05 0 .33**

Notes

a. "y" for multiple conditions involve correlations for words of multiple conditions 
b. This columns indicates whether the difference in correlation for original and unscrambled words is significant
c. The correlations for words in the target conditions are not shown because there were not enough participants 
that rated each individual target word.

*** p<.01 ** p < .05 * p < .10 

n 0
n 0 **

n 0
n 0

n 0 **
n 0

n 0
n 0

y .38***

y .63***
y -0.01

y .64***
y 0.03

y .28*** ***
y .30***

y .19***
y .22***

y .19***
y .31*** ***

y .44*** ***

n 0

n 0 *
n 0

n 0 *
n 0 *

n 0 *
n 0 *

n 0

y .61*** *
y .48*** **

y .56*** **

 Recognition Similarity
MCa scrambled scrambled diffb.

Correlations between predicted and observed z-scores for recognition and similarity ratings
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condition. Thus the two correlational analyses are in 
a sense redundant and ought to give rise to the same 
conclusions.     

Table 2 shows that the correlations are higher for 
the similarity ratings than for the recognition ratings. 
This is interesting because for similarity judgments, 
the variability in the model is only due to semantic 
features while for the recognition judgments, an 
additional source of variability is provided by the 
orthographic features.  

For five out of eight single condition groups, the 
correlation was higher than .3. This is a very small 
correlation but it should be kept in mind that in these 
analyses, the range of distractor similarities within 
condition was limited: because the stimuli were 
chosen approximately to equate similarities within 
condition, the differences in similarities that 
remained were accidental and limited in scope. Also, 
in each of these conditions, only 18 words were part 
of the correlation, so that statistical significance was 
harder to reach than for the multiple condition 
correlations. More impressive are the correlations for 
words from multiple conditions. When all low 
frequency distractors or all high frequency distractors 
were part of the correlational analysis, the correlation 
for the similarity ratings was moderately high (>.6) 
and higher than in the scrambled procedure. This 
indicates that the memory model with the derived 
semantic similarity relationships in WAS can predict 
part of the variability in similarity judgments due to 
individual word differences, both across and even 
within condition.  

Parameters. The four parameters5 used to generate 
predictions for this experiment were set at: σn =.25, 
c=.2, b=5, γ=3. Note that the noise distribution for 
semantic features has a standard deviation five times 
larger than  the standard deviation of all semantic 
feature values in WAS (.0484). Such a large noise 
value is needed because there are 400 diagnostic 
feature values which together provide a good deal of 
information even in the face of a great deal of feature 
noise.   

It might be expected that appropriate values for γ 
should be around 0 because a log odds of 0 should be 
the center of the familiarity scale for Bayesian 
models (see Shiffrin & Steyvers, 1997). However, we 
violate a key assumption of the simple  Bayesian 
derivation: the study words were not sampled 
randomly from the pool of all possible study words. 
Instead, we sampled groups of semantically similar 
words. Therefore, the log odds distributions for both 
targets and distractors were not centered around zero, 
requiring that the centering for the mirror effect be 
placed on familiarity values higher than zero. The 
particular value chosen also allowed the model to 

handle the fact that word frequency affected 
distractors more than targets. 

 
Experiment 2 

Several studies have shown that hits and false 
alarms go up monotonically with the number of 
same-category items on the study list (Hall & 
Kozloff, 1970; Hintzman, 1988, Robinson & 
Roediger, 1997; Shiffrin et al., 1995). For example, if 
the study list contains fruit words (e.g. apple, pear, 
banana, etc.), the hit rate for a studied fruit word and 
the false alarm rate to new fruits will typically 
increase with the number of fruit words studied. 
Hintzman (1988) and Shiffrin et al. (1995) have 
given quantitative accounts of this category length 
effect solely on the basis of global familiarity: a test 
word that is related to more traces in memory results 
in higher global familiarity.  

Shiffrin et al. (1995) have argued that in their 
study, it is unlikely that related unstudied category 
words were thought of during study or were activated 
by a spreading activation mechanism, because all 
category words were randomly spaced over the study 
list. It is more likely that the IAR mechanism or a 
spreading activation account plays a role when the 
category words are studied in a blocked fashion. It is 
hard to imagine that participants will not think about 
the prototype “fruit” when fifteen fruit words are 
studied one after the other. Several studies have 
investigated the effect of studying the category words 
in a blocked or spaced fashion (Agostino, 1969; 
Mather, Henkel, & Johnson, 1997; Toglia, Hinman, 
Dayton, & Catalano, 1997). Mather et al. reported 
that both the hit rate for studied words and false 
alarm rates for unstudied prototypes were higher in 
the blocked presentation condition but that false 
alarm rates for unrelated distractors were lower in the 
blocked study conditions.  

While both the category length effect and the 
blocked/random effect have been investigated, the 
interaction of these effects have not been explored 
yet. The goal of this experiment is to investigate the 
effect of study presentation (blocked/random) and 
category kind (semantic or 
orthographic/phonological) on the category length 
effect.  

 
Method 

Design and participants. The design formed a ( 2 
x 2 x 2 x 2 ) + 2 mixed factorial design. Study 
presentation (blocked vs. spaced) was varied between 
subjects. Category length (3 or 7), category type 
(orthographic or semantic) and category membership 
(prototype or exemplar) was varied within subjects. 
Two distractor conditions were added, containing 
words that were unrelated to studied categories 
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(essentially 0 category length) and that were either 
drawn from the pool of unused prototype or exemplar 
words. Table 3 summarizes the within subject 
conditions in this experiment. Thirty-seven 
participants were assigned to the blocked condition 
and thirty-four participants to the spaced condition. 
The participants were drawn from the same pool of 
participants of Experiment 1.  

Materials. The words from this experiment are 
listed in Appendix B. All words were part of the 
Nelson et al. (1998) norms. Twenty four words were 
pseudo- randomly selected from the pool of words to 
serve as prototypes for the semantic categories (these 
were chosen by hand so that they seemed to be  
plausible candidates for category prototypes). For 
each of the 24 prototype words, 9 exemplar words 
were chosen that were most similar to the prototype 
words in the WAS space. The exemplars were picked 
with the constraint that the words were not used for 
other categories and that the words from the same 
word form were not  used (e.g. choosing “egg” and 
“eggs” as exemplar words for the same category was 
not allowed).  24 orthographic categories were 
created by pseudo-randomly selecting 24 prototype 
words from the pool of words. For each of the 24 
prototype words, 9 exemplar words were selected 

that differed in one or two letters from the prototype 
word.  

Procedure. Participants studied 170 study words 
for 1.3 s. each. They were instructed to study the 
words for a later memory test. The study list 
consisted of 5 fillers at the beginning and end of the 
list. The 160 other study words consisted of 16 
categories with category length 3 and 16 categories 
with category length 7. Half of categories were 
sampled from the pool of semantic categories and 
half were sampled from the pool of orthographic 
categories. The sampling was performed such that 
over all participants, each category from the pool was 
studied an approximately equal number of times.  
Half of the studied categories contained the prototype 
and half did not contain the prototype (an exemplar 
replaced the prototype). In the blocked condition, the 
categories were presented one after the other with the 
order of words within categories randomized as well 
the order of categories on the list. In the spaced 
condition, the order of all 170 study words (excluding 
the filler items) was randomized with the result that 
the category words were scattered over the study list. 
The Appendix B lists 9 exemplars per category. The 
study categories always contained the first two 
exemplars listed in Appendix B and never contained 

Table 3      
Within subject conditions of Experiment 2     
      

Condition Target 
Category 

Kind 
Category 
Length 

Prototype or 
Exemplar #tested 

1 Y S 3 P 4 
2 Y O 3 P 4 
3 Y S 3 E 8 
4 Y O 3 E 8 
5 Y S 7 P 4 
6 Y O 7 P 4 
7 Y S 7 E 8 
8 Y O 7 E 8 
9 N S 3 P 4 

10 N O 3 P 4 
11 N S 3 E 8 
12 N O 3 E 8 
13 N S 7 P 4 
14 N O 7 P 4 
15 N S 7 E 8 
16 N O 7 E 8 
17b N S & O 0 E 8 
18c N S & O 0 P 8 

Note: Y=yes, N=no; S=semantic category, O=orthographic category; P=prototype, 
E=exemplar 
a. When a prototype is tested as a target it was on the study list  
b. These distractor words were drawn from the pool of exemplar words of unstudied 
categories 
c. These distractor words were drawn from the pool of prototype words of unstudied 
categories 
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the last two exemplars; they were reserved for testing 
as related distractors. 

After the study list, participants were given 
instructions about the test phase. These instructions 
were identical to Experiment 1. Participants were 
given 112 test words for which they had to give 
recognition and similarity judgments as in 
Experiment 1. Table 3 lists the 18 conditions that 
were tested and the number of words that were tested 
per condition. For the testing phase, the exemplar 
words from the target conditions were always 
sampled from the first two exemplars from the list of 
Appendix B (these were also always sampled for the 
study list). The exemplar words for the distractor 
conditions of category length 3 and 7 were always 
drawn from the last two exemplars from the list.  

There were two unrelated distractors conditions 
which we will refer to as  prototype category length 
0, and exemplar category length 0 conditions. In the 

first condition, the words were sampled from the 16 
prototype words from the semantic and orthographic 
categories that were not studied (which categories 
were not studied varied from participant to 
participant). In the second category length 0 
condition, the words were sampled from the last two 
exemplars of the 16 not studied semantic and 
orthographic categories. Because the same prototype 
or exemplar word could be tested as related 
distractors (category length 3 or 7) for participants 
that studied related words and as unrelated distractors 
(category length 0) for participants that did not study 
any words from that category, these conditions 
served as important controls for the related distractor 
conditions.  
Results 

The recognition and similarity judgments were 
converted to z-scores as in Experiment 1. The mean 
z-scores for the semantic and orthographic categories 
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are shown in Figure 7 and 8 respectively. The ability 
of participants to discriminate between old and new 
items was computed with d’ in the same manner as in 
Experiment 1. The d’ results are listed in Table 1. 
Separate ANOVA’s were performed on the target and 
distractor z-scores for the recognition and similarity 
ratings. Also, ANOVA’s were performed on the 
sensitivity results on the recognition and similarity 
ratings. We will report the main effects of the within 
subject factors, category length (3 or 7) and category 
membership (exemplar or prototype) and the between 
subject factor, study presentation (blocked or spaced) 
and interactions between these factors.  The 
differences in performance for the different category 

types (semantic or orthographic) will only be 
reported for the similarity ratings.  

 
Recognition judgments. For targets, the main 

effects of category length and category membership 
were not significant [F(1,69)=1.50, MSE=.207, and 
F(1,69)=.056, MSE=.241, respectively]. However, 
Figures 7 and 8 show an interaction between category 
length and category membership. For category length 
3, the confidence that the target is old was lower for 
prototype words than for exemplar words. However, 
for category length 7, the confidence that the target is 
old was higher for prototype words than for exemplar 
words. This interaction was significant 

Figure 8. Observed and predicted results of Experiment 2, for the orthographic 
categories. Note that the two data points for category length 0 in the four panels for 
observed and predicted results are identical to the corresponding data points for the 
semantic categories shown in Figure 7.   
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[F(1,69)=17.84, MSE=.137].  
For distractors, the confidence that the words 

were old increased with category length for both 
prototype and exemplar words. Also, the confidence 
that the distractor words were old was higher for 
prototype words than exemplar words for both 
category lengths. Both main effects of category 
length and category membership were significant 
[F(1,69)=10.6, MSE=.143, and F(1,69)=75.5, 
MSE=.119, respectively] while the interaction was 
not significant [F(1,69)=.364].  

Table 1 shows that in the blocked condition, the 
ability to discriminate between old and new prototype 
words was higher for category length 7 than category 
length 3. For exemplar words, the pattern was 
reversed: the ability to discriminate between old and 
new exemplar words was lower for category length 7 
than category length 3. This interaction between 
category length and category membership on 
sensitivity is significant [F(1,36)=12.20, MSE=1.13]. 
In the spaced condition, the effect of category length 
was the same on prototype and exemplar words: 
category length 7 old and new items were more 
difficult to discriminate than category length 3 old 
and new items. The interaction between category 
length and category membership was not significant 
[F(1,33)<1].  

To simplify the analysis of the between subject 
factor of study presentation, three groups were 
created: targets, related distractors and unrelated 
distractors. The targets contained all target 
conditions, while the related distractor conditions 
contained all distractors with category length 3 or 7. 
The category length 0 distractors were pooled into 
the unrelated distractor group. Compared to spaced 
study presentation, blocked study presentation 
resulted in higher old ratings for targets and lower old 
ratings for both related and unrelated distractors. The 
average z-score ratings for blocked and spaced 
targets was .496 and .413 respectively, a significant 
difference [F(1,69)=8.25, MSE=.121].  For related 
distractors, the average z-score ratings for blocked 
and spaced study presentation was -.278 and -.230, a 
difference that did not reach statistical significance 
[F(1,69)=2.95, MSE=.112, p<.09] while for unrelated 
distractors, the average z-score ratings was -.531 and 
-.412, a significant difference [F(1,69)=5.91, 
MSE=0424].  

The effect of study presentation on sensitivity was 
significant [F(1,69)=349, MSE=1.57]. As can be 
observed in Table 1, for most comparisons, the 
sensitivity was lower for the spaced study 
presentation than the blocked study presentation.  

Similarity judgments. The pattern of results for 
the similarity judgments was similar to the pattern of 
results for the recognition judgments except for the 

effect of category length on distractors. For semantic 
categories, similarity ratings for distractors increased 
with category length. This effect was significant for 
both prototype and exemplar words [F(1,69)=44.6, 
MSE=.205, and F(1,69)=61.8, MSE=.164, 
respectively]. For orthographic categories, similarity 
ratings for distractors stayed more or less constant 
with category length. For orthographic categories, the 
effect of category length was not significant for either 
prototype or exemplar  words [F(1,69)=1.28, 
MSE=.179, and F(1,69)=1.64, MSE=.117, 
respectively]. 

Number of ratings per word. In the spaced 
condition, a median of 6 participants (SD=2.07) rated 
each individual word. In the blocked condition, a 
median of 6 participants (SD=2.19) rated each 
individual word.  

 
Discussion 

 There were several interesting patterns 
observed in the data. First, participants distinguished 
between the recognition and semantic similarity 
judgments. No effect of category length on semantic 
similarity judgments was observed for orthographic 
categories. This supports the assumption in the 
memory model that physical features such as 
orthographic features do not contribute in the 
generation of semantic similarity ratings. Second, 
effects of category length were observed for both 
semantic and orthographic categories which 
replicates the Shiffrin et al. (1995) results. Third, we 
did not fully replicate the differences between 
blocked and spaced study presentation as observed by  
Mather et al. (1997). We did replicate their observed 
effect of higher hit rates for targets and lower false 
alarm rates for unrelated distractors in the blocked vs. 
spaced condition. However, Mather et al. observed 
that false alarm rates for related distractors were 
higher in the blocked condition than in the spaced 
condition. We found a trend in the opposite direction. 
It is possible that the longer category length in the 
Mather et al. study explains this difference: their 
related distractors were related to more items in 
memory and perhaps the blocked presentation 
strongly evoked the false memory of the related 
distractor. The differences between blocked and 
spaced study presentation in this study suggest a 
recognition advantage for blocked over spaced 
presentation. This difference could be due to a variety 
of factors. For example, blocked presentation might 
lead to better memory organization that facilitates 
recognition judgments. In the modeling of these 
results, we will expand on one possible factor 
explaining these differences. It will be assumed that 
blocked presentation leads to stronger traces in 
memory (i.e., traces with more features). This could 
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be because related words when blocked lead to better 
or more organized rehearsal leading in turn in 
stronger traces. Similarly, related words when 
blocked can activate each other implicitly leading to 
superior storage. More discussion on this assumption 
will follow in the modeling section. 

As a last interesting aspect of the observed 
results, for targets, a crossover interaction was 
observed between category length and category 
membership. Target exemplars were better 
recognized than prototype exemplars when two 
related words were on the study list. However, target 
prototypes were better recognized than target 
exemplars when six related words were on the study 
list. This effect was observed for both orthographic 
and semantic categories and for both blocked and 
spaced study presentation. Based on this result only, 
it could be argued that this difference between 
prototypes and exemplars is due to differences in the 
process of storage or retrieval or both. However, the 
results for the distractors show that the difference 
between exemplars and prototypes is relatively 
constant when varying category length from 0 to 3 to 
7. If it is assumed that the advantage of prototypes 
over exemplars for long category lengths was only 
due to retrieval differences, then an interaction 
between category length and category membership 
would be expected for distractors, a result that was 
not observed.  Therefore, the results suggest that the 
cross-over interaction needs to be explained by 
differential storage advantages for prototypes in 
longer category lengths. It will be assumed that 
memory traces are especially strong for prototypes in 
the longer category lengths. Possible underlying 
mechanisms for this assumption are similar to the 
underlying mechanism for explaining the difference 
between blocked and spaced presentation. It is 
possible that the related exemplars implicitly activate 
the prototype word so that the presentation of the 
prototype word on the study list leads to strong traces 
in memory. Similarly, participants upon presentation 
of the prototype word could rehearse the prototype 
word more because the prototype word describes the 
semantic or orthographic category best. We will 
discuss this more in the modeling of these results. 

 
Model Fits of Experiment 2  

Two of the results from Experiment 2 require 
additions to the model applied to Experiment 1. 1) 
the difference between blocked and spaced study 
presentation (since the order of presentation was at 
first not assumed to play a role), and 2) the cross-over 
interaction between category length and category 
membership for targets. The second of these requires 
some discussion. 

Note that the present model applied to 
Experiment 2 can predict differences between target 
prototypes and exemplars on the basis of word 
frequency differences. In Experiment 2 the prototype 
words had higher word frequency than the exemplar 
words, which could explain the lower hit rates for 
prototype than exemplar words for category length 3 
(and higher false alarm rates for distractors). Also, 
the model can predict an interaction between 
category length and category membership for targets: 
prototype words are similar to more words than 
exemplars, and hence the log odds for these words 
grows faster than for exemplars as category length 
grows. However, some preliminary simulations 
suggested that the observed crossover interactions 
were too large for the model to predict adequately. 
Therefore, it was decided to augment the model to 
handle both this interaction and the blocked/spaced 
differences.  

First, it is assumed that words in the blocked 
presentation condition lead to stronger traces in 
memory than in the spaced presentation condition. A 
justification relies on the possibility that participants 
notice the category structure, and such knowledge 
allows better rehearsal and coding. The probability of 
storing features in blocked and spaced words was 
parameterized by  ublocked and uspaced. These 
parameters were set at .8 and .7 respectively. 
Therefore, in the blocked condition, more complete 
traces were formed in memory than in the spaced 
condition. This predicts the observed result of higher 
hit rates and lower false alarm rates for blocked than 
spaced words. Second, it was assumed that there was 
a storage advantage for prototypes in the category 
length 7 condition and that this storage advantage 
was larger for blocked words than spaced words. A 
justification could be based on the development of 
IAR's for the prototype, IAR's that grow more 
prevalent as category length grows. Two parameters 
ublocked,prot7 and uspaced,prot7 were designated for the 
probability of storing features for the target 
prototypes of category length 7 in the blocked and 
spaced condition respectively. These were set 
respectively at 1.0 and .8 respectively. Together, the 
four parameters introduced in this section predict a 
storage advantage for blocked words over spaced 
words and prototype category length 7 words over all 
other words. One other change proved helpful in 
modeling in this study: the centering of responses for 
recognition and similarity judgments appeared 
different, so we allowed separate estimates of the 
centering parameter, γ: γrecognition=.5, and γsimilarity=1.0. 

Parameters. In addition to the parameters just 
discussed, there were the three basic parameters that 
were set at: c=.4, σn =.35, b=5.  
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Recognition and Similarity Judgments. The 
model’s predictions for Experiment 2 are shown 
figure 7 and 8 for the semantic and orthographic 
categories respectively. The higher false alarm rates 
for prototype distractors over exemplar distractors 
was predicted  by word frequency differences (the 
prototype words had higher word frequency than 
exemplar words). The cross-over interaction between 
category length and category membership for target 
items was predicted because of two factors. Because 
the prototype words had higher word frequency, a 
lower hit rate was predicted for the prototype words  
than exemplar words. However, because the 
prototype words for category length 7 are stored 
better than exemplar words, they are retrieved better. 
Together, these two factors combined to predict the 
cross-over interaction. For the semantic similarity 
judgments, the model predicted no category length 
effect for orthographic categories, because the 
orthographic features do not participate in the 
calculation of familiarity.    

Sensitivity. Table 1 shows the predicted d’ 
results. Overall, predicted d’ was higher than 
observed. Since we only sought qualitative fits to the 
observed data, other parameter settings were not tried 
to lower the predicted d’. The pattern of predicted 
results for d’ was similar to the pattern of observed 
results. Blocked presentation led to higher d’ than 
spaced presentation. This was due to the stronger 
traces in the blocked presentation than spaced 
presentation.  

Individual word correlations. The between subject 
factor of study presentation was collapsed for all 
correlational analyses of observed and predicted z-
transformed ratings for individual words. This 
increased the median number of participants that 
rated each individual word to 12  (as opposed to 6 
when the blocked and spaced conditions would be 
analyzed separately). Table 2 shows that the 
correlation between observed and predicted Z-scores 
for all words of Experiment 2 was .63 for the 
recognition judgments and .49 for the similarity 
judgments. When the scrambling procedure was 
applied, these correlations were reduced to .58 and 
.44 respectively. These reductions were statistically 
significant. This shows that most of the variance in 
performance was explained by between condition 
differences, including similarity factors, and that a 
small but significant portion was explained by 
similarity differences for individual words within 
condition.    

 
Experiment 3 

Some word pairs clearly have asymmetric 
associations between them. For example, the cue 
“fib” is strongly associated with “lie” but not vice 

versa. Ash and Ebenholtz (1962) have argued that the 
differences between forward and backward 
associations are not due to representational 
differences but because of process differences. If A-
>B is stronger than B->A, this is because the item B 
comes more readily to mind. Similarly, Nosofsky 
(1991) has argued that asymmetric similarities can be 
explained solely on the basis of stimulus differences 
such as strength, salience or frequency rather than on 
the basis of asymmetries underlying similarity 
relations.  

In WAS, the similarity between word A and B is 
by definition equivalent to the similarity between 
words B and A. One way to predict asymmetries in 
performance utilizes word frequency differences. in 
the word association norms, it is almost invariably 
the case that if the association strength from A to B is 
stronger than from B to A (denoted by A->B), then 
the word frequency for A is lower than B. This is 
consistent with Ash and Ebenholtz (1962) and 
Nosofsky’s (1991) view that the asymmetry can be 
explained by stimulus differences.   

In this experiment, the idea is to use distractors 
that are forward, backward and bi-directional 
associatively related to target words and compare the 
performance for these related distractor words with 
unrelated distractor words that are either low or high 
frequency words. For example, suppose A is studied 
and F is tested as a distractor where F is a strong 
associate of A but not vice versa (i.e., A->F). 
Similarly, in other conditions, the false alarm rate of 
a word G is tested where G is backward associated to 
the studied word B but not vice versa (i.e., B<-G). 
The F words are almost guaranteed to be words with 
higher word frequencies than the G words. Based on 
these word frequency differences, a higher false 
alarm rate for the F words is predicted than for the G 
words. The interesting comparison is of the related 
distractor words F and G with unrelated distractor 
words with similar word frequencies. Differences 
between the false alarm rates for F and G and the 
unrelated distractor words that have similar word 
frequencies, cannot be due to word frequency and can 
only be explained on the basis of differences in 
semantic similarity. Specifically, the model predicts 
that the F and G words have higher false alarm rates 
than corresponding unrelated distractor conditions 
because the semantic features of the F and G words 
overlap more with the memory contents than 
unrelated distractor words.   

 
Method  

Design and participants. The design formed a ( 3 
x 2 ) + 2 factorial design. The main factor was the 
directionality of association between study and test 
items and was varied in three levels: forward, 
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backward, and bi-directional. The second factor was 
oldness: words were tested as targets or distractors. 
The six conditions from these two factors were 
labeled A, B, C, F, G, and H. Words from the three 
target conditions A, B, and C, and three distractor 
conditions F, G, and H were drawn from associative 
pairs  
A->F, B<-G, and C<->H respectively. Two distractor 
conditions were added with low and high frequency 
words that were unrelated to studied words. All 
conditions were tested in a within subject design. 
Sixty-two undergraduate students from the same pool 
of participants mentioned in Experiment 1 
participated in the experiment.  

Materials. Appendix C shows the words of this 
experiment. All words were selected from the pool of 
words from the production norms of Nelson et al. 
(1998). Two sets of 10 asymmetric associative word 
pairs, X->Y were created by selecting word pairs 
with strong forward and weak or absent backward 
associative strengths. The mean forward associative 
strength from X to Y was .812 (SD=.063) and mean 
backward associative strength from Y to X was .0301 
(SD=.029). The mean Kucera and Francis frequency 
count was 2.05 (SD=2.31) for the X words and 76.8 
(SD=72.3) for the Y words.   One set of 10 bi-
directional associative word pairs X<->Y was created 
by selecting word pairs with approximately equal 
forward and backward associative strengths. The 
mean forward and backward associative strengths 
was .356 (SD=.21). The mean Kucera and Francis 
frequency was 177 (SD=176) for these words. Two 
sets of 15 control words were created that were 
unrelated to the associatively related word pairs. The 
two sets contained low and high frequency words 
with mean frequencies of 2.00 (SD=1.13) and 306 
(SD=106) respectively.   

Procedure. Participants studied 120 study words 
for 1.3 s. each. They were instructed to study the 
words for a later memory test. The study list 
contained 90 filler words that were randomly selected 
from the pool of words from the production norms 
and 30 experimental words. These words contained 
an equal number of words from condition A, B, and 
C. Words from condition A were words with strong 
forward associations and weak backward associations 
(A->F). Words from condition B had the opposite 
pattern: weak forward associations and strong 
backward associations (B<-G). Words from condition 
C were words with strong forward and backward 
associations (C<->H). To control for word specific 
effects, two sets of words A, B, and C were created 
for the experiment. In set 1, the A, B, and C words 
were the left words of group 1, right words of group 
2, and left words of group X<->Y words listed in 

Appendix C. In set 2, the A, B, and C words were the 
left words of group 2, right words of group 1, and 
right words of group X<->Y words listed in 
Appendix C. The participants were randomly 
assigned to one of two sets of experimental words. 
The order of the words on the study list was 
randomized for each participant with the constraint 
that 5 filler words were presented at the start and end 
of the study list. 

After the study list, participants were given 
instructions about the test phase. These instructions 
were identical to Experiment 1. Participants were 
given 90 test words for which they had to give 
recognition and similarity judgments as in 
Experiment 1. The test words consisted of 30 old 
words and 60 new words. The 30 target words 
consisted of the 10 words from each the conditions 
A, B, and C. The 60 distractor words contained 30  
distractors that were related to the study words and 
30 words that were unrelated to the study words. The 
30 related distractors consisted of 10 words from 
each of the conditions F, G, and H. Words from 
condition F were forward associatively related to the 
study words from condition A: they are produced as 
associates by A but do not produce A as associates 
(A->F). Words from condition G were backward 
associatively related to the study words of condition 
B (B<-G). Words from condition H were bi-
directional associatively related to study words of 
condition H (C<->H). For participants who studied 
set 1 of experimental words, the words from 
conditions F, G, and H were selected from the right 
words of group 1, left words of group 2 and left 
words of group X<->Y from Appendix C.  For 
participants who studied set 2 of experimental words, 
the words from conditions F, G, and H were selected 
from the left words of group 1, right words of group 
2 and right words of group X<->Y from Appendix C.  
The 30 unrelated distractor words consisted of 15 low 
and 15 high frequency control words listed in 
Appendix C. The order of the test words was 
randomized for each participant. 
Results and Discussion 

As in Experiment 1 and 2, the recognition and 
similarity judgments were z-score transformed. The 
mean z-scores and standard errors for the three target, 
three related distractor, and two unrelated distractor 
conditions are shown in Figure 9. The d’ results for 
several target-distractor condition comparisons are 
listed in Table 1. Separate ANOVA’s were 
performed on the z-scores of target and distractor 
conditions. Also, ANOVA’s were performed on the 
sensitivity results on the recognition and similarity 
ratings. 
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Recognition judgments. Figure 9 shows that the 
target words from conditions A, B, and C were rated 
increasingly as less old. For the related distractor 
conditions, the lowest old ratings were given to 
words from condition G, while words from 
conditions F and H were given somewhat below 
average old ratings. The high frequency unrelated 
distractor words were rated significantly more old 
than the low frequency unrelated distractor words 
[F(1,61)=67.9, MSE=.0416]. The old ratings were 

significantly higher for A words than B words 
[F(1,61)=5.46, MSE=.136] while the old ratings were 
significantly higher for F words than G words 
[F(1,61)=146, MSE=.0626]. These differences are 
consistent with a mirror effect explanation based on 
word frequency differences. The B and F words were 
high frequency words while the A and G words were 
low frequency words: high frequency words tend to 
lead to lower hit and higher false alarm rates than low 

 

Figure 9. Observed and predicted results of Experiment 3. 
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frequency words (i.e., the mirror effect, Glanzer & 
Adams 1985).  

The interesting comparison is between unrelated 
and related distractor conditions that were similar in 
word frequency. The model predicted that old ratings 
should be higher for related distractors than unrelated 
distractors if the words have similar word 
frequencies. The high frequency words from related 
distractor conditions F and H were rated as 
significantly more old than the unrelated high 
frequency distractor words [F(1,61)=19.7, 
MSE=.053, and F(1,61)=20.2, MSE=.0828, 
respectively]. This confirms the prediction of the 
model. However, the unrelated low frequency 
distractor words were rated as more old than the 
words from condition G, a difference that did not 
reach statistical significance [F(1,61)=3.00, 
MSE=.0338, p<.088]. Because the model predicts 
that related distractors lead to higher old ratings than 
unrelated distractors, this observed trend in the 
opposite direction is an interesting finding.  

Table 1 lists the participants’ ability to 
discriminate between old and new words for various 
target and distractor conditions. The sensitivity in 
discriminating targets and distractors condition pairs 
was significantly lower for pairs that were forward 
associatively related (OLD-A vs. NEW-F) than pairs 
that were backward associatively related (OLD-B vs. 
NEW-G), [ F(1,61)=30.9, MSE=.824].   

Similarity judgments. The results for the 
similarity judgments were similar to the results of the 
recognition judgments with the difference that related 
distractors received similarity ratings that were about 
as high as the similarity ratings for target words. The 
d’ results reflect that: the sensitivities of target and 
related distractor conditions are close to zero. 
Interestingly, the low frequency words from 
condition G that received lower recognition ratings 
than unrelated low frequency distractor words, 
received higher similarity ratings than the unrelated 
low frequency distractors [ F(1,61)=66.1, 
MSE=.158]. 

Number of ratings per words . There were 41 and 
21 participants that received study and test list 1 and 
2 respectively. Since each participant rated all words 
from the pool of all possible test words, there were 41 
and 21 ratings for each test word from sets 1 and 2 
respectively. 

 
Model Fits of Experiment 3  

The model outlined in the Introduction, and 
applied to experiment 1, was applied to Experiment 3 
without the special assumptions made for Experiment 
2 . 

Parameters. The four parameters to generate 
predictions for this experiment were set at: c=0.3, σn 
=.35, b=5, AND γ=3.. 

Recognition and Similarity Judgments. Figure 9 
shows the predicted recognition and similarity 
results. In addition to the several ways in which the 
model made the correct  predictions, there were some 
observed effects that were not handled well by the 
model. First, the difference between target conditions 
A and B was correctly predicted. The model 
predicted these differences based on word frequency. 
Words from condition A had lower word frequency 
than words from condition B. The difference between 
the unrelated low and high frequency distractors was 
also correctly predicted by word frequency 
differences. For the recognition ratings, the model 
predicted that related distractors from conditions F, 
G, and H have higher old ratings than the unrelated 
distractor conditions with similar word frequencies. 
This is because the related distractors overlap more 
with the memory contents than unrelated distractors. 
However, as was pointed out in the previous section, 
the results showed a trend for the condition G words 
to have lower old ratings than the unrelated low 
frequency distractors.   

Another mismatch between observed and 
predicted results is for the condition C words. They 
were incorrectly predicted to have higher old ratings 
than condition B words despite the fact that the word 
frequency of condition C words was higher than 
condition B words. Also, the model incorrectly 
predicted that condition C words received the highest 
similarity ratings. This suggests that condition C 
words are not placed correctly with respect to the 
other study words (condition A and B) in the 
semantic space formed by WAS. 

 
General Discussion 

 
The memory model presented in this paper brings 

together the idea of explicit representation of 
orthographic and semantic features with a process 
model operating on those features. Words are 
represented by vectors of feature values that are 
based on an analysis of the  semantic and 
orthographic features of words. The vectors of 
feature values representing various semantic aspects 
of words came from the Word Association Space. 
This space was developed by analyzing the 
associative relationships of a large database of free 
association norms and representing words with 
similar associative patterns with similar feature 
vectors. To represent orthography, the letters of the 
words were encoded.  These representations were 
coupled with a process model for recognition 
memory. This model was based on the REM model, 
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which used Bayesian principles to decide whether a 
memory probe is old or new.  

One novel aspect in this model was the distinction 
between recognition and similarity judgments. The 
ability of participants to differentiate between 
recognition and similarity judgments was apparent in 
all experiments. Participants could distinguish 
between distractors that preserved the meaning of one 
of the themes on the study list versus distractors that 
were not similar to any words on the study list. In the 
model, the  recognition judgments were assumed to 
rely on both the semantic and orthographic  overlap 
of probe and memory contents while (semantic) 
similarity judgments were assumed to rely only on 
the semantic overlap of probe and memory contents. 
In Experiment 2, it was found that with 
orthographically related distractors, the category 
length of orthographic categories had no effect on 
(semantic) similarity judgments but increased the 
false alarms for the recognition judgments. This is 
consistent with the assumption that orthographic 
features are not involved in the calculation of 
similarity judgments.     

The three experiments in this paper explored 
various predictions of the model with a focus on the 
interplay between semantic and orthographic 
similarity between probe and memory contents. The 
predictions of the model were tested at two different 
levels: at the level of condition means and at the level 
of individual word performance. In all three 
experiments, the model successfully predicted most 
of the qualitative differences in condition means. 
This suggests that the similarity relationships in the 
semantic space and in the orthographic representation 
are useful to predict memory performance.  

Even stronger evidence for the idea that similarity 
relations among words explains recognition and 
similarity judgment data comes from the within 
condition correlation data. The correlational analyses 
showed that a small but significant part of the 
variance in performance was due to similarity 
relations due to differences among words within 
conditions, even though these words generally were 
chosen so such differences would be small.   

An undesirable aspect of the present approach is 
the rather ad hoc fashion in which a word frequency 
mechanism had to be appended to the basic model. It 
may well be that a feature frequency approach would 
provide a more principled account, but this would 
only be possible in conjunction with a different word 
space, one in which high frequency words were 
clumped together, and one in which high frequency 
words had high frequency features that were clumped 
near the center of each featural dimension. WAS 
represented similarity by inner products, resulting in 
high frequency words being pushed to the outside of 

the space. This problem was solved by normalizing 
the vector lengths, but at the cost of removing word 
frequency differences, in turn requiring the model to 
be augmented by a different word frequency 
mechanism of a very ad hoc nature. There is 
obviously room here for further research and 
improvement of the models. 

There are several areas ways in which the model 
can be extended and there are several new 
assumptions that can be tested. For example, one 
major assumption in the REM model and this 
memory model is that the features that represent 
different aspects of words can be stored in one trace. 
Instead, it could be assumed that separate attributes 
such as semantic and physical features are stored in 
separate traces. This would lead to a system in which 
familiarity is calculated for the semantic and physical 
contents of memory separately as opposed integrally. 
Preliminary simulations have suggested that there is 
not much difference between these two recognition 
memory models. 

 
Notes 

 
1. In part I of this research, Table 5, it was shown 

that with and without the normalization of the vector 
lengths, WAS is sensitive to semantic information 
because it predicts much larger within category 
similarities than between category similarity where 
the categories were defined semantically. 

2. The distribution g of all stored feature values 
was determined by integrating over the probe feature 
distribution and noise distribution: each stored 
feature value could have been produced by a 
combination of each probe feature value and some 
noise value. 

3. Even though the model i s quite simple in its 
mathematical form, the calculations are 
computationally very involved because of Equation 
(5), in which the likelihood ratio is calculated for a 
single trace with 400 semantic features. The 
computational requirements of the simulations 
prevented us from applying model fitting procedures.   

4. Because the scrambling is random, the obtained 
correlation obtained with the scrambling procedure is 
itself a stochastic variable. We report the correlation 
that is an average of the correlation by performing 
scrambling procedure 100 times. 

5. The u storage parameter that determined the 
probability that orthographic and semantic features 
were stored was set at one so that this part of this 
storage process that determines the strength of traces 
in memory was effectively not used. 
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Appendix A 
Words of Experiment 1  

# WF Study Words Test Words 

    
1 L RATTLE, REPTILE, VENOM, COBRA SERPENT, LIZARD, FANGS, PONY 

 H BITE, WORM, GRASS, POISON SNAKE, DEATH, SLIMY, HEAL 

2 L ROYAL, PRINCE, PALACE, CHESS THRONE, EMPEROR, GROOM, RUBY 

  H CASTLE, KING, RULER, PRINCESS QUEEN, CROWN, LEADER, FANTASY 

3 L OAR, ROW, VESSEL, SAILING YACHT, RAFT, CANAL, REFLECT 

 H CAPTAIN, SHIP, SAIL, BOAT SAILOR, NAVY, RIVER, HEAT 

4 L UNTRUTHFUL, FIB, DECEPTION, RUMOR PERJURY, FRAUD, SINCERE, IMPRESSION 

 H FALSE, CHEAT, TRUE, TRUTH DENY, LIAR, FACT, SHORT 

5 L GARAGE, BUMPER, DRIVEWAY, AUTOMOBILE VAN, WINDSHIELD, COMPACT, LEVER 

 H TRUCK, DRIVE, DRIVER, TIRE VEHICLE, WHEEL, BUS, ICE 

6 L BLAST, ERUPT, BURST, ATOMIC EXPLOSION, DYNAMITE, NOISY, SHIVER 

 H BOMB, BLOW, BANG, NOISE LOUD, BOOM, SOUND, POOL 

7 L MUFFIN, STALE, ROLL, CRUST BISCUIT, BAKER, SLICE, DIVER 

 H BUTTER, WHEAT, BREAD, TOAST DOUGH, JELLY, CAKE, WEAK 

8 L DUNGEON, CAPTIVE, CELL, PROSECUTE CONVICT, INMATE, FUGITIVE, DISGRACE 
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 H PRISON, CRIMINAL, PUNISHMENT, PRISONER JAIL, CRIME, COURT, ANGRY 

9 L STEEPLE, BAPTIST, MINISTER, PRAYER CATHEDRAL, SYNAGOGUE, BLESSING, 
PHILOSOPHY 

 H PRIEST, CATHOLIC, RELIGION, TEMPLE CHURCH, BIBLE, FAITH, HAT 

10 L PETALS, DAISY, STEM, TULIP BLOOM, VIOLET, MEADOW, COCOON 

 H GARDEN, ROSE, FLOWER, VASE PLANT, SEED, POT, LADY 

11 L FLASH, BOLT, VOLT, UMBRELLA  THUNDER, BEAM, FLASHLIGHT, DELAY 

 H CLOUD, BRIGHT, STORM, ELECTRICITY RAIN, WIND, SNOW, PENCIL 

12 L BIZARRE, UNCOMMON, ABNORMAL, ORDINARY INSANE, IRREGULAR, AWKWARD, TWICE 

 H WEIRD, UNIQUE, CRAZY, COMMON STRANGE, AVERAGE, WILD, KIND 

13 L ADORE, AFFECTION, CUDDLE, SWEETHEART PASSION, VALENTINE, AFFAIR, SNOTTY 

 H CARE, LIKE, ROMANCE, MOUTH KISS, RELA TIONSHIP, MARRIAGE, ROUGH 

14 L MEEK, BASHFUL, TIMID, INTROVERT MODEST, WITHDRAWN, HUMILIATE, CHIME 

  H SILENT, QUIET, EMBARRASS, OUTGOING SHY, CALM, SECRET, VACATION 

15 L INSTRUCTOR, LEARNER, INSTRUCT, PUPIL EDUCATE, FACULTY, CHALKBOARD, ESTEEM 

 H INTELLIGENT, LEARN, STUDENT, TEACH PROFESSOR, COLLEGE, BRAIN, CLOCK 

16 L SKUNK, SNIFF, FRAGRANCE, COLOGNE STENCH, FOUL, CIGAR, THANKSGIVING 

 H TASTE, STINK, NOSE, PERFUME ODOR, SENSE, ONION, MALE 

17 L GIGGLE, PRANK, RIDDLE, COMEDIAN HILARIOUS, AMUSE, WIT, FRECKLE 

 H JOKE, LAUGH, CLOWN, CRY FUNNY, COMEDY, SMILE, ANXIOUS 

18 L WEAVE, SEAM, KNIT, CROCHET STITCH, SPOOL, PRICK, TREND 

 H STRING, SEW, PIN, THREAD NEEDLE, YARN, CLOTH, SING 

Notes: WF=word frequency; the test words appear in order of semantic similarity according to the semantic space 
 
 

Appendix B 
Words of Experiment 2  

 
Prototypes  Exemplars 
    
  

Semantic Categories 
  
LOAN CASH, FEE, FUND, BANKER, OWE, DEBT, CHECKBOOK, PROFIT, DEPOSIT 

BELIEVE DECEIVE, RUMOR, TRUTH, DECEPTION, FACT, LIAR, FIB, HONESTY, BLUFF 

DOOR ENTRANCE, KNOB, HALLWAY, KEY, LOCK, CORRIDOR, MAT, HINGE, THRESHOLD 

DUST GRIT, FILTH, SOOT, SCUM, GROUND, DIRT, PILE, SOIL, MUD 

WET MOIST, RAINY, DRENCH, DEW, GALOSHES, SLIPPERY, SOAK, PUDDLE, DAMP 

KING CROWN, THRONE, EMPEROR, MONARCH, CASTLE, PALACE, PRINCESS, ROYALTY, QUEEN 

AFRAID PANIC, FRIGHT, TERROR, SUPERSTITION, FEAR, MONSTER, HAUNT, SPOOK, SCARED 

VICTORY CONQUER, DEFEAT, CONTEST, COMPETE, CHAMPION, AWARD, TRIUMPH, TROPHY, WIN 

JUDGE LAWYER, VERDICT, ATTORNEY, WITNESS, COURT, TESTIFY, EVIDENCE, GAVEL, TRIAL 

TRAIN UNDERGROUND, CONDUCTOR, CABOOSE, SUBWAY, EXPRESS, TUNNEL, WAGON,  
CROSSING, STATION 

HUSBAND COMPANION, ENGAGE, PARTNER, FAITHFUL, MATE, LOVER, WED, SPOUSE, MARRY 

PHONE BOOTH, CORD, DIAL, COMMUNICATION, OPERATOR, SPEAKER, EXTENSION, MESSAGE, RUNG 
WINTER SHIVER, FRIGID, FROST, IGLOO, ICEBERG, CHILL, ARCTIC, FREEZER, COLD 

SLEEP SNOOZE, REST, HAMMOCK, WAKE, PAJAMAS, SLUMBER, DROWSY, NAP, NIGHTGOWN 

EYE CONTACTS, VISION, FOCUS, SQUINT, SEE, LENS, VIEW, BLIND, LASH 
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BLOOD PLASMA, DONOR, FLESH, ARTERY, VAMPIRE, PRICK, DRACULA, TRANSPLANT, VEIN 

POLITICS CANDIDATE, LEGISLATURE, DEMOCRACY, CONGRESS, LEADERSHIP, PRESIDENT,  
CAMPAIGN, GOVERNMENT, SENATOR 

SUIT BUTTON, VEST, COLLAR, BLOUSE, SHIRT, TUXEDO, JACKET, LAPEL, KNOT 

HORSE SADDLE, TROT, UNICORN, COLT, MARE, RANCH, STABLE, RODEO, GALLOP 

CHAIR BENCH, SEAT, TABLE, WICKER, STOOL, COUCH, SOFA, RECLINER, SITTING 

TELEVISION PROGRAM, CHANNEL, ANTENNA, NETWORK, ENTERTAINMENT, ADVERTISEMENT,  CABLE, MEDIA, 
COMMERCIAL 

DINNER CHINESE, FEAST, BANQUET, THANKSGIVING, MEAL, CAFETERIA, SUPPER, TRAY, LUNCH 

SNAKE SERPENT, RATTLE, DEADLY, SLITHER, COBRA, BITE, LIZARD, VENOM, REPTILE 

TEXT ALMANAC, AUTHOR, LITERATURE, PAGE, PUBLISHER, LIBRARY, READER, NOVEL,  CHAPTER 

  

Orthographic Categories 

  

BAG BEG, BAN, BAR, BAT, BUG, BAD, BIG, BAY, BOG 

HOT HIT, HUT, HOE, HOG, HOW, LOT, HAT, HOP, DOT 

RAW RAY, JAW, RAP, RAT, RAM, ROW, PAW, LAW, RAG 

SIN SIX, GIN, SIP, SUN, SON, FIN, SIT, PIN, KIN 

DIE ACE, TIE, PIE, DIM, LIE, DIG, DUE, DIP, DOE 

TEN TAN, BED, TON, PEN, TIN, HEN, TEA, MEN, BEE 

BEAT BENT, BOAT, BEST, BEAR, BELT, BEAD, BEET, BEAN, BEAM 

CARE CASE, CAGE, CAPE, CANE, CART, CAKE, CARD, CAFE, CAVE 

LINE DINE, LIKE, LICE, LINT, LIFE, LANE, LINK, LIME, FINE 

HALL HALF, HAUL, FALL, CALL, HALT, BALL, HAIL, HALO, HELL 

MASS BASS, MESS, MARS, BASE, MISS, MASH, PASS, MOSS, MASK 

FORM FORK, DORM, FIRM, WORM, FOAM, FORT, BOOM, NORM, FARM 

LEAD DEAD, LEAP, HEAD, LEAN, READ, LEAK, LEAF, LOAD, LEND 

SALE SAFE, TALE, SALT, SAVE, SAGE, MALE, SAME, PALE, SOLE 

RACE RARE, BAKE, RAGE, RACK, LACE, RICE, RAKE, RATE, FACE 

WIDE WIRE, TIDE, WINE, WIPE, HIDE, RIDE, WISE, WIFE, SIDE 

FILL FILM, FELL, BILL, KILL, FULL, MILL, FILE, DILL, HILL 

LOST LAST, LOSS, COST, LOSE, MOST, LUST, LOFT, HOST, LIST 

SHARE SHAPE, SCARE, SHAKE, SHAME, SHAVE, SHADE, SHARK, SHORE, SHARP 

GRACE BRAKE, TRACE, BRAVE, GRADE, GRAVE, CRACK, GRAZE, GRAPE, GRATE 

FIGHT RIGHT, SIGHT, EIGHT, DIGIT, MIGHT, FIRST, NIGHT, TIGHT, LIGHT 

MATCH DITCH, LATCH, HATCH, MARSH, MARCH, WATCH, CATCH, PATCH, HITCH 

PRIME PRIDE, PRICE, BRIBE, CHIME, PRIZE, GRIME, CRIME, BRIDE, DRIVE 

ROUND SOUND, COUNT, ROUGH, ROUGE, HOUND, FOUND, BOUND, WOUND, POUND 

    

Note: the last two words of each category are only tested as new words  
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Appendix C 
Words of Experiment 3  

 
   
X->Y (Group 1) X->Y (Group 2) X<->Y 
   
FIB -  LIE KIWI -  FRUIT PRIVATE -  PUBLIC 
MOO -  COW SWATTER -  FLY ACTION -  REACTION 
MEOW -  CAT DASHBOARD -  CAR CAUSE -  EFFECT 
TARDY -  LATE SCISSORS -  CUT ALONE -  LONELY 
GLACIER -  ICE TROUT -  FISH FOOD -  EAT 
GIGGLE -  LAUGH SLIPPERY -  WET GIRLS -  BOYS 
HILARIOUS -  FUNNY BLAZE -  FIRE GOOD -  BAD 
BOUQUET -  FLOWERS BRAWL -  FIGHT ADMIRE -  RESPECT 
TELLER -  BANK BUMBLE -  BEE DECISION -  CHOICE 
DESPISE -  HATE CHIRP -  BIRD SAD -  HAPPY 
      
   
Low Frequency Control High Frequency Control 
   
SAXOPHONE WIFE  
ABUSE THING  
CROCHET SHORT  
GRANITE COMPANY  
SKYSCRAPER TODAY  
LOSER PROGRAM  
BURGLARY EVIDENCE  
HANDCUFFS GENERAL  
SURF LAND  
CAULIFLOWER SOUND  
LATHER ART  
ASHTRAY COURSE  
CONCEIT EYES  
CLENCH FORCE  
INSTRUCT THOUGHT  
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Part III: 
Feature Frequency Effects in Recognition 

Memory 
 

Low frequency words are better recognized than 
high frequency words (Glanzer & Adams, 1985; 
McCormack & Swenson, 1972; Schulman, 1967; 
Shepard, 1967; but see Wixted, 1992), a phenomenon 
known as the word-frequency effect.  For single-item 
yes-no recognition (i.e. old-new), hit rates (correctly 
responding “old” to an old item) are higher for low 
frequency words than for high frequency words and 
false alarm rates (incorrectly responding “old” to a 
new item) are higher for high frequency words than 
low frequency words (McCormack & Swenson, 
1972; Glanzer & Adams 1985; Schulman, 1967; 
Shepard, 1967).  

Several different explanations for the word-
frequency effect have been proposed; probably 
because word frequency is correlated with many 
variables.  The advantage for low frequency words 
has been attributed to elevated attention (Brown, 
1976; Glanzer & Adams, 1990; Lockhart, Craik, & 
Jacoby, 1976; Maddox & Estes, 1997; Shepard, 
1967), extra rehearsal time (Mandler, 1980), 
differences in pre-experimental recency 
(Scarborough, Cortese, & Scarborough, 1977; 
Underwood & Schultz, 1960), noise from extra-list 
memory (Estes, 1994; Maddox & Estes, 1997; 
Shiffrin & Steyvers, 1997), number of different 
contexts (Dennis & Humphreys, in review) and 
differences in the variability with which words are 
encoded (McClelland & Chappell, 1998). The 
Retrieving Effectively from Memory theory (REM, 
Shiffrin & Steyvers, 1997, 1998) accounts for the 
word-frequency effect on the assumption that the 
memory representations of low-frequency words tend 
to be made up of less common features than the 
memory representations of high-frequency words.  It 
is of course possible that several or all of the 
mechanisms proposed are operating simultaneously.  
It should be pointed out that while Shiffrin and 
Steyvers (1997) employed the feature frequency 
assumption as the sole mechanism to predict word 
frequency effects, they were careful to point out that 
many other plausible factors could also contribute to 
word frequency effects. In this paper, however, we 
empirically test the feature-frequency assumption.   

Landauer and Streeter (1973) pointed out that the 
frequency distributions of orthographic and phonetic 
features are dependent on normative word-frequency. 
For example, the letter “X” is twice as likely to occur 
in rare words than in common words.  Almost all 
implementations of the REM model assume that 

features vary in their environmental frequency, or 
‘base rate’. This feature frequency assumption can be 
used to explain word frequency effects: because high 
frequency words are encountered more often, the 
features that make up high frequency words are also 
encountered more often. This means that feature 
frequency is correlated with normative word 
frequency.  In REM (Shiffrin & Steyvers, 1997), high 
frequency words were represented with vectors 
having more common feature values and low 
frequency words were represented with vectors 
having more rare feature values. Because the REM 
model is sensitive to the diagnosticity of the features 
that make up words (memory traces with rare 
features that match the test features provide better 
evidence), it predicted an advantage for low 
frequency words over high frequency words as well 
as mirror effects for hit and false alarm rates. 

Convergent evidence for the feature-frequency 
assumption comes from a set of experiments by 
Zechmeister (1969, 1972) that showed that words 
that were rated as  orthographically distinct (e.g. 
sylph) were better recognized than words rated less 
orthographically distinct (e.g. parse).  He also 
showed that the distinctiveness ratings were related to 
both the frequency of letter combinations and 
orthographic distinctiveness.  

In this study, instead of using ratings, we assess 
feature frequency by measures that are directly based 
on the frequencies of the individual letters that make 
up words.  The results of this study will be modeled 
by two versions of the REM model. The first model 
is based on the REM model as described by Shiffrin 
and Steyvers (1997) in which words are represented 
by arbitrary feature values. In the second model, the 
representation of the words is directly based on the 
orthography of the words used in the experiment and 
on the environmental base rates of letters occurring in 
words.  

 
Experiment  

Feature frequency and natural language word 
frequency are correlated variables: the frequency of a 
word determines the frequency of the letters that 
occur in the word. The experiment  was designed to 
test the hypothesis that the frequency of occurrence 
of orthographic features in natural language, 
operationally defined as letters, affects the 
recognition of words independently of natural 
language word frequency.  According to the feature-
frequency account of the word-frequency effect for 
recognition (Shiffrin & Steyvers, 1997; Zechmeister, 
1969, 1972), words comprised primarily of low-
frequency letters should be better recognized than 
words comprised primarily of high-frequency letters, 
independent of other factors correlated with a word’s 
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normative frequency.  In contrast, if orthographic 
feature frequency does not affect word recognition, 
then words comprised of common letters and words 
comprised of uncommon letters should be recognized 
equally well, if both groups are of equal normative 
word frequency. 
Method 

Participants.  Fifty-three Indiana University 
students who were enrolled in introductory 
psychology courses participated in exchange for 
course credit. 

Design and Materials.  Normative word frequency 
and normative letter frequency were manipulated as 
within-subject factors in a 2 x 2 factorial design.  The 
dependent variables were the probability of 
responding “old” and sensitivity operationally 
defined as d  a (Macmillan & Creelman, 1991; Swets 
& Pickett, 1982). 

Two hundred and eighty-eight words were 
selected from the CELEX database (Burnage, 1998).  
The stimuli were organized into four groups (72 in 
each), according to orthographic feature frequency 
and normative word frequency: low feature 
frequency, low word frequency (LFF-LWF); high 
feature frequency, low word frequency (HFF-LWF); 
low feature frequency, high word frequency (LFF-
HWF); and high feature frequency, high word 
frequency (HFF-HWF). The stimuli are listed in the 
Appendix A1.  

High-frequency words were operationally defined 
as those occurring between 15 and 39 times per 
million of words in the natural language and low-
frequency words were as those occurring between 3 
and 7 times per million of words in the natural 
language. Orthographic feature frequency was 
operationally defined in the following manner.  The 
relative frequencies of letters occurring in the first, 
interior, and the final positions of the words included 
in the CELEX database were computed as follows: in 
each of these three positions, if a letter was found in a 
word it was counted as having occurred as many 
times as the frequency count of that word in the 
language (per million). Thus each letter was weighted 
by the normative frequencies of the words in which a 
letter appeared. Table 1 lists the resultant 
orthographic feature frequencies of the first, interior, 
and final positions. Note for example that the letter 
“y” is the fourth most frequent letter at the ending of 
a word but is the fifth least frequent letter in the 
interior positions of a word. 

The overall orthographic feature frequency of a 
given word was then measured in two different ways. 
In the first measure (referred to as feature frequency 
A), for each word, the product was calculated of the 
relative letter frequencies of the letters in their 
corresponding positions in the word. For example, 

using Table 1, the word “bane” would get a measure 
of (.0476)(.1157)(.0578)(.2592) = 0.000082 and the 
word “ajar” would get a measure of 
(.0556)(.00078)(.1157)(.0933) = 0.0000047. In a 
second measure (referred to as feature frequency B), 
the average relative letter-frequencies of the letters in 
their corresponding positions was calculated. 
According to this measure, the words “bane” and 
“ajar” would get measures of 
((.0476)+(.1157)+(.0578)+(.2592))/4 = .12 and  
((.0556)+(.00078)+(.1157)+(.0933))/4 = .066 
respectively. According to both measures A and B, 
the word “bane” consists of more high frequency 
letters than the word “ajar”. The words “bane” and 
“ajar” are examples of words in the HFF-LWF and 
LFF-LWF respectively since the words differ in their 
feature frequencies (by measures A and B) and both 
words have low word frequency (3 per million).  

Words were selected for the four conditions to 
simultaneously satisfy two constraints. First, the 
means of the word frequencies in the high- and low- 

Table 1  
Relative frequencies of letters in first, 
interior and last word positions  
        
Rank First Interior   Last 
1 t .139857 e .122486 e .259216 
2 w .089016 a .115716 t .117966 
3 s .088766 i .096613 r .093309 
4 h .079308 o .089503 y .090288 
5 c .060967 r .074818 n .072773 
6 m .060880 h .065504 h .071692 
7 a .055558 n .057845 d .063277 
8 p .052553 t .055987 s .045439 
9 f .050972 l .051529 l .042520 
10 b .047608 u .048599 m .038000 
11 r .037545 s .038642 k .026181 
12 l .034530 c .038107 g .020707 
13 e .032685 v .030241 w .014416 
14 g .029994 m .023487 o .012077 
15 d .027690 p .016436 p .010279 
16 i .020588 g .016296 f .006968 
17 o .018880 d .014560 a .006837 
18 n .016847 k .009320 c .004000 
19 k .013337 f .008601 b .002173 
20 y .011314 b .008154 x .000839 
21 v .009297 w .007493 i .000530 
22 u .008798 y .004212 u .000321 
23 j .008651 x .003001 z .000159 
24 q .004043 z .001149 q .000022 
25 z .000309 q .000926 v .000012 
26 x .000006  j .000775  j .000000 
Note: letter counts were weighted with the Kucera & 
Francis (1967) frequency counts of the words they 
appeared in.   
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feature frequency conditions were matched. Second, 
the means of the feature frequencies A of the high- 
and low-frequency words were matched.  In addition, 
each of the four conditions included approximately 
equal numbers of 4-, 5-, 6-, and 7-letter words.  Since 
the range of feature frequency A is different for 
different word lengths, the matching was performed 
separately for the  4, 5, 6 and 7 letter words. We also 
verified that the words selected were still matched in 
feature frequency when we used feature frequency B 
as a measure.  The means and standard deviations of 
the word frequencies, and feature frequencies A and 
B are listed for the four conditions in Appendix A2. 

Each study list consisted of 130 words:  24 words 
from each of the four conditions and 34 filler items.  
Study position was randomly determined for each 
word for each subject, except for the first five words 
and the last five words, which were always filler 

items.  Twelve targets and 12 distractors selected 
randomly from each condition were randomly 
assigned a serial position on the 96-item test lists.   

Procedure.  An experimental session consisted of 
two study-test cycles.  Participants were instructed 
prior to each study-test cycle to remember the words 
on the study list for a later memory test.  Each word 
was displayed in uppercase form in the center of the 
computer screen for 1.3 s. of study.  At test, 
participants performed a series of single-item ratings.   
Test items were presented one at a time, and 
participants were instructed to rate how confident 
they were that a test item was studied by utilizing a 6-
point scale (a 1 indicated high confidence that an 
item had not been studied and a 6 indicated high 
confidence that an item had been studied).  
Responses were made by utilizing a mouse to click 
the appropriate button in the computer display.  Each 
response was followed immediately by the 
presentation of a new item.  At the end of the 
experiment, participants were given feedback 
concerning their performance on the task. 
Results 

The 6-point confidence ratings were converted to 
binary ‘old’-‘new’ responses by choosing a criterion 
and marking ratings higher or equal to the criterion as 
‘old’ responses and ratings lower than the criterion as 
‘new’ responses.  For each participant, a  criterion 
was chosen to equalize the overall number of ‘old’ 
and ‘new’ responses as much as possible1.  The 
confidence ratings were used to compute ratings z-
ROC curves by plotting the z transformed hit and 
false alarm rates using five criteria (1.5, 2.5, 3.5, 4.5 
and 5.5) that were spaced between the confidence 
ratings. The z-ROC curves for each subject for each 
condition were used to compute sensitivity, d  a 
(Macmillan & Creelman, 1991; Swets & Pickett, 
1982).  An alpha of .05 was the standard of 
significance for all statistical analyses. In Figure 1 
(left panel),  d  a is shown for the four conditions in the 
top left panel. In the lower left panel, the mean 
probability of responding “old” is shown for the 
targets and distractors in the four conditions.  

 
Word-frequency Effects.  A typical word-

frequency effect was observed.  Mean d  a was greater 
for low-frequency than for high-frequency words 
[F(1,52) = 45.78, MSE = .42].  Hit rates were 
significantly higher for low-frequency words than for 
high-frequency words [F(1,52) = 11.77. MSE = .01], 
and the false-alarm rates were significantly lower for 
low-frequency words than for high-frequency words 
[F(1, 52) = 11.65, MSE = .01].   

Feature-frequency Effects.  Words consisting 
primarily of low-frequency letters were better 
recognized than words consisting primarily of high-

Figure 1. The results of the Experiment varying feature frequency 
and word frequency are shown in the left panels. The predicted 
results of model A and model B are shown in the middle and right 
panels respectively. The sensitivity results da are shown in the upper 
panels while the hit and false alarm rates are shown in the lower 
panels.   
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frequency letters.  Mean da for low feature-frequency 
words was greater than for high feature-frequency 
words [F(1, 52) = 103.2, MSE = .13], and the 
interaction between word and feature frequency 
factors was significant [F(1, 52)=4.47, MSE=.21]: the 
feature frequency effect was larger for low than high 
frequency words.  Hit rates showed a small trend to 
be higher for words with low-frequency words than 
for words with high-frequency features [F(1, 52) = 
2.56, MSE = .01, p = 0.12], and the false-alarm rates 
were significantly lower for words with low-
frequency features than words with high-frequency 
features [F(1, 52) = 31.10, MSE = .01].   

 
Discussion 

 
The results confirm the prediction made by the 

REM model: words composed of primarily low 
frequency letters should be recognized better than 
words with primarily high frequency letters when the 
word frequencies are matched. The results also show 
that independent of feature frequency, at least as we 
measured this variable, word frequency also has a 
significant effect on performance: low frequency 
words are recognized better than high frequency 
words even if the feature frequencies of the words are 
matched. This suggests that feature frequency is one 
but not the only factor underlying the word frequency 
effect. Of course, feature frequency and other 
explanations for word frequency effects as mentioned 
in the Introduction are not mutually exclusive. 

It is in principle possible that other word variables 
correlate with the feature frequency manipulation and 
that these other variables are causing the effects. 
Several variables such as concreteness and number of 
associations do not (wholly) explain the word 
frequency effect (Gorman, 1961; Kinsbourne & 
George, 1974), but could along with a potentially 
unlimited number of other variables (e.g. 
emotionality, imagery) correlate with the feature 
frequency manipulation. It would be no easy matter 
to explore such possibilities. An advantage of the 
present account is that feature frequency is easy  to 
quantify objectively, and is easy to incorporate in a 
theoretical framework (as was done in REM).  

 
Model Fits 

 
REM uses Bayesian principles to model the 

decision process in recognition memory. This model 
as described by Shiffrin and Steyvers (1997, 1998) 
assumed events are represented as vectors of feature 
values, that episodic storage consists of forming 
incomplete and error prone copies of such events, 
that memory probes consist of vectors of feature 
values, and that retrieval is based on parallel 

matching of the features of the probes to the features 
of each memory trace.  The matches and mismatches 
for each trace contribute evidence to a likelihood 
ratio for each trace and the odds for ‘old’ over ‘new’ 
turns out to be the sum of the likelihood ratios 
divided by the number of traces. This model was fit 
qualitatively to data from recognition memory 
experiments. Later, Diller, Nobel, and Shiffrin (in 
press) fit the model quantitatively to recognition and 
cued recall experiments. Even more recent work 
extended the model to various implicit memory tasks 
(e.g. Schooler, Shiffrin, & Raaijmakers, in press) and 
short-term priming (Huber,  Shiffrin, Lyle, Ruijs, in 
press).  

We modeled the results from this study in two 
ways. The first model, based on the REM model 
described by Shiffrin and Steyvers (1997), represents 
words with vectors of arbitrary feature values. The 
second model uses vectors of features based on the 
actual orthography of words, allowing the model to 
simulate performance by using models of the same 
words used in the experiment.  

We opted not to model the effects of word 
frequency. Although the results showed effects of 
word frequency that were independent of feature 
frequency, there are many candidate mechanisms to 
model these additional effects, as described in the 
Introduction, and we are not ready to choose between 
these.  

 
Model A, arbitrary features  

In our first REM model, a vector of feature 
values, V, represents each word. The features are 
assumed to represent various attributes of words such 
as orthography (the number of features was set to 5). 
The values differ in their environmental base rates 
where the probability of choosing a feature value V is 
determined by the geometric distribution, based on a 
parameter, g: 

[ ] ( ) ∞=−== − ,...,1    ,1 1 jggjVP j

 (1) 
The parameter g determines how common the 

average feature values drawn from the distribution 
will be: increasing g leads to word vectors with more 
common and less variable feature values.  

To simulate the experiment for each subject, a 
lexicon of LFF and HFF words was generated to 
serve as target and distractor words.  The stimulus 
vectors for the LFF and HFF conditions were 
generated with base rate parameters g  LFF and g  HFF 
respectively where g  LFF < g  HFF.  Thus, LFF features 
are less common than the HFF features. To give an 
example, if we set g  LFF=.1 and g  HFF=.8, then 
(exaggerating a bit for the sake of the example) two 
likely word vectors for the LFF condition are 
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[9,4,14,25,6] and [7,27,2,15,8] and two likely word 
vectors for the HFF condition are [2,1,1,1,2] and 
[3,2,1,1,1]. Note that there are fewer features that 
overlap for the LFF vectors that the HFF vectors.  

In REM, it is assumed that a separate image or 
trace is stored for each unique word studied. During 
study, copying feature values from the stimulus 
vectors to memory over occurs with a probability of 
c.  With probability (1-c), a random feature is 
sampled from the geometric distribution defined by g  r 
and stored2.  To simulate the experiment, 130 images 
were stored in memory, 65 LFF and 65 HFF words3. 

At test, a probe vector representing the test item is 
compared in parallel to all images in memory by 
counting the number of matching and mismatching 
features, m j and q j respectively, for each image, j,. 
For each probe-image comparison, a likelihood ratio 
λ j is calculated: 
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 (2) 
This expresses the ratio of the probability that the 

image j matches the probe vector over the probability 
that the image does not match the probe vector. 

In Equation (2), M j is the set of matching features 
for image j and V  kj is the kth feature value in image j. 
The value f(V) is the probability that feature value V 
was stored by chance. In this model, f(V) was set to 
(1-gr)

V-1gr, the geometric distribution of Equation 1 
using g  r as the base rate parameter. 

The decision “old” or “new” is based on the odds 
ϕ that the probe is “old” over “new”. A decision 
“old” and “new” is made when ϕ is bigger than 1 and 
smaller or equal than 1 respectively. In Shiffrin and 
Steyvers (1997), it was shown that this odds is equal 
to the sum of the likelihood ratio’s λ j divided by the 
number of images n: 
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 (3) 
This model uses four parameters and we tried a 

few sets of parameter values to model the observed 
results qualitatively (g  LFF = 0.3; g  HFF = 0.4; g  r = 0.32. 
c = 0.75). The top panel of the middle column in 
Figure 1 shows that sensitivity, d  a, is predicted to be 
greater for words comprised of low frequency 
features than for words comprised of high-frequency 
features4. The lower panel of the middle column of 
Figure 1 shows that a mirror effect for feature 
frequency is predicted: hits rates are lower for HFF 
words than LFF words and false alarms rates are 
higher for HFF words than LFF words.  

The model predicts higher average false alarms 
rates for HFF than for LFF words because they have 
more features in common and because access to 
memory is assumed to be global. As a result a HFF 
word will tend to match the images of other words to 
a greater degree than do LFF words, which leads to 
higher likelihood ratio’s and higher odds. A lower hit 
rate for HFF than LFF words is predicted because 
when features match, it is possible that they match by 
chance. Matching feature values will increase the 
likelihood ratios in Equation (1) to the degree that it 
is unlikely that the features match due to chance. 
Thus, even though HFF targets will lead to more 
matches than LFF targets, the matching values for 
HFF words contribute less to the likelihood ratios 
than the matching values for LFF words.  
Model B: orthographic features 

In Model A, the vectors for the LFF and HFF 
words differed in their environmental base rates of 
feature values but otherwise, these feature values 
were arbitrarily related to the stimulus features. In 
model B, we attempted to model more closely the 
stimulus structure of the experiment by choosing a 
representation for the words that is directly based on 
the orthography of the words. This enables us to 
make specific predictions based on the stimulus 
materials employed in this study. 

The coding for the words in the experiment is 
directly based on the relative frequencies listed in 
Table 1. The most frequent letter is encoded with 
feature value “1”, the second most frequent letter 
with feature values “2”, and so on. For example, the 
vector [10,2,7,1] represents the word “bane”, and the 
word “ajar” is encoded as [7,26,2,3]. Note that the 
initial letter “a” in “ajar” is encoded by value 7 and 
that the third letter “a” is encoded by value 2 because 
we distinguish between relative frequencies for 
different letter positions. This representation is a 
simple way to represent the orthographic structure of 
the stimulus materials and to capture the differences 
between the LFF and HFF words used in the 
experiment. Note that the LFF word “ajar” has a rare 
feature “j” while the word “bane” mostly consists of 
common features. The feature frequency differences 
in the stimulus materials will be reflected in the 
coding of the words, because common letters will be 
encoded by common feature values while rare letters 
will be encoded by rare feature values. 

The same procedure for creating images was used 
as in model A. Error prone images of the study word 
vectors were created by storing the correct feature 
value with probability c. With probability (1-c), a 
random feature value was stored by sampling from 
the distribution of letter frequencies listed in Table 1. 
This is an empirical distribution of letter frequencies 
as they occur in the learning environment of an 
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English speaker. Because an explicit representation 
for words was available, the structure of the study list 
could be modeled: the 24 words from each of the four 
conditions and 24 filler items formed the 130-item 
study list.    

At test, the probe vector was compared in parallel 
to each image in memory, and the number of matches 
and mismatches were calculated for each probe-
image comparison. Because most of the probe and 
images consist of an unequal number of features, a 
choice has to be made of how to align the vectors and 
count matches and mismatches. A simple procedure 
was used in which the words were aligned at the 
beginning and ending of each word, and the best 
alignment in terms of number of matching features 
was chosen. Also, the difference in the number of 
features counted toward the number of mismatching 
features. For example, [1, 2, 3, 4, 5] and [6, 3, 4, 5] 
would have a best alignment at the end of the word 
and would give 3 matching features and 2 
mismatching features (one due to the length 
mismatch). Other comparison procedures were also 
tried (such as no alignment at the end of the word or 
not counting the length mismatch between words) 
and gave qualitatively similar results.  

With the number of matches and mismatches 
available, Equation (2) was applied to calculate the 
likelihood ratios for each image. The function f(V) 
calculates the probability of matching the feature 
value V by chance, and its value is dependent on the 
relative feature frequencies listed in Table 1. Let 
h(V)   p denote the relative frequency of letter V in 
position p of the word (first, interior or last). Then, 
we set f(V)   p (it will be indexed with p because it will 
now also depend on letter position) not equal to h(V)   p 
but on a less skewed distribution according to: 
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where the parameter a determines the 
(un)skewing of the empirical distribution h(V)   p. We 
set a<1, to make the frequencies of the common and 
rare letters more similar. We will discuss this aspect 
of the model in more detail in a moment. 

In Figure 1, left panels, the predicted results are 
shown for model B. With only two parameters, 
(c=0.5, a=0.6), this model can make predictions that 
are similar to both the observed data and the 
predicted data from model A.  It predicts a mirror 
effect for the false alarm and hit rate for the same 
reasons as mentioned for model A: HFF words have 
more common features so HFF probes tend to match 
more features by chance which increases the false 
alarm rate. At the same time, there is a compensating 

factor that the common matching features will 
increase the likelihood ratio’s less than rare matching 
features. The tradeoff between these two factors 
gives the predicted mirror effect.  

This model can predict the effect of feature 
frequency based on a vector representation that is 
directly related to the stimulus material of the 
experiment and to the environmental base rates of the 
letters. Interestingly, to make this model work, it was 
necessary to make the environmental base rates less 
extreme so that the rare features were not as rare and 
common features were not as common5. One way to 
justify setting the base rates used by the model to 
values less extreme than the environmental base rates 
is based on the structure of the study list. Because the 
study list consists of many LFF words, the 
occurrence of rare letters such as “j”, “z” and “x” is 
less rare than outside this experimental setting. 
Participants might adjust their base rates to reflect 
these changes so that a “j”, “z” or “x” is less 
surprising than the environmental base rates suggest.  

Another justification is based on work by 
Schooler and Anderson (1997) who argued and 
shown that rare items or features tend to clump 
together when they do occur: for example, a rare 
word seldom occurs, but when it occurs, it tends to 
reoccur shortly thereafter with a much higher 
probability than that given by the base rate. E.g., 
‘flan’ seldom occurs but when it does it might do so 
because of a cooking context and would tend to 
reoccur. A generalization of this argument might be 
used to justify the higher than normal clumping of 
rare features generally (e.g. a scientific text might 
contain many rare feature values). If such clumping 
occurs, then the conditional probability that a rare 
feature value has been encountered recently, given 
that it is presented (in this case, for test) is much 
higher than the overall base rates would suggest. 

   
Conclusion 

 
Several recent global matching memory models 

explain the word frequency effect (Dennis & 
Humphreys, in review; Estes, 1993; Hintzman, 1997; 
McClelland & Chappell, 1998; Murdock, 1997) for a 
variety of reasons. This study suggests that these 
memory models need a component for feature 
frequency to explain part of the word frequency 
effect. In this article, we accounted for the feature 
frequency effects by assuming that the features that 
represent words differ in their base rates and that the 
recognition memory performance depends on these 
base rates: rare features are more diagnostic in the 
matching of the probe to the contents of memory than 
common features so performance is better for words 
with rare features than words with common features. 
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The first REM model assumed that the features of 
words comprised of primarily high or low frequent 
letters are represented by arbitrary features differing 
in their base rates. The second model employed a 
simple representation with which the letters of the 
experimental words were directly represented. Also, 
this model assumed that the diagnosticity of the 
features were directly dependent on the 
environmental letter frequencies.   

There is one way in which the differences in 
feature frequency can be explained without using 
differences in the representation but rather 
differences in the amount of attention paid to words 
comprised of low and high frequent features. 
Participants might pay more attention to words with 
unusual features so that the encoding for the words 
with unusual features is better than words with 
common features.  In this hypothesis, it still needs to 
be explained why participants pay more attention to 
words with unusual features in the first place. 
Second, implementing this idea in a model like REM 
by assuming that words with uncommon features lead 
to images with more features than words with 
common features leads to the prediction that the hit 
rates are affected by feature frequency but not the 
false alarm rates. In such a model, differences in false 
alarm rates can only be predicted if the participants 
can adjust the familiarity calculations (or an internal 
criterion) for probes (old or new) based on a guess as 
to what the encoding strength would have been were 
the probe stored in memory. Regardless of the 
plausibility of such assumptions, in order to model 
the experimental results based on differences in 
attention, a theory is needed in which feature 
frequency plays a central role because participants 
are assumed to notice differences in feature 
frequency and are assumed to adjust the familiarity 
calculations based on feature frequency. 

 
Footnotes 

Footnote 1. An alternative procedure is to use one 
criterion for all subjects such as the criterion between 
the first three and last three confidence ratings. With 
this alternative procedure all statistical results remain 
qualitatively the same. We choose the procedure of 
selecting criteria separately for each subject for two 
different reasons. First, this procedure correct for 
idiosyncratic use of the confidence scale (i.e., some 
participants use one end of the scale more than other 
participants). Second, a participant specific criterion 
leads to smaller standard errors in sensitivity, hits and 
false alarms than a universal criterion.   

Footnote 2. In the Shiffrin and Steyvers (1997) 
REM model, there was an additional storage variable 
U*. This influenced the number of features that 
would be copied over from the probe and uncopied 

features were represented by the zero feature values. 
This variable was needed to explain study time and 
number of repetitions manipulations. Since this 
experiment did not involve these manipulations, we 
omitted this variable by assuming that all features of 
the words were stored.   

Footnote 3. The experiment had 34 filler items 
and we choose not to model these separately and 
replaced them by 17 LFF and 17 HFF words. 

Footnote 4. In order to compute d  a, five criteria 
were chosen (e-2,e-1,e0,e1,e2) and hits and false alarms 
were computed to construct a z-ROC curve.  

Footnote 5. Using the original base rates for f(V) 
or equivalently, setting the parameter a=1 in Equation 
(4) had the interesting effect that the false alarm rate 
for LFF words was higher than for HFF words. This 
is because a “new” LFF probe such as VORTEX 
contains the letter “x” and the letter “x” occurs in 
several other LFF images (e.g. PREFIX). The 
matching “x” contributes to a large increase in the 
likelihood ratio.       
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Appendix A 
Words of Experiment 1 

LFF-LNF 
     
ABLAZE CHIMP ERGO JAGGED LIEU OPOSSUM QUICKEN TYPHOID 
ACRYLIC CHOMP EXCERPT JOGGING LOCKS OUTBACK QUIP UPTIGHT 
AJAR CHUBBY EXHALE JOWL LYRICS OUTGROW QUIRK UTOPIA 
ALFALFA CONVEX EXHAUST JUNO MAYFLY OZONE REVAMP VERB 
APEX DYNAMIC FLUX KILO MIDRIFF PREFIX SKIMP VIVA 
AVOCADO ELYSIUM GAWKY KIOSK NOVA PSYCHE SQUID VORTEX 
AVOW ENCAMP GUSTO KNACK NUMBLY PUFFY STANZA WHACK 
AZALEA EPIC HUMP KNOBBLY ODYSSEY QUAKE SWAB YANK 
BOXING EPOCH IMPEL KNOWING OOZE QUIBBLE TWITCH YOLK 

        
HFF-LNF 

     
ALERT BROILER CURLY FAINT PARROT PETITE SEARING SOLID 
BANE BRUTE CURRANT FERRET PASTE PLIANT SEDATE SOOT 
BARTER CALLER DALE FLIER PATE PORE SENSORY SPORE 
BASTE CENSURE DEAREST GALORE PATRIOT RELIANT SHEAR STEROID 
BEET COERCE DECREE LEARNER PEAT RILE SHINE STRUT 
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BILE COOLER DELETE MANE PELLET SAIL SILT SUNRISE 
BOILER CORNET DILATE MARINER PENAL SAUCY SINNER TANNERY 
BRAID CORONER DINER MIRE PENANCE SAUNTER SMEAR TENSE 
BRAY COTE DIRE PALETTE PERT SCARLET SNOOTY TINE 

        
 

LFF-HNF 
    
AMAZING DOZEN EXPLODE KICK MAJOR OTTO TAXI UNIQUE 
ATOMIC EGYPT EYEBROW KINGDOM MIXED OXYGEN THIGH UNKNOWN 
AWFULLY ELBOW GHETTO KNIGHT MYTH PHOTO THOU UPWARDS 
AWKWARD EVOLVE GOLF LAMB NATO PHYSICS THUMB VACUUM 
BUREAU EXAM GULF LIMB NETWORK PUZZLED TOBACCO WAYS 
CLIFF EXCEED HAZARD LIQUID ODDS RHYTHM TOMB WHIP 
CLIMB EXCLAIM INDEX LOBBY OFFEND RUBBER UNDERGO WHISKY 
COMPLEX EXERT INJURY LOGIC OMEGA SYMBOL UNHAPPY WIDOW 
DIFFER EXIT JACKAL LUXURY OPERA SYMPTOM UNIFORM ZERO 

        
HFF-HNF 

    
AIRLINE BLEED CURE GREET PENALTY POLE SEAL STRAIN 
BAIT CANAL CURRENT MALE PILE PRAY SECURE TALE 
BALLET CATTLE DAISY MINER PILOT PRESENT SENATOR TENURE 
BARREL CELLAR DEALER MINERAL PINE RALLY SHEER TERRACE 
BARRIER CLAY DENSE MIRACLE PLAIN RELATE SHORE TERROR 
BEAR CLIENT FARE PAINTER PLANET RELEASE SPINE TOILET 
BEAST CORE FLEET PANEL PLANNER RETIRE STARTLE TRACE 
BETRAY CORRECT FREE PARADE PLEAD SAME STATUE TRAY 
BITE CRUELTY GALLERY PEASANT POET SCENT STORAGE TREATY 
Note.  LFF-LNF = low orthographic feature frequency, low normative word frequency; HFF-LNF = high 
orthographic feature frequency, low normative word frequency; LFF-HNF = low orthographic feature frequency, 
high normative word frequency; HFF-HNF = high orthographic feature frequency, high normative word frequency. 
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Appendix B 
Means and standard deviations of the word frequencies and feature frequencies A and B 

         
        FF Condition   
Measure   WF Condition   LFF     HFF 
         
Word Frequency  LWF  4.10 (1.22)  4.56 (1.41) 
  HWF  23.56 (6.61)  25.29 (7.17) 
         
Feature Frequency A  LWF  2.17E-7 (3.38E-7)  2.18E-5 (3.59E-5) 
  HWF  2.17E-7 (4.21E-7)  2.21E-5 (3.66E-5) 
         
Feature Frequency B  LWF  .0501 (.0173)  .0770 (.0163) 
    HWF   .0531 (.0167)   .0805 (.0194) 
Note: standard deviations are given between parentheses     

 


