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Abstract

Typical fMRI studies have focused on either the mean trend in the blood-oxygen-

level-dependent (BOLD) time course or functional connectivity (FC). However, other

statistics of the neuroimaging data may contain important information. Despite stud-

ies showing links between the variance in the BOLD time series (BV) and age and

cognitive performance, a formal framework for testing these effects has not yet been

developed. We introduce the variance design general linear model (VDGLM), a novel

framework that facilitates the detection of variance effects. We designed the frame-

work for general use in any fMRI study by modeling both mean and variance in BOLD

activation as a function of experimental design. The flexibility of this approach allows

the VDGLM to (a) simultaneously make inferences about a mean or variance effect

while controlling for the other and (b) test for variance effects that could be associ-

ated with multiple conditions and/or noise regressors. We demonstrate the use of

the VDGLM in a working memory application and show that engagement in a work-

ing memory task is associated with whole-brain decreases in BOLD variance.
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1 | INTRODUCTION

At their core, neuroimaging analyses consist of relating a summary

statistic of the blood-oxygen-level-dependent (BOLD) time course to

experimental condition, behavior, or individual characteristics. The pri-

mary method for fMRI analysis, the general linear model (GLM;

Bullmore et al., 1996; Friston, Jezzard, & Turner, 1994), focuses on

the mean trend in the BOLD activation. Recently, researchers have

moved beyond mean BOLD trend by studying functional connectivity

(FC), which is calculated as the Pearson correlation between regions.

However, it is possible that other statistics of the neuroimaging data

may contain important information. A natural candidate is BOLD vari-

ability (BV) defined as the variance in the BOLD time series. BV can

be thought of as intermediate to mean BOLD trend and FC in terms

of computational complexity; BV is based on a locally independent

computation whereas FC incorporates between-region dependencies.

Importantly, as FC and mean BOLD trend have led to distinct avenues

of research, BV could be a fundamentally different channel for study-

ing brain function.

This article introduces the variance design general linear model

(VDGLM), a novel framework that allows researchers to simulta-

neously test for effects on BV and on mean BOLD activation. The

VDGLM can be conceptualized as a GLM that explicitly incorporates

the experimental design into the model of the variance. Direct incor-

poration of the experimental design allows the VDGLM to be flexible

enough to be used in any fMRI experiment. This new framework facil-

itates the analysis of BV effects and enables new discoveries that

relate BV to disease, individual characteristics, and human behavior.

The development of the VDGLM was motivated in part by studies

in EEG and fMRI that have demonstrated relationships between brain

fluctuations and cognitive processes, behavior, and age. EEG studies

have shown variance effects in the form of suppression of alpha and

theta oscillatory waves, that is, reduction of the amplitude of the

oscillations (see (Klimesch, 1999) for a review). Alpha suppression is
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related to task engagement (Williamson, Kaufman, Lu, Wang, &

Karron, 1997), opening the eyes (Berger, 1929), sleep (Dement &

Kleitman, 1957), and cognitive performance (Klimesch, 1999). Aging

studies have found that alpha, delta, and theta suppression increases

with age during youth (Somsen, van't Klooster, van der Molen, van

Leeuwen, & Licht, 1997) and that alpha suppression decreases with

age in older populations (Duffy, Albert, McAnulty, & Garvey, 1984).

Alpha suppression's relationship to cognitive and individual differ-

ences is mediated by inhibitory-control processes involved in atten-

tion (Klimesch, 2012; Klimesch, Schack, & Sauseng, 2005).

In fMRI, brain fluctuations measured by BV have been shown to

vary with behavior and age. BV varies between task and fixation, par-

ticularly in younger adults. Differences in BV between task and fixa-

tion are associated with higher visual discrimination performance

(Wutte, Smith, Flanagin, & Wolbers, 2011) and track task difficulty

(Garrett, McIntosh, et al., 2013). Age has also been related to BV; BV

was shown to predict age with five times the explanatory power of

mean BOLD (Garrett, Kovacevic, McIntosh, & Grady, 2010) and was

indicative of younger, faster, and more consistently performing sub-

jects (Garrett, Kovacevic, McIntosh, & Grady, 2011). In both studies,

the spatial distribution of BV effects was orthogonal to the distribu-

tion of mean effects. Furthermore, a follow-up study found that age

related BV affects were robust to vascular controls (Garrett, Lin-

denberger, Hoge, & Gauthier, 2017). Gaut et al. (2018) found that BV

could be used to accurately predict the task a subject was performing

and subject identity. Despite these links to behavior and age, the

study of BOLD variability has not been widely pursued in fMRI.

While the aforementioned studies have led to the development of

general pipelines for BV analysis (e.g., Garrett et al., 2010; Garrett,

McIntosh, et al., 2013), the studies did not use a general statistical

framework for simultaneously studying BV and mean effects. There-

fore, a key motivation for the VDGLM framework is to introduce a

parametric approach that jointly models the mean and variance by

explicitly incorporating the experimental design into the variance for-

mulation. The inclusion of the design in the variance allows us to:

(a) jointly model mean and variance effects, (b) explicitly model the

temporal dynamics between BV and experimental condition, and

(c) include multiple experimental conditions in our variance analyses.

The explicit structure of mean and variance design is supplied by the

researcher, which allows for easy generalization to any experiment,

and model fitting is computationally efficient enough to run region of

interest (ROI) analyses on large brain imaging studies. By developing

this framework, we are providing an important tool to test for vari-

ance effects that has the potential to spur new research develop-

ments in various fields.

The plan for the rest of the article is as follows. We first provide

an overview of the GLM, and establish the theory behind the VDGLM.

Next we provide an application of the VDGLM to Working Memory

data from the Human Connectome Project Healthy Adult dataset. We

finish with a discussion of the choices made when using the VDGLM

and how variance measured by the VDGLM compares to other mea-

sures of variance.

2 | A NOVEL FRAMEWORK FOR
STUDYING BV

To motivate the VDGLM, consider a hypothetical BOLD activation time

series where BV is affected by an experimental condition that indicates

fixation versus task (see Figure 1). The single experimental condition is

plotted in black and the BOLD time series from a single voxel is plotted

in blue. For conceptual simplicity, the experimental condition time series

is not convolved with a hemodynamic response function (HRF) model.

The voxel time series varies as a function of task condition; the variance

is higher during fixation compared to task, consistent with reduced

default mode network activitions during cognitive tasks. We can describe

these effects on the mean and variance using a simple VDGLM:

y�N β0 + x
Tβ1, v0 + x

Tv1
� �

I
� � ð1Þ

where, y is the BOLD time series, x represents the condition indicator, I is

the identity matrix, β0 captures the mean activation, and v0 captures the

measurement variance, that is, the out-of-task variation. Then β1 and v1

capture the degree of change in mean and variance due to task engage-

ment, respectively. If the model is applied to the data from Figure 1, we

expect β0 ≈ 0, β1 ≈ 3, v0 to be a large positive value, and v1 to be nega-

tive, but with the constraint that jxtv1 j < j v0 j 8 t. Here, the parame-

ter v1 < 0 reflects the fact that BOLD variation is lower within task

compared to fixation.

For comparison, the GLM estimates a single variance parameter

over the entire time series and ignores the change in variance due to

the experimental manipulation:

y�N β0 + x
Tβ1,v0I

� � ð2Þ

Note that Equation (2) is equivalent to Equation (1) when v1 = 0,

that is, the GLM is a nested model of the VDGLM where there is no

F IGURE 1 Illustration of artificial data where the presence of a
single experimental condition (black) increases the mean but lowers
the variance of the BOLD time course (blue). The values used to
create this visualization are based on Equation (1) with β0 = 0, β1 = 3,
v0 = 2, and v1 = −1.5. BOLD, blood-oxygen-level-dependent [Color
figure can be viewed at wileyonlinelibrary.com]

GAUT ET AL. 3919

http://wileyonlinelibrary.com


experimental modification of the variance. The GLM is a null model

for no effect of the variance that can be compared to the VDGLM

(a) to explicitly test for variance inclusion and (b) test whether the

mean effects found by the VDGLM are similar to the mean effects

found by the GLM.

2.1 | VDGLM analysis pipeline

One goal of the VDGLM framework is to allow the VDGLM to be

inserted into any standard fMRI analysis pipeline with minimal modifica-

tions (see Figure 2). The VDGLM does not change data acquisition,

preprocessing, model comparison, or results dissemination. The main

step that must change is model formulation and estimation. In some

cases, the inference step is not affected (e.g., computing effect sizes

using Cohen's d). However, more sophisticated inference such as param-

eter significance testing will require modification of the inference step to

include statistics for testing variance parameters (see Section 2.5). In a

BV focused analysis, we also recommend additional preprocessing steps

to remove variance confounds such as censoring and head motion cor-

rection, but these additional steps are not necessary to use the VDGLM.

2.2 | Matrix notation

We can write the GLM and the VDGLM in matrix notation to highlight the

concept of inserting the design matrix into the variance formulation. The

GLM models the BOLD time series y[T × 1] from a single voxel as a linear

function of the experimental design (Beckmann, Jenkinson, & Smith,

2003; Bullmore et al., 1996; Friston et al., 1994; Woolrich, Behrens,

Beckmann, Jenkinson, & Smith, 2004). Formally, the GLM is defined:

y =Xβ + ϵ
ϵ�N 0, Iσ2

� � ð3Þ

where, X is a T × p design matrix, β is a p × 1 vector of mean parame-

ters, σ2 is a variance parameter, and I is the identity matrix. The

columns of the design matrix X include experimental events,

experimental blocks, stimulus presentation, or mean activation. The

VDGLM has the same formulation, but extends the variance model:

y =Xmβ + η

η�N 0,diag Xvvð ÞIð Þ
diag Xvvð ÞI>0

ð4Þ

where, diag(x) is the matrix with the entries of the vector x along the

diagonal. To emphasize that the mean and variance design matrices

can be distinct, we use the notation Xm and Xv to denote the mean

and variance designs, respectively. The parameters, β and v, capture

mean and variance effects, respectively. It is clear that the GLM

(Equation (3)) is a special case of the VDGLM for which the variance

design matrix Xv is a single column of ones and v = σ2.

2.3 | Prewhitening and noise Regressors

In GLM analyses, BOLD time series are often “prewhitened” to

account for BOLD autocorrelation (Bullmore et al., 1996; Woolrich,

Ripley, Brady, & Smith, 2001). The results in this article are based on

VDGLM without a prewhitening step to avoid interfering with the

variance estimates. We have also investigated the results that

includes a prewhitening step and verified that the variance effects

found by the VDGLM are not artifacts caused by autocorrelation. The

results with the prewhitening step are very similar to the results with-

out prewhitening reported in this article. Other techniques for con-

trolling noise (e.g., coloring or head motion correction) involve the

addition of noise regressors. As with GLM analyses, the VDGLM can

incorporate these techniques by including the appropriate regressors

in the design matrices.

2.4 | Estimation

Univariate GLM mean parameter estimation can proceed in one of

two ways: (a) ordinary or general least squares (Beckmann et al.,

2003; Friston, Holmes, et al., 1994) or (b) fully Bayesian inference

F IGURE 2 An illustration of a typical fMRI pipeline that uses either the GLM or the VDGLM for analysis. To use the VDGLM, the only steps
from a traditional pipeline that must change are model formulation and estimation. Data acquisition, preprocessing, model comparison, and
methods for result dissemination can remain the same. Some inference steps, such as effect size estimation, could remain the same. However,
other inference procedures, such as significance testing, require statistics developed expressely for the VDGLM. GLM, general linear model;
VDGLM, variance design general linear model [Color figure can be viewed at wileyonlinelibrary.com]
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(Woolrich et al., 2004). Approximate Bayesian inference has also been

used, but in a single group-level analysis that combines first and

second-level models (Friston et al., 2002). Variance estimation is usu-

ally done by iteratively computing OLS estimates (Woolrich et al.,

2001; Worsley et al., 2002), but can require more advanced methods

depending on the structure of group-level models (see Section 2.5).

There are potentially many approaches that could be used to esti-

mate the VDGLM, including Bayesian and maximum likelihood

approaches. For simplicity, we use a maximum likelihood approach

(see (Eklund, Lindquist, & Villani, 2017) for a Bayesian approach that

has the goal of removing motion artifacts). Estimation approaches

must be computationally efficient enough to handle the high dimen-

sionality of fMRI data and in practice, we found that sampling tech-

niques were too slow to be practical for large data sets. Maximum

likelihood (or maximum a posteriori) estimation using mode-finding

algorithms is efficient enough to estimate parameters for an ROI anal-

ysis from a large fMRI dataset in about half a day using parallel com-

puting techniques.

There is known bias in variance estimates when computing maxi-

mum likelihood estimate solutions (Harville, 1977). However, in fMRI

studies, the large number of time measurements will lead to small

biases that can be considered negligible (e.g., a bias of 1/405 ≈0.0025

for the Working Memory Task of the HCP Healthy Adults data).

2.5 | Group level analysis

Group-level GLM analyses typically incorporate two-stages, in which

second stage analysis is based on summary statistics from the first

(Beckmann et al., 2003; Holmes & Friston, 1998; Woolrich et al.,

2004). The methodology for group-level significance testing depends

on the experimental design. T-tests can be used provided that the

experiment is balanced (Holmes & Friston, 1998). For unbalanced

data, if the variance components of the data are known, then princi-

pled group-level inference can be done using univariate parameter

estimates and their covariance estimates (Beckmann et al., 2003). In

most cases, these variance components are not known. Second-level

variance parameter estimates have been found using the EM algo-

rithm (Worsley et al., 2002), approximate Bayesian inference (Friston

et al., 2002), fully Bayesian inference (Woolrich et al., 2004)

and restricted maximum likelihood approaches (Chen, Saad, Nath,

Beauchamp, & Cox, 2012). These same ideas extend to the VDGLM.

For the simple balanced-experiment setting, group-level inference can

be computed using t-tests. In the unbalanced case, more work is

needed due to the difficulty in computing the covariance of variance

parameters. We initially tried to develop group-level inference proce-

dures using asymptotic statistics (Wald test), but these tests were ill-

behaved for several subjects due to high-condition number matrix

inversions. We leave development of alternative statistics and a fully

Bayesian framework to future work.

Group effect sizes can be estimated using the set of parameter

estimates from all subjects. In our application, we compute Cohen's d,

which measures the standardized mean between two populations,

and is popular in fMRI for avoiding the multiple comparison problem

inherent in significance testing.

2.6 | Model comparison

Model comparison also proceeds as in a traditional fMRI pipeline.

Model comparison can be done using AIC (Akaike, 1974), BIC

(Schwarz, 1978), or any other log-likelihood-based metric that is a

function of a point estimate. Model comparisons can consist of tradi-

tional in-sample comparisons or can be generalized to new data using

out-of-sample comparisons (Mosteller & Tukey, 1968). The outcomes

of univariate comparisons can be aggregated into group level results

that test whether a subject tends to prefer a certain model across the

brain or whether a particular region tends to prefer a certain model

across subjects.

3 | EXAMPLE APPLICATION: BV IN
WORKING MEMORY

In this example application, we used the VDGLM to find brain regions

that are involved in working memory via changes in BV. We examined

whether these regions differ from regions involved via changes in

mean BOLD activation, and tested whether the VDGLM better

describes working memory data than the GLM. The goal is to illustrate

how to use the VDGLM and to showcase its utility.

We used data from the Human Connectome Project (HCP) Work-

ing Memory Experiment. In the experiment, subjects alternated

between fixation blocks and two different task blocks during which

they were presented with sequences of visual stimuli. In a 2-back task

block, subjects indicated whether the current stimulus was the same

as the one two presentations ago. In a 0-back task block, subjects indi-

cated when a target stimulus was presented.

GLM analyses of the HCP data have found that engagement in

the 2-back working memory task invokes regions thought to be

involved in a cognitive control network, including bilateral dorsal and

ventral prefrontal cortex, dorsal parietal cortex, and dorsal anterior

cingulate. Task engagement leads to a deactivation in the default

mode network, namely in the medial prefrontal cortex, posterior cin-

gulate, and the occipital parietal junction (Barch et al., 2013). Similar

activation patterns are found even when comparing 2-back versus

0-back. A 24 study meta-analysis of N-back studies found consistent

activation in frontal and parietal areas, namely bilateral and medial

posterior parietal cortex, bilateral premotor cortex, dorsal cingulate/

medial premotor cortex, bilateral rostral prefrontal cortex or frontal

poles, bilateral dorsolateral prefrontal cortex, and bilateral mid-

ventrolateral prefrontal cortex or frontal operculum (Owen, McMillan,

Laird, & Bullmore, 2005).

In our VDGLM analysis, the goal was to find both mean effects

that overlap with known mean effects and also variance effects that

could be spatially orthogonal to known mean effects.

GAUT ET AL. 3921



3.1 | Methods

3.1.1 | Data acquisition and preprocessing

The data was collected by the Washington University—University of

Minnesota Consortium Human Connectome Project (HCP, Van Essen

et al., 2013). We used the Working Memory task data from the 1,200

Subjects release using the minimal preprocessing pipeline (Glasser

et al., 2013). Details of task fMRI processing can be found in (Barch

et al., 2013). We included subjects that performed the left-to-right

phase encoded Working Memory task, resulting in 875/1200 total

subjects for analysis. The downloaded data were in grayornidate sys-

tem (Glasser et al., 2013), and the time series for 333 surface regions

of interest (ROIs) based on Gordon et al. (2014) were extracted for

further analysis. We perform additional preprocessing including scrub-

bing (relative RMS greater than 0.5 mm) and regression of motion

estimates to minimize motion artifacts (Burgess et al., 2016).

3.1.2 | Task design

During theWorkingMemory experiment, subjects alternatively engaged in

a 0-back and 2-back tasks that use faces, places, tools, and body parts as the

four categories of stimuli. Within each run, subjects were presented with

blocks of stimuli, where all stimuli within a block were from the same cate-

gory. For half of the blocks, subjectswere given a “target” stimulus andwere

instructed to press a button whenever that stimulus was presented (0-back

task). For the other half of blocks, subjectswere instructed to respondwhen

the stimulus was the same as the one presented two presentations ago

(2-back task). Task blocks were interwoven with 15 s fixation blocks and

instruction cues indicating the task type and “target” stimulus if the taskwas

the 0-back task. Each run contained eight task blocks.We combined blocks

fromeach stimuli type to create two task indicators (one for 0-back and one

for 2-back). In total, the experimental design contained four conditions: the

0-back task, the 2-back task, fixation, and instruction (see Figure 3).

3.1.3 | Modeling

We applied the VDGLM model (Equation 4) to the data. Building the

VDGLM required specifying both the mean and variance design

matrix. In the mean design, we included the 0-back, 2-back, Fixation,

and instruction conditions. In the variance design, we included the

same regressors as in the mean design, but with an additional inter-

cept regressor to reflect the assumption that there exists some mea-

surement noise not captured by the other variance regressors.

Additionally, we added a mean frame displacement noise regressor to

the mean design.

We also fit a GLM (Equation 3) model to the data using a design

matrix that is equivalent to the mean design matrix used in the

VDGLM.

3.1.4 | Estimation

We estimated GLM parameters using ordinary least squares. Since the

VDGLM is analytically intractable, we estimated parameters using

constrained trust-region optimization (Moré & Sorensen, 1983; see

Appendix A for optimization details, and (Yuan, 2000) for a review of

trust-region optimization). We performed mass univariate estimation,

that is, we fit the VDGLM and the GLM for each ROI and subject.

From parameter estimates, we created parameter contrasts for the

2-back minus Fixation, 0-back minus Fixation, and 2-back minus

0-back conditions.

3.1.5 | Group level effect sizes

We estimated group-level effect sizes for each contrast using Cohen's

d (the difference in standardized means) computed over subjects

(Cohen, 2013). We visualized these effect sizes for each ROI using the

HCP workbench software (Marcus et al., 2011). For a single region

there exist three possible group-level effect patterns on BOLD:

(a) both mean and variance effects are shown, (b) either mean or vari-

ance effects are shown, or (c) neither type of effect is shown. We

plotted the whole-brain spatial distribution of each type of effect at

small and medium effect sizes (Cohen's d of 0.2, 0.5, respectively).

Additionally, we compare our VDGLM mean estimates to GLM mean

estimates, to see whether modeling the variance changes known

mean inferences.

3.1.6 | Model comparison

Because the VDGLM has more parameters than the GLM, it has the

potential to explain more variability of the observed data, thus any

model comparison metric should take complexity into account. We

achieved this using out-of-sample log likelihood (OOSLL), which

penalizes overfitting by testing how well a model generalizes to new

unseen data. We used an out-of-sample metric, rather than traditional

metrics of model fit (such as goodness of fit tests, or information

criteria) to balance the goals of our analysis between prediction and

explanation (Yarkoni & Westfall, 2016); the model was compared to

F IGURE 3 HCP working memory experimental design convolved
with the canonical HRF. Condition is indicated on the y-axis. HCP,
Human Connectome Project; HRF, hemodynamic response function
[Color figure can be viewed at wileyonlinelibrary.com]
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other models using predictive performance, but also evaluated on its

explanatory power. We used 10-fold cross validation to compute the

out-of-sample log likelihood. For a single subject and region, we split

the time series into 10 folds that each contains a test and training set.

For each fold, we fit our model on the training set and computed the

out-of-sample log likelihood of the test set given the parameters com-

puted during training. To understand the level of general preference

for the VDGLM, we compute the percent of subject/ROI time series

with higher OOSLL for the VDGLM compared to the GLM. To under-

stand subject VDGLM preference, we compute the percent of regions

that prefer the VDGLM model for each subject.

To test that our model comparison results did not occur by

chance, we compared the prevalence of VDGLM preference found in

the real data to that found for a dataset simulated from the GLM

(i.e., data without variance effects). In this comparison, we wanted to

make explicit assurances that the VDGLM was preferred because of

real effects in the data, that is, that preference was not due to auto-

correlation artifacts. We did this by adding autocorrelation to the

dataset simulated from the GLM, where we estimated the autocorre-

lation from the real data. We generated a time series for each subject

and ROI independently. The generation of a sample time series from a

real time series yk proceeded as follows:

1. Compute the GLM OLS solution β̂ and variance solution σ̂2. We

use GLM parameters estimated from the real data to better

account for subject heterogeneity than if we simulated the under-

lying GLM parameters.

2. Estimate the autocorrelation of the residuals yk −Xβ̂ using an

AR(2) process and generate an estimated autocovariance matrix A.

3. Generate a sample time series ysamp =Xβ̂ + ϵsamp, where

ϵsamp �MVN 0, σ̂2A
� �

.

For each subject and region, we generate a single sample time series

(we generate only one sample to reduce the computational complexity of

this test). Using the generated dataset, we fit the VDGLM to each subject

and region. Due to having just one sample from each subject and ROI, we

cannot make statements about whether model comparisons for a single

subject and ROI are due to chance. However, we can analyze the percent

of ROIs for a given subject that prefer the VDGLM to assess whether the

amount of subject-level preference is due to chance.We compute whether

the subject-level VDGLMpreference is greater in the actual data compared

to the simulated data. This test shows whether VDGLM preference is cau-

sed by overfitting to autocorrelation or whether there is true variance-

related signal in the data. Model fitting and model comparison for 875 sub-

jects took ~1/2 a day to fit on the UCI High Performance Cluster.

4 | RESULTS

The analyses we ran on the VDGLM were designed with three goals

in mind. First, we wanted to test for the existence of effects on BOLD

variation during working memory engagement. We did this by

computing effect sizes of variance parameter estimates. Second, we

wanted to see whether these effects occur in regions that are spatially

orthogonal to regions that exhibit mean effects. To do this, we visually

examined whether mean and variance effect sizes are correlated and

plotted whole-brain visualizations of where mean and variance effects

occur. Finally, we wanted to verify that the VDGLM provides a better

account of the data than the GLM using model comparison metrics

based on out-of-sample log-likelihood.

4.1 | Group level effect sizes

The first goal in our analysis was to test for existence of variance

effects caused by working memory engagement. We measured

effects by computing Cohen's d over subjects. For each parameter

contrast (2-back minus Fixation, 0-back minus Fixation, and 2-back

minus 0-back) we plotted whole-brain Cohen's d (see Figure 4, bottom

row). We also plotted Cohen's d for mean parameter contrasts (top

row) to verify that the VDGLM preserves known mean effects.

We found small and medium sized variance effects during the

2-back and 0-back tasks compared to fixation across much of the

entire brain. Both 2-back and 0-back engagement evoked less BOLD

variation (i.e., negative Cohen's d) compared to Fixation across the

whole brain. For the 2-back minus 0-back contrast, variance Cohen's

d was low for some areas in the default mode network, some areas of

the dorsal attention network, some parts of visual cortex, and some

parts of the fronto-parietal network.

The VDGLM found mean effects that overlap existing HCP GLM

results (Barch et al., 2013; see Figure 4). The 2-back minus Fixation and

0-back minus Fixation contrasts showed activation in the bilateral

frontal–parietal network, bilateral visual cortex, and deactivation in the

default mode network, including medial prefrontal cortex, posterior cin-

gulate, and the occipital parietal junction. These same regions were acti-

vated, but less intensely for the 2-back minus 0-back contrast.

In general, task engagement leads to both positive and negative

mean effects sizes, but predominantly negative variance effects sizes.

4.2 | Orthogonality of mean and variance effects

The second goal in our analysis was to examine whether the VDGLM

finds variance effects that are orthogonal to known mean effects. To

analyze the degree of orthogonality between mean versus variance

effects, we plotted regional Cohen's d for the mean contrasts versus

variance contrasts (see Figure 5). We grouped ROIs by effect size.

ROIs with the same effect size in the mean and variance are plotted in

red, those with difference effect sizes in the mean and variance are

plotted in blue, ROIs with no mean nor variance effects are plotted in

gray. The small, medium, and large, effect thresholds are plotted by

the solid, dashed, and dotted black lines, respectively. ROIs exhibited

mean and variance effects that span all possible combinations of

effect sizes, although there were no large variance effects for the

0-back minus Fixation nor 2-back minus 0-back contrasts (see

Figure 5). In general, mean effects were larger than variance effects.

Effects were also much larger for the 2-back minus Fixation and
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0-back minus Fixation contrasts compared to the 2-back minus

0-back contrast. While there was a negative correlation between

mean Cohen's d and variance Cohen's d for the 2-back minus Fixation

and 0-back minus Fixation contrasts (R2 = .265 and R2 = .357, respec-

tively), the other contrast was uncorrelated (R2 = .000). Hence, mean

and variance effects are orthogonal for the 2-back minus 0-back

contrast.

4.3 | Spatial distribution of effects

In order to understand where the mean and/or variance effects were

occurring, we plotted the type of small and medium effects that occur

in each region (see Figure 6). A region with mean effect only is plotted

in blue, variance effect only in green, and both effects in red. For the

2-back minus Fixation contrast, there are regions that exhibited all

types of effects. Variance only effects occurred primarily in the

default mode network, but also in sensorimotor mouth regions, and

regions in the visual, dorsolateral attention, and cingulo-opercular net-

works. Mean only effects occurred in the frontoparietal, the auditory,

cingulo-opercular, visual, and dorsolateral attention networks. Effects

overlapped in some regions of the default mode, frontoparietal, visual,

dorsal attention, and cingulo-opercular networks and in some sensori-

motor regions. For the 0-back minus Fixation contrast, less regions

exhibited medium variance effects than the 2-back minus Fixation

F IGURE 4 Group-wise
Cohen's d for the 2-back minus
fixation, 0-back minus fixation,
and 2-back minus 0-back
contrasts. The top row shows
VDGLM variance effects, the
middle row shows VDGLM mean
effects, and the bottom row
shows voxel-wise GLM results
from previous analysis. Maps are
thresholded at (−0.2, 0.2).
VDGLM, variance design general
linear model [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 5 The magnitude of mean and variance effects sizes for the 2-back minus fixation, 0-back minus fixation, and 2-back minus 0-back
contrasts. Each circle represents an ROI. ROIs are grouped by whether they exhibit the same size effect (blue) in the mean and variance or
different sized effects (red). The black lines indicate the small (solid), medium (dashed), and large (dotted) effect sizes. ROI, region of interest
[Color figure can be viewed at wileyonlinelibrary.com]
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contrast, suggesting that cognitive demand plays a role in the size of

variance effects. There were, however, effects in sensorimotor areas

used in control of the mouth and hand, a region in visual cortex, and

some regions in the dorsolateral attention network. These effects

were all present in the 2-back minus Fixation contrast as well. Mean

0-back minus Fixation effects also largely mirror the mean effects in

the 2-back minus Fixation tasks. There were no medium sized vari-

ance 2-back minus 0-back contrasts. This suggests that while there

were different sized effects between 2-back minus Fixation and

0-back minus Fixation, these differences in effect sizes were small.

The main differences in variance effects tended to be caused by task

engagement rather than cognitive load.

4.4 | Model comparison

The VDGLM inferred that engagement in a working memory task

leads to less BOLD variation. In this section, we pursue a different

question. Does a model with these additional parameters give a signif-

icantly better account of the BOLD time series than a model without

them? To test this, we perform model comparisons between the

VDGLM and the GLM. Since, the VDGLM has more parameters and

will trivially better fit the data, we use out-of-sample log-likelihood to

check the VDGLM's ability to describe new unseen data. We perform

a model comparison for each subject and ROI time series in a mass

univariate approach.

We found significant preference for the VDGLM model; 41% of

subjects/ROIs had higher OOSLL for the VDGLM model over the

GLM in the real data (7% in the simulated data). Model preference

varies by subject and region (see Figure 7). The figure plots the per-

centage of ROIs that prefer each model in the real data (blue) and the

simulated data (red). The figure is ordered by a subject's proportion of

ROIs that prefer the VDGLM model in the real data. A subject's per-

centage of regions that favored the VDGLM ranged from 14% for

GLM-leaning subjects to 73% for VDGLM-leaning subjects. For all

875 subjects, some number of regions (but not all) preferred the

VDGLM model. Similarly, for all 333 ROIs, some number of subjects

(but not all) preferred the VDGLM model.

To check that the VDGLM was not just fitting autocorrelation, we

performed model comparisons for models fitted to data generated

from the GLM with added autocorrelation. For the simulated data,

only 7% of subjects/ROIs preferred the VDGLM model. For every

subject, the percent of ROIs that preferred the VDGLM model was

larger in the real data than in the simulated data, indicating a signifi-

cant preference for the VDGLM that was not just due to fitting to

autocorrelation.

F IGURE 6 The figure shows which types of effects occur in which regions. Regions can have only a mean effect (blue), only a variance effect
(green), or both effects (red). We plot effects for the 2-back minus fixation, 0-back minus fixation, and 2-back minus 0-back contrasts. We plot
small (Cohen's d 2[−0.2,0.2]) and medium (Cohen's d 2[−0.5,0.5]) effects [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 The percent of regions for each subject for which the
VDGLM model better describes the HCP data (blue) and data
simulated from the mean model (red). Subjects are ordered by percent
of regions for which the VDGLM model has higher OOSLL. OOSLL,
out-of-sample log likelihood (OOSLL); VDGLM, variance design
general linear model [Color figure can be viewed at
wileyonlinelibrary.com]
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4.5 | Application summary

The working memory application highlights the usage of the VDGLM.

We used the model to show that working memory task engagement

was related to a decrease in variance compared to fixation. Variance

effects and mean effects were not spatially correlated, suggesting that

the VDGLM reveals distinct brain patterns not captured by mean-

based approaches. We also found that the spatial distribution of mean

effects was similar to the spatial distribution of voxel-wise mean

effects from previous analyses (Barch et al., 2013). Variance tended to

be reduced across the whole brain compared to baseline. We want to

highlight that while many of the variance effect sizes in this applica-

tion were fairly small, this will not necessarily be true in future applica-

tions. Importantly, if there exists some quantity of interest that

consistently relates to small variance effect, then these small effects

are worth studying. This is especially true in disease studies where

discoveries have the potential to impact human lives (D'Esposito,

Deouell, & Gazzaley, 2003; Rombouts, Barkhof, Goekoop, Stam, &

Scheltens, 2005).

The application focused on testing for effects of BV, so we

designed our application to reduce potential confounds. By using HCP

data we minimized the effects of noise from CSF, large veins, and

white matter; high resolution data collection (2 mm) and registration

to the cortical surface leads to less voxel-by-voxel overlap with these

noise sources than compared to other data sources (Glasser et al.,

2013). We corrected for head motion by including nuisance motion

regressors and scrubbing particularly noisy volumes. We did

not account for heart beat nor respiration, which are known to affect

resting state BOLD variability (Biswal, Deyoe, & Hyde, 1996;

Kannurpatti & Biswal, 2008; Kannurpatti, Motes, Rypma, & Biswal,

2010; Kannurpatti, Motes, Rypma, & Biswal, 2011). However, we

tested at the group-level whether mean within-block heart rate and

respiration were correlated with mean within-block activation. We

found some significant correlations although the mean size of correla-

tions were small (between −0.088 and 0.112 for heart rate, −0.061

and 0.25 for respiration), which suggests that physiological noise may

be a driver of the variance effects we demonstrated.

Since neither heart rate nor respiration are highly correlated with

the task design, presence of these sources of noise increases variance

during task. Thus, we suspect that correcting for physiological noise in

future studies would lead to larger variance effect sizes. We per-

formed several posthoc analyses to check that VDGLM preference

was not related to mean frame displacement, nor grand mean inten-

sity scaling factor (Turner, Lopez, Santander, & Miller, 2015) (adjR2 =

−0.00114, −0.0011, respectively).

In this application, we fit a single VDGLM model and a single

corresponding GLM model. In practice, we could fit several VDGLM

models to test hypotheses of the form: “should condition C be

included in our model and does it affect the mean or the variance in

BOLD activation.” In this set-up, each model takes the form of Equa-

tion (4) and the conditions to be tested are defined by the entries of

the mean and variance design matrices. For example, we could test a

model with only intercept effects versus a model that allows each

condition to affect the variance, but not the mean. Then model com-

parison indicates which experimental conditions are necessary in the

model and whether those conditions are necessary as mean or vari-

ance regressors. This formulation allows us to define several nested

models in the classical sense––that is, that the set of mean regressors

in the nested model is a subset of the regressors of the full model—or

in a novel way where a combination mean and variance regressors are

nested.

To effectively develop and test the VDGLM, we chose an ROI

approach to have more reliable BOLD signal and a lower computa-

tional load. Application of the VDGLM to voxel-wise analyses is left to

future work.

5 | DISCUSSION

Traditional fMRI analyses treat BOLD variation as a “nuisance param-

eter” despite results linking BOLD variation to age, behavioral perfor-

mance, and task engagement. The VDGLM fills this gap by providing a

flexible framework for linking variance effects to experimental design.

By directly incorporating the design matrix, the VDGLM can assess

the independent contributions to BOLD variance from multiple exper-

imental conditions while controlling for confounding factors. The

VDGLM also controls for confounding between mean and variance

effects; since both effects are modeled simultaneously, we can make

inferences about one effect while controlling for the other. The

VDGLM is fit in a mass univariate approach, which allows analysis at a

more fine-grained resolution than previous empirical studies that ana-

lyzed latent structures of large spatial patterns in BV (Garrett et al.,

2010, 2011; Garrett, Samanez-Larkin, et al., 2013). Under the VDGLM

framework hypothesis generation and comparison is easy; each

hypothesis corresponds to an instantiation of the model and can be

tested using model comparison.

In our application, we showed that the VDGLM can be used to

find variance effects caused by working memory engagement

(Figure 4). We showed that the working memory effects (2-back

vs. 0-back) are spatially orthogonal to mean effects (Figures 5 and 6)

and finally, we compared the GLM and VDGLM and showed that

VDGLM provides a better description of the data even while account-

ing for model complexity (Figure 7).

An important feature the VDGLM is the facility for modeling mean

and variance simultaneously while allowing for orthogonal spatial

inferences. In the BV-age fMRI literature, variance effects were

orthogonal to mean effects (Garrett et al., 2010, 2011). This trend

generalized to our working memory application, where task engage-

ment resulted in predominantly negative BV effects across the brain,

but a mix of positive and negative mean effects. The negative BV

effects we found in the working memory application of the VDGLM

are different from (Garrett et al., 2010, 2013; Garrett, Samanez-

Larkin, et al., 2013) in which the authors found increased BOLD vari-

ability associated with cognitive demand. One possible explanation is

that different cognitive tasks were used in these studies, and it is pos-

sible that different tasks may lead to BV effects with different signs.
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Prior to the development of the VDGLM, we analyzed the Working

Memory data in the HCP dataset by simply computing the mean and

variance in each task blocks. We found reduced BOLD variability

associated with both the 2-back and 0-back tasks relative to fixation.

The results were consistent with the VDGLM analysis. Although the

sign of the BV effect may change depending on the task, these results

constitute a growing body of evidence that BV is a novel dimension

for studying brain function.

We want to highlight that there are alternatives to the methodological

choices we made in our application. Alternative choices can be made

regarding (a) the inference statistic or effect size estimate, (b) the model

comparison metric, and (c) the method for assessing model comparison

significance (see Figure 2). The comparison metric can easily be

substituted for another model and metric, and the additional model com-

parison significance test, while powerful, is not necessary in most standard

analyses. Using an alternative choice of inference statistic may require fur-

ther work. Our choice to use effects size was motivated by the use of

effect size in previous analyses (Van Essen et al., 2013) and the ease of

using a statistic that depends solely on parameter estimates. In an effort

to provide alternative inference statistics, we developed approximate t-

tests for variance effects. However, we found that the estimates were

sensitive to the condition number of the Hessian matrix specified by the

VDGLM (which is required for computation of approximate t-tests). We

tested the accuracy of the approximate t-tests for mean effects by com-

paring them to standard t-tests made by the GLM. While we found that

while they were close for most subjects and ROIs, for other subjects with

poorly conditioned Hessian matrices the t-tests tended to be unrealisti-

cally large. While any individual data point could be excluded from group-

level analysis using condition number threshold, we found this approach

too cumbersome for a framework aimed at general public use. Develop-

ment of well-behaved statistics for inference is ongoing work.

Many different measures of BV have been used in past fMRI stud-

ies: empirical variance (He, 2011), parametric variance (Wutte et al.,

2011), block-normalized standard deviation (Garrett et al., 2010;

Garrett, Kovacevic, McIntosh, & Grady, 2013), and mean squared suc-

cessive difference (Leo et al., 2012; Samanez-Larkin, Kuhnen, Yoo, &

Knutson, 2010). The goals of mean squared successive difference and

block-normalized standard deviation are to measure the variance not

accounted for by mean trends in the data. Since the VDGLM models

the variance/standard deviation in BOLD activation after accounting

for the mean trend, its variance parameters can be conceptualized to

measure a construct similar to mean squared successive difference or

block-normalized variance (but where blocks are convolved with the

canonical HRF). The parameterized model in Wutte et al., 2011 is sim-

ilar to the VDGLM, but uses a mixing parameter to capture shared

variance between task and fixation blocks rather than modeling the

variance as a function of convolved experimental design. We expect

that this approach leads to similar results, but with the caveat that it

only incorporates a single experimental condition. Lastly, we consider

the interquartile range, which is not used in the VDGLM and to our

knowledge has not been used in fMRI analysis to date. The goal of the

interquartile-range is to summarize the dispersion while limiting the

effects of any highly outlying time points. In our application, we used

scrubbing to a similar effect by manually removing any outlying time

points and recommend this approach if large outliers are present.

The VDGLM could be improved by implementing it in a Bayesian

framework. Bayesian frameworks would allow us to make more

robust inferences, incorporate prior beliefs about regions likely

(or unlikely) to exhibit BV effects, and to better quantify model com-

parisons. The main disadvantage of Bayesian methods, and the reason

we did not develop a Bayesian VDGLM, is the computational com-

plexity of inference.

The VDGLM could also be improved by transforming the variance

so that we did not need to enforce positivity. Log transformations

have been widely used for covariance and variance estimation

(Pourahmadi, 2011), however in the case of the VDGLM lead to a

drastic conceptual change in the model. Since the VDGLM incorpo-

rates the design matrix into its variance formulation, the exponential

transformation results in a variance parameters that are raised to the

power of elements of the design matrix. We opted to keep the

VDGLM as an additive variance model that requires constraints rather

than as a multiplicative variance model so that parameters were more

interpretable. However, we expect that the study of variance transfor-

mations could lead to stronger inferences in future work.

6 | CONCLUSION

Studies have demonstrably shown that variance in BOLD activation is

a functional construct orthogonal to mean BOLD that should be taken

into account in future imaging analyses.

This work developed the VDGLM, a coherent statistical frame-

work for incorporating BV into standard fMRI analyses. The VDGLM

was motivated by strong evidence that variance in BOLD activation is

linked to individuals and behavior. The VDGLM can be easily applied

in any experimental setting and will allow for increased ease and flexi-

bility in research on BOLD variability. We expect that it will lead to

exciting new discoveries relating BOLD variability to human charac-

teristics and behavior.
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APPENDIX A: VDGLM OPTIMIZATION

We perform maximum likelihood estimation using trust-region optimi-

zation (TRO). TRO is an iterative procedure for minimization. At each

iteration, TRO locally approximates the negative log likelihood func-

tion using a Taylor expansion and finds a minimum within that step's

trust-region, that is, the region for which the local approximation

accurately approximates the objective function. We used a built-in

function in MATLAB that restricts the local approximation to a two-

dimensional subspace to allow for faster convergence. The algorithm

locally minimizes along the two-dimensional subspace spanned by the

direction of steepest descent and one of either (a) the approximate

newton direction, if it exists, or (b) the direction of negative curvature

(Byrd, Schnabel, & Shultz, 1988). For a time series y from a single sub-

ject and region, we minimize the negative log likelihood −logp(y|θ)

where the likelihood is defined:

p y,θð Þ=
YT
t=1

p ytjβ,v,XM
t ,XV

t

� �" #

where XM
t is a [1× pM] vector: the single row of the mean design

matrix at time t. XV
t is a [1× pV] vector: the single row of the variance

design matrix at time t. For single point in the time series, the likeli-

hood is

p ytjβ,v,XM
t ,X

V
t

� �
=

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πXV

t v
q exp

−1

2XV
t v

yt−X
M
t β

� �2 !
:

and we can compute the joint log-likelihood as the product of the log-

likelihoods for each point:

logpðy j θð Þ= −
T
2
log2π +

XT
t

−
1
2
log XV

t v
� �

−
1

2XV
t v

yt− XM
t β

� �� �2" #

subject to the inequality constraint that the variance is nonzero,

that is:

XV
t v >0 8 t2 1,…,Tf g

This constraint can be conceptualized in a Bayesian setting as a

uniform prior over the constrained area. Each iteration of the trust-

region algorithm uses a Newton–Raphson step to update. We supply

the analytical gradients:

∂ logp βj•ð Þ
∂β

= XM
t

� �T XT
t=1

yt−X
M
t β

� �
XV
t v

" #

∂ logp vj•ð Þ
∂v

= XV
t

� �T XT
t =1

−1

2XV
t v

+
yt−X

M
t β

� �2
2 XV

t v
� �2

2
4

3
5:

We stop the optimization routine when the magnitude of the gra-

dient is smaller than 1e−6, the change in objective value is smaller

than 1e−6, the size of the trust region is below 1e−6, or the optimiza-

tion routine reaches 1,000 iterations.
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