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4 The effectiveness of retrieval from
memory

Richard M. Shiffrin and Mark Steyvers

Introduction = -

The term ‘rational models’ has connotations almost too numerous to list, including
internal consistency of a model’s assumptions, consistency of data with a model’s
predictions, matching of the model’s predictions to the demands imposed by the
environment and its probabilistic structure and pay-offs, and logical consistency of a
model’s decision structure. In this chapter we focus on ‘optimality’, in particular,
optimality of retrieval from memory. In an absolute sense, we ask whether retrieval
is as optimal, efficient, and effective as possible, given the way in which information
has been stored in memory. This question may not be well defined or easy to answer.
In a relative sense, we ask whether retrieval in different tasks and of different types of
information operates with different levels of optimality, effectiveness, and efficiency.
Such questions are of course highly model dependent, but by keeping the
assumptions as simple as possible, it may be possible to obtain answers that
generalize to quite a wide range of potential models. In addition, considerations of
optimality may help point the way to consideration and adoption of certain
classes of models. Our discussion will be couched in terms of a particularly simple
and straightforward probabilistically based model called REM, standing for
retrieving effectively from memory (Shiffrin and Steyvers, 1997). We will discuss a
variety of memory paradigms including several types of episodic recognition, and
episodic recall; we will also comment briefly upon access to generic memory, and the
interaction of episodic and generic memory, usually termed implicit memory.
Questions of optimality depend upon a host of explicit and implicit assumptions
that underlie 2 model, so definitive answers and general conclusions are unlikely. Our
aim in this chapter is to raise some of the relevant issues, provide a few illustrations,
and demonstrate that thinking about optimality can provide some insights that
might otherwise be missed. We shall use the REM model as a basis for discussion, as
this model was partly motivated by an attempt to think of simple, explicit,
recognition memory as a Bayesian optimal decision, and because the probabilistic
nature of the model makes consideration of optimality somewhat easier to codify,
but our intent is not to support REM over other models (at least not in this chapter).
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Retrieving effectively from memory: REM

To make our conclusions as transparent and generalizable as possible, we present a
very simple version of the REM model. It is only in this case that the optimal
Bayesian solution for explicit single-item recognition memory can be derived in a
simple enough form that simulations are possible. More complex variants of REM
with more plausible and realistic assumptions are presented in Shiffrin and Steyvers
(1997), and it is shown there that the basic patterns of predictions hold up through
the increasing complexities, when one applies the formulas that are optimal for the
simplest case (even though they are no longer strictly optimal for the more
complicated cases).

Representation and storage

Separate memory images are stored for different events. Each memory image is
represented as a vector of feature values (including both content and context
features); the values are positive integers, with the most environmentally probable
values being the lowest integers. For convenience, assume that the distribution of
feature values is geometric, as illustrated in Equation 4.1. ¥ represents a feature
value and g is a REM parameter. The number 0 also appears in certain positions of
an image vector, and denotes no information stored.

PV=jl=(1-g' g j=1, .., 4.1

It is convenient to divide memory images into two classes: very incomplete and
error prone images representing recent events, called episodic, and relatively
complete and accurate images representing accumulated knowledge, called lexical/
semantic. Thus the lexical/semantic image for a presented word might look like:
<3,53,2,1,2,3, ... 5, 1>. Upon presentation this image is retrieved and
rehearsed and an incom-plete and error prone copy stored as an episodic image:
<0,0,3,0,1, 1,0, ......... 4,0>.

Note that only a few of the many feature values comprising an event actually get
stored in an episodic image, and the values that do get stored may not always be
correct. Let us assume there is some probability »* of attempting to store a feature
value for each unit of coding/rehearsal time. If an attempt is made to store, assume
there is a probability ¢ of copying the feature value correctly, and a probability 1 - ¢
of storing a value selected randomly according to the geometric distribution
representing the environmental base.rates (Equation 4.1).

There are several rules governing which memory images receive the newly stored
information: oo o s o :

1. When a new event occurs it may call to mind an already stored lexical/semantic
image; a typical example occurs when presentation of a known word causes
contact with that word’s lexical/semantic representation. Features of the event
not already stored in the lexical/semantic vector may be stored there. As such
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vectors are relatively complete, n6t- too much new information may be added,
and what is added may be largely current context; none the less such additions to
the lexical/semantic images are used in the theory to account for most implicit
memory effects.

2. An episodic image may be retrieved that is extremely similar to the current event;
in this case features will be added to the retrieved episodic image, and no new
image is stored.

3. An episodic image may be retrieved that is similar to the current event, but
distinguishably different; in this case current event information is stored both in
the retrieved image and in a newly formed episodic image.

4. Finally, if no similar enough episodic image is retrieved, then current event
information is stored in a new episodic image.

It is rather important to note that these rules allow the build-up of increasingly
complete lexical/semantic images from a succession of episodic events over
developmental time, simultaneousty with the laying down of numerous separate
incomplete episodic traces.

To tie these ideas to a particular memory paradigm, suppose a list of pairs of
different words is studied. Assume that the lexical/semantic vectors representing
different words have m feature values that are generated independently according to
the geometric distribution given earlier (Equation 4.1). Let there be an (incomplete
and error prone) episodic image stored for each pair, and let it be represented as a
concatenated vector with the first half (m feature values) representing word 1 and the
second half (m feature values) representing word 2. To keep things simple, assume
that each different pair studied produces a different episodic image, but that repeated
pairs within a list are stored in the same episodic image. Note that n pairs are therefore
represented as 2n word vectors grouped by twos. In our simulations, we set m = 20.

Retrieval: explicit recognition of single words

Let us begin with single-word old—new recognition: half the test words are from the
list and half are new. The simplest version of REM assumes that retrieval is as good
as it can be given the storage constraints. That is, a Bayesian probability calculation
is used to determine the probability that a test item is old. To be more precise, the
lexical/semantic vector representing the test word is compared in parallel with each
of the 2 word vectors in episodic memory for the studied list. Each comparison
consists of a list of matching and mismatching feature vatues, the j-th such list being
termed Dj, and the set of 2n D; being termed the data, D. Under these assumptions,
one can derive the odds (®) of the test item being old versus new, given the data, D.
It equals the expression given in Equation 4.2, where the \; are likelihood ratios. A;
is actually the probability of Dj, given that image j was produced by the word being
tested (in which case it is termed an s-image), divided by the probability of D; given
that D; was produced by presentation of some other word (in which case it is termed
a d-image). Equation 4.3 gives one form of the expression for A ;. In Equation 4.3, njg
is the number of non-zero feature values in the j-th image that match the
corresponding value in the test word, and ny is the number of non-zero feature
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values in the j-th image that have value i and mismatch the corresponding value in
the test word.

M n
enmme 4.2

we B fe+ (1= gl =)' ™"
N=(1=-c) — 43
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- In the absence of differential pay-offs, the optimal decision rule is to respond old if
the odds of ‘old’ are greater than 1.0. This assumption produces a two-parameter
model for single-item recognition, based on the probability of error, ¢, and the
parameter of the geometric, g. Shiffrin and Steyvers (1997) produced qualitative
predictions for a variety of standard phenomena in recognition memory, as shown in
Fig. 4.1. The predictions were based on: ¢ = 0.7; g = 0.4 (used in Equation 3 to
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Fig. 4.1 Selected data from the literature (in the left-hand column of each set of two columns; citations are given in
Shiffrin and Steyvers, 1997), and predictions of the REM model described in the text (right-hand column of each set of
two columns). Left columns: variations in list length. Middle columns: variations in strength of words (top right-hand two
points are stronger) and strength of other list items (right-hand point in each connected group of two is the case of
stronger other words). Right columns: variations in word frequency, in lists of pure and mixed frequency, as labeled. Top
panels: performance measured as d’; middle panels: hit rates (P(old|o/d)) and faise alarm rates (P{old|new)); bottom
panels: slope of the linear fit to the receiver operating characteristic (ROC) plotted on normal—normal axes.
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calculate odds): gy =0.45 (used to generate high-frequency lexical/semantic
images); gz = 0.325 (used to generate low-frequency lexical/semantic images);
ux = 0.04 per storage attempt; ¢ = 10 storage attempts for strong words, and ¢t =7
storage attempts for weak words. Figure 4.1 demonstrates that this model correctly
predicts the qualitative patterns for 4’, hit and false alarm rates (including the
symmetric changes in these across conditions, termed the ‘mirror effect’), and the
slope of the normal ROC functions (labelled NRS in the figure, for the variables of list
length, strength (e.g. study time or repetitions), list strength (the strength of other list
words than the test word), and word frequency. (Details may be found in Shiffrin and
Steyvers, 1997.) It is fairly remarkable that a normatively derived model based on two
parameters captures the major trends and findings in recognition memory, including
some results that have proved troublesome for almost all extant models.

Optimality: effectiveness of retrieval

These results are based on a normative calculation of probabilities, and represent
optimal retrieval: given what was assumed about storage, all the information in
memory is used to calculate the odds that the test word is old. This is important to
note in light of the many theorists who propose recognition is carried out by a
mixture of global familiarity processes (like the present REM model), and recall-like
processes. Such mixture models have a long history and recently they have seen
prominence in theories based onJacoby’s process-dissociation techniques (e.g.
Jacoby, 1991); these mixture models have prompted procedures in which subjects are
asked to classify their recognition judgements into two classes: know judgements’
(presumably corresponding to generalized feelings of familiarity) and ‘remember
judgements’ (presumably corresponding to recall of specific episodic events). It is an
implicit assumption in most of this research that a judgement based on recall, when
available, is superior to one based on familiarity, an assumption making it seem like
a truism that the addition of recall to a global familiarity process will improve
performance. Suppose for example that recall occurs in parallel with the familiarity
calculation (e.g. familiarity in REM is the odds): the recall part consists of sampling
a single image from those stored, and examining the contents; if the sampled trace is
judged to contain the test word then an old decision is made without consulting the
odds calculation. Although it seems plausible at first glance that such a procedure
would improve performance beyond that achievable with a global familiarity process
alone, this reasoning is incorrect in the case of the REM model. In REM the odds
calculation uses all the information in memory—it is as if the decision maker is given
a card with all the stored vectors, and given as much time as needed to utilize these
images to make the best decision. Another way to say this is that the odds calculation
in effect is based on sampling and recalling every trace, and using correctly. all the
information found. - :

This observation may help explain why a single-process global familiarity model
like REM (and others) have fared so well in predicting recognition data, despite
subjective impressions and a variety of other results and analyses that suggest recall
occurs on some trials. In the example of the previous paragraph, one image is
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sampled and recalled in parallel with the odds calculation in REM, and when judged
to contain the test word, is used to give an ‘old’ judgement without reference to the
odds. We know from the above reasoning that this procedure can only harm
performance, in comparison with using the odds only. However, as such recalls will
tend to occur in cases where the image in question is quite strong (cases in which
many accurately stored features are in the episodic image), the odds calculation on
that same trial would also have led to an ‘old’ decision, with a high probability. Thus
the predictions for the single process and dual process models would be correlated to

a very high degree, and the single process model would give accurate predictions

even if the dual process model is correct.

A somewhat different question of optimality concerns storage error versus
retrieval error. In REM, there are two kinds of storage ‘error’: failure to store a
feature (incompleteness) and incorrect storage of a feature. In REM it seems
appropriate to localize incompleteness in the storage process because the amount
and type of coding and rehearsal are the primary determinants of performance, a
result that would not occur were storage complete. In models differing from REM,
however, feature storage might occur for all features, but with different degrees of
strength; then retrieval of a feature value might occur on only some trials, depending
on that strength. In such models, the ‘incompleteness’ seems to be shared between
storage and retrieval. Turning to error in feature assignments next, we note that
REM assumes these errors occur during storage (governed by the ‘c’ parameter).
However, the REM theory would be mathematically identical if the error occurred
during retrieval instead. It is only if errors and incompleteness are assigned to
storage that it can be said that retrieval is optimal. It is hard to find any convincing
reason to prefer the assumption that the errors occur in storage, but there is one
rather weak line of reasoning that led us to make the assumptions we did: if the
errors occur during retrieval, then it is hard to find a reason why these would not be
at least partially random over successful retrieval attempts. If errors are randomized
over successive retrieval attempts, then the law of large numbers will insure that
performance can be made to improve (to whatever are the limits imposed by storage)
by accumulating evidence over multiple retrieval attempts on a trial. This reasoning
led us to place the error in storage, but either model could probably be defended.

Another question of optimality concerns the set of simplifying assumptions that
had to be made to allow the REM model to be derived. For example, almost any
deviation from the simple assumptions we made for the simplest REM model (those
listed earlier), and applications to almost any task more complicated than simple
recognition, greatly complicate the form of the Bayesian solution: the optimal odds
calculation is no longer based on the likelihood ratios for individual images, as in
Equations 4.2 and 4.3, but generally turns out to be a division of two different sums,
each containing an astronomically large number of differing terms. The number of
terms is so large that it is not feasible to simulate the predictions even with the fastest
available computers. For the case of single word recognition, we have explored a
variety of ways to relax the assumptions needed to derive the simple form of the
Bayesian solution, and allowed more realistic task assumptions to be made (e.g.
allowing occasional separate storage of repetitions, images from words not on the list
to be in memory, and context features to be part of the representations). We were
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able to show that the use of the derived optimal calculations (Equations 4.2 and 4.3)
produces predictions virtually indistinguishable from those for the simplest case
(Shiffrin and Steyvers, 1997). These findings lend some robustness to the model.

At the end of this chapter, we shall discuss a final example demonstrating the
effectiveness of an approximation to an optimal solution for recognition decisions.
The approximation bases the recognition decision on the maximum of the likelihood
ratios across the 2n images (as suggested by McClelland and Chappell, in press),
rather than the sum of the likelihood ratios that is required by an optimal solution.
Discussion of this case is deferred because one important implication of the result is
a potential application to cued recall.

Relative effectiveness of retrieval across tasks

What we have been discussing so far concerns what might be termed absolute
optimality, something a real system might not be expected to achieve. What is in
many respects more enlightening, and perhaps having more important implications,
is relative optimality: If we move from one experimental condition or task to

_another, can we say something about whether the retrieval in one case uses the

information in memory as effectively as in another? Of course, to look at this
question with empirical data, it is essential that the study conditions and instructions
are identical across the conditions of interest, so that the information in memory
prior to retrieval is identical across conditions being compared. We will discuss
conditions where this empirical proviso holds true. We start by considering
recognition situations in which more than one word is tested, and ask how these
compare with each other, to single-item recognition, and to cued recall.

Nobel’s (1996) study of multiple word recognition

There are a number of studies in which groups of words are studied without
foreknowledge of the upcoming test, and then followed by a variety of single- and
multiple-item recognition tests. Forexample, Clark and Shiffrin (1987) carried out such
astudy with word triples, followed by all combinations of single, double and triple word
tests, under three different instructional conditions. For present purposes we willdiscuss
instead recent studies by Peter Nobel (Nobel, 1996), using a signal-to-respond
procedure. Twenty word pairs (AB, CD, EF, etc.) were presented for study, without
the subject knowing what sort of test would follow. Four kinds of test blocks were used.

1. Single-word recognition, denoted (A versus X). One old word or one new word is
presented and the subject judges old versus new.

2. Paired recognition, denoted (AB versus XY). Two words are presented, both old
or both new, and the subject judges old or new. ]

3. Associative recognition, denoted (AB versus CF). Two words are presented for
test. Either both words are old and had been studied together, or both words are
old and had been studied in different pairs. The subject judges which is the case.

4. Cued recall, denoted (A-?). One word is presented and the subject tried to
generate the other member of the studied pair.
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"In each of these four conditions, subjects withheld a response until a (variably

delayed) signal occurred and then had to respond within a very short period of time
(several hundred milliseconds).

The curves giving the growth of accuracy with time are given in Fig. 4.2: note that

these rise to an asymptotic level reflecting the maximum attainable level of

performance in each condition. It may be noted that the approach to asymptote is
slower for associative recognition and for cued recall than for paired and single word
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Fig. 4.2 Resuits from signal-to-respond oosn:_”oam from Nobel (1996). Top panet: performance (d’) for three
recognition conditions as a function of the sum of the signal delay plus response time. Bottom panet: performance
{probability correct) for cued recall. Solid lines are three parameter exponential functions fit to the data, governed by an

intercept (/ ), a growth rate (G), and an asymptote. For recognition the asymptotic d’ values are givenin the first three - -
rows of Table 4.1 Joint confidence intervals for /and G are given in Fig. 4.3.

recognition (also see Fig. 4.3). The asymptotic levels of d’ for the three recognition
conditions are given in the first three rows of Table 4.1: note that paired recognition
is better than single-item recognition, but not hugely so, and that associative
recognition is almost at the same level as single-item recognition.
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Fig. 4.3 Contours ofthe 95% joint confidence regions for the values of intercept (/) and growth rate (G), for the

exponential functions fit to the signal-to-respond data of Nobel (1996). The data and exponential functions are shownin

Fig.42.
Table 41 Comparison of experimental data of Nobel and Shiffrin (1996) and the REM
simulations
Condition Hit rate Faise alarm rate d'
169
i o2 [
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me Lm_mM_ 075 006 22
(3) Associative 075 o2 162
(4) Single o77 016 MN
(5) Paired 091 007 MNmA
(6) Paired (8=0775) 0837 Muwm P
(7) Paired (product rule) 084 X §
: Model pseudo-optimal
(8) Associative 051 0008 MMA
(9) Associative (C = exp[—4]) 086 w.%om 22
(10) Associative (8 = 0.775) 037 o.m +.m.~ )
(1) Associative {3 =0.775,C = exp[—4]) 08 !
Associative Model; paired methodology o
(12) Associative (8 = 0.775) 084 qu mﬁ
(13) Associative (3 =0.775,C = exp[2]) 065 0z e
(14) Associative 091 o.mw Iyt
(15) Associative (C = exp[2]) 078 . ?
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' Retrieval effectiveness in paired recognition
What do these results say about relative optimality? We can use REM to compare
these findings at asymptote. Consider first the case of paired recognition. To carry
out paired recognition in optimal fashion, one compares the joint probe vector,
consisting of both test words, with each stored joint vector, in both possible orders.
A likelihood ratio is calculated in the usual way for each of the 2n images. The 2n
likelihood ratios are averaged to obtain the odds, and an old decision is made if the
odds are greater than 1.0. We first choose the parameter which come close to
predicting Nobel’s recognition data for single word recognition; it turns out that the
parameters used to generate the predictions of Fig. 4.1 provide a reasonable fit, so
these were simply carried over. The predictions are given in row 4 of Table 4.1. For
the same studied list, one can produce predictions for the paired recognition case
using these same parameter values; the corresponding predictions are given in row 5.

What we see by comparing rows 1 and 2 with 4 and 5 is that predicted paired
recognition performance is too good relative to single-item recognition. Apparently,
the subjects are not retrieving as effectively in the paired case. Why not? It is
conceivable that there is an error in the assumption that both orders of the test words
are compared, but an analysis of the data showed no difference between test pairs
that matched the study order and those that did not, making such an explanation
unlikely. Most likely in our view is the hypothesis that retrieval capacity is limited in
the capacity to utilize multiple cues in a single simultaneous probe of memory; an
idea featured prominently in the: SAM (search of associative memory) model
(Raaijmakers and Shiffrin, 1980, 1981). The REM model that produces the
predictions in row 5 of Table 4.1 assumes that all the features of both words are used
in the probe of memory. Perhaps not all these features can fit in the probe. We
therefore tried varying the proportion of features that make up a probe—each
feature in the vector representing the test pair was allowed to join the probe with an
independent probability 3. Row 6 of Table 4.1 shows that when 3 = 0.775, predicted
d’ for paired recognition drops approximately to the observed level.

Other types of suboptimal retrieval are of course possible. One of these models
would have the subject calculate the familiarity of each word separately, based on all
the features of each word, and then combine these. For example, if the subject makes
a separate odds calculation about the ‘oldness’ of each word, a reasonable strategy is
to multiply these, and respond old if the product is greater than 1.0. As shown in row
7 of Table 4.1, this model also produces predictions for paired recognition that are
roughly aligned with the data. .

Choosing between these models is a delicate matter. We note that the growth rate
for paired recognition is if anything more rapid than single-item recognition, as
illustrated in Figs. 4.2 and 4.3, suggesting that if familiarity is calculated separately
for both words, these calculations are carried out in parallel. Some researchers might
therefore prefer a model with a joint probe but with a limit on the features in the
probe. On the other hand, if features join the probe with probability 3, then it may
be plausible that different features join the probe on different retrieval attempts. If
so, multiple retrieval attempts will enable an accumulation of evidence that would
eventually produce performance equaling that obtainable with a complete set of
features in a joint probe, a result contrary to the data.
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Thus there do not seem compelling reasons as yet to prefer one of these models over
the other. None the less, the conclusion that retrieval is less effective in paired
recognition than in single-item recognition is probably well founded, and we suspect
would hold true in many model frameworks. This conclusion is bolstered by the
following observation: it is easy to imagine reasons why paired recognition would be
even better than that predicted (e.g. testing a pair might allow configural/relational
features to join the probe, features not available for single word tests), but then an even
greater limitation of retrieval than we have assumed would be required to fit the data.

Retrieval effectiveness in associative recognition

Given that there may be a limitation of capacity in combining two words in a single
probe, it seems best to compare associative recognition with paired recognition, as
both might be expected to share in the same limitation of capacity when constructing
a probe. In the case of associative recognition it is no longer possible to consider a
strategy involving the calculation of separate odds for each test word, as both test
words have been studied, and hence will be equally familiar. It would be desirable to
start with the optimal Bayesian solution for associative recognition, but this cannot
be simulated in real time.

Although a strictly optimal Bayesian solution for the associative case is not
computationally feasible, an approximation suffices to make the points necessary for
this section: under the assumption that an intact pair is being tested, one can find the
assignment of one target image and n — 1 distractor images for which the likelihood
of the observed data (the matching and mismatching features in all the images) is
maximized. Similarly, under the assumption of a rearranged test, one can find the
assignment of two partially matching images, and n — 2 mismatching images, for
which the likelihood of the data is maximized. In practice, what is done to implement
this idea follows: the single half-image that best matches either of the test words is
termed 11, and the test word it matches is termed T1. The other half of the image
containing I1 is matched to the other test word; that is, 12 is matched to T2. A
likelihood ratio based on this match is then calculated according to Equation 4.3.
Term this ratio A(. If | is high, there is evidence that the test pair is ‘intact’. Next
test word T2 is matched to all the remaining double word images, excluding only the
one that produced the best match, and the best matching half image is termed J2. A
likelihood ratio is calculated according to Equation 4.3 based on the match between
J2 and T2. Term this ratio A;. If X, is high there is evidence that the test pair is
‘rearranged’. Thus the decision is based on the ratio of these two likelihood ratios
(i.e. on A\;/Az). It is important to keep in mind that this model is clearly suboptimal,
and the true optimal model would produce predictions of even higher performance.

The predictions for this pseudo-optimal model are given in row 8 of Table 4.1. As
can be seen, performance is predicted to be better than that observed. As the model
predictions for hits and false alarms are not centred, the criterion for responding
‘intact’ was lowered from 1.0 to exp[—4]. The resulting predictions are given in row 9,
and are still too high. Thus it seems advisable to look at models for associative
recognition that include even less effective retrieval. One such model is based on the
assumption that both words are used together in the probe, and that not all the
features can fit in the probe. We therefore included features with probability 3, using
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the same value for 3 that fit the paired data, but otherwise used the pseudo-optimal
model just described. The predictions are given in row 10, and are still too high.
Finally, the criterion for this version of the model was lowered to exp[—4], giving rise
to the predictions shown in row 11. Although performance for this version is now
almost as low as the observed data, it must be remembered that, even ignoring the
use of B =0.775, the basic approximation we used is less than optimal. Thus, no
matter how one looks at this matter, if we assume that subject’s effectiveness of
retrieval is adequately measured by the REM model applied to these tasks, subjects
seem to be retrieving less effectively in associative recognition than in pair
recognition (and less effectively in pair recognition than in single-item recognition).

One account of this finding would hold that the recognition system is only capable
of calculating basic ‘familiarity’ for words or groups of words, and not capable of
carrying out the subtle sorts of analyses required to approach optimality for
associative recognition. With this idea in mind, we tried the following suboptimal
model. The subject was assumed to use the same calculation used in paired
recognition: a single probe is formed for a pair, with each feature included with
probability 3, and odds are calculated just as for paired recognition. Of course, as
both words in rearranged words are familiar, the use of a criterion of 1.0 for a
decision will tend to produce unacceptably high false alarm rates, as illustrated in
row 12 of Table 4.1. We therefore adjusted the criterion to exp[2], approximately at
the point where the distributions of odds for targets and distractors cross, and
generated the predictions given in row 13. Both these sets of predictions are too low,
so we tried generating predictions for such a model without the limitation of capacity
(with 8 = 1.0), and achieved the predictions given in row 14; the predictions in row
15 result from raising the criterion to exp[2]. These are still too low relative to the
observed performance. Thus it seems clear that a more effective retrieval strategy is
employed than that copied from paired recognition: assessing familiarity of the pair
of test items is not sufficient to carry out associative recognition.

Given that another model is clearly needed, we turned to an approach based on
that utilized by Nobel (1996). This approach assumes that associative recognition
utilizes an extended search process with recall-like components, an assumption
motivated in part by results on the speed of retrieval. Figure 4.3 gives confidence
regions for the intercept and rate of growth parameters for the various conditions of
Nobel’s (1996) study (the rate of growth of the curves in Fig. 4.2). The main thing to
note is that the retrieval dynamics are very similar, and rapid, for single-item

. recognition and paired recognition; they are very much slower for associative
recognition and cued recall (which are not statistically distinguishable).

Nobel’s (1996) version of a recall-based model for associative recognition worked
quite well, and, although embedded in the framework of the SAM model of
Raaijmakers and Shiffrin (1980, 1981), ought to prove easy to implement in the
REM framework. The idea is to rely on the sequential sampling of images, using for
each attempt a probe cue consisting of one of the two words in the test pair. An
image is sampled in proportion to its strength to the probe word. The search can stop
with the sampling of a target image for which both halves seem to match the probe
(in which case the search stops and an ‘old’ response is given), or the sampling of an
image only one of whose halves seems to match the probe (in which the search stops

=
&
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and a ‘new’ response is given). Because each probe uses all the features of just one
word, a capacity limitation on the joint use of both words in a single probe is
overcome, but at the cost of extra time used in retrieval (time used for the sequential
search). Qualitatively, at least these anticipated predictions match the patterns of
observed data, but a real test must await quantitative fits.

It is worth noting that the consideration of retrieval time considerably complicates
analyses of optimality. In most studies subjects are either required to respond
quickly (as in signal-to-respond studies) or given ambiguous instructions to respond
‘as accurately and quickly as possible’. In both cases optimality is therefore a matter
of joint minimization of retrieval time and maximization of accuracy. However,
especially in light of the well known fact that subjects can trade improvements in one
for decrements in the other, there are no generally accepted metrics for simultaneous
optimization of both time and accuracy. Note that it may not help matters to
instruct subjects to put all their ‘weight’ on accuracy. Subjects have a high resistance
to the allocation of extra time and effort to retrieval, especially when the marginal
gains are modest or worse. Thus, regardless of instructions subjects will face a
conflict between situational demands for high accuracy and rapid responding.

In summary, our optimality analyses suggest retrieval in paired recognition suffers
relative to single-item recognition due to limited retrieval capacity for multiple word
probes. Our optimality analyses also suggest retrieval in associative recognition is
bounded between the optimal level and the level available from the use of a paired-
recognition retrieval strategy. We suggest subjects carrying out associative
recognition may use single word probes in an extended process of recall involving
sampling and recovery. Although we have not yet implemented this model in the
REM framework, it has the potential of predicting both the observed levels of
accuracy and the slow time course of retrieval.

Retrieval effectiveness in cued recall

In cued recall, one member of a studied pair is provided, and the other must be
generated. Presumably, the process must begin with retrieval of stored episodic
information and then generation of a response requires in addition access to the
information in the word lexicon. In some models of the first stage of this process (e.g.
SAM and REM), access to the specific episodic information in a given image is needed,
rather than access to a global composite of the episodic information in all images (as in
most models of recognition). The extra complications associated with cued recall tasks
make defining and assessing optimality quite difficuit. Given full information
concerning the stored images, and full information concerning a lexicon of possible
responses, one could perhaps work out an optimal decision, but it is clear that subjects
do not access and use this information in optimal fashion. Consider for example just
one of the processes needed in cued recall, access to the lexicon. We know that subjects
given a word fragment completion task with a unique completion (e.g. what word has
the form: _a_v_n_?) do not always find the correct completion, although optimal
retrieval would produce perfect performance. Further, we know that access is far from
optimal in the sense of retrieval time: Nobel’s research, described earlier, makes it clear
that cued recall is carried out in quite different fashion than single-item or paired
recognition recall: it has a distribution that is far more extended over time.
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Faced with non-optimal retrieval, we have proposed a search process borrowed
from Raaijmakers and Shiffrin (1980, 1981) in which images are selected and
examined successively, the subject balancing demands of accuracy and response time
in order to decide when to stop the search. The process we have in mind involves
choosing a pair image, examining the contents of the selected vector, deciding whether
the vector is the one encoding the test item, trying to determine what word is encoded
in the other part of the vector (which requires retrieval from the lexicon), and deciding
whether to emit a response, or continue searching. If the search continues, another
selection of an image is made, and so on. The general determination of optimality in
such a situation is beyond our capability, but some interesting and useful results can
be obtained, especially concerning sequential selection.

For our simple version of REM, it can be shown that the probability that image j
is the one containing the test word, termed P}, is just the sum of the two likelihood
ratios for the two parts of the image divided by the sum of all 2# likelihood ratios, as
illustrated in Equation 4.4. Thus, it is clearly optimal to consider first the image with
the highest sum of likelihood ratios. It also seems plausible that it is optimal to
consider additional images in descending order of their P; values.

4.4

P - At + Ap
I Om + )

Is it plausible that images are examined in strict order of their likelihood ratios?
Table 4.2 gives the distribution for the proportion of instances in which the image
actually containing the target will have the highest likelihood ratio, the second
highest, etc. (for the parameter values we have been using throughout). For a 10-item
list, the probability that the target will have the highest \ is 0.89, and the probability
of being in the top two As is 0.96. For a 20-item list these probabilities are 0.83 and
0.91. Thus, if subjects did sample in order of likelihood ratios, there would be little
point in searching past the first few samples. In addition, even if search continues
until an image is encountered that is judged to contain the test word, and then stops,
this critical event will tend to occur very early in the search. (This conclusion applies
as well to any monotonic transformation of the likelihood ratios, such as a log or
root, as the ordering of \s is not changed by such a transformation.)

Table 4.2 Distribution of the rank of the likelihood ratio for the target image

Ordinal position Length=10 Length=20 Length=100

1 089 ' 0833 066
2 0069 008 © 0106
3 0022 0035 00s1
4 oon 0018 L 0032
5 0003 0013 0022

Consequently, predicted search time will peak early and fall off sharply, and it
would probably be hard to predict the kind of extended search indicated by Figs 4.2

£
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and 4.3. (It would also be hard to predict the free response times skewed toward slow
responses that are also observed in Nobel, 1996.) These observations can be added to
those arising from a consideration of inter-response times in free recall Aa.. g.
Raaijmakers and Shiffrin, 1980, 1981), suggesting that successive m.mB@_n.m occur with
replacement; that is, images already examined can be sampled again during the same
search process. Thus, in cued recall successive samples probably do not occur in
strict order of likelihood ratios, and images once sampled can probably be sampled
again during the same search. Both factors will tend to flatten the distribution of
time until the search reaches the target image. ‘

Therefore, let us assume a retrieval system in which an image is mmﬂwnﬁma in
proportion to its likelihood ratio; i.e. the probability of sampling a given image is
given by the term on the right side of Equation 4.4. m:ﬁ:.wnnonm, assume that
successive samples use the same sampling rule, so that re-sampling of the same image
sometimes occurs. Will such a system produce reasonable predictions? Table 4.3 gives
the distribution of the number of samples it takes to first sample the target mBmmw for
this system (for a list of length 20, and the usual parameter values). There remains 2
marked tendency to sample the correct image very early in the search. Most of this
tendency is due to the extreme skewing of the likelihood ratios H.oéw.a _.mnmw <m_zwm”
there is a high probability that a target will have an extremely high likelihood ratio,
and hence will be sampled immediately. The skewing is so pronounced that the
distributions of the raw likelihood ratios do not lend themselves to graphing. Thus we
give in Fig. 4.4 the distributions of log ), for s-images Qromm‘ Ewa Bwﬂn:v.mna d-
images (those that don’t match). Table 4.4 illustrates the large likelihood ratios that
exist in these distributions by giving the mean value of the n-th largest likelihood
ratios, when the n-th largest is a target or a distractor.

_____
o | log( A )

Fig. 4.4 Distribution of the natural logarithm of the likelihood ratio (A) for an s-image (the image mx.:ma when ﬁ.rm test
word had previously been studied, ilustrated with filed bars) and for d-images (images of other studied words; illus-
trated with open bars). .

20000 .
= s-image

&=== d-image

_____: _.______4_____5

10 15

frequency

Q T

-1 5

If, as these results suggest, proportional sampling of the raw likelihood ratios fails
to spread out sampling times sufficiently, it may prove helpful to assume Emﬁ.:_n
likelihoods are compressed (by a fractional power or a log, say) before sampling.
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m@cm@on ,A.m Ecmc..mﬁnm this: it gives the probability of sampling an image when
sampling is proportional to a function, f, of the likelihood ratios.

(i) = <L) +/(02)

S (FOm) +70m) 43

ution of number samp Propoi nai sam,
Table 4.3 Distrib of les to reach the target, for rtional 1—-—‘

No. samples Length=10 Length=20 Length=100
1 0837 075
; 0572
2 006 008 0097
3 0023 0034 0049
4 0012 0022 0028
5 001 0012 0023

Table 4.4 Mean value of n-th largest likelihood ratios

Target Distractor
1 354553 16.2
2 93 203
3 16 075
4 06 03¢
5 034 . 023

.H..wm more monnommmob is produced by £, the less will be the tendency to select first
E.o images with the highest likelihood ratios. However, there is a conceptual problem
with this approach. The entities on which sampling is based, the f{)\), are different
Ewﬁ the entities on which recognition likelihood is calculated, the A. This state of
affairs would be unappealing to many theorists. There is a solution to this problem
that aomnaam upon using an alternative to Equation 4.2 for recognition decisions, an
alternative based on using the largest of the likelihood ratios rather than the mm:s
We therefore return briefly to the topic of recognition. .

Recognition decisions based on _n..duun likelihood ratios

d_n . vnonomm_. &2 recognition decisions could be based on the largest of the
Eno.__wooa ratios is due to McClelland and Chappell (in press) who have a model very
similar to REM. They proposed further that sensitivity to list length be incorporated

by dividing by ». For single word recognition the odds that an old item has been
tested becomes:

o .
8" =~ MAX;[\] 46

n
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Although this model is not optimal, there are reasons to think it may be a good
approximation to optimality. To see whether this is the case, we generated
predictions for the conditions of Fig. 4.1, using the same parameter values, simply
replacing Equation 4.2 (the average model) by Equation 4.6 (the maximum model).
Both sets of predictions are given in Table 4.5. An examination of Table 4.5 shows
that the MAX model produces d’ values uniformly lower than the SUM model, a
result expected because the MAX model is suboptimal. On the other hand, the
discrepancies are small in magnitude, and there is a surprising degree of similarity
between the predictions of the two models. To a good degree of approximation, then,
the use of the largest single likelihood (scaled by 7 so that the criterion remains at
odds of 1.0) produces the same predictions as the optimal model.

Table 4.5. Results of REM simulations for list length, strength, list strength and word
frequency

Hit rate False alarm rate d’ NRS
List length
REM (sum)
4 0827 0143 2008 074
10 0769 0162 1722 0716
20 0735 0183 1532 0709
40 0696 0212 : 1314 0696
REM (maximum)
4 0871 0213 1926 0745
10 0813 0225 1644 Q715
20 0767 023 1468 0695
40 0704 0232 1268 0674
List strength
REM (sum)
Pure strong o731 0193 1482 Q702
Mixed strong 0749 0.209 148 0683
Mixed weak 1482 0214 1134 0773
Pure weak 0702 0.241 1148 0759
REM (maximum)
Pure strong 0764 0.242 1416 0897
Mixed strong 0769 0.248 1418 0666
Mixed weak 0662 0244 m Q77
Pure weak 0674 0254 1114 073
Word frequency
REM (sum)
Pure high 0731 0186 1508 0714
Pure low o 0108 1984 063
Mixed high 0704 0152 1564 o7
Mixed low 0767 0107 1972 0615
REM (maximum) . . . ‘
Pure high 0763 0233 1448 Q708
Pure low 0812 0158 1892 0627
Mixed high 0743 021 146 0709
Mixed low 0809 0159 1874 0624
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In retrospect, this apparently surprising result is not hard to understand. It is due
to the extreme skewing of the likelihood ratios toward high values that is seen in Fig.
4.4 and Table 4.4. Note that Equation 4.2 is equivalent to saying ‘old’ if the SUM is
greater than n, and Equation 4.5 is equivalent to saying ‘old” if the MAX is greater
than n. Thus, the equivalence of the model predictions implies that the sum of the
likelihood ratios is approximately equal to the maximum likelihood ratio, especially
with regard to the number of times that either is greater than . This is in fact the
case, due to the tendency for the distribution of likelihood ratios to be dominated by
a single enormous quantity. Furthermore, the times when this approximation tends
to break down occurs when there is not a single large likelihood ratio, but these tend
to be cases when both the SUM and the MAX values are less than n, and hence both
lead to a ‘new’ decision. It is a curious fact that this result makes the recognition
models of McClelland and Chappell (in press) and Shiffrin and Steyvers (1997)
extremely similar in both structure and parameterization, to an even greater degree
than these sets of authors may have appreciated heretofore.

The near equivalence of the MAX and SUM rules could be important for several
reasons. For one thing, it may be noted that any monotonic function of the
likelihood ratios, in particular a compressive function like a log or fractional power,
will leave unchanged the image with the largest likelihood ratio. Thus, the decision
based on Equation 4.6, to say ‘old’ when ®* is greater than 1, is identical to that
produced by a decision based on Equation 4.7, to say ‘old’ when &, is greater
than 1:

&= \ﬁ MAX;[fO)] 47

The reason is clear: as the image that is the greatest is unchanged, all that is
necessary is that whenever \; is greater than n, f{)\;) is greater than f{n), which is
true when f is monotonic. In particular, this would be true for a log or power
function.

To summarize, the MAX model based on Equation 4.6 (that is shown in Table 4.5
to approximate the optimal REM model) is identical to a MAX model based on any
monotonic function of the likelihood ratio (as long as a similar function is applied to
the value n). Thus, the units upon which the system bases a decision can be
compressed to a reasonably small number without altering the recognition
predictions. This feature may be appealing to researchers who prefer systems that
are potentially realizable in a neural architecture. Of more immediate significance, it
becomes possible to use for recognition compressed values, that is, the f{)), without
changing the approximation to the optimal model. These same compressed values
can be used in the sampling equation for the selection of an image (e.g. Equation
4.5). When f is highly compressive, sampling is increasingly independent of the
likelihood ratios; the more such independence exists, the greater is the tendency to
spread out the time course of retrieval in cued recall. Without additional modelling
we do not know the degree to which compressed sampling is needed to fit cued recall
data, but it could well prove critical to have this option.
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Optimizing cued recall strategies

Regardless of any possible compression, the existence of large likelihood ratios has
some interesting implications for optimizing search strategies. For example, suppose
that a cue is presented for recall, and that the likelihood ratio for one of the halves of
pair image 1 is 10%, and for one of the halves of pair image 2 is 10%; thus both
individually are quite likely to be matches. Suppose, however, that no response
information at all was stored in the other half of pair image 1, but enough
information was stored in the other half of pair image 2 to be certain of the response.
If one decided that pair image 1 was the correct one, and decided to respond on this
basis, a pure guess would have to be given. This seems like a poor strategy.
Therefore, given that there is a reasonably high likelihood associated with image 2, it
might seem that the best strategy would be to give the response in pair image 2.
However, an optimal calculation reveals it would be better to make a random guess,
excluding only the test word and the response found in pair image 2: despite the
relatively high likelihood ratio of 10 for pair image 2, the odds against image 2 being
correct are approximately 10%/102=10%, larger than the subject’s guessing
vocabulary. This illustrates the kind of non-intuitive result that can occur when
the likelihood ratios have extreme values.

Such observations just begin to touch on the complex issues concerning the most
effective use of search strategies, many of which have to do with the competition
between accuracy and response time; research on these matters must be left for the
future. However, the scattering of results we have presented strongly suggest that
cued recall departs significantly from an optimal process, and in addition perhaps
points to some directions for future modelling.

Retrieval in generic and implicit tasks

We shall conclude with a few brief remarks concerning the effectiveness of retrieval
during generic memory tasks (retrieval of our general knowledge), and implicit
memory tasks (change in retrieval of knowledge caused by recent events). Our first
observation is obvious but relevant: even when we have learned something quite
well, successful retrieval is not guaranteed, especially in a short time frame.
Nevertheless, in discussing explicit retrieval, we started with an optimal model for
retrieval in recognition, and moved to a suboptimal model for retrieval in recall. It is
conceivable that something similar occurs in retrieval from generic memory, with
optimal retrieval for some tasks (perhaps including lexical decision, or word naming,
say), and suboptimal retrieval for other tasks (perhaps including fact retrieval, say).

As a first pass at exploring this possibility, Schooler et al. (submitted) have
extended the REM model to a set of word identification tasks explored by Ratcliff
and McKoon (1997). We discuss first the application to forced choice identification:
observers are given brief flashes of a word, followed by a mask. Then two words are
presented in the clear, and the observer must choose which had been presented.
Sometimes the two choices are visually similar, and sometimes dissimilar, although
the same length. Sometimes one of the choices had been studied in an earlier list. The
flash duration is manipulated in order to produce a rich set of parametric data. The
results, illustrated in Fig. 4.5, show improved performance with longer flash time,
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and improved performance with dissimilar choices, both unsurprising results that
replicate much prior research. The effects of prior study were more interesting, with a
substantial effect only for the case of similar alternatives. In this case the effect was
relatively symmetric, demonstrating a tendency or bias to choose whatever choice
had been studied, superimposed on any veridical perception; this bias was greatest at
the lowest flash times.

Simulation
1.0
- @ 7
3 0 dissimilar
W 0.8 - -3 target
— -~ _ -8 nostu
Mvu, 0.7 - “ ot »
£ 06 -
3
o 0.5 - a” similar
& 04-
o.w T T T T T T T T
5 10 15 20 25 30 35 40 45 50
Flash Time
Ratcliff & McKoon (1996)
1.0
S 0.9 1 dissimilar
m 0.8 4 \\\m target
IS) ZZ2 no studyj
> 077 g A
3 06 - 2 =
| 27 o similar
.m 0.5 - p pid
& o044 @
o-m T T T 1 1] T T T
5 10 15 20 25 30 35 40 45 50

Flash Time

Fig. 4.5 Predictions (given in the top panel) of the REM mode! (Schooler et al, submitted), fit to forced-choice word
identification data {(given in the bottom panel) collected by Ratcliff and McKoon (1997). Probability of correct forced-
choice is given as a function of the display duration of the flashed word, for dissimilar forced-choice alternatives (solid
lines) and similar forced-choice alternatives {dashed lines). In each-set of three curves the top is for the case when the
flashed word had been studied in an eariier list (labelied target), the middte is for the case when neither choice had
been studied previously (fabelled no study), and the bottom is for the case when the choice that had not been flashed
had been studied in an earlier list (labelled foil).

Ratcliff and McKoon (1997) proposed an elegant counter model to predict these
findings, but their model included a structural limitation in retrieval such that there was
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a competition in the decision between the two choices that only existed for two similar
word images in the lexicon. Schooler etal. (submitted) asked whether subjects might be
operating in optimal fashion, given what had been stored in the lexicon, and what
visual information was available from the flash. The model assumes that some visual
features are seen veridically, and the rest are simply filled in by visual noise (perhaps
caused by the mask). To these visual features are added a small number of current
context features (visual or otherwise), and these features are held in visual short-term
memory until the alternatives are presented. Each alternative is read and in accessing
the visual/lexical images some of the context features stored in that trace are recovered
as well. The decision rule is simple: each vector of features for the two choices (visual
plus context) is compared with the stored vector of features from the flash (visual plus
context): the alternative with the greater number of matching features is chosen. In this
model, greater flash time produces more veridical features and hence better
performance. Dissimilar alternatives makes the choice easier because the veridical
features more clearly distinguish the choices in this case. Of greatest interest is the effect
of prior study. In the model, prior study causes a few current context features to be
added to the visual/lexical trace for the studied item. Some of these are recovered when
the alternatives are read, and some of those will match whatever current context
features have been added to the vector for the flash. The net result is that the number of
matching features for a word studied earlier is slightly increased (by about one-half
feature). For two similar alternatives, only about 13 features are diagnostic (differ
between the alternatives) and the one-haif extra feature produces a noticeable bias in
favour of choosing the studied alternative. For two dissimilar alternatives the one-half
extra matching feature tends to get lost in the roughly 44 total diagnostic features that
differ between the two alternatives. The predictions of this model are illustrated in the
lower half of Fig. 4.5. Clearly, the major patterns of the data are captured by this model,
a model that assumes optimal retrieval and decision making. Of course the usual
caveats must be stated that some of the error that this model places in registration of the
visual flash (and in storage of the context features during initial study), could possibly
be occurring in retrieval. The issues parallel those discussed for explicit recognition.
The next issue was possible extensions to other tasks. Ratcliff and McKoon (1997)
also used yes—no matching (one alternative was presented, and the observer said
whether it matched the flash), and naming (the observer tried to name the flashed
word). Can any conclusions be reached about relative optimality? Consider yes—no
first. In modelling this task, it seems clear that all the features registered from the
flash become relevant for the matching decision (as opposed to the smaller number
of features that differ between the two alternatives in forced choice). Thus, the model
for yes—no has an extra parameter: the total number of features. This is a free
parameter to be estimated, and makes it impossible to conclude anything concerning
the relative degree of optimality of the two tasks (although the model fit quite well,
even carrying over the common parameter values from forced choice). When the
model is applied to naming, an optimal model must assume the system compares the
vector of features extracted from the flash with all the visual/lexical images in
memory, choosing the best match to produce, if anything is produced. As most of the
errors were omissions, we employed a model variant in which a response was only
given when the proportion of matching features for the best image exceeded a
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criterion. The optimality of this variant depends on assumptions about the benefits
of extra correct responses versus the costs of extra overt intrusions. Regardless of
this issue, however, no conclusions about relative optimality in this task in
comparison with forced choice and yes—no tasks could be reached, because a variety
of assumptions had to be added to the naming model concerning the similarity
structure of the entire lexicon in memory, issues that did not arise when decisions
could be restricted to just two alternatives, or one. Thus, it can be concluded that an
optimal retrieval model provides a plausible candidate for the processing and
decision making in these various identification tasks, but a good deal of further
research would be needed to come to more definitive conclusions.

Final remarks

It seems a bit anomalous to use as a starting assumption in this chapter the hypothesis
that retrieval is ‘optimal’, given that the first author has for many years used as a
starting assumption the view that decay of memories does not occur, but that
forgetting is due instead to retrieval failure (e.g. Atkinson and Shiffrin, 1968; Shiffrin
and Atkinson, 1969; Shiffrin, 19704, b; Raaijmakers and Shiffrin, 1980, 1981; Shiffrin
etal., 1990; Murnane and Shiffrin, 1991). These two views are not as far apart as they
seem at first glance. First, we have seen that recall is clearly suboptimal, and may well
operate as a search based on proportional sampling. This is important because much
of the discussion in the articles and chapters referenced above was concerned with free
or cued recall. Second, retrieval failure in these articles included the use of poor cues
with which to probe long-term memory; these poor cues could be the result of the
unavailability of better cues, the change of context over time combined with a
tendency to probe with the current context, or a difficuity in reconstructing an
appropriate past context. What we have seen in this chapter is that retrieval under
optimal conditions, with good probe cues in certain tasks, might well be close to
optimal. On the other hand, we have also seen that optimality is a slippery concept,
and some of the error we have assumed to lie in the storage process might instead be
placed in retrieval without altering the predictions of the model.

Perhaps most important, analyses carried out under considerations of optimal
retrieval allow relative effectiveness of retrieval to be assessed across tasks. We have
seen, for example, that recognition of pairs of words is relatively less effective than
recognition of single words, associative recognition is relatively less effective than
recognition of pairs, and recall generally less optimal than recognition. Such analyses
provide a relatively novel way of examining memory performance. The analyses in
this chapter represent only a very small and tentative step down this road, but show
promise for future development.
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