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a b s t r a c t

Forecasters are typically evaluated via proper scoring rules such as the Brier score. These
scoring rules use only the reported forecasts for assessment, neglecting related variables
such as the specific questions that a person chose to forecast. In this paper, we study
whether information related to question selection influences our estimates of forecaster
ability. In other words, do good and bad forecasters tend to select questions in different
ways? If so, can we capitalize on these selections when estimating forecaster ability?
We address these questions by extending a recently-developed psychometric model of
forecasts to includequestion selectiondata.We compare the extendedpsychometricmodel
to a simplermodel, studying its unidimensionality assumption and highlighting the unique
information that it can provide. We find that the model can make use of the fact that
good forecasters tend to select more questions than bad forecasters, and we conclude
that question selection data can be beneficial above and beyond reported forecasts. As a
side benefit, the resulting model can potentially provide unique incentives for forecaster
participation.
© 2017 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The issue of question selection is of considerable impor-
tance in many areas of forecasting. Does a forecaster look
good because he/she chooses to forecast only easy ques-
tions? Should we reward forecasters for attempting diffi-
cult questions, even if their forecasts for those questions
are poor? Is forecasting ability related to question choice;
that is, are good forecasters better at selecting questions
on which they will excel? These questions cannot be an-
swered via classical metrics such as proper scoring rules
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(e.g., Gneiting & Raftery, 2007), which generally assume
that all forecasters report on all questions.

Instead of proper scoring rules, model-based ap-
proaches to forecast evaluationmake it feasible to study is-
sues that relate to question selection. One prime candidate
is a recently-proposed psychometricmodel of probabilistic
forecasts (Merkle, Steyvers, Mellers, & Tetlock, 2016),
which is related to the previously-proposed item response
models for doubly-bounded variables (Bejar, 1977; Fer-
rando, 2001; Müller, 1987; Muthén, 1989; Noel & Dauvier,
2007; Samejima, 1973). This model simultaneously pro-
vides estimates of forecaster ability and of question diffi-
culty and discrimination. For example, if a particular ques-
tion is worded ambiguously, good forecasters’ judgments
may be indiscernible from bad forecasters’ judgments. The
model can recognize this, discounting forecasters’ judg-
ments on ambiguous questions as we estimate their gen-
eral abilities across questions. Conversely, certain ques-
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tions may be particularly suitable for distinguishing be-
tween forecasters of different abilities. Forecasters’ judg-
ments on these good questions would then be weighted
more heavily than those on other questions.

In addition to addressing novel substantive issues,
model-based forecaster assessment allows us to make
explicit our assumptions related to missing forecasts. That
is, excluding (or including) question selection data from a
model implicitly makes assumptions as to why forecasters
do not respond to somequestions. For example, themissing
completely at random (MCAR; e.g., Little & Rubin, 2002)
assumption says that missingness is independent of the
data (both observed and unobserved). This assumption,
which is unlikely to be fulfilled in practice, generally
implies that we can ignore missing data.

The models of Merkle et al. (2016) instead employed
the missing at random assumption, where all observed
forecasts (even those from forecasters with incomplete
data) are used for model estimation. The MAR assumption
states that the probability of missingness can be predicted
exclusively from the observed data; our predictions would
not improve if we could observe the missing data. This
assumption excludes the possibility that forecasters of
greater/lesser abilities will differ in their frequency of
responding or in the types of questions that they choose.
When forecaster ability is related to question selection,
models that employ the MAR assumption may lead to
suboptimal substantive conclusions regarding forecaster
ability or question attributes.

To study question selection issues in this paper,
we develop a psychometric model of forecasts that
accommodates question selection and reported forecasts
jointly. This model draws on the psychometric literature
on explicitly modeling (as opposed to ignoring) missing
data (e.g., Chang, Tsai, & Hsu, 2014; Holman & Glas, 2005;
O’Muircheartaigh & Moustaki, 1999; Rose, von Davier, &
Xu, 2010; Wang, Jin, Qiu, & Wang, 2012), which explores
the idea that information can be gained from missing
data in standardized testing contexts. Following model
development, we apply the model to data from a recent
forecasting tournament. This allows us to study a major
model assumption in relation to the unidimensionality of
forecasting ability, and it also allows us to compare the
proposed model with a previous model that employs the
MAR assumption. In addition, we compare the model-
based estimates with other forecaster ability estimates
that are based on the Brier score, and we illustrate
the general use of question selection data for forecaster
assessment.

In what follows, we begin by providing the technical
detail of the models, starting with previous developments
and continuing on to novel developments. Next, we
apply the model to data from a recent forecasting
tournament. The application includes an examination of
model assumptions, a small example that provides readers
with an intuition of the model’s estimates, and a larger
example involving the full dataset. Finally, we report on a
simulation that illustrates further the benefits of modeling
question selection data.
2. Models

Assume that each of I forecasters responds to some
subset of J questions,with each forecaster’s subset possibly
being unique. Let y∗

ij be forecaster i’s probit-transformed
forecast for the realized outcome of question j (with the
possibility that it is missing), and let dij be a 0/1 variable
indicating whether or not y∗

ij is missing (0 for missing, 1
otherwise). We begin by briefly reviewing the MAR model
proposed by Merkle et al. (2016), and we then introduce a
new model that handles dij in addition to y∗

ij .

2.1. MAR model

The models described by Merkle et al. (2016) focus
on the observed y∗

ij , providing estimates of forecasters’
abilities and questions’ difficulties and discriminations.
Because they focus exclusively on the observed y∗

ij , they
employ the MAR assumption.

Most of the concepts underlying theMerkle et al. (2016)
model are derived from the classical item response lit-
erature (e.g., Embretson & Reise, 2000; Lord & Novick,
1968;McDonald, 1999), with the application to probabilis-
tic forecasts being relatively novel. That is, instead of being
applied to binary data reflecting whether or not a student
answers a test question correctly (say), the models are ap-
plied to probability judgments. The model can be written
as

y∗

ij|tij, θa,i, dij = 1 ∼ N(µij, σ
2
j ) (1)

µij = β0j + (β1j − β0j) exp(−β2tij)+ λjθa,i
(2)

θa,i ∼ N(0, 1), (3)

where tij is the time at which person i forecasts question j
(measured as days until the question expires), θa,i is person
i’s forecasting ability (the a subscript stands for ‘‘ability’’),
and the βj and λj parameters are related to item j’s diffi-
culty and discrimination, respectively.

This model is related to a factor analysis model, but
with extra parameters (the βs) that allow the question
difficulty to change over time. This is necessary because
forecasters often report on a question at different points
in time, and available, relevant information changes over
time. For example, imagine two forecasters predicting the
chance of rain for February 1. A forecasterwho responds on
January 31 will have a natural advantage over a forecaster
who responds on January 28 because the question is easier
on January 31. The model can take this into account by
allowing the difficulty to change over time, based on the
way in which the full group of forecasters responds over
time.

Merkle et al. (2016) used Bayesian methods to fit the
above model to data from a forecasting tournament (data
from the same source as is used in this paper, described
further below), and found that (i) the model could predict
out-of-sample forecasts successfully; (ii) the forecaster
ability estimateswere the forecaster ability estimateswere
more highly related to a forecaster’s future ability, as
compared to the Brier score; and (iii) the item parameter
estimates were related to external covariates in the way
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that was theoretically expected. The next section extends
this model to handle question selection data, resulting in a
model that allows formissing not at random (MNAR) data.

2.2. MNAR model

TheMNARmodel allows for the possibility that missing
data provide information about forecaster abilities (and
about item attributes), over and above the observed data.
It is a generalization of the above model that accounts for
the missingness indicators dij and the reported forecasts
y∗

ij simultaneously. In developing the model, we adopted
an approach similar to those of Holman and Glas (2005)
and O’Muircheartaigh and Moustaki (1999), both of whom
studied methods for handling missing data in traditional
item response contexts. For each person i, we model
2 × J variables simultaneously: the probit-transformed
forecasts for the J items (y∗

ij , some of which are missing),
and the missingness indicators for the J items (dij).

The J forecast variables are all modeled in a manner
similar to that of Merkle et al. (2016):

y∗

ij|tij, θa,i, dij = 1 ∼ N(µij, σ
2
j ) (4)

µij = β0j + β1jtij + λj,1θa,i. (5)

This is a simplification of the Merkle et al. (2016) model,
where the ‘‘time’’ covariate has a linear influence on µij
instead of an exponential curve. This function is simpler
than the exponential function while still allowing for
curvilinear for potential curvilinear influences of time
on the reported forecasts (because we are modeling the
probit-transformed forecasts, as opposed to the original
forecasts). We identify this part of the model by fixing a
single λj,1 parameter (in j = 1, . . . , J) to 1.

In addition to the forecast variables, the J missingness
indicators are handled via a two-factor model

dij|θa,i, θr,i ∼ Bernoulli(pij) (6)
probit(pij) = β0,(J+j) + λ(J+j),1θa,i + λ(J+j),2θr,i, (7)

where θr,i is person i’s response propensity. This equation
implies that a person’s forecasting ability can play a role
in both the questions that he/she selects and the forecasts
that he/she reports. There is also a response propensity
factor that accounts for a person’s general level of activity
in making forecasts. The subscripts above are based on the
fact that the missingness variables can be treated as new
questions within the model. That is, for person i, questions
1 to J include the reported forecasts, while questions (J +

1) to 2J include the binary missingness indicators (for
completeness, we define the parameters λ1,2 to λJ,2 to all
equal zero). We identify this part of the model by fixing a
single λ(J+j),2 parameter (where j is in 1, . . . , J) to 1.

In addition to the above constraints, parameter identi-
fication is completed by assuming that

θi = (θa,i θr,i)
′
∼ N(0,Dψ ), (8)

where Dψ is a diagonal covariance matrix with unique
entries ψ1 and ψ2. The assumption of diagonality here
could potentially be relaxed, but parameter constraints
would be required elsewhere in the model to trade off
with this relaxation. Preliminary testing indicated that
the model without diagonality was slow to converge,
so we did not pursue it further in this paper. Holman
and Glas (2005) show that parameter estimates under
the above constraints can be transformed linearly to
parameter estimates under the alternative constraints
(with the diagonality assumption relaxed), meaning that
the parameter estimates from the two approaches are
related to each another.

2.3. Estimation

The model can be represented as a path diagram, illus-
trated in Fig. 1. Each forecaster potentially contributes 2J
observed variables: a forecast and a selection indicator for
each of the J questions. These observed variables are shown
in the boxes labeled forecast1 to forecastJ and select1 to
selectJ . The former consist of probit-transformed forecasts,
with each forecast variable being observed only if the cor-
responding select variable is equal to 1. For example, a fore-
caster only supplies forecast1 if select1 equals 1.

The path diagram further shows the two latent vari-
ables labeled ‘‘forecast ability’’ and ‘‘response propensity’’,
with ‘‘forecast ability’’ influencing both the reported fore-
casts and the question selections. In terms of notation, the
λ parameters represent the paths from the latent variables
to the observed variables, the θ parameters represent the
latent variables, and the β parameters (corresponding to
the time covariate) are excluded for the sake of simplicity
(we would have a unique β parameter for each observed
variable, cluttering the diagram).

To incorporate the time covariate in the model and to
easily obtain θ estimates, we rely on Bayesian methods of
model estimation. Specifically, we employ Markov chain
Monte Carlo (MCMC) methods, adopting an approach
that is similar to existing MCMC methods for estimating
psychometric models (e.g., Ghosh & Dunson, 2009). We
use the following prior distributions on classes of model
parameters (subscripts are absent because the same prior
was used on each free parameter):

β0 ∼ N(0, 2) (9)
β1 ∼ N(0, 2) (10)
λ ∼ N(0, 1) (11)

ψ ∼ Gamma−1(0.01, 0.01) (12)

σ 2
∼ Gamma−1(0.01, 0.01), (13)

where the second parameter of each normal distribution is
a variance, as opposed to a precision.

These priors were intended to place a high density
in sensible parameter ranges, which can improve model
convergence and sampling efficiency. The parameter
ranges are sensible because the model parameters are
generally used to make predictions on the probit scale,
meaning that the predictions are akin to z-scores. Thus,
we would be surprised to observe values of β0 or β1
that were drastically outside (−2, 2), because these values
would correspond to extreme probabilities near 0.025 and
0.975, respectively. We would also be surprised to observe
values of λ that were much larger than 1, given the diverse
questions in our dataset (further discussion below). Finally,
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Fig. 1. Path diagram of the proposed model. The time covariate tij is excluded for simplicity.
the priors on ψ and σ 2 are traditional, noninformative
priors on variance parameters.

Unless otherwise mentioned, the models were burned
in for three chains of 2000 iterations each, after which
parameterswere sampled for an additional 2000 iterations
each. Chain convergencewas fast andwasmonitored using
time series plots and the Gelman–Rubin potential scale
reduction statistic (Gelman & Rubin, 1992).

2.4. Parameter interpretation

The model parameters supply many pieces of infor-
mation about relationships between forecasting problems,
forecaster abilities, and forecaster selection. In particular,
themodel allows us to address the following questions (the
relevant parameters are given in parentheses):

• Which questions are more popular than others? (β0,J+1
to β0,2J ).

• Who are the frequent/infrequent responders? (θr,i).
• Do good forecasters tend to select/avoid certain ques-

tions? (λJ+1,1 to λ2J,1).
• Do frequent forecasters tend to select/avoid certain

questions? (λJ+1,2 to λ2J,2).

The first two issues can be addressed easily by examining
the raw data (i.e., response proportions), but the last two
issues are more difficult to address via simple, data-based
metrics. This is an advantage of the model-based approach
described here.

Along with the above topics, the new model can also
address the same issues that theMerkle et al. (2016)model
addressed. These include:

• Which questions are easier/harder than others? (β0,1 to
β0,J ).

• Who are the better/worse forecasters? (θa,i).
• Are some questions better than others for distinguish-
ing between forecasters of varying abilities? (λ1,1 to
λJ,1).

The applications below focus on the θa,i parameters, exam-
ining the ways in which the estimated forecaster abilities
change from the MAR model to the MNAR model. While
we eventually fit the model to a large dataset, we initially
fit the model to data from only four questions, because
this makes it easier to illustrate themodel’s behavior. First,
however, we describe the data source and study the extent
to which model assumptions are fulfilled.

3. Application: geopolitical forecasting

The forecasts used in this paper arise from a four-year
geopolitical forecasting tournament sponsored by IARPA.
The tournament involved five research teams, each of
which was required to forecast hundreds of diverse ques-
tions related to world events. Example questions include:

• Will Australia formally transfer uranium to India by 1
June 2012?

• Will Mario Monti resign, lose re-election/confidence
vote, or vacate the office of Prime Minister of Italy
before 1 January 2013?

• Will there be a significant outbreak of H5N1 in China in
2012?

• Will the Yuan to Dollar exchange rate on 31 December
2012 bemore than 5%different than the 31August 2012
exchange rate?

For each question, the research teams elicited forecasts
from large groups of individuals. The teams then aggre-
gated the forecasts via statistical methods and reported
them to the funder on a daily basis.

We focus here on assessing individual forecasters who
were part of the winning team in the tournament (the
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Good Judgment Project). This team collected forecasts
from thousands of individuals, each of whom was active
for at least one of the four tournament years. We begin
by providing some background details on the dataset
(see also Mellers, Stone, Atanasov et al., 2015; Mellers,
Stone, Murray et al., 2015; Mellers et al., 2014), and we
then discuss issues of dimensionality in relation to the
dataset. The dimensionality issues are important because
the proposed model makes specific assumptions here.

3.1. Data

Adult forecasters of all ages were recruited from across
the United States via email lists, professional societies,
university organizations, and social media. The forecasters
voluntarily logged on to a website and selected the
questions that they wished to forecast. Forecasters were
motivated to participate in various manners, including
monetary payments for participation and leaderboards of
the best forecasters.

For each question, forecasters read the question details
and reported a probability of event occurrence (from 0 to
1 inclusive; forecasts of exactly 0 and 1 were transformed
to 0.001 and 0.999, respectively, formodeling). Forecasters
were randomly assigned to experimental conditions that
differed in whether, e.g., the forecasters worked individu-
ally (vs on teams) and the types of training the forecasters
received. For the purposes of this paper, we ignore exper-
imental conditions and model only individuals’ reported
forecasts and question selections. This is facilitated by the
fact that even forecasters who worked in teams still re-
ported their own individual forecasts.

Below, we use a data set consisting of 775 forecast-
ers who each report on a subset of 157 binary (event oc-
curs/does not occur) questions. To speedmodel estimation,
forecasters were initially included if they responded to 70
or more questions; we later apply the model to forecasters
with sparser data. While the forecasters were free to re-
spond to the same question multiple times (i.e., to update
their forecasts), we used only the first forecast supplied on
a given question for simplicity.

3.2. Unidimensionality

The model studied in this paper assumes a single
‘‘forecaster ability’’ dimension and a single ‘‘response
propensity’’ dimension, with the reported forecasts being
influenced only by the ‘‘ability’’ dimension and the ques-
tion selections being influenced by both dimensions. The
assumption of a single ‘‘forecaster ability’’ dimension is
almost certainly violated for the application considered
here, which involves forecasts of diverse world events.
For example, we could imagine a forecaster having ex-
pertise on a specific topic like European politics, so that
his/her forecasts are better on questions related to that
topic than on other, unrelated questions. The proposed
MNAR model would assign this forecaster a single ability
estimate, representing some combination of his/her ability
at forecasting European politics and his/her ability at fore-
casting other questions. However, this single estimate will
not be an optimal assessment of the forecaster’s true abil-
ity, which requires two dimensions to describe it fully (one
for European politics and one for other questions). Like-
wise, if a forecaster’s ability improves over time, his/her
single model estimate will not reflect this. However, use
of a single model estimate does mimic applied forecaster
assessments where the Brier score is averaged indiscrimi-
nately across all available questions (e.g., Carvalho, 2016).

In addition to mimicking practical assessments, we can
draw on the psychometric literature to explicitly assess di-
mensionality. Researchers here have pointed out that strict
unidimensionality will not hold in practice, even in the
case of standardized educational tests (e.g., Reise, Scheines,
Widaman, & Haviland, 2013; Thissen, 2016; Zhang, 2007).
Thus, considerable effort has been devoted to assessing
the magnitude of the unidimensionality violation, as op-
posed to assessing whether or not such a violation oc-
curs (e.g., Bonifay, Reise, Scheines, & Meijer, 2015; Stout
et al., 1996; van Abswoude, van der Ark, & Sijtsma, 2004;
Zhang, 2007). This effort has provided metrics that can tell
us whether or not a set of questions is ‘‘unidimensional
enough’’ to be useful. Themetrics are nonparametric in na-
ture, because model-based assessments tend to be overly
sensitive to minor violations of unidimensionality.

One of the most popular metrics in this body of liter-
ature, which we adapt to forecasting data here, is called
DETECT (Zhang, 2007; Zhang & Stout, 1999). This met-
ric makes use of the fact that, for unidimensional tests,
all nonzero covariances/correlations between questions
should be due to the single, underlying ability dimension.
Thus, partial covariances/correlations between questions
(conditioning on the single underlying dimension) should
all equal zero.While this is the idea underlyingDETECT, the
specific algorithm is more complex than mere covariance
calculation. Further computational details are provided in
Appendix A.

The DETECT index is useful for our purposes because
previous researchers have provided rules of thumb for
its interpretation. Roussos and Ozbeck (2006) state that
values below 0.2 are often taken to represent approximate
unidimensionality, whereas values greater than 1.0 are
taken to represent strong multidimensionality. As we
move from 0.2 to 1.0, multidimensionality increases in
strength. Thus, for the unidimensionality assumption to be
useful, we should look for D values below 1.0, with values
closer to 0 being better.

We computed this statistic separately for the reported
forecasts y and the question selections d. For the question
selections, the DETECT index indicated strongmultidimen-
sionality, achieving amaximumvalue of 2.3 at two clusters
(subgroups) of questions. These subgroups had a strong
temporal component:whenwe re-computed the index us-
ing only data from a single year, the maximum DETECT
valuewas 0.58 (indicating onlymoderatemultidimension-
ality). For the reported forecasts, we obtained a maximum
DETECT statistic of 0.72 at three subgroups.

These results provide some evidence that, for this
particular dataset, multidimensionality is moderate and
results from changes in the forecasters over time, as
opposed to forecasters having specific expertise orinterest
in particular question topics. To address these findings, we
later fit the model to subsets of the data arising from a
single year of the tournament and compare it to a model
fitted to the full dataset.
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Table 1
Brier scores and response rates for four questions.

Question Mean Brier score Response rate

1067 0.08 0.87
1106 0.01 0.77
1147 0.09 0.59
1177 0.07 0.59

4. A simple example

For an initial investigation of the proposed model’s
behavior, we use data from only four questions. The
four questions used here (with identification numbers in
parentheses) were all open during 2012–2013; they are:

• Will Traian Basescu resign, lose referendum vote, or
vacate the office of President of Romania before 1 April
2012? (1067)

• Will Kim Jong-un resign or otherwise vacate the office
of Supreme Leader of North Korea before 1 April 2013?
(1106)

• Before 1 April 2013, will the Egyptian government
officially announce it has started construction of a
nuclear power plant at Dabaa? (1147)

• Will Mohammed Morsi cease to be President of Egypt
before 1 April 2013? (1177)

In the tournament, 771 of the 775 forecasters in our
dataset responded to at least one of the four questions.
We use all of the data supplied by these 771 forecasters,
includingmissing observations. Below,we further describe
the questions and the model before examining the results.

4.1. Data summary

The questions’ mean Brier scores and response rates
(out of the number of people who responded to any of
the four questions) are displayed in Table 1; scatterplots
and the distributions of reported forecasts are displayed
in Fig. 2; and response pattern frequencies and mean Brier
scores are displayed in Table 2. Questions 1067 and 1147
had the worst Brier scores, and Questions 1147 and 1177
were less popular than the other two. Fig. 2 (and most
notably the panels for Question 1067) also shows that
there is some overuse of ‘‘nice’’ numbers like 0.5, which
indicates that some participants might be reporting 0.5
to reflect complete uncertainty, as opposed to the actual
probability of the event occurring. Our model does not
account for this phenomenon, and it is unclear whether
accounting for it is worth the additional model complexity
that would be required.

Finally, Table 2 shows that 345 forecasters responded to
all four questions, while 173 forecasters only responded to
the first question (1067). The forecasters who responded
only to question 1067 appear to have worse Brier scores
than the other forecasters, although this result is clouded
by differences in question difficulty and in response
pattern frequencies. The estimated model, described
below, can help to provide a clearer assessment of these
issues.
Table 2
Response pattern frequencies and mean Brier scores for the simple
example.

Response pattern Frequency Mean Brier

0001 1 0.023
0010 1 0.000
0011 1 0.006
0100 15 0.052
0101 11 0.063
0110 8 0.027
0111 64 0.056
1000 173 0.102
1010 1 0.061
1100 87 0.043
1101 31 0.052
1110 34 0.066
1111 345 0.060

Note: the four numbers in the ‘‘Response pattern’’ column correspond
to questions 1067, 1106, 1147, and 1177, respectively, and equal 0 for
question nonresponse and 1 otherwise.

4.2. Results

Several results are notable when we examine the
estimated IRT model of forecasts and question selections.
We start with the λ parameters that describe the influence
of forecaster ability on the reported forecasts and on
question selection. We then move to the forecaster ability
estimates.

The λ parameters that relate to question discrimina-
tion (λ1,1 to λ4,1) are all close to 1, which (unsurprisingly)
means that better forecasters tended to do better on all
four questions. Perhaps more surprisingly, better forecast-
ers were more likely to select certain questions (based on
λ5,1 to λ8,1). This was particularly true for the two ques-
tions that had lower response rates andworse Brier scores,
1147 and 1177. Question 1106 showed forecaster ability to
have a smaller influence on question selection, while ques-
tion 1067 showed virtually no influence.

Fig. 3 compares the ability estimates from the MAR
model of Merkle et al. (2016) (x-axis; note that this model
includes a linear effect of time that is similar to Eq. (5))with
those from the newmodel of forecasts and question selec-
tion (y-axis). Each point represents a single forecaster, with
the point’s color and shape representing the total num-
ber of questions answered (out of a possible four). We can
roughly see three diagonal lines going from the bottom left
to the top right: one line of red circles and green triangles,
one line of blue squares, and one line of purple plusses. The
red circles and green triangles tend to be closest to the top,
indicating that the forecasters who answered three or four
questions generally received the highest ability estimates
under the MNAR model, followed by those who answered
two questions, followed by those who answered only one
question. The MNAR model penalizes non-responders au-
tomatically, because non-responders tend to supply worse
forecasts than frequent responders.

The figure also includes a small number of forecasters
who stand out; one such forecaster in the middle of the
plot is circled. The circled forecaster answered only one
question, but obtained a higher ability estimate under the
new model than similar people who responded to all four
questions. The forecaster responded only to the question
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Fig. 2. Visual summaries of the forecasts for each question’s realized outcome for the simple example. The upper triangle displays the Pearson correlations
associated with the scatterplots in the lower triangle.
Fig. 3. Comparison of MAR ability estimates with MNAR ability estimates that incorporate question selection, for the simple example. The Spearman
correlation appears in the upper left.



824 E.C. Merkle et al. / International Journal of Forecasting 33 (2017) 817–832
Fig. 4. Mean observed Brier score (x-axis, left panel) and mean imputed Brier scores (x-axis, right panel) versus MNAR ability estimates.
that was most highly associated with forecaster ability
(question 1147), which is a very uncommon response
pattern: this is the only person who responded to question
1147 and no others. In addition, the forecaster made
a near-perfect forecast of 0.99 in favor of the realized
outcome on that question. Thus, the model rewards the
forecaster for making a good forecast on the question that
was most highly associated with good forecasting. This
reward is relative to theperson’sMARability estimate; that
is, the person’s new ability estimate is still in the middle of
the pack, relative to the full set of forecasters. In order to
obtain the highest ability estimate, a forecastermust report
exceptional forecasts onmost or all of the questions. This is
because the shrinkage of each forecaster’s ability estimate
is related to the amount of data available on a forecaster: a
forecaster’s ability estimate can become more extreme as
he/she responds to more questions.

Fig. 4 compares the new model’s ability estimates to
two types of Brier scores: a mean observed Brier score,
and a mean imputed Brier score. These reflect heuristic
methods for handling missing data while still using a
proper scoring rule. Themean observed Brier score for each
forecaster averages Brier scores only across the questions
to which the forecaster responded (similar to treating
missing forecasts as ‘‘not reached’’, for example). The
mean imputed Brier score, on the other hand, fills in the
missing observations with the corresponding question’s
mean Brier score based on the observed forecasts for
that question (similar to treating missing forecasts as
‘‘incorrect’’, for example).

In Fig. 4, the x-axis reflects the Brier scores and the
y-axis reflects the model estimates. For reference, the red
circles in the two figures are exactly the same, as Brier
score imputing has no impact on people who forecast all
four questions. The figure shows that the ability estimates
from the model are generally related to the Brier scores,
with correlations in the range−0.6 to−0.7. Comparing the
two panels, we see that the Brier score imputing helped
many people with bad Brier scores. In the left panel, these
people are generally closer to the right side of the x-axis,
with points that are triangles, squares, or plusses. In the
right panel, they have all moved further left on the x-
axis (improved), while those who responded to all four
questions have stayed in the same locations. Perhaps the
most striking result of this figure involves the fact that we
observe multiple vertical ‘‘lines’’ of points. This shows that
themodel assigns different ability estimates to peoplewho
receive nearly the same Brier scores. The specific questions
thatwere selected, alongwith the timeswhen the forecasts
were reported, are responsible for these differences.

5. Full dataset

Now that we have illustrated themodel’s application to
a small number of questions, we fit the model to the larger
data set of 775 forecasters responding to 157 questions
(again maintaining only the first forecast reported by each
person on each question). We focus on comparing the
MNARmodel with theMerkle et al. (2016)model that does
not handle question selection. This comparison provides
information about the impact of the ‘‘missing at random’’
assumption on model estimates.

A comparison of the Merkle et al. (2016) ability es-
timates (missing at random) and the new ability esti-
mates (missing not at random) is displayed in Fig. 5. The
points are now displayed in various shades of blue, de-
pending on the response rate: blue points represent fore-
casters who responded to nearly all of the questions, while
black points represent those who responded to fewer
questions. The figure clearly shows that the response rate
influences the ability estimates in the new model: fore-
casters who received similar ability estimates under the
old model can now receive very different estimates from
the new model. The extent to which the new ability esti-
mates change depends on response rate: light blue points
are always closest to the top of the graph, and darker points
are lower. Just like in the simple example, the extent to
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Fig. 5. Comparison of theMAR ability estimateswith theMNAR ability estimates obtained using data across all four years of the tournament. The Spearman
correlation appears in the top left.
Fig. 6. Histogram of λ estimates that correspond to paths from the
‘‘forecaster ability’’ latent variable to the ‘‘question selection’’ variables.

which the darker points are penalized depends on the spe-
cific questions to which forecasters responded: if a ‘‘low
response rate’’ forecaster responds to many questions that
good forecasters select, then that forecaster is penalized
less. On the other hand, a ‘‘low response rate’’ forecaster
who responds in other ways will have a larger penalty.

Fig. 6 displays a histogram of λ estimates that corre-
spond to paths from ‘‘Forecaster ability’’ to the question
selection variables (see Fig. 1). These estimates provide in-
formation as to whether good forecasters are more/less
likely to select certain questions. The histogram indicates
that the chance of responding to any given question in-
creases with the forecaster’s ability, regardless of that
question’s difficulty. This result has at least two further im-
plications. First, there is a deviation from theMAR assump-
tion, because the MAR model is obtained when all of these
λparameters are equal to zero. Second, a forecaster can im-
prove his/her ability in two ways: by reporting good fore-
casts and by responding to a large number of questions.
This may be especially useful for forecast consumers, in
that the model developed here can give forecasters an in-
centive to increase their response rates. We return to this
issue in the general discussion.

Finally, the histogram in Fig. 6 indicates question vari-
ability: some of the estimates are close to zero, indicating
that forecaster ability is nearly unrelated to the selection of
certain questions, whereas some of the other estimates are
far from zero. Table 3 shows a few specific questions that
fell at each extreme. The bottom section contains questions
whose λ estimates were near zero, indicating that their se-
lection was ‘‘unrelated to ability’’. These questions were
all open near the start of the tournament, when people
were first getting accustomed to forecasting. Of these peo-
ple, somebecamegood forecasters and others dropped out,
likely explaining themodel results. Conversely, the top sec-
tion contains questions whose selections were ‘‘related to
high ability’’. These questions were open later in the tour-
nament, and they comprise less-popular topics that begin-
ning forecasters may have avoided.

6. Impact of dropouts

Aswas shown in an earlier section, themultidimension-
ality in forecasts and question selection is related in part to
the fact that the forecasting tournament was divided into
four separate years. Many existing forecasters dropped out
at the end of each year, and many new forecasters entered
for the subsequent year. Thus, the results in the previous
section (see Fig. 5)were influenced by two types ofmissing
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Table 3
Notable questions illuminated by the model estimates.

Questions related to high ability Question text

1174 Will the Turkish government release imprisoned Kurdish rebel leader Abdullah Ocalan
before 1 April 2013?

1177 Will Mohammed Morsi cease to be President of Egypt before 1 April 2013?
1183 Will the United Nations Security Council pass a new resolution directly concerning Iran

between 17 December 2012 and 31 March 2013?

Questions unrelated to ability Question text

1004 Will the United Nations General Assembly recognize a Palestinian state by 30 September
2011?

1010 Will the 30 Sept 2011 ‘‘last’’ PPB for Nov 2011 Brent Crude oil futures exceed $115?
1022 Will the South African government grant the Dalai Lama a visa before 7 October 2011?
Fig. 7. Comparison of MAR and MNAR ability estimates during Year 1 (left panel). The right panel contains a subset of points in the left panel from
infrequent responders.
data: dropouts who only reported forecasts during a sub-
set of the tournament, and selective responders who fore-
casted a subset of questions across the entire tournament.

These two groups may influence the model differently,
given that the best forecasters (the ‘‘superforecasters;’’
see Mellers, Stone, Murray et al., 2015) tended to continue
reporting forecasts throughout the tournament, while
worse forecasters were more likely to drop out. The fact
that bad forecasters dropped out more often implies that
bad forecasters had more missing data, so that the model
learned to penalize forecasters with low response rates.
However, if we can avoid the bad forecasters who dropped
out after each year, the model may penalize/reward
forecasters differently. Thus, this section fits the model
to Year 1 forecasts only, which eliminates year-to-year
dropout effects from our analysis.

6.1. Method

We fit the model to 771 forecasters who made at least
one forecast during Year 1. This is a subset of the original
data and includes some forecasters with very sparse data
(who reported infrequently during Year 1 but more fre-
quently during subsequent years). We restricted ourselves
to 78 questions that both opened and closed during Year 1.

6.2. Results

The left panel of Fig. 7 contains the main results, with
the MAR ability estimates on the x-axis and the MNAR
ability estimates on the y-axis. The light blue points form a
diagonal line, showing that forecasters who responded to
nearly all of the questions receive similar ability estimates
across models (except for some rescaling). There are also
a few darker points that cluster around the main diagonal
line, showing that some people who responded to fewer
questions received small rewards or penalties depending
on their response patterns. Aside from this, we see a small
number of dark points that are farther from the diagonal
line, with many of these points receiving higher ability
estimates under the MNAR model.

The dark points above the line represent people who
responded to a small number of questions that tended to
be selected by good forecasters. The right panel of Fig. 7
provides a closer look at the dark points from the left
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Fig. 8. Display of the Year 1 infrequent responders in the full dataset (red
points), relative to other forecasters. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of
this article.)

panel. The right panel contains forecasters who responded
to no more than 10% (seven) of the questions, so that
the shading reflects response rates that go from 0 to 0.1
instead of from0 to 1. It can be seen that the nonresponders
who received the largest boosts generally answered six or
seven questions (close to 10% of the questions). In general,
these questions were ones that good forecasters tended to
answer, and the nonresponders reported good forecasts on
them. The model deemed this sufficient evidence to give
the forecasters a boost.

Do these forecasters deserve the boost?We answer this
question by looking at the performance of the forecasters
on the full dataset (including data from other years). We
focus on the nine nonresponders in the right panel of
Fig. 7 whose ability estimates from the new models were
greater than 0.8. We then re-create Fig. 5 in Fig. 8, except
that the nine nonresponders are now highlighted in red.
It can be seen that, when we compare the forecasters
on abilities across years, those who originally received
a boost now receive a penalty. This is likely because
the nonresponders had larger amounts of missing data
across years. Despite this finding, the nonresponders who
originally received boosts during Year 1 all remain in the
top half of forecasters, with seven of the nine being above
the 90th percentile in terms of ability. This suggests that
the newmodel canhelp us to identify good forecasterswho
have responded to only a small number of questions. We
explore this suggestion further in the next section.

7. Improvements in ability estimates

While the previous sections have illustrated that the
new IRT model rewards/penalizes (non)response in an in-
tuitive fashion, ultimately we wish to know whether the
resulting ability estimates are better than those of the
model that employs the missing at random assumption.
This issue is more complex than it appears initially be-
cause it requires us to explicitly define what we mean by
‘‘ability’’. For example, imagine thatwe estimate forecaster
ability using three metrics: the mean Brier score, the MAR
model, and the MNAR model. It is likely that, if we com-
pute each of these metrics on a training sample, they will
be correlated most highly with the analogous metric on a
test sample: the training Brier scorewill bemost correlated
with the test Brier score, the trainingMARestimateswill be
most correlatedwith the testMAR estimates, and the train-
ing MNAR estimates will be most correlated with the test
MNAR estimates. In order to say which model is best, we
need to decide explicitly which metric counts as the ‘‘offi-
cial’’ measure of ability. This amounts to dealing with the
validity of each of the ability metrics (e.g., Borsboom, Mel-
lenbergh, & van Heerden, 2004), which is a difficult topic
to address in the current context.

We sidestep validity issues here, showing that, if we
provide the MNAR model only with the questions that
some forecasters selected (and not with their actual
forecasts), those forecasters’ ability estimates are related
to the estimates that would be obtained if we used
the full dataset. This implies that information can be
obtained from the item selections, independently of the
reported forecasts. This, in turn, illustrates the utility of the
proposed model in practice.

7.1. Method

We conducted a simulation study of the MNAR model,
using only data from Year 1 of the forecasting tournament.
Similarly to the previous section, this was done to prevent
the model from capitalizing on year-to-year dropout ef-
fects. For each of 100 replications, we randomly selected
25% of the 775 forecasters in the data and deleted all of
their forecasts. We maintained the questions that these
forecasters selected (i.e., the dij), however, fitting themodel
to these selections along with all of the data provided by
the remaining 75% of forecasters. Following model esti-
mation (2000 burn-in samples followed by 2000 poste-
rior draws), we computed the posterior mean ability es-
timates of the forecasters whose forecasts were deleted.
Finally, we examined the relationships between these abil-
ity estimates and those associatedwith the forecasters’ full
data fromYears 1 to 4.We included the data fromYears 2 to
4 in our comparison because it served as a more stringent
generalizability measure. That is, because data from Years
2–4 were completely held out of the initial model estima-
tion, it is more impressive if the resulting ability estimates
are correlated with the estimates that include data from
Years 2–4.

7.2. Results and discussion

Fig. 9 contains a histogram of correlations between
(i) the ability estimates resulting from the Year 1 deleted
dataset (where 25% of the forecasters had only question
selection data), and (ii) the ability estimates resulting
from the model developed in this paper (utilizing reported
forecasts and question selections from all four years). The



828 E.C. Merkle et al. / International Journal of Forecasting 33 (2017) 817–832
Fig. 9. Simulated correlations between ability estimates under two
models: a model that only uses question selections from Year 1, and a
model that uses both reported forecasts and question selections from
Years 1–4.

histogram depicts only 98 correlations, as the model failed
to converge for two of the 100 simulation replications. This
is likely due to bad, randomly-generated initial values in
these replications.

The histogram shows that the ability estimates from the
twomodels are correlated positively across all replications,
with a mean correlation of 0.24 and an interquartile
range of (0.2,0.28). This result provides evidence that the
question selections contain information that is related to
the full ability estimates (which would be obtained if we
included the reported forecasts in the model).

This result is weakened by the fact that the question
selection data were included in both models; we might
expect a positive correlation between the models’ esti-
mates because they were partially based on the same data.
To explore this criticism, we also examined the relation-
ship between the ‘‘Year 1, question selection’’ ability esti-
mates and the MAR ability estimates (based on the model
of Merkle et al., 2016). The latter model utilizes only the
reported forecasts from Years 1–4 (without question se-
lection data), so that the forecasters with deleted data
contribute unique data points to each model. These cor-
relations are nearly always positive (in 97 of 98 replica-
tions), with a mean of 0.12 and an interquartile range of
(0.08, 0.16). This mean (and range) is lower than those of
the correlations from Fig. 9, potentially illustrating the im-
pact of repeating the data across models. However, given
that the correlations remain positive, we conclude that the
question selection data contains useful information. This
information may not always lead to major, practical im-
provements in ability estimates, but it is worth considering
in scenarios where forecasters are free to select their own
questions.

8. Discussion

In this paper, we first developed a psychometric model
that allows us to assess forecasters’ abilities while si-
multaneously handling data on question selection. This
is potentially useful in situations where forecasters are
free to select the questions that they wish to forecast,
so that the selected questions provide information about
forecasting ability above and beyond the forecasts re-
ported on those questions. After developing the model
and checking its assumptions, we illustrated the extent
to which the proposed model differed from a previous
model that did not account for question selection. The
results from the new model implied that good forecast-
ers tended to select more questions, regardless of the
question difficulty, and that some specific question selec-
tions had an influence on forecaster ability estimates. We
also studied the extent to which we can estimate fore-
caster ability based on question selections alone (not fore-
casts), finding that these ability estimates exhibited cor-
relations of 0.24 (on average) with the full data ability
estimates. This implies that there is information in the
question selections that can be capitalized upon, a re-
sult that has also been studied in other contexts (e.g., Ru-
bin & Steyvers, 2009). In the remainder of this paper, we
provide further ideas on missingness mechanisms, rela-
tionships to traditional scoring rules, model assumptions,
and methods of model estimation.

8.1. Missingness mechanisms

One appeal of the proposed MNAR model is the fact
that it handles missingness in a manner that agrees with
intuition: good forecasters select questions differently
from bad forecasters (in the specific context of the current
data, good forecasters generally selected more questions
than bad forecasters), and we should be able to use these
differences in a forecaster assessment. On the other hand,
the statistical literature onmissing data (e.g., Little &Rubin,
2002) clearly states that (i) there are an infinite number
of missingness mechanisms that qualify as ‘‘missing not at
random’’, and (ii) if the mechanism in the model does not
match the truth, then the parameter estimatesmay exhibit
more bias than the corresponding ‘‘missing at random’’
estimates. This implies that the extra complexity of the
proposed model may hurt us.

At least for the model proposed in this paper, there
appears to be little danger in employing the MNAR model
instead of the MAR model. This is because the MAR model
is a special case of the MNAR model, being obtained by
fixing a subset of the λ parameters to zero. Thus, if theMAR
assumption is approximately fulfilled, the model should
account for this automatically during estimation.

8.2. Relationship to scoring rules

Themodel described here could also be used to develop
new types of model-based scoring rules (for related ideas,
see Budescu & Bo, 2015). Existing scoring rules (such as
the Brier score or logarithmic score; see, e.g., Gneiting
& Raftery, 2007) work only on the forecasts themselves,
requiring every forecaster to respond to exactly the same
questions. Such is seldom the case in practice, and it is
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awkward to tailor these scoring rules to missing data. For
example, for each question that a forecaster fails to answer,
we could substitute the mean observed Brier score on
the corresponding question. This substitution is somewhat
similar to IRT procedures that code unanswered questions
as incorrect (though, in a forecasting context, the notion of
‘‘incorrect’’ is unclear).

Beyond substitution for missing observations, we can
consider new scoring rules in which question selections
and missing data play a role. A rough definition, corre-
sponding to the models estimated in this paper, is as fol-
lows. A forecaster will receive the highest expected score
if he/she:

• consistentlymakes better forecasts than the crowd, and
• responds to more questions.

This definition requires the best forecasters to be the best
on both question selection and forecast reporting. Fur-
thermore, middling forecasters could receive the same
ability estimates through different routes. For example,
say that Forecasters A and B receive the same abil-
ity estimates from the model. It would be possible for
Forecaster A to obtain this estimate by selecting many
questions but providing relatively bad forecasts on those
questions, while Forecaster B obtains this estimate by se-
lecting few questions but providing relatively good fore-
casts on those questions. Further work could examine the
extent to which these two criteria simultaneously provide
incentives for honest forecasting and frequent respond-
ing. A game-theoretic framework similar to that of Prelec
(2004) might be useful here, because we can depict each
forecaster as striving to do the minimal amount of fore-
casting required to be the best. Under these conditions,
forecasters might be motivated to respond to all of the
questions when they do not know other forecasters’ re-
sponse patterns.

8.3. Model assumptions

As has been mentioned throughout, the model pro-
posed here assumes a single dimension of forecaster abil-
ity; that is, each forecaster’s ability is summarized via a sin-
gle number. While the analyses in this paper suggest that
this assumption is not grossly violated in our dataset, there
remains the possibility that it is grossly violated on other
datasets. As an extreme example, we could imagine a fore-
casterwho follows only local occurrences and knows noth-
ing about broader world events. If this forecaster responds
only to questions related to her locale, she may receive a
good ability estimate in spite of the fact that her forecasts
on the other, unanswered questions would be awful.

Despite this violation, the model’s handling of this
extreme forecaster could still be reasonable. First, if other
high-ability forecasters tend to respond to questions that
do not involve this particular locale, then the model will
temper the extreme forecaster’s ability estimate so that it
is not as high as others. Second, if the extreme forecaster
does not respond to many questions (i.e., there are few
questions about the forecaster’s locale), then the model
will again temper her ability estimate: the model requires
large amounts of data from the forecaster before it is
‘‘willing’’ to assign an extremely good ability estimate.
While these results do not guarantee that the model
will be robust to all dimensionality violations, they seem
applicable to many situations in which evaluators wish to
rank order forecasters across all questions.

On a related note, the model also assumes that each
forecaster has a static level of forecasting ability and a
static response propensity. In contrast, forecasters tend
to change over time, gaining (losing) interest in the fore-
casting tournament and reporting improved (diminished)
judgments. The model as proposed here cannot accommo-
date forecaster attributes that change over time, though
it may be possible to directly model changes in forecaster
ability over time via new parameters and/or increased di-
mensions of forecaster ability. It would also be of interest
to relax the distributional assumptions by employing, say, t
distributions instead of normal distributions or mixture
models that accommodate subclasses of homogeneous
forecasters. As is described further in the next section, tra-
ditional psychometric modeling frameworks can be help-
ful for including these model extensions.

8.4. Model estimation

The estimation of traditional item response models
with multiple ability dimensions is generally difficult
(e.g., Cai, 2010), and the same is true for the two-
dimensional model proposed here. The Bayesian approach
that we adopted introduces an additional complication, in
that wemust employMarkov chainMonte Carlo, sampling
the forecaster ability parameters instead of integrating
them out (e.g., Lee, 2007). This means that we must be
careful to ensure that the model parameters are identified
and that themodel converges (e.g., Ghosh & Dunson, 2009;
Merkle &Wang, in press; Peeters, 2012), which may intro-
duce an undesirable practical complication.

Depending on the data, some simplifications are possi-
ble. In particular, we adopted the Bayesian approach in this
paper so that we could easily include the ‘‘time of reported
forecast’’ covariate in the model easily. However, this co-
variate is not necessary when all forecasters report their
judgments at approximately the same time. If this covari-
ate is not necessary, then the model proposed here could
be estimated via maximum likelihood, using popular SEM
software such as Mplus (Muthén & Muthén, 1998–2012)
or lavaan (Rosseel, 2012). These approaches would make
use of ideas related to the path diagrams from Fig. 1. How-
ever, when the data are very sparse (i.e., each forecaster re-
ports on a small proportion of questions), these programs
may fail in situations where the Bayesian approach would
succeed. This failure is again related to the fact that ML es-
timation methods integrate the forecaster latent variables
out of the likelihood, whereas Bayesian estimation meth-
ods sample the forecaster latent variables directly (and are
‘‘smoothed’’ by the prior distributions). The integration of
the latent variables requires us to work with the covari-
ance matrix of a multivariate normal likelihood, which can
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often become non-positive definite during model estima-
tion (resulting in a failed estimation).

Sample size is an additional consideration for all of the
models discussed here. Because the proposed model is re-
lated to traditional psychometric models (including factor
analysis and item response models), we can draw on the
psychometric literature for sample size recommendations.
In that literature, it is customary to observe hundreds or
thousands of participants reporting on small numbers of
items. Other researchers proposing models similar to ours
have tended to follow this trend: Holman and Glas (2005)
applied their model to 171 participants responding to 32
items, whereas O’Muircheartaigh andMoustaki (1999) ap-
plied their model to two datasets, of which one had 2691
participants responding to five items and the other had
1270 participants responding to four items. While our ap-
plication had many more items than the others, we gener-
ally recommend large numbers of participants and suggest
artificial data simulation as a way of determining whether
one’s particular sample size is appropriate for estimat-
ing the parameters of interest. The Bayesian approach of
sampling forecaster latent variables directly can be help-
ful again here, allowing us to bypass non-positive definite
covariance matrices.

8.5. Summary

In situations where the respondents are free to select
their own questions or stimuli, the selections themselves
can provide valuable information about the latent respon-
dent attributes that we wish to measure. While these se-
lections are often viewed as nuisance characteristics of the
data that cause difficulties for analysis, this paper has illus-
trated a model-based approach for capturing the informa-
tion inherent in the selections. The ability to incorporate
multiple types of variables (forecasts, question selections)
in forecaster assessment is a major advantage of model-
based approaches over data-based metrics (i.e., scoring
rules), which rely exclusively on the reported forecasts.
In forecasting scenarios and beyond, a detailed consider-
ation of selection/missingness mechanisms could lead to
improved estimation of the latent traits of interest.

Computational details
All results were obtained using the R system for sta-

tistical computing (R Core Team, 2016) version 3.3.3 and
the JAGS software for Bayesian computation (Plummer,
2003) version 4.2.0, employing the add-on package run-
jags 2.0.4-2 (Denwood, 2016). R and the package runjags
are available freely from theComprehensive RArchiveNet-
work at http://CRAN.R-project.org/ under the General Pub-
lic License 2. JAGS is available freely from Sourceforge at
http://mcmc-jags.sourceforge.net/ under the General Pub-
lic License 2.
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Appendix A. DETECT technical details

We computed the DETECT statistic separately for the
reported forecasts y and for the question selections d.
The statistics were calculated via the expl.detect()
function in the R package sirt (Robitzsch, 2016).

The calculation of the DETECT statistic for question
selection was straightforward, because all forecasters had
complete data corresponding to standard item response
data. That is, each forecaster’s data consisted of a series
of zeros and ones, with a zero indicating that he/she did
not respond to a particular question and a one indicating
the opposite. In addition to the observed data, the
DETECT statistic also requires unidimensional estimates of
a person’s ability. For this, we used theweighted likelihood
estimates arising from a Rasch model.

We computed DETECT statistics for the reported
forecasts by first restricting ourselves to a subset of 241
forecasters who responded to at least 136 of the 176
questions (with most of the forecasters responding to
at least 160 of the questions). We did this so that we
could ignore missing data mechanisms when examining
forecast dimensionality. Next, we attempted to maximize
the DETECT statistic by transforming the data to account
for the fact that the forecasts were reported at different
points in time. In particular, for each question j, we
regressed the y∗s associated with question j on the time
at which the forecast was reported (i.e., the tij). We then
used the fitted model to push each person’s reported
forecast to the question’s ‘‘halfway’’ point (i.e., the time at
which the question is halfway between introduction and
resolution). Finally, we computed the statistic by creating
binary variables from the aligned forecasts (equal to 0
if the forecast was less than 0.5, 1 otherwise). We used
the average forecast reported for each question’s realized
outcome as the estimate of a person’s ability.

Appendix B. JAGS model estimation

JAGS code for estimating the model is displayed below.
The probit-transformed forecasts ystar are given in long
format, while the missingness indicators d are in a data
matrix where the rows are forecasters and the columns are
questions. Following the JAGS code, we provide R code to
illustrate its usage.

http://CRAN.R-project.org/
http://mcmc-jags.sourceforge.net/
mailto:rescober@goodjudgment.com
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model{

for (i in 1:nr){ ## Rows of forecast data

ystar[i] ~ dnorm(mu[i], invsig2[qidx[i]])

mu[i] <- b0[qidx[i]] + b1[qidx[i]]*nd[i] +

lambda[qidx[i], 1] *

theta[pidx[i], 1]

}

for (i in 1:n){ ## Forecasters

for (j in 1:J){ ## Questions

d[i, j] ~ dbern(pd[i, j])

probit(pd[i, j]) <- b0[(J + j)] +

lambda[(J + j), 1]*theta[i, 1] +

lambda[(J + j), 2]*theta[i, 2]

}

## Person parameters

theta[i, 1] ~ dnorm(0, invpsi[1])

theta[i, 2] ~ dnorm(0, invpsi[2])

}

invpsi[1] ~ dgamma(0.01, 0.01)

invpsi[2] ~ dgamma(0.01, 0.01)

## Equality constraints + priors for question parameters

lambda[1,1] <- 1

lambda[1,2] <- 0

lambda[(J+1), 1] ~ dnorm(0, 1)

lambda[(J+1), 2] <- 1

b0[1] ~ dnorm(0, 0.5)

b0[(J + 1)] ~ dnorm(0, 0.5)

b1[1] ~ dnorm(0, 0.5)

invsig2[1] ~ dgamma(0.01, 0.01)

for (j in 2:J){

## loadings for forecasts

lambda[j, 1] ~ dnorm(0, 1)

lambda[j, 2] <- 0

## loadings for d parameters

lambda[(J + j), 1] ~ dnorm(0, 1)

lambda[(J + j), 2] ~ dnorm(0, 1)

## Intercept priors

b0[j] ~ dnorm(0, 0.5)

b0[(J + j)] ~ dnorm(0, 0.5)

b1[j] ~ dnorm(0, 0.5)

## Error precision prior

invsig2[j] ~ dgamma(0.01, 0.01)

}

}

The R code below gives an example with artificial data,
showing how the JAGS code can be run fromwithin R using
the runjags package.
library("runjags")
set.seed(1080)

## Generate data
n <- 500
K <- 100

## Probability judgments
b0 <- runif(K, -1, 2)
b1 <- runif(K, 0, 3)

lambda <- runif(K, -0.5, 3.5)
theta1 <- rnorm(n, 0, 1)
nd <- runif(n*K, -0.5, 0)

dat <- expand.grid(uidx=1:n, ifpidx=1:K)
dat$nd <- nd
mny <- b0[dat$ifpidx] + b1[dat$ifpidx]*nd +

lambda[dat$ifpidx]*theta1[dat$uidx]
dat$ystar <- rnorm(n*K, mny, 0.4)
dat$ystar[dat$ystar < -3.5] <- -3.5
dat$ystar[dat$ystar > 3.5] <- 3.5
dat$ystar[dat$ystar > -0.1 & dat$ystar < 0.1] <- 0

dat$fcast1 <- pnorm(dat$ystar)

## Missingness indicators
b0 <- runif(K, 0.5, 2)
lambda <- matrix(runif(K*2, -0.5, 2.5), K, 2)
theta2 <- rnorm(n, 0, 1)

ppd <- lambda[,1] %*% matrix(theta1, 1, n) +
lambda[,2] %*% matrix(theta2, 1, n)

ppd <- apply(ppd, 2, function(x) x + b0)
d <- apply(ppd, 2, function(x)
rbinom(length(x), 1, pnorm(x)))

for(i in 1:K){
subs <- which(d[i,] == 0)
dat$ystar[dat$ifpidx == i & dat$uidx %in% subs] <- NA

}

rmrows <- which(is.na(dat$ystar))
dat <- dat[-rmrows,]

## Data formatted for JAGS
data <- list(nr = nrow(dat), n = length(unique(dat$uidx)),

J = length(unique(dat$ifpidx)), ystar = dat$ystar,
qidx = dat$ifpidx, pidx = dat$uidx, nd = dat$nd,
d = t(d))

## Starting values
inits <- list(b0 = rep(0, 2*data$J), invpsi = rep(1, 2),
theta = matrix(0, data$n, 2),

b1 = rep(0.1, data$J),
invsig2 = rep(1, data$J))

## MCMC run, will take some time
runjags.options(force.summary = TRUE)
mdraws <- run.jags("paper_model.jag", data=data,
inits=inits, monitor=c("theta","b0","b1","lambda"),

n.chains=3, burnin=5000, sample=1000)

## Parameter summaries, posterior means
mdraws$summaries
mdraws$summaries[,"Mean"]
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