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Abstract. Human-defined concepts are fundamental building-blocks in construct-
ing knowledge bases such as ontologies. Statistical learning techniques provide
an alternative automated approach to concept definition, driven by data rather
than prior knowledge. In this paper we propose a probabilistic modeling frame-
work that combines both human-defined concepts and data-driven topics in a
principled manner. The methodology we propose is based on applications of
statistical topic models (also known as latent Dirichlet allocation models). We
demonstrate the utility of this general framework in two ways. We first illustrate
how the methodology can be used to automatically tag Web pages with concepts
from a known set of concepts without any need for labeled documents. We then
perform a series of experiments that quantify how combining human-defined se-
mantic knowledge with data-driven techniques leads to better language models
than can be obtained with either alone.
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1 Introduction

An important step towards a semantic Web is automated and robust annotation of Web
pages and online documents. In this paper we consider a specific version of this prob-
lem, namely, mapping of an entire document or Web page to concepts in a given on-
tology. To address this problem we propose a probabilistic framework for combining
ontological concepts with unsupervised statistical text modeling. Here, and through-
out, we use the term ontology to refer to simple ontologies [1] which are collections
of human-defined concepts usually with a hierarchical structure. In this paper we focus
on the simplest aspect of these ontologies, namely the ontological concepts and asso-
ciated vocabulary (and to a lesser extent the hierarchical relations between concepts).
We focus our investigation on the overall feasibility of the proposed approach—given
the promise of the results obtained in this paper, the next step will be to develop models
that can leverage the richer aspects of ontological knowledge representation.

We use statistical topic models (also known as latent Dirichlet allocation models [2,
3]) as the underlying quantitative modeling framework. Topics from statistical models
and concepts from ontologies both represent “focused” sets of words that relate to some
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abstract notion—this similarity is the key idea we exploit in this paper. As an example,
Table 1 lists some of the 204 words that have been manually defined as part of the
concept FAMILY in the Cambridge International Dictionary of English (CIDE: more
details on this ontology are provided later in the paper). The second column is a topic,
also about families, that was learned automatically from a text corpus using a statistical
topic model.

FAMILY Concept FAMILY Topic
beget family (0.208)

birthright child (0.171)
brood parent (0.073)

brother young (0.040)
children boy (0.028)
distantly mother (0.027)
dynastic father (0.021)

elder school (0.020)

Table 1. CIDE FAMILY concept and learned FAMILY topic

The numbers in parentheses are the probabilities that a word will be generated con-
ditioned on the learned topic—these probabilities sum to 1 over the entire vocabulary of
words, specifying a multinomial distribution. The concept FAMILY in effect puts prob-
ability mass 1 on the set of 204 words within the concept, and probability 0 on all other
words. The topic multinomial on the other hand could be viewed as a “soft” version of
this idea, with non-zero probabilities for all words in the vocabulary—but significantly
skewed, with most of the probability mass focused on a relatively small set of words.

Many of the existing methods for semantic annotation of Web pages are focused
on specific entity-tagging tasks, using a variety of natural language processing (NLP),
information extraction (IE), and statistical language modeling techniques (e.g., [4–6]).
A well-known semantic annotation system of this type is SemTag [7] which was built
to annotate entity-rich web pages on a large scale. The main difference between this
past work and our approach is that we map all words in a document, not just entities,
onto a set of ontological concepts, learn word-concept distributions and use an entirely
unsupervised approach without any need for supervised labeling.

There has also been prior work that combines ontological concepts and data-driven
learning within a single framework, such as using concepts as pre-processing for text
modeling [8, 9], using word-concept distributions as a form of background knowledge
to improve text-classification [10] and combining human-derived linguistic knowledge
with topic-based learning for word-sense disambiguation [11]. There has also been
work on developing quantitative methods for evaluating how well ontologies fit specific
text corpora [12, 13] as well as a significant amount of research on ontology learning
from data. Our work is different from all of this prior work in that we propose prob-
abilistic models that combine concepts and data-driven topics within a single general
framework, allowing (for example) the data to enable inferences about the concepts.

We begin the paper by reviewing the general ideas underlying statistical topic mod-
eling and then show how these techniques can be directly adapted for the purposes of
combining semantic concepts with text corpora. In the remainder of the paper we il-
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lustrate how the resulting models can be used to automatically tag words in Web pages
and map each word into an ontological concept taking into account the context of the
document. Additionally, we describe a set of quantitative experiments that evaluate the
quality of the models when viewed as language models. We conclude that combining
semantic concepts and data-driven topic learning opens up new opportunities and ap-
plications that would not be possible using either technique alone.

2 A Review of Statistical Topic Models

The latent Dirichlet allocation (LDA) model, also referred to as the topic model, is
a state-of-the-art unsupervised learning technique for extracting thematic information
from large document sets [2, 3]. In this section we briefly review the fundamental ideas
behind this model since it provides the basis for our approach later in the paper.

Let {w1, . . . , wV } be the set of unique words in a corpus, where V is the size of the
vocabulary. Each document in the corpus is represented as a “bag of words”, namely
a sparse vector of length V where component i contains the number of times word i
occurs in the document.

HEALTH CARE FARMING

health (0.064) farm (0.081)
care (0.058) crop (0.027)
plan (0.047) cow (0.018)
cost (0.043) field (0.015)
insurance (0.042) corn (0.015)
benefit (0.032) food (0.012)
converage (0.023) bean (0.010)
pay (0.020) cattle (0.010)
program (0.013) market (0.010)

Table 2. Two example topics learned from a large corpus

A topic zj , 1 ≤ j ≤ T is represented as a multinomial probability distribution over
the V words, p(wi|zj),

∑V
i p(wi|zj) = 1. Simulating n words from a topic is anal-

ogous to throwing a die n times except that instead of 6 equiprobable outcomes on
each throw we have V possible outcomes (where V can be on the order of 100,000 in
practice) and the probabilities of individual outcomes (the words) may be significantly
non-uniform. Table 2 shows two example topics that were learned from a large corpus
(more details on learning below). The topic names are generally assigned manually. If
we simulate data from one of these topics, the high probability words (shown in the
figure) will occur with high frequency. A topic, in the form of a multinomial distri-
bution over a vocabulary of words, can in a loose sense be viewed as a probabilistic
representation of a semantic concept.

The topic model assumes that words in a document arise via a two-stage process:
words are generated from topics and topics are generated by documents. More formally
the distribution of words given a document, p(wi|d), is modeled as a mixture over
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topics:

p(wi|d) =
T∑
j=1

p(wi|zj)p(zj |d). (1)

The topic variable z plays the role of a low-dimensional representation of the semantic
content of a document.

Intuitively we can imagine simulating n words in a document by repeating the
following steps n times: first, sample a topic zj from the topic-document distribution
p(z|d), and then, given a topic zj , sample a word from the corresponding word-topic
distribution p(w|zj). For example, imagine that we have the following 5 topics with
corresponding probability distributions over words: earthquake, disaster response, in-
ternational politics, China, and Olympic Games. We could then represent individual
documents as weighted combinations of this “basis set” of topics, e.g., one document
could be a mixture of words from the topics earthquake, disaster response, and China,
while another document could be a mixture of words from China, international politics,
and Olympic Games.

By allowing documents to be composed of different combinations of topics, a topic
model provides a more flexible representation of document content than clustering
where each document is assumed to have been generated by a single cluster. Topics can
also be considered a more natural representation for document content than the tech-
nique of latent semantic analysis (LSA) [14] since the multinomial basis of the topic
model is better suited to predicting word counts than the inherently real-valued/least-
squares framework that underlies LSA. A number of studies have shown that topic mod-
els provide systematically better results in document modeling and prediction compared
to LSA ( [15], [16]).

In the standard topic-modeling framework the word-topic distribution p(w|z) and
topic-document distributions p(z|d) are learned in a completely unsupervised manner,
without any prior knowledge of what words are associated with topics or what topics
are associated with individual documents. The statistical estimation technique of Gibbs
sampling is widely used [3]: starting with random assignments of words to topics, the
algorithm repeatedly cycles through the words in the training corpus and samples a
topic assignment for each word using the conditional distribution for that word given
all other current word-topic assignments (see Appendix 1 for more details). After a
number of such iterations through all words in the corpus (typically on the order of 100)
the algorithm reaches a steady-state. The word-topic probability distributions can be
estimated from the word-topic assignments. It is worth noting that topic model learning
results in assignments of topics to each word in the corpus. This in turn directly enables
“topic-tagging” of words, sentences, sections, documents, groups of documents, etc., a
feature we will leverage later in this paper.

3 Semantic Concepts and Statistical Topic Modeling

We now return to the topic of concepts within ontologies and show how the statistical
topic modeling techniques of the previous section can leverage text corpora to “overlay”
probabilities on such concepts. As mentioned in the introduction, in this paper we focus
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on a simple aspect of ontological knowledge, namely sets of words associated with
concepts.

FARMING & FORESTRY EARTH & OUTER SPACE

crops (0.135) earth (0.226)
plant (0.076) sky (0.107)
grow (0.050) space (0.082)
land (0.040) sun (0.066)
fertilizers (0.038) scientists (0.046)
soil (0.037) planets (0.033)
earth (0.034) universe (0.033)
farming (0.034) stars (0.032)

Table 3. Two example concepts from the CIDE thesaurus

Assume that we have been given a set of C human-defined concepts, where each
concept cj consists of a finite set of Nj unique words, 1 ≤ j ≤ C. We also have
available a corpus of documents such as Web pages. We propose to merge these two
sources of information (concepts and documents) using a framework based on topic
modeling. For example, we might be interested in “tagging” documents with concepts
from the ontology, but with little or no supervised labeled data available (note that
the approach we describe below can be easily adapted to include labeled documents if
available). One way to approach this problem would be to assume a model in the form
of a topic model, i.e.,

p(wi|d) =
C∑
j=1

p(wi|cj)p(cj |d). (2)

which is the same as Equation 1 but where we have replaced topics z with concepts
c. We will refer to this type of model as the concept model throughout the paper. In
the concept model the words that belong to a concept are defined by a human a priori
(e.g., as part of an ontology) and are limited (typically) to a small subset of the overall
vocabulary. In contrast, in a topic model, all words in the vocabulary can be associated
with any particular topic but with different probabilities.

In Equation 2 above, the unknown parameters of the concept model are the word-
concept probabilities p(wi|cj) and the concept-document probabilities p(cj |d). Our
goal (as in the topic model) is to estimate these from an appropriate corpus. Note for
example that the probabilities p(cj |d) would address the afore-mentioned tagging prob-
lem, since each such distribution tells us the mix of concepts cj that a document d is
represented by.

We can use a modified version of statistical topic model learning algorithm to infer
both p(wi|cj) and p(cj |d). The process is to simply treat concepts as “topics with con-
straints,” where the constraints consist of setting words that are not a priori mentioned in
a concept to have probability 0, i.e., p(wi|cj) = 0, wi /∈ cj . We can use Gibbs sampling
to assign concepts to words in documents, using the same sampling equations as used
for assigning topics to words in the topic model, but with the additional constraint that a
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word can only be assigned to a concept that it is associated with in the ontology3. Other
than the constraint restriction, the learning algorithm is exactly the same as in standard
learning of topic models, and the end result is that each word in the corpus is assigned
to a concept in the ontology. In turn, these assignments allow us to directly estimate
the terms of interest in Equation 2 above. To estimate p(wi|cj) for a particular concept
cj we count how many words in the corpus were assigned by the sampling algorithm
to concept cj and normalize these counts (and typically also smooth them) to arrive
at the probability distribution p(wi|cj). To estimate p(cj |d) for a particular document
d, we count how many times each concept is assigned to a word in document d and
again normalize and smooth the counts to obtain p(cj |d). Table 3 shows an example of
a set of learned probabilities for words (ranked highest by probability) for two different
concepts from the CIDE ontolgy, after training on the TASA corpus (more details on
ontologies and data sets are provided later).

The important point to note here is that we have defined a straightforward way to
“marry” the qualitative information in sets of words in human-defined concepts with
quantitative data-driven topics. The learning algorithm itself is not innovative, but the
application is innovative in that it combines two sources of information (concepts from
ontologies and statistical learning) that to our knowledge have not been combined in any
general framework in prior work. We can use the learned probabilistic representation of
concepts to map new documents into concepts within an ontology, and we can use the
semantic concepts to improve the quality of data-driven topic models. We will explore
both of these ideas in more detail in later sections of the paper.

There are numerous variations of the concept model framework that can be explored—
we investigate some of the more obvious extensions below. For example, a baseline
model is one where the word-concept probabilities p(wi|cj) are defined to be uniform
for all words within a concept. A related model is one where the word-concept prob-
abilities are available a priori as part of the concept definition, e.g., where documents
are provided with each concept allowing for empirical word-concept probabilities to
be estimated. For both of these models, Gibbs sampling is still used as before to infer
the word-concept assignments and the concept-document probabilities, but the p(w|c)
probabilities are held fixed and not learned. We will refer to these two models as Con-
ceptU (concept-uniform) and ConceptF (concept-fixed) and use ConceptL (concept-
learned) to refer to the more general concept model described earlier where the p(w|c)
probabilities are learned from the corpus.

Human-generated concepts not only come with words associated with concepts but
are also often arranged in a hierarchical structure such as a concept tree, where each
node is a concept with a set of associated words. A simple way to incorporate this
hierarchical information is to propagate the words upwards in the concept tree, so that
an internal concept node is associated with its own words and all the words associated
with its children. When we use this propagation technique for representing the word-

3 An alternative approach, not explored in this paper, would be to use the concept words to
build an informative prior on topics rather than using them as a hard constraint. Under such an
approach, each concept could be associated with any word in the corpus leading to significant
computational demands since large ontologies could have tens of thousands of concepts.
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Fig. 1. Graphical models for (a) Topic model, (b) Concept model, and (c) Concept-topic model

concept associations, we will refer to this by adding an “H” to the name of the learned
model, e.g., ConceptLH, ConceptFH, etc.

Finally, a natural further extension of the model is to allow for incorporation of un-
constrained data-driven topics alongside the concepts. This can be achieved by simply
allowing the Gibbs sampling procedure to either assign a word to a constrained concept
or to one of the unconstrained topics (see Appendix 1). In such a model a document
is represented by a mixture over C concepts and T topics, allowing the model to use
additional data-driven topics to represent themes that are not well-represented in the set
of concepts in the ontology. We will in general refer to such models as concept-topic
models and specific variations by ConceptL+Topics, ConceptLH+Topics etc.

Figure 1 shows a graphical model representation of the various models, including
the standard topic model, the concept model, and the concept-topic model. Here, φ,
ψ and θ represent word-topic, word-concept and topic/concept-document multinomial
distributions respectively. βφ, βψ and α represent the Dirichlet priors on φ, ψ and θ
respectively. Further details on sampling equations for all of the model variants are
provided in Appendix 1.

4 Concept Sets and Text Data

The experiments in this paper are based on one large text corpus and two different
knowledge bases. For the text corpus, we used the Touchstone Applied Science Asso-
ciates (TASA) dataset [14]. This corpus consists of D = 37, 651 documents with pas-
sages excerpted from educational texts used in curricula from the first year of school to
the first year of college. The documents are divided into 9 different educational topics.
In this paper, we focus on the documents classified as SCIENCE and SOCIAL STUDIES,
consisting of D = 5356 and D = 10, 501 documents and 1.7M and 3.4M word tokens
respectively.

The first set of concepts we used was the Open Directory Project (ODP), a human-
edited hierarchical directory of the web (available at http://www.dmoz.org). The ODP
database contains descriptions and urls on a large number of hierarchically organized
topics. We extracted all the topics in the SCIENCE subtree, which consists of C =
10, 817 nodes after preprocessing. The top concept in this hierarchy starts with SCI-
ENCE and divides into concepts such as ASTRONOMY, MATH, PHYSICS, etc. Each of
these topics divides again into more specific concepts with a maximum number of 11
levels. Each node in the hierarchy is associated with a set of urls related to the concept
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plus a set of human-edited descriptions of the site content. To create a bag of words
representation for each node, we collected all the words in the textual descriptions and
also crawled the urls associated with the node (a total of 78K sites). This led to a vector
of word counts for each node.

The second source of concepts in our experiments was a thesaurus from the Cam-
bridge International Dictionary of English (CIDE; www.cambridge.org/elt/cide). CIDE
consists of C = 1923 hierarchically organized semantic categories. In contrast to other
taxonomies such as WordNet [17], CIDE groups words primarily according to seman-
tic concepts with the concepts hierarchically organized. The hierarchy starts with the
concept EVERYTHING which splits into 17 concepts at the second level (e.g. SCIENCE,
SOCIETY, GENERAL/ABSTRACT, COMMUNICATION, etc). The hierarchy has up to 7
levels. The concepts vary in the number of the words with a median of 54 words and a
maximum of 3074. Each word can be a member of multiple concepts, especially if the
word has multiple senses.
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Fig. 2. Example of using the ConceptU model to automatically tag a Web page with CIDE con-
cepts.

5 Tagging Documents with Concepts

One application of concept models is to tag documents such as Web pages with con-
cepts from the ontology. The tagging process involves assigning likely concepts to each
word in a document, depending on the context of the document. The document content
can then be summarized by the probability distribution over concepts that reveal the
dominant semantic themes. Because the concept models assign concepts at the word
level, the results can be aggregated in many ways, allowing for document summaries
at multiple levels of granularity. For example, tagging can be performed on snippets
of text, individual sections of a Web page, whole Web pages or even collections of
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Fig. 3. Example of using the ConceptU model to automatically tag a Web page with ODP con-
cepts.

Web pages. Figure 2 illustrates the effect of tagging a Web page with CIDE concepts
using the ConceptU model. For the purpose of illustration, the six highest probability
concepts along will their parents and ancestors are shown. The thickness of the ellipse
encapsulating a concept node is proportional to the probability of the concept in the Web
page. The rectangular boxes contain words from the Web page that were assigned to the
corresponding concept in decreasing order of frequency. Figure 3 shows an example of
tagging another Web page using the ConceptU model with concepts from the ODP on-
tology, with “Johnson Space Center” and “Mars Reconnaissance Orbiter” among the
high probability concepts. For these tagging illustrations, we ran 1500 Gibbs sampling
chains and each chain was run for 50 iterations after which a single sample was taken.

 tag P(c|d) Concept P(w|c) 

  a   0.1702  PHYSICS electrons (0.2767) electron (0.1367) radiation (0.0899) protons (0.0723) ions (0.0532) 

radioactive (0.0476) proton (0.0282)  

  b   0.1325  CHEMICAL ELEMENTS     oxygen (0.3023) hydrogen (0.1871) carbon (0.0710) nitrogen (0.0670) sodium (0.0562) sulfur 

(0.0414) chlorine (0.0398)  

  c   0.0959  ATOMS, MOLECULES, AND 

SUB-ATOMIC PARTICLES  

atoms (0.3009) molecules (0.2965) atom (0.2291) molecule (0.1085) ions (0.0262) isotopes 

(0.0135) ion (0.0105) isotope (0.0069) 

  d   0.0924  ELECTRICITY AND ELECTRONICS electricity (0.2464) electric (0.2291) electrical (0.1082) current (0.0882) flow (0.0448) 

magnetism (0.0329)  
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Fig. 4. Example of tagging at the word level using the ConceptL model.

Figure 4 illustrates concept assignments to individual words in a TASA document
with CIDE concepts. The four most likely concepts are listed for this document. For
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each concept, the estimated probability distribution over words is shown next to the
concept. In the document, words assigned to the four most likely concepts are tagged
with letters a-d (and color coded if viewing in color). The words assigned to any other
concept are tagged with “o” and words outside the vocabulary are not tagged. In the
concept model, the distributions over concepts within a document are highly skewed
such that most probability goes to only a small number of concepts. In the example
document, the four most likely concepts cover about 50% of all words in the document.

The figure illustrates that the model correctly disambiguates words that have several
conceptual interpretations. For example, the word charged has many different meanings
and appears in 20 CIDE concepts. In the example document, this word is assigned to the
physics concept which is a reasonable interpretation in this document context. Similarly,
the ambiguous words current and flow are correctly assigned to the electricity concept.

6 Language Modeling Experiments

To quantitatively measure the quality of the concept models described in the earlier
parts of the paper, we perform a set of systematic experiments that compare the quality
of concept models and baselines. To do this we use standard techniques from language
modeling that measure the predictive power of a model in terms of its ability to predict
words in unseen documents.

6.1 Perplexity

Perplexity is widely used as a quantitative measure for comparing language models,
e.g. [18]. It can be interpreted as being proportional to the distance (formally, the cross-
entropy) between the word distribution learned by the model and the distribution of
words in an unseen test document. Thus, lower scores are better since they indicate that
the model’s distribution is closer to that of the actual text. The perplexity of a test data
set is defined as:

Perp(wtest|Dtrain) = exp

 
−

∑Dtest

d=1 log p(wd|Dtrain)∑Dtest

d=1 Nd

!

where wtest is the words in test documents, wd are words in document d of the test set,
Dtrain is the training set, and Nd is the number of words in document d

In the experiments that follow we partition the text corpus into disjoint training and
test sets, with 90% of the documents being used for training and the remaining 10%
for computing test perplexity. For each test document d, a randomly selected subset of
50% of the words in the document are assumed to be observed and used to estimate the
document-specific parameters p(c|d) and/or p(z|d) via Gibbs sampling. Perplexity is
then computed on the remaining 50% of the words in the document (a form of perplexity
known as predictive-perplexity).

In our experiments below we use perplexity to evaluate the relative quality of dif-
ferent concept and concept-topic models. Although no single quantitative measure will
necessarily provide an ideal measure of how well human concepts and a corpus are
matched, we argue that perplexity scores have the appropriate behavior. In particular,
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Fig. 5. Perplexity as a function of precision.

perplexity will be sensitive to both the precision and recall of a knowledge-base in re-
lation to a corpus. Precision in this context should measure the semantic coherence of
words within a concept and recall should be sensitive to how well the concepts cover
a body of knowledge (e.g., as represented by a corpus) [12]. Therefore, as precision or
recall increase we expect perplexity to decrease. We illustrate this (for precision) with
a simulated experiment where we swap words randomly between CIDE concepts (to
intentionally “corrupt” the concepts) and then measure the quality of the resulting con-
cept model on the TASA corpus using the ConceptU model. As the number of words
swapped increases (x-axis in Figure 5) the precision decreases, and the resulting per-
plexity very clearly reflects the deterioration in the quality of the concepts. Thus, per-
plexity appears to be a reasonable surrogate measure for more ontology-specific notions
of quality such as precision.

6.2 General Perplexity Results across Models

We created a single W = 33, 635 word vocabulary based on the 3-way intersection
between the vocabularies of TASA, CIDE, and ODP. This vocabulary covers 89.9% of
all of the word tokens in the TASA corpus and is the vocabulary that is used in all of
the experiments reported in this paper. We also generated the same set of experimental
results below using the union of words in TASA and CIDE and TASA and ODP, and
found the same general behavior as with the intersection vocabulary. We report the
intersection results below and omit the union results as they are essentially identical
to the intersection results. A useful feature of using the intersection is that it allows
us to evaluate two different sets of concepts (TASA and CIDE) on a common data set
(TASA) and vocabulary, e.g., to evaluate which set of human-defined concepts better
predicts a given set of text data. Note that selecting a predefined vocabulary (whether
the intersection or the union) bypasses the important practical problem of modeling
“out of vocabulary” words that may be seen in new documents. Although this is an
important aspect of language modeling in general, in this paper our primary focus is on
combining human defined concepts and data-derived topics.

Table 4 shows predictive perplexity scores for a variety of models using the TASA
corpus with the CIDE or ODP concepts. In terms of general trends, there is a systematic
reduction in perplexity scores as more corpus-specific information is combined with the
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concepts. The concept models with uniform distributions (ConceptU) have relatively
high perplexity scores, indicating that a uniform distribution over concept terms are a
poor fit to the data as one would expect. Using the Web-derived distributions for ODP
(ConceptF) leads to a significant reduction over uniform distributions.

Model
SCIENCE SOCIALSTUDIES

CIDE ODP CIDE ODP
ConceptU 7019 5787 13071 9476
ConceptF n/a 3651 n/a 7244
ConceptL 1461 1060 3479 2432
ConceptLH 1234 1014 2768 2298
ConceptLH+Topics (T=100) 1100 1014 2362 2297

Table 4. Perplexity scores for various models

Learning the word-concept distributions (ConceptL) yields a further significant de-
crease in perplexity scores compared to the fixed concept distributions as the concepts
can now adapt to the corpus. Additionally, accounting for the hierarchy of the concepts
(ConceptLH), by propagating words from child concepts to their parents as mentioned
before, reduces perplexity even further. If we then add 100 topics to the ConceptLH
model (ConceptLH+Topics (T=100) in Table 4), for the CIDE concepts we see another
significant reduction in perplexity for both corpora, but no change for the ODP con-
cepts. ODP concepts on their own (ConceptLH models) have lower perplexities than
CIDE concepts, so there seems to be more room for improvement with CIDE when
topics are added. In addition, ODP has far more concepts (over 10,000) than CIDE
(1923), with the result that in the Topics+ODP model less than 1% of the words are
assigned to Topics. Overall the ODP concepts produce lower perplexities than CIDE—
probably because of the larger number of concepts in ODP, although in general it need
not be the case that more concepts lead to better predictions.
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Fig. 6. Comparing perplexity for the Topics model with the ConceptsLH + Topics model on
science (left) and social studies (right)

6.3 Varying the Number of Unconstrained Topics

Natural next questions to ask are how would topic models on their own perform and how
do the results vary as a function of the number of topics? We address these questions
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in Figure 6. In this and later experiments in the paper we are using the hierarchical
(H) versions of the concept models. The curves in each graph represent topics on their
own and topics combined with CIDE and ODP concepts. The x-axis represents the
number of topics T used in each model. For example, the point T = 0 represents the
conceptL models. The results clearly indicate that for any topic model with a fixed
number of topics T (a particular point on the x-axis), the performance of the topic
model is always improved when concepts are added. The performance improvement is
particularly significant on the Science documents, which can be explained by the fact
that both CIDE and ODP have well-defined science concepts. It is important to note that
the performance difference between topic and concept-topic models is not because of a
high number of effective topics (T + C) in the concept-topic models. In fact, when we
increase the number of topics to T = 2, 000 for the topic model its perplexity increases
significantly possibly due to overfitting. In contrast, the ODP model (for example) is
using over 10,000 effective topics (T +C) and achieving a lower perplexity score than
topics alone. This is a direct illustration of the power of prior knowledge: the constraints
represented by human-defined concepts lead to a better language model than what can
be obtained with data-driven learning alone.
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Fig. 7. Perplexity as a function of the amount of training data, testing on science documents, using
training data from science (left) and social studies (right)
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Fig. 8. Perplexity as a function of the amount of training data, testing on social studies documents,
using training data from social studies (left) and science (right)
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6.4 The Effect of Training Data Size

Finally we look at the effect of varying the amount of training data. The number of
topics T used for each model was set to value that produced the lowest perplexity with
all of the training data (based on results in Figure 6). Figures 7 and 8 show the perplexity
results using science and social studies documents respectively as a test data set. The
left plot in each figure shows the results when the training data set and test data set come
from the same source and the right plot using different training and test data source.

When there is relatively little training data the concept-topic models have signifi-
cantly lower perplexity than the topic model. This is a quantitative verification of the oft-
quoted idea that “prior knowledge is particularly useful in learning when there is little
data.” The concept models are helped by the restricted word associations that are man-
ually selected on the basis of their semantic similarity, providing an effective “prior” on
words that are expected to co-occur together. The restricted word associations can also
help in estimating more accurate word distributions with less data. While it may not be
apparent from the figures due the scale used, even at the 100% training data point the
concept-topic models have lower perplexity than the topic model (e.g. in Figure 7 at the
100% point on the left, the perplexities of the topic model and the concept-topic model
using ODP are 1223.0 and 1013.9 respectively).

As expected, the perplexities are in general higher when a model is trained on one
class and predictions are made on a different class (right plots in both the figures). What
is notable is that the gap in perplexities between topics and topics+concepts is greater
in such cases, i.e., prior knowledge in the form of concepts is even more useful when a
model is used on new data that it is different to what it was trained on.

7 Conclusions

We have proposed a general probabilistic text modeling framework that can use both
human-defined concepts and data-driven topics. The resulting models allow us to com-
bine the advantages of prior knowledge in the form of ontological concepts and data-
driven learning in a systematic manner—for example, the model can automatically
place words and documents in a text corpus into a set of human-defined concepts. We
also illustrated how concepts can be “tuned” to a corpus to obtain a probabilistic lan-
guage model leading to improved language models compared with either concepts or
topics on their own. Extensions to the proposed models that allow explicit representa-
tion of the concept-hierarchies within the models are discussed in [19].

We view the framework presented in this paper as a starting point for exploring a
much richer set of models that combine ontological knowledge bases with statistical
learning techniques. Obvious next steps for exploration are treating concepts and topics
differently in the generative model, integrating multiple ontologies and corpora within
a single framework, and so forth.
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Appendix 1: Inference using Collapsed Gibbs Sampling
Here, we briefly describe the sampling process for the concept-topic model and then
describe how sampling for the other models can be viewed as special-cases of this
model.

In the concept-topic model, φ, ψ and θ correspond to p(w|t) word-topic distribu-
tions, p(w|c) word-concept distributions and p(z|d) document level mixtures of top-
ics+concepts respectively. βφ, βψ and α correspond to Dirichlet priors on φ, ψ and θ
multinomial distributions respectively.
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In the collapsed Gibbs sampling procedure, the topic assignment variables zi can
be efficiently sampled (after marginalizing the multinomial distributions θ, φ and ψ).
Point estimates for the marginalized distributions θ, φ and ψ can be computed given
the assignment labels zi and predictive distributions are computed by averaging over
multiple samples. The sampling equations for the concept-topic model are given by,
case (i): 1 ≤ zi ≤ T

P (zi = t|wi = w,w−i, z−i, α, βφ) ∝
CWT

wt,−i + βφ∑
w′ CWT

w′t,−i +Wβφ
(C(T+C)D

td,−i + α)

case (ii): zi > T

P (zi = t|wi = w,w−i, z−i, α, βψ) ∝ CWC
wc,−i + βψ∑

w′ CWC
w′c,−i +Ncβψ

(C(T+C)D
td,−i + α)

where CWT
wt , CWC

wc are the number of times word w is associated with topic t and
concept c respectively, C(T+C)D

td is the number of times topic (or concept) t is associ-
ated with document d, c = t− T and is only defined for case (ii) and Nc is the number
of words associated with concept c. Subscript −i denotes that the word wi is removed
from the counts.

When the concept distributions are fixed (e.g. for the ConceptU model), the in-
ference becomes even simpler as we can just use the fixed distributions in the above
equations. Also, note that the topic model and the concept models are special cases of
the concept-topic model when C = 0 and T = 0 respectively. Therefore, we can easily
adapt the sampling scheme described above to do inference for both these models. It
is important to note that the inference for a concept model with N concepts is much
faster than the inference of a topic model with N topics. This is because in the case of
the concept model we can exploit the sparsity in the word-concept associations — for
any word, only the probabilities over concepts that the word is a member of need to be
calculated.

We use the standard setup from well-known publications and set α=50/(T+C),
βφ=βψ=0.01 for models where they are defined. For all our models, we compute the
predictive distributions by averaging over 10 different Gibbs chains that are run for
500 iterations and take the last sample to compute the point estimates for the various
multinomial distributions.




