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Abstract 

 
A perceptually-grounded, nonmetric feature 
mapping model is introduced. This model 
explicitly relates similarity ratings from a facial 
comparison experiment to various  primitive, 
physically derived facial features such as Gabor 
jets, principal components and geometric 
features.  In this approach, abstract  features are 
formed that combine and weight information 
from the primitive facial features.  The abstract 
features form the basis for predicting the 
similarity ratings for faces.  We show how this 
model extracts abstract "age" and "facial 
adiposity" features on the basis of all similarity 
ratings to 50 faces.  Whereas traditional 
multidimensional scaling methods can also 
uncover important variables for face perception, 
this model has the additional advantage of 
making explicit how to compute these variables 
from primitive facial features.  Another 
advantage of this approach is that the featural 
descriptions can be used in a generalization test 
to predict similarity ratings to new faces.  We 
show how this generalization test enables us to  
constrain various parameters of the model such 
as the dimensionality of the representation.  

 

Introduction 

A major goal in the field of face perception is to 
determine appropriate representations and 
processes operating on these representations.  
Faces are enormously, and perhaps infinitely 
complex (Townsend, Solomon, & Spencer-
Smith, this volume).   By the same token, they 
all share a recognizable shape and 
configuration: for example, the nose is always 
between the mouth and the eyes. Although faces 
consist of a high number of dimensions, the 
representation of faces may be thought of as a 
compression or mapping of the featural 
dimensions into a lower-dimensional space by 
either ignoring some dimensions or reducing the 
redundancies among dimensions.  Face 
perception may be thought of as a process by 
which the physical features of faces are 
combined in order to support recognition or 
categorization tasks.  To capture the 
representations that are used in face perception, 
researchers have adopted one of two major 
approaches.  

 

The purely psychological and top-down 
approach  

 
In the purely psychological approach 

based on multidimensional representations (e.g. 
Ashby, 1992; Nosofsky 1986, 1991, 1992), a 
face is represented abstractly as a point in a 
multidimensional space (Valentine, 1991a, b; 
this volume).  The positions of the points can be 
derived from data from various psychological 
tasks with Scaling techniques such as 
Multidimensional Scaling (MDS) (Kruskal 
1964a,b; Shepard 1962a,b, 1974, 1980; 
Torgeson 1952).  In nonmetric MDS, the goal is 
to find a configuration of points in some 
multidimensional space such that the interpoint 
distances are monotonically related to the 
experimentally obtained dissimilarities.  The 
dissimilarities can be derived from similarity 
judgements, dissimilarity judgments, confusion 
matrices, reaction times from discrimination 
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experiments, correlation coefficients or any 
other measure of pairwise proximity.  In metric 
MDS, the goal is to find a configuration of 
points and an appropriate function that 
transforms the interpoint distances such that the 
transformed distances match the experimental 
dissimilarities exactly.  In the Appendix, we 
give a short introduction to nonmetric MDS.   

 
Several researchers using MDS analyses 

on faces (Busey, this volume, 1998; Johnston, 
Milne & Williams, 1997; Shepard, Ellis, & 
Davies, 1977) have developed multidimensional 
"face-space" representations: the faces are 
located in a multidimensional space such that 
similar faces are located in similar regions and 
that the pairwise distances between the face-
locations reflect their perceived similarity.  
Busey (this volume; 1998) has applied MDS to 
similarity ratings on all pairs of a set of 100 
faces.  Based on a six dimensional 
configuration, the dimensions were interpreted 
as age, race, facial adiposity, facial hair, aspect 
ratio of head and color of facial hair.  The goal 
of Busey's work was to predict recognition 
performance with various computational models 
that took the configuration of points as a basis 
for representing the faces.  

 
The resulting MDS solutions for the 

configuration of points in low-dimensional 
spaces can give valuable insights about the way 
faces  are perceived, and sometimes forms a 
useful basis for modeling performance in 
recognition and/or categorization tasks.  
Although the resultant dimensions are 
sometimes given a featural interpretation, this 
approach explicitly ignores the physical 
representation of the features comprising the 
faces.  In this purely top-down approach, the 
multidimensional representations are sometimes 
difficult to relate back to the physical stimulus.    
 

The purely computational and bottom-up 
approach 

 
In the purely computational and bottom-

up approach (e.g. Hancock, Bruce, & Burton, 
1998; O’Toole, Abdi, Deffenbacher & Valentin, 
1993; Wiskott, Fellous, Kruger, von der 
Malsburg, 1997; Yuille, 1991), a face is 
represented by a collection of features that are 
explicitly derived from a 2D image that is 
analogous to the retinal image of the face.  For 
example, a face can be described by the distance 
between the eyes, the color and texture of the 
skin or by other features that can be extracted by 
computational methods.  

 
One method is principal component 

analysis (e.g.  O'Toole et al., 1993; Turk & 
Pentland, 1991) where the face images are 
projected onto the eigenvectors (principal 
components) that capture the significant global 
variations in 2D image intensities.  In another 
method, face images are processed by 
overlapping receptive fields (Edelman & 
O'Toole, this volume; Lando & Edelman, 1995) 
or Gabor jets (e.g.  Wiskott et al., 1996).  The 
responses of these receptive fields are somewhat 
insensitive to changes in viewing conditions, 
and retain the local structure of image 
intensities.  In a somewhat older method, faces 
are encoded with geometric codes such as the 
distance between the eyes, nose length and 
lower face width (Laughery, Rhodes & Batten, 
1981; Rhodes, 1988).  Typically, these codes are 
derived manually, but there exist several 
methods to automatically locate feature 
landmark points (e.g.  Lades, Vorbruggen, 
Buhmann, Lange, von der Malsburg, Wurtz & 
Konen, 1993; Lanitis, Taylor, & Cootes, 1995; 
McKenna, Gong, Wurtz, Tanner & Bannin, 
1997; Wiskott et al.  1996; Yuille, 1991) that 
can provide a basis for these codes.  In these 
geometric codes, subtle information about local 
skin texture is lost, so that by themselves these 
codes are probably not rich enough to 



Predicting Similarity Ratings 

 

3

distinguish between subtle variations that exist 
in the population of faces 
 

While many of these proposed featural 
representations for faces provide very rich 
sources of information and form the basis for 
many computer face recognition systems, it is 
not always obvious which features or 
combinations of features are useful to model 
human face perception.  We define these 
approaches to be purely computational and 
bottom-up because the representational spaces 
are fixed and are not changed to in order to 
minimize the difference between the simulated 
performance and observed performance on 
some face perception task.  
 

Integrating the top-down and bottom-up 
approaches 
 

To summarize: in a purely psychological 
and top-down approach, a face is represented as 
a point in an abstract psychological space where 
the dimensions are interpreted so that they are 
related to the physical appearance of the face.  
In a purely  computational and bottom-up 
approach, a face is represented as a collection of 
explicitly derived physical features.  The goal of 
this research is to integrate the bottom-up and 
top-down face encoding approaches into a 
single framework that links physical features to 
an underlying psychological space.  We refer to 
two different kinds of spaces.  The first, the 
concrete feature space consists  of the collection 
of primitive physical features for faces (e.g.  
distance between eyes, texture of skin).  The 
second, the abstract feature space refers to the 
psychological space that consists of variables 
(e.g.  age, facial adiposity) that are important for 
modeling performance on psychological tasks.  
The abstract feature forma tion is flexible and 
depends on what perceptual information can be 
computed from the concrete features and the 
data that needs to be explained.  The process by 
which the abstract features are derived from the 

concrete features is made explicit and is 
constrained by data from a similarity rating task.  
We call this the feature mapping approach 
because the goal is to find a mapping between 
the concrete features and abstracted features. 
This approach can tell us what features are most 
important for predicting psychological 
similarity.  
 

The Rumelhart and Todd (1992) feature 
mapping model 

 
 

This feature mapping model is based on 
work by Rumelhart and Todd (1992) and Todd 
and Rumelhart (1992).  They proposed a model 
that is fully connectionist.  The essential 
assumption of this model is that the mapping 
from the concrete feature space to the 
psychological space can be learned from an 
analysis of similarity ratings.  In their model, the 
concrete features feed through a single layer 
network to a new set of nodes.  These nodes 
contain abstracted featural information and are 
analogous to the dimensions of a MDS solution.  
The two objects in a similarity rating task are 
represented separately by two different sets of 
abstract feature units.  The abstracted features of 
two objects are then compared by feeding 
through several additional connectionist layers.  
These additional layers implement a 
transformation on the distances between the 
corresponding abstract feature units to a 
predicted similarity rating.  The differences 
between the predicted and observed similarity 
ratings are then used for a backpropagation 
algorithm to optimize the weights between the 
concrete feature units and the abstract feature 
units and the weights in the transformation 
layers.  The Rumelhart and Todd model is a 
metric version of multidimensional scaling: the 
predicted and observed similarity ratings should 
have identical values.  The nonmetric feature 
mapping model proposed in this chapter is a 
nonmetric extension of the Rumelhart and Todd 
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model; only the rank order of the predicted and 
observed similarity ratings is important.  Any 
transformation on the observed data that 
preserves the rank order will lead to the same 
results.  We will now discuss  the relative merits 
of metric and nonmetric scaling methods.  

 

Nonmetric vs. metric scaling methods 
 
 

In nonmetric scaling methods, the goal is 
to reproduce the monotonic relationships in the 
proximity matrix obtained from a psychological 
task.  In metric multidimensional scaling, one 
needs psychological estimates of the metric 
distances between stimuli.  This involves an 
extra stage of computation in which the 
interpoint distances are transformed into (for 
example) expected similarity judgements, same-
different judgements or reaction times.  
 

When the experiment is designed such 
that participants only perform ordinal 
comparisons between pairs of stimuli (e.g.  
which of the two pairs of faces is more 
similar?), then a nonmetric method might be the 
preferred method to analyze the data.  From a 
theoretical viewpoint, one might prefer the 
metric method over the nonmetric method since 
the metric method is more constrained and gives 
more falsifiable models of the data.  From a 
practical viewpoint, one might prefer the 
nonmetric method over the metric method.  In a 
metric method, in addition to estimating 
stimulus coordinates (or weights between the 
concrete and abstract features in the Rumelhart 
and Todd model), extra parameters need to be 
estimated for the transformation stage.  This 
means that the optimization problem for finding 
good solutions with a metric method is more 
complex. When a bad solution is obtained with 
a metric method, it is could be because a bad 
assumption is made in the transformation stage 
or because the optimization algorithm suffers 
from the problem of local minima.  Therefore, it 

is possible that for a given proximity matrix, a 
nonmetric method results in a reasonable 
solution whereas a metric method cannot find 
any reasonable solution.  In our research, we 
chose the nonmetric method to simplify the 
optimization problem so that good solutions 
would be more likely than with a metric 
method.    
 

The Nonmetric Feature Mapping Model for 
faces 

 
In the feature mapping model, the 

features comprising each face can be thought of 
as points in a multidimensional feature space.  
By feature mapping,  the points of the concrete 
feature space map to points in a lower-
dimensional abstract feature space. The exact 
nature of this mapping is determined by a set of 
weights.  With certain weights, it is possible that 
the redundancy in the concrete feature set is 
removed and that useful regularities are 
retained.  Based on a distance function of the 
differences in this lower dimensional space, the 
model produces a predicted (dis)similarity 
rating to the two stimuli that can be compared to 
the actual (dis)similarity rating.  The difference 
between the predicted and actual similarity 
ratings can then be used to optimize the weights 
that determine the nature of the feature 
mapping.  Once the mapping parameters are 
optimized, the faces have fixed coordinates in 
the feature abstraction space.  We will now 
summarize the advantages of this approach over 
the psychological and computational approaches 
to representations for faces.    

 

Advantages of the feature mapping approach 
 
 
In MDS, the location of a face is 

determined by a set of coordinates, or 
parameters, that are estimated by methods 
described in the Appendix.  When new faces are 
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introduced, MDS must estimate a new set of 
parameters in order to determine the face 
locations.  It is therefore not clear how MDS can 
predict similarity ratings to new faces without 
introducing new parameters.  The first 
advantage of our feature mapping approach is 
the possibility of testing its generalization 
performance without introducing new 
parameters or changing the parameters.  Once 
all parameters are optimized with respect to 
some set of stimuli, it is possible to predict the 
similarity ratings to stimuli that have not been 
presented before to the model using the same 
parameter settings.  The two sets of features 
describing a pair of new stimuli are first mapped 
to points in the abstract feature space.  The 
predicted similarity rating is then some distance 
function of the points in the abstract feature 
space.  The possibility of assessing the 
generalization performance is of major 
importance because it provides a strong test of 
the feature mapping approach.  This technique 
grounds the representation in the physical 
stimulus and therefore can make a priori 
predictions1.  
 

The dimensions resulting from MDS are 
constrained by the proximity data obtained from 
participants. The proximity data in turn is 
constrained by the processes underlying face 
perception. In the feature mapping method, the 
abstracted features (dimensions in MDS) that 
are formed are influenced by two sources of 
information. The first source of information is 
the proximity data from participants which 
depends on the perceptual processes underlying 
face perception. The second source of 
information is provided by the concrete features 
that can be extracted from images of faces by 
computational means. Both sources of 
information will constrain the development of 
abstracted features to those features that can be 
specified by computational means and that can 
predict the proximity data.  Therefore, a feature 
mapping solution might predict the proximity 
data worse than a MDS solution (given the same 

number of dimensions) when the chosen set of 
concrete features does not explain all the 
variability in the data.  However, the dimensions 
that are developed are computationally specified 
whereas in the MDS solutions, it is not a a priori 
guaranteed that the resulting dimensions can be 
computationally tied to the perceptual 
information available in face images.  
 

The model 
 

In Figure 1, a schematic overview of the 
nonmetric feature mapping model is shown.  
The model takes as input the featural 
descriptions to a pair of faces.  Geometric 
distances, principal component coefficients 
and/or Gabor jets were used as featural 
descriptions; details about these featural 
descriptions are given in a later section.  With 
the features of a face as input, the model first 
extracts the relevant features of these faces by 
mapping from the large concrete feature space 
to the small abstract feature space. This is done 
separately for each face of a pair in a similarity 
rating experiment.  This part of the model is 
connectionist: the input features activations are 
fed through a fully connected single layer 
connectionist network with sigmoidal output 
units.  There are many fewer output nodes than 
input features so the network will typically 
abstract from the featural information.  We will 
refer to these output units as the abstract feature 
units.  Each abstract feature unit is a sigmoid 
function of a weighted linear combination of the 
input features.  The matrix W contains all the 
weights for each input unit to each abstract 
feature unit.  The weight matrix W contains all  
the parameters of this model.  
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Figure 1.  Schematic overview of the nonmetric 
feature mapping model. 

 
Based on the activations of the abstract 

feature units, the model can make a prediction 
about the dissimilarity between two faces.  This 
part of the model is based on nonmetric 
multidimensional scaling techniques.  The 
distance between the two abstract feature 
vectors is calculated by a Euclidian distance 
metric: the bigger the distance between the two 
vectors, the more dissimilar the two faces are 
predicted to be.  The goal of the model is to 
have a monotonic correspondence between the 
Euclidian distances and the observed 
dissimilarities obtained from the similarity 
rating task. 

  
This goal is achieved by an optimization 

algorithm, that operates in two alternating 
phases (see Appendix).  We use stress  to 

compute how much the relationship between the 
Euclidian distances and observed dissimilarities 
deviates from monotonicity.   The stress is 
computed in the first optimization stage, in 
which a monotonic regression (Kruskal, 
1964a,b) is performed on the Euclidian 
distances and observed dissimilarities.  In the 
monotonic regression analysis, target Euclidian 
distances are computed that lead to a perfect 
monotonic relationship with the observed 
dissimilarities and minimize the stress for the 
given actual Euclidian distances.  Now, stress 
can be calculated and there are also target 
distances available that can be used in the 
second optimization phase.  In this second 
phase, the weights in matrix W can be adjusted 
such that the newly calculated Euclidian 
distances in abstract feature space correspond 
more closely to the target distances.  We use 
standard optimization techniques to adjust the 
weight matrix W to optimize stress (not 
backpropagation).  This cycle of monotonic 
regression and weight adjustment is repeated 
until the stress cannot be further  
improved. 

 
The feature mapping approach is similar 

to MDS in many respects.  In MDS, the stimuli 
are represented as coordinates in a 
multidimensional space.  In our model, the 
stimuli can be represented as points in the 
abstract feature space.  As in nonmetric MDS, 
we use nonmetric methods to evaluate how well 
the predicted distances correspond to the 
observed dissimilarities.  There are also crucial 
differences between our approach and MDS.  
Whereas in MDS, the stress is used to optimize 
the stimulus coordinates in the multidimensional 
space, we optimize the mapping from the 
concrete feature space to the abstract feature 
space.  In MDS, predicting dissimilarities for 
new pairs of stimuli is impossible without 
introducing new parameters; the new stimuli are 
new points in the multidimensional space and 
therefore new parameters to be estimated.  In 
other words, MDS cannot give parameter-free 
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predictions for judgements of similarity between 
new pairs of stimuli.  In our model, parameter-
free predictions can be made in a 
straightforward manner.  First, the feature 
mapping matrix W is optimized for the featural 
descriptions and participants' similarity ratings 
for one set of faces.  Then, holding this feature 
mapping matrix constant, we can map the 
concrete features of the new faces to the abstract 
feature space.  Second, we  calculate the 
distances between the new faces in this abstract 
feature space and compare these to the observed 
dissimilarities.  Another way of describing the 
difference between MDS and the feature 
mapping approach is that  in the latter approach, 
the number of parameters does not scale with 
the number of stimuli under consideration.  
Since the number of parameters only scales with 
the number of concrete and abstract features, it 
is possible that a solution can be achieved with 
much fewer parameters than with MDS.    

 
In MDS, there is the problem of deciding 

on the appropriate number of dimensions 
(Shepard, 1974).  Similarly, in our model we 
face the problem of deciding on the appropriate 
number of abstract feature nodes.  Too many or 
too few nodes might lead to results that do not 
generalize well.  With the feature mapping 
approach, a solution to the dimensionality 
problem is possible.  The number of dimensions 
is determined by the model which generalizes 
best to similarity ratings of novel pairs of faces.  
We expect that this generalization test provides 
strong constraints on the model.  
 

The similarity rating data for the model 
 

All the simulations in this research were 
based on data from a similarity rating 
experiment performed by Arici and Busey (in 
progress).  In their experiment, 238 participants 
rated the similarity of pairs of faces that were 
presented simultaneously on a computer screen.  
The faces came from a database of 60 faces.  All 

faces were male, bald faces displayed frontally 
with similar lighting conditions (see Figure 8 to 
get an impression of the set of faces).  Of a total 
of 1770 possible pairs of similarity ratings, each 
of the participants gave ratings to a subset of 
177 pairs (this works out to give about 25 
ratings for each pair).  The individual subject 
data was first transformed to z-scores by 
subtracting the subject's mean rating and 
dividing by the standard deviation.  The 
transformed scores were then averaged over 
participants.    

 
Table 1    

    
Results of Applying Nonmetric MDS 
 to Similarity Rating Data Set 

    
Dimensionality S Rs 

    
1  0.353 0.750 
2  0.219 0.857 
3  0.159 0.899 
4  0.122 0.925 
5  0.101 0.939 
6  0.086 0.950 
7  0.077 0.957 
8  0.069 0.961 

    
Note. S=Stress; Rs =Spearman rank 
order correlation  

 
 

We applied nonmetric MDS analyses on 
the proximity matrix so that the results can be 
compared to the results with the feature 
mapping model.  In Table 1, the stress values 
are reported as a function of dimensionality.  As 
expected, the stress measure decreases for an 
increasing number of dimensions.  Also 
reported is the Spearman rank order correlation 
coefficients (Rs) between the Euclidian 
distances and the observed dissimilarities.  We 
included this measure here and in the results 
section so that additional information was 
available to evaluate the performance of the 
feature mapping model relative to nonmetric 
MDS.  
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Physical features for faces 
 

The input to the feature mapping model 
is a description of the two faces by a set of 
features.  These features were provided by the 
methods that are outlined below.  We  simulated 
the feature model with sets of features from 
each of these methods separately and in certain 
combinations. All feature values were 
standardized to z-scores by subtracting the mean 
feature value (over all training set faces) and 
dividing by the standard deviation.  The images 
of the faces were identical to the images used in 
the similarity rating experiment except for a 
correction that we performed such that for all 
images, the center of the bridge of the nose fell 
on the same image location.  

 

Geometric information 
 

Each face was described by a set of 30 
distances as shown in Figure 2. We have used 
almost the same geometric distances between 
landmark points on the face as Rhodes (1988).  
For distances that could be measured in the left 
or right half of the face (such as the eye-width), 
we took the average of the distances.  In this 
work, we derived the landmark points 
manually2. 

Principal component analysis 
 
Principal component analysis (PCA) can 

be performed on the gray level intensities of the 
pixels for all the faces under consideration 
(O’Toole et al.  ’93; Turk & Pentland, 1991).  In 
this analysis, each face is described as a vector 
containing the light intensities of all the pixels.  
Each principal component is then an eigenvector 
of the covariance matrix of the face vectors.  
The principal components are ordered by how 
much of the variance of the covariance matrix is 
explained.  The first/last  principal components 
capture the most/least of the variance of the 
covariance matrix.  Each face can be described 

as a set of coefficients that expresses a linear 
combination of principal components.  It is 
possible to reconstruct the face image using 
only a few coefficients corresponding to the first 
principal components.  In our research with 60 
faces, the analysis yields 60 principal 
components of which we display the first 8 in 
Figure 3.  We performed simulations with using 
the first 10, 20 or 40 coefficients as featural 
descriptions.  

 

 
Figure 2.  The 30 geometric distances based on Rhodes 
(1988). 
 
 

 
 
Figure 3. The first 10 principal components for the 60 
faces in the simulations. 
 

Gabor jets, evenly spaced 
 
Gabor filters can perform a local 

oriented spatial frequency analysis (Daugman 
1980, 1985).  The filters are operating on 



Predicting Similarity Ratings 

 

9

overlapping receptive fields as shown in Figure 
4.  The origin of each receptive field is 
positioned in a regular grid.  We have used 
14x14 receptive fields as shown in the figure.  
On each receptive field, a Gabor Jet is operating 
that consists of 12 Gabor functions; these 
functions were factorially varied over 4 
orientations (0, 45, 90, and 135 degrees) and 3 
spatial frequencies.  Each Gabor function 
measures the similarity between the intensity 
profile of the local image patch and the oriented 
sinusoidal plane associated with the Gabor 
function.  We have used phase shifted pairs of 
filters to remove (some of) the sensitivity to 
spatial shifts of image texture.  Each Gabor Jet 
outputs a vector with 12 entries.  For the 
purposes of this model, we averaged the Gabor 
Jets over the different locations.  This results in 
a loss of local information but retains the overall 
orientation and spatial frequency information in 
the image.  In this way, the number of features 
is constrained to 12.  In the Discussion, we 
mention methods to retain the spatial 
information of the local spatial frequency 
analysis while at the same time constrain the 
potentially large number of parameters of the 
feature mapping model that is given such a 
representation. 
 

 
 
 
Figure 4. Illustration of the 14x14 receptive fields placed 
over a face with 2D Gabor functions.  The Gabor 
functions were factorially varied over 4 orientations (0, 
45, 90 and 135 degrees) and 3 spatial frequencies.  The 12 
Gabor functions operating on one receptive field are 
referred to as Gabor jets. 
 

Gabor jets, matched locations 
 
In this representation, we apply the same 

Gabor Jet analysis as outlined in the previous 
section but the origins of Gabor Jets are now 
positioned at 48 feature landmark positions on 
the face as shown in Figure 5.  We average over 
location so that this also results in a description 
of the face in terms of 12 features.  The 
positioning of the Gabor Jets at the feature 
landmark points ensures that the Gabor Jets for 
any pair of faces are aligned so that they analyze 
corresponding local regions.  The feature 
landmark points correspond to the landmark 
points that were used to measure the geometric 
distances.  This provides a rationale for 
combining the geometric distance information 
with the Gabor Jet information.  In this research, 
the placement of the landmark points was done 
manually.  
 

 
Figure 5. The Gabor Jets placed over feature landmark 
points of the face.  These points coincide with the points 
that were used to calculate the geometric distances 
(Figure 2). 
 

Simulation methods  
 

In our simulations we used the similarity 
rating data set for 60 faces.  The averaged 
similarity data (over all 238 participants) for 50 
randomly chosen faces was used optimize the 
feature mapping matrix W.  We will refer to this 
set as the training set.  The number of similarity 
ratings in the training set is 1225.  The averaged 
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data (of the same 238 participants) for the 
remaining 10 faces was used as the test set to 
measure the generalization performance.  The 
test set consisted of 45 similarity ratings.  We 
did not use the part of the dataset that consisted 
of similarity ratings to pairs of training and test 
set faces (500 ratings): the generalization 
performance is measured in terms of its ability 
to predict similarity ratings to pairs of new 
faces.  

 
Two measures of performance were 

used: the stress and the Spearman rank order 
correlation coefficient for the Euclidian 
distances and observed dissimilarities.  We ran 
simulations using the features from each feature 
description method separately and we also 
simulated some combinations of methods.  For 
each set of features, we ran different simulations 
in which we varied the number of abstract 
feature nodes between 1 and 7. 
 

Results 
 

The results of the simulations are 
summarized in Table 2.   We show the results 
for the geometric distance method and the PCA 
and Gabor jet methods by themselves and in 
combination with the geometric distances.   N is 
the number of features used in the description of 
the faces.  The measures of fit were the 
Spearman's rank order correlation coefficient Rs 
and Kruskal stress; these are shown for both 
training and test sets.  In the table, we show the 
number of feature abstraction units, K, that 
resulted in the best generalization to proximity 
data of new faces as measured by Rs (we varied 
K between 1 and 7).  Two general patterns of 
results can be observed.  First, each feature 
method by itself gives comparable results for 
both training and test sets:  the geometric 
distances, PCA (40 components) and Gabor jet 
method (matched locations) by themselves 
result in similar rank order correlation and stress 
values.  Second, the Gabor jet feature sets 

 

Table 2                 
                 

Results of Applying the Nonmetric Feature Mapping Model for Training and Test Sets     
                 
                 
         Geometric information combined 
        No Geometric Information   with 2D intensity model 
                 
    Training Set  Test Set    Training Set  Test Set 

2D Intensity Model N K Rs S  Rs S  N K Rs S  Rs S 

                 
None          30 4 .805 .177  .775 .153 

                 
PCA (10 components) 10 4 .476 .248  .451 .272  40 2 .791 .250  .752 .242 
PCA (20 components) 20 4 .667 .210  .647 .217  50 4 .900 .130  .780 .140 
PCA (40 components) 40 4 .889 .141  .780 .193  70 2 .843 .224  .734 .243 

                 
Gabor Jets, Evenly Spaced 12 2 .501 .291  .146 .310  42 3 .851 .186  .857 .153 
Gabor Jets, Matched Locations 12 4 .869 .171  .598 .261  42 4 .888 .144  .791 .182 

                 
Note. N=number of concrete features; K=number of feature abstraction units; Rs=Spearman rank order correlation;  
S=Stress                 
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(evenly spaced and matched locations)  lead to 
much better results when they are augmented by 
the geometric distances.   

 
In Figure 6, we show the effect of varying the 
number of feature abstraction units on the stress 
and rank order correlation for two feature 
methods: (a) the evenly spaced Gabor jet 
method with geometric distances, and (b) the 
PCA (10 coefficients) method with geometric 
distances.  It can observed that overall, the stress 
decreases for both training and test set when the 
number of feature abstraction units increases.  
The rank order correlation curve for the test set 
"bends over" at some number of feature 
abstraction units.  Applying a generalization-test 
criterion, this is the number of feature 
abstraction units that we choose because this 
leads to the best generalization to new faces.    
 

 
Figure 6. The effect of varying the number of feature 
abstraction units on Kruskal stress and Spearman rank 
order correlation Rs for two feature description methods: 
(a) the evenly spaced Gabor jet model plus geometric 
distances and (b) the PCA (10 coefficients) method plus 
geometric distances. 
 

In Figure 7, the Shepard diagram is 
shown for one specific simulation result: the 
evenly spaced Gabor jets method with 3 feature 
abstraction units.  In the diagram, the Euclidian 

distances vs. observed dissimilarities are plotted 
for both training and test sets.  Also plotted is 
the monotonic regression line for the training 
set.  It can be observed that a reasonable 
monotonic correspondence exists between the 
Euclidian distances and  observed 
dissimilarities.  The feature mapping model with 
this feature description method produces 
rankings for the dissimilarity of pairs of old and 
new faces that are similar to the average 
rankings that participants give.    
 

 
Figure 7. The results of the feature mapping model using 
the Gabor jets, evenly spaced with three feature 
abstraction units. In this Shepard diagram, the observed 
dissimilarities are plotted against the Euclidian distances 
of the model. The results are shown for the dissimilarities 
for pairs of faces from the training set and the test set. The 
results of a monotonic regression on the training set 
dissimilarities is indicated by the solid line. 
 
Both old and new faces can be represented as 
points in the multidimensional feature 
abstraction space.  We can plot the faces in this 
space to visually inspect the variation of faces 
along each feature abstraction dimension.  We 
can also visually inspect if the test set faces are 
mapped to locations where there are similar 
training set faces.  This is illustrated in Figure 
8a for the previously mentioned simulation 
result.  The faces are shown in the 2D space 
determined by the activations of two of the total 
three feature abstraction units.  The test faces 
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are indicated by a surrounding square box.  
From visual inspection, it seems reasonable to 
interpret the dimensions corresponding to 
feature abstraction units #1 and #2 as “age” and 
“facial adiposity” respectively: from left to 
right, the faces get older and from bottom to top, 
the faces get wider and pudgier.  From visual 
inspection, the placement of the new faces 
makes intuitive sense: the older, pudgier faces 
are placed in the upper right corner of the space 
and the younger, skinnier faces are placed in the 
lower left corner.  The third unit (not shown in 
the figure) did not lend itself to such an 
interpretation.  The third unit might explain part 
of the variance of both training and test set by 
clustering similar faces in similar regions so that 
the faces are locally but not globally ordered 
along this third dimension.  If the number of 
feature abstraction units is restricted to two, then 
with this feature method, age and facial 
adiposity are again our interpretations of the two 
units.  We report the case of three units here 
because that case leads to the best generalization 
to new faces.  In Figure 8b, the same plot is 
shown for the simulation results with the PCA 
method with 10 components combined with 
geometric distances using two feature 
abstraction units.  The two feature abstraction 
units seem to be picking up on similar 
information as in the previous simulation result: 
the first and second unit can be interpreted as 
“age” and “facial adiposity” respectively.  

To test our subjective interpretations of 
the representational role of the feature 
abstraction units, we correlated the activity of 
the feature abstraction units with participants’ 
age and facial adiposity ratings.  We obtained 
age and facial adiposity ratings for all 60 faces 
from a group of 12 participants that was not 
involved in the similarity rating experiment.  
Each feature abstraction unit for the two 
previously mentioned simulation results was 
correlated with the averaged age and adiposity 
ratings.  The results are summarized in Table 3.  
For the purpose of comparison, the table also 
shows the correlations for the dimensions of a 

three dimensional nonmetric MDS solution for 
all 60 faces.   

 
Figure 8. The training and test set faces (marked by a 
box) plotted in the space determined by the activations of 
the first two abstract feature units for (a) the evenly 
spaced Gabor jet method with geometric distances using 
three abstraction units (only the first two are shown here) 
and (b) the PCA method with 10 components with 
geometric distances and two feature abstraction nodes.   
 

In the top part of the table indicated by 
“Unrotated Dimensions,” the feature-mapping 
and MDS representations are left unchanged.  
Our subjective interpretations of the 



Predicting Similarity Ratings 

 

13

representational role of the two feature 
abstraction dimensions are confirmed: the first 
unit correlates highly with participants’ age 
ratings and to a lesser degree with participants’ 
adiposity ratings.  For the second unit, the 
opposite is true: it correlates highly with 
adiposity and to a lesser degree with age.  In the 
bottom part, the representations are rotated such 
that each of the units/dimensions correlates 
maximally with one of the observed rating (age 
or adiposity) and minimally with the other.  This 
method leaves all pairwise distances 
unchanged3.  The rotated solutions show similar 
correlations with participants’ ratings for both 
the feature mapping representations and the 
MDS analysis.  
 

One of the advantages of the feature 
mapping approach is the possibility of 
inspecting  the feature mapping; this can give 
insight into how the abstract features are “built” 
from the individual concrete features.  Each 
feature abstraction unit is a sigmoidal function 
of a weighted combination of input features.  In 
Figure 9, the weights are shown for the 
previously mentioned Gabor jet simulation (left) 

and PCA simulation (right).  In these bubble 
plots, positive/negative weights are shown as 
filled/unfilled circles respectively.  The size of 
the circles reflects the absolute magnitude of the 
weights.  Each column displays the weights to 
one of the feature abstraction units.  In Figure 8 
and Table 3, it was established that it is 
reasonable to interpret the first and second unit 
as representing age and adiposity respectively.   

 
When we inspect the weights for the 

geometric distances in the left and right plots, 
there are various patterns to be discerned.  For 
example, the “age” unit decreases its activity for 
larger eye-widths (distance #1), larger distances 
between the nose and the side of the face 
(distance #14) and larger distances between the 
nose and the chin (distance #15).  Its activity is 
increased for larger distances between the tip of 
the nose and corner of the mouth (distance #26) 
and for larger lower face widths (distance #30).  
These dependencies make some sense when one 
considers the changes in the facial structure for 
aging faces.  The “adiposity” unit’s activation is 
increased by larger distances between the mouth 
and the side of the face (distance #23) and larger 

Table 3               
               

Correlations of the Unrotated and Rotated Solutions of Two Feature Mapping Models and a MDS 
solution with age and facial adiposity ratings 

               
               
 Gabor jets, evenly spaced PCA (10 components)  MDS 
 and geometric distances and geometric distances    

Unrotated Dimensions Age  Adiposity  Age  Adiposity  Age  Adiposity 

               
               
1  .791  .325   .866  .783   .434  -.364 
2  .659  .901   -.020  .679   .810  .903 
3  -.005  -.552        .062  .020 
               
               

Rotated Dimensions               
               
               
1  .889  .444   .909  .435   .909  .435 
2  .487  .943   .344  .889   .465  .947 
3  .039  .065        .280  .324 
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lower face widths (distance #30).  Overall, the 
weights to the Gabor jets in the simulation result 
shown on the left are   more difficult to 
understand.  However, the large positive weight 
from the “age” unit to the Gabor function that 
picks up diagonally oriented features (from the 
lower left to upper right in a local patch of the 
image) does make sense: the faces were lit 
mostly from the right side of the face such that 
the cheek wrinkle was more visible in the left 
side of the face where it runs diagonally from 
the left side of the mouth to the left side of the 
nose.   

 

 
 
Figure 9. A pictorial presentation of the feature mapping 
developed in two simulations.  On the left, the weights are 
shown for the evenly spaced Gabor jets with geometric 
distances simulation using three feature abstraction units.  
On the right, the weights are shown for the PCA method 
(10 components) with geometric distances using two 
feature abstraction units.  Positive/negative weights are 
shown as filled/unfilled circles respectively.  The size of 
the circles reflects the absolute magnitude of the weights. 

 
Obviously, this is not a good way to pick 

up on the age aspect of a face in general.  The 
nature of the feature mapping is dependent on 
the perceptual processes giving rise to the 
proximity data and the information contained in 
the set of features provided by computational 

methods. Not surprisingly, this analysis suggests 
that the amount of wrinkling is a feature that is 
used by participants when making proximity 
judgements.  More dedicated computational 
methods can analyze the amount of wrinkling in 
a way that is invariant over lighting conditions, 
facial pose etc. 
 

Discussion 
 

We have shown that the feature mapping 
approach can predict the similarity ratings to 
both old and new faces with a reasonable degree 
of accuracy.  Applying the PCA and Gabor jet 
method combined with geometrical codes has 
led to similar results.  For both methods, age 
and facial adiposity were the two abstract 
featural dimensions that were extracted.  When 
inspecting the feature mapping that was 
developed with these methods, we were able to 
get a better understanding of what combinations 
of features are successful in predicting the 
structure of the similarity data. Interestingly, the 
feature mapping method already resulted in 
good generalization performance when used 
with geometric distances only. Adding the 
textural information provided by Gabor jets or 
principal components led in some cases to better 
and in some cases to worse generalization 
performance. These results suggest that the 
geometric distances by themselves contain 
important information to explain the similarity 
ratings between pairs of faces for the set of 
faces we used. It is possible that with a more 
heterogeneous set of faces, the feature mapping 
model would show a larger benefit for adding 
textural informa tion. When the feature mapping 
method was provided with a combination of 
geometric distances and Gabor jets, the resulting 
abstract feature units "fused" the information 
from both sources of information to create the 
"age" and "facial adiposity" units. This 
coincides with experimental results by Mark, 
Pittenger, Hines, Carello, Shaw, and Todd 
(1980) that show that participants use both 
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shape information (which could be directly 
based on geometric distances) and texture 
information (based on the Gabor jets for 
example) in a complex interrelated way to 
determine the age of faces.  
 

One weakness of the simulations 
reported here, is that we averaged the outputs of 
the Gabor filters over different locations so that 
spatial information is lost.  It is possible that a 
subtle texture variation at the eyes is important 
for making similarity judgements, but that the 
feature mapping model could not pick up on this 
information since it was only provided with 
averaged textural information.  We could have 
opted for a separate weight for every different 
filter at every position but this would have led to 
an excessive number of parameters.  We see two 
solutions to this problem of reducing the input 
dimensionality while retaining spatial 
information of faces.  First, PCA can be applied 
to the filter outputs at different locations (e.g. 
Dailey & Cottrell, 1998).  In this way, a large 
input dimensionality can be reduced to a much 
smaller one if there is redundancy between the 
filter outputs.  A second solution is to keep a 
separate weight for every filter at every location 
but to impose a spatial smoothness constraint on 
their outputs.  For example, nearby filters are 
likely to capture the same kind of information so 
that the smoothness constraint will force the 
weights to have similar values.  Regularization 
theory (Tikhonov & Arsenin, 1977) or hyper 
basis functions (Poggio & Girosi, 1990) can be 
applied to impose smoothness constrains so that 
the effective number of parameters is much 
smaller  than the number of filter weights.  In 
future research, we hope to explore both of 
these techniques.  

 
To summarize, we believe the inclusion 

of physical descriptions of visual objects is 
important in an analysis of behavioral data for 
these objects.  By mapping from the physical 
descriptions through a series of stages to the 
behavioral data, it is possible to apply this 

mapping to novel objects and measure the 
generalization performance.  The generalization 
test is a strong test  to select among various 
candidate models and can put strong constraints 
on those models. 

Related Research 
 

Rhodes (1988) regressed a large set of 
physical measurements, ratios of measurements 
and participants’ ratings about the appearance of 
41 faces against the dimensions of a 
multidimensional scaling solution for these 
faces.  Two MDS dimensions correlated well 
with the ratings for age and weight ratings 
respectively.  Many physical measurements 
relating to the appearance of the eyes and nose 
were also found to correlate with the MDS 
dimensions.  Her research shares important 
similarities with ours.  We also find that age and 
weight (facial adiposity)  to be important 
variables in participants’ similarity judgements.  
Also, the regression method can be viewed as an 
alternative to the feature mapping method.  
First, a MDS solution is obtained for a set of 
faces.  Then, as in Rhodes’ work, a multiple 
regression analysis is performed on each 
dimension so that each dimension is a linear 
combination of physical measurements.  Then, 
holding the regression parameters constant,  
similarities for novel faces can be computed by 
using the measurements for these novel faces 
and predicting the coordinates for these novel 
faces.  Therefore, as in our research, this method 
is grounded in the physical representation of a 
face and allows generalization to novel faces.  
There are two important differences between 
this regression and the feature mapping method.  
First, the feature mapping method is an 
integrated approach that was especially 
designed to linking physical measurements with 
proximity data whereas in the regression 
method, purely psychological scaling techniques 
are combined with multiple regression 
techniques.  Second, as stated before, the 
dimensions resulting from MDS are only 
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constrained by the proximity data and not in any 
way by what perceptual information can be 
compututionally extracted from the face images.  
This can result in important differences between 
the dimensions developed by MDS and by the 
feature mapping method. In feature mapping, 
the dimensions developed depend on how 
predictive the information contained in the 
concrete features is for the structure in the 
proximity data. So, if the shape of the eyes is a 
major factor in the similarity judgements, it is 
only possible for the feature mapping model to 
discover this when there are primitive features 
that can capture the shape of the eye. Therefore, 
it is possible that the feature mapping model 
does not develop certain dimensions.  On the 
other hand, for the dimensions that are 
developed, the model has developed an explicit 
computational procedure to compute the 
dimensions.  

 
Hancock et al. (1998) have reported 

results of predicting the similarity ratings to 
faces on the basis of various principal 
component decompositions and Gabor jet 
models.  In one method, as a measure of 
proximity, they calculated the Euclidian 
distance between the principal component 
coefficients of pairs of faces.  In another 
method, they calculated an alignment penalty 
for two faces based on the graph-matching 
system by Wiskott et al. (1997).  In this system, 
a face is analyzed by Gabor jets that are placed 
on the vertices of a graph.  When presented with 
two faces, the goal of the system is to align the 
vertices of the graphs representing each face 
such that the differences in Gabor jet outputs  at 
corresponding vertices and the differences 
between corresponding distances is minimized: 
the alignment penalty expresses the degree of 
mismatch between two faces by weighting both 
kinds of distances.  Based on these two 
methods, Hancock et al.  reported very low rank 
order correlations between the Euclidian 
distances/ alignment penalties and human 
proximity data.   One possible reason why they 

obtained poor fits  is that they did not find the 
relevant combinations of features to predict the 
proximity data: all features were weighted 
equally in the comparison between two faces.  
In contrast, in the feature mapping approach, 
features are weighted according to well they 
predict similarity ratings.  Biederman and 
Kalocsai (1997) also tested the system of 
Wiskott et al. (1997).  As opposed to the results 
obtained by Hancock et al., they refer to an 
unpublished  study that shows that the model's 
similarity ratings were strongly correlated with 
human performance in a same-different 
judgment task.  

 
The advantage of the approach by 

Hancock et al. and Biederman et al. is that they 
tested a feature method that automatically places 
Gabor jets on corresponding positions of faces.  
In our research, we have manually placed the 
feature landmark points on the faces.  In future 
research, we hope to test automatic methods 
(Lades et al. 1993; Lanitis et al. 1995; McKenna 
et al. 1997; Wiskott et al.  1996; Yuille, 1991) to 
position Gabor jets on faces. 
 

Cutzu and Edelman (1998) obtained 
human proximity data for complex 3D objects.  
These artificially generated objects were fully 
specified by a set of parameters (defining the 
shape of the parts, their orientations, and 
relative positions).  They generated different 
sets of objects of which they knew the exact 
configuration in parameter space: for example, 
they generated stimuli whose parameters formed 
a triangle, square, cross or a star in the 
parameter space.  The question of interest was 
whether the structure in the artificially generated 
objects was reflected in the human proximity 
data.  They performed MDS analyses on the 
proximity data and then calculated the degree of 
match with the underlying triangle, square, cross 
or star configuration.  The degree of match was 
determined by a Procrustes transformation that 
allows scaling, rotation, reflection and 
translation of a configuration to fit another 
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configuration.  They found similarities between 
the structure of the objects in parameter space 
and the structure of the human proximity data to 
these objects.  In one simulation, they tested the 
ability of simple receptive field activities to 
these objects to model the human proximity 
data.  They found a poor correspondence 
between the structure in human proximity data 
and the structure in proximities of the simple 
receptive field activities to these objects; the 
receptive field activities tended to be more 
sensitive to the orientation than the identity of 
an object.  Cutzu and Edelman have focused on 
low-dimensional representations for complex 
visual objects.  Similarly, in our research, we 
have focussed on a relatively few number of 
feature abstraction units to capture the proximity 
structure of faces.  They also indirectly 
compared the structure of human proximity data 
with the structure of the physically described 
objects with the Procrustes method.  In contrast, 
in the feature mapping model, we can directly 
compare the model's similarity rating with the 
human similarity rating.    

     

New directions for the MDS approach 
 
The traditonal approach in MDS has 

been to ignore any quantitative information 
about the stimuli of interest.  The idea is that 
useful information about the perception of for 
example faces can be extracted  without any 
explicit reference to the features that are 
relevant for face perception.  In fact, Roger 
Shepard (1980), one of the key researchers 
developing the MDS approach stated that “This 
purely psychological approach has advantages 
over a psychophysical one in the case of 
complex naturalistic stimuli such as faces, for 
which the relevant physical dimensions are as 
yet poorly characterized …” (p. 390).  Since 
1980, there has been a lot of progress in 
developing featural representations for faces.  
We do not claim that we now know exactly 
what features are used in face perception.  

Instead, we believe that with methods similar to 
the feature mapping approach, it is possible to 
make more precise what features and 
combinations of features are useful in modeling 
face perception.    
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Appendix 

Nonmetric multidimensional scaling (MDS)  
 
The goal of nonmetric MDS is to find a 

configuration of points in some 
multidimensional space such that the interpoint 
distances are monotonically related to the 
experimentally obtained dissimilarities.  We will 
illustrate the nonmetric MDS approach through 
an example.  This example will serve to 
introduce the concepts behind the approach that 
are useful for later sections, and is not meant as 
an in depth introduction (see Shepard, 1962a,b; 
Kruskal, 1964a,b; Schiffman, Reynolds & 
Young, 1981 for details).  
 

Let us assume that we actually know for 
15 items in a two dimensional psychological 
space the coordinates for each item along each 
dimension.  Let K represent the number of 
dimensions, and aix  the coordinates for each 
item i along dimension a.  Let us assume that all 
coordinates fall in the range [0 1].  In the upper 
left panel of Figure A1, we show the 
configuration of these points in the two 
dimensional space.  To simulate the noisy data 
from an experiment, we generate the observed 
dissimilarities ijo between item i and j with:  
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The first term represents the Minkowski 
distance metric.  We set r to 2 which gives rise 
to a Euclidian distances (r=1 leads to city block 
distances).  The second term represents 
normally distributed noise with mean µ and 
standard deviation σ (in this example µ=0, 
σ=0.08).  In the lower-left panel is shown the 
data matrix of observed dissimilarities.  When 
given just this data matrix, the goal of non-
metric MDS is to find points aix '  whose 
interpoint distances, ijd are monotonically 

related to the observed dissimilarities ijo .   
 

As a first attempt to retrieve the original 
configuration of points, we start with a random 
two dimensional configuration for aix '  (upper-
middle panel) and take the Minkowski distance 
metric with r=2 to generate the pairwise 
Euclidian distances ijd .  In the upper right 

panel, we show a Shepard diagram that relates 
the distances ijd to the observed dissimilarities 

ijo .  It can be observed that for this initial 
configuration, there is no significant relationship 
between the distances ijd and the observed 

dissimilarities ijo .  Kruskal (1964a,b) proposed 
a measure for the deviation from monotonicity 
between the  distances ijd and the observed 

dissimilarities ijo called the stress function: 
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Note that the observed dissimilarities ijo  do not 
appear in this formula.  Instead, the discrepancy 
between the predicted distances ijd  and the 

target distances *
ijd  are measured.  The *

ijd can 
be found by monotonic regression (Kruskal, 
1964).  In the Shepard diagram, instead of 
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showing individual points for the target 
distances *

ijd  , we  connected them by a solid 

line.  The target distances *
ijd  represent the 

distances that lead to a perfect monotonic 
relationship to ijo  (as can be seen by the  solid 
line)  that minimize the stress function for the 
given ijd .  The Kruskal stress measure is a lack 
of fit measure: when S equals 0, there is a 
perfect monotonic relationship between the  
distances ijd  and the observed dissimilarities 

ijo .   The goal in nonmetric MDS is to find the 
configuration of points that gives the minimum 
stress value.  Kruskal (1964a,b) and Takane and 
Young (1977) have proposed optimization 
algorithms for this problem.  These algorithms 
minimize stress in two alternating phases.  In 
the optimal scaling phase, a monotonic 
regression analysis finds the target distances *

ijd  

for fixed ijd (therefore fixed aix ' ) such that the 
stress is minimized.  In the second phase, the 
coordinates aix ' are optimized to bring the 

distances ijd  closer to the target distances *
ijd  

(these are held constant in this phase) in order to 
minimize stress.  This optimization is continued 
until stress cannot be improved further.  In the 
lower middle panel is shown the configuration 

aix '  after optimization.  The stress has been 
reduced to 0.10 (compared to 0.44 for the 
random start configuration).  In the lower right 
panel is shown the Shepard diagram that shows 
a reasonable degree of monotonic 
correspondence between the distances and 
observed dissimilarities.  It can be observed that 
the final configuration is similar to the true 
original configuration (since the observed 
dissimilarities were based on noisy samples of 
the true distances, the retrieved configuration 
cannot be expected to be exactly the same). 
 

To simplify the example, we started 
initially with a random configuration for the 
items.  A random configuration is not a good 

configuration to start with and might take a long 
time to converge.  It is better to perform 
Torgeson scaling, based on a theorem by 
Young-Householder (see Schiffman, Reynolds 
& Young, 1981; Torgeson, 1952 for details), to 
get an good initial configuration for the stress 
minimization algorithm. 
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Footnotes 
 
1On a more general note, Barsalou (in press) and Harnad 
(1990) have claimed that any psychological theory that 
uses only amodal variables (variables of which it is not 
specified how they relate to a perceptual modality) faces 
problems because such a theory is too unconstrained and 
therefore cannot make strong a priori predictions.  
 
2The landmark points for the geometric distances were 
actually never put on the faces directly for the purpose of 
obtaining these distances.  Instead, the distances were 
computed based on landmark points that initially served 
the purpose of control points for morphing  algorithms.  
These control points were put on manually by one user.   
Because only one user provided the control points, we do 
not have data available to assess the reliability of this 
procedure (as was done in Rhodes, 1988).  
 

3This is true because we use the Euclidian distance metric.  
With other Minkowski distance metrics, the 
representation cannot be arbitrarily rotated while 
preserving all pairwise distances. 

 

  


