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ABSTRACT—Human memory and Internet search engines

face a shared computational problem, needing to retrieve

stored pieces of information in response to a query. We

explored whether they employ similar solutions, testing

whether we could predict human performance on a fluency

task using PageRank, a component of the Google search

engine. In this task, people were shown a letter of the al-

phabet and asked to name the first word beginning with

that letter that came to mind. We show that PageRank,

computed on a semantic network constructed from word-

association data, outperformed word frequency and the

number of words for which a word is named as an associate

as a predictor of the words that people produced in this

task. We identify two simple process models that could

support this apparent correspondence between human

memory and Internet search, and relate our results to

previous rational models of memory.

Rational models of cognition explain human behavior as ap-

proximating optimal solutions to the computational problems

posed by the environment (Anderson, 1990; Chater & Oaksford,

1999; Marr, 1982; Oaksford & Chater, 1998). Rational models

have been developed for several aspects of cognition, including

memory (Anderson, 1990; Griffiths, Steyvers, & Tenenbaum,

2007; Shiffrin & Steyvers, 1997), reasoning (Oaksford & Chater,

1994), generalization (Shepard, 1987; Tenenbaum & Griffiths,

2001), categorization (Anderson, 1990; Ashby & Alfonso-

Reese, 1995), and causal induction (Anderson, 1990; Griffiths &

Tenenbaum, 2005). By emphasizing the computational prob-

lems underlying cognition, rational models sometimes reveal

connections between human behavior and that of other systems

that solve similar problems. For example, Anderson’s (1990;

Anderson & Milson, 1989) rational analysis of memory identi-

fied parallels between the problem solved by human memory

and that addressed by automated information-retrieval systems,

arguing for similar solutions to the two problems. Since An-

derson’s analysis, information-retrieval systems have evolved to

produce what might be an even more compelling metaphor for

human memory—the Internet search engine—and computer

scientists have developed new algorithms for solving the prob-

lem of pulling relevant facts from large databases. In this article,

we explore the correspondence between these new algorithms

and the structure of human memory. Specifically, we show that

PageRank (Page, Brin, Motwani, & Winograd, 1998), one of the

key components of the Google search engine, predicts human

responses in a fluency task.

Viewed abstractly, the World Wide Web forms a directed

graph, in which the nodes are Web pages and the links between

those nodes are hyperlinks, as shown in Figure 1a. The goal of an

Internet search engine is to retrieve an ordered list of pages that

are relevant to a particular query. Typically, this is done by

identifying all pages that contain the words that appear in the

query, then ordering those pages using a measure of their im-

portance based on their link structure. Many psychological

theories view human memory as solving a similar problem: re-

trieving the items in a stored set that are likely to be relevant to a

query. The targets of retrieval are facts, concepts, or words,

rather than Web pages, but these pieces of information are often

assumed to be connected to one another in a way similar to the

way in which Web pages are connected. In an associative se-

mantic network, such as that shown in Figure 1b, a set of words

or concepts is represented using nodes connected by links that

indicate pair-wise associations (e.g., Collins & Loftus, 1975).

Analyses of semantic networks estimated from human behavior

reveal that these networks have properties similar to those of the

World Wide Web, such as a ‘‘scale-free’’ distribution for the

number of nodes to which a node is connected (Steyvers &

Tenenbaum, 2005). If one takes such a network to be the rep-

resentation of the knowledge on which retrieval processes op-

erate, human memory and Internet search engines address the

same computational problem: identifying those items that are
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relevant to a query from a large network of interconnected pieces

of information. Consequently, it seems possible that they solve

this problem similarly.

Although the details of the algorithms used by commercial

search engines are proprietary, the basic principles behind the

PageRank algorithm, part of the Google search engine, are

public knowledge (Page et al., 1998). The algorithm makes use

of two key ideas: first, that links between Web pages provide

information about their importance, and second, that the rela-

tionship between importance and linking is recursive. Given an

ordered set of n pages, we can summarize the links between them

with an n� n matrix L, where Lij is 1 if there is a link from Web

page j to Web page i and is 0 otherwise. If we assume that links

are chosen in such a way that more important pages receive more

links, then the number of links that a Web page receives (in

graph-theoretic terms, its in-degree) could be used as a simple

index of its importance. Using the n-dimensional vector p to

summarize the importance of our n Web pages, this is the as-

sumption that p 5 L1, where 1 is a column vector with n ele-

ments each equal to 1.

PageRank goes beyond this simple measure of the importance

of a Web page by observing that a link from an important Web

page is a better indicator of importance than a link from an

unimportant Web page. Under such a view, an important Web

page is one that receives many links from other important Web

pages.1 We might thus imagine importance as flowing along the

links of the graph shown in Figure 1a. If each Web page dis-

tributes its importance uniformly over its outgoing links, then we

can express the proportion of the importance of each Web page

traveling along each link in a matrix M, where Mij ¼ Lij=
Pn

k¼1

Lkj.

The idea that highly important Web pages receive links from

highly important Web pages implies a recursive definition of

importance, resulting in the equation

p ¼ Mp; ð1Þ
which identifies p as the eigenvector of the matrix M with the

greatest eigenvalue.2 The PageRank algorithm computes the

importance of a Web page by finding a vector p that satisfies this

equation.

The empirical success of Google suggests that PageRank

constitutes an effective solution to the problem of Internet

search. This raises the possibility that computing a similar

quantity for a semantic network might predict which items are

particularly prominent in human memory. If one constructs a

semantic network from word-association norms, placing links

from words used as cues in an association task to the words that

are named as their associates, the in-degree of a node indicates

the number of words for which the corresponding word is pro-

duced as an associate. This kind of ‘‘associate frequency’’ is a

natural predictor of the prominence of words in memory, and has

been used as such in a number of studies (McEvoy, Nelson, &

Komatsu, 1999; Nelson, Dyrdal, & Goodmon, 2005). However,

this simple measure assumes that all cues should be given equal

weight, whereas computing PageRank for a semantic network

takes into account the fact that the cues themselves differ in

their prominence in memory.

To explore the correspondence between PageRank and human

memory, we used a task that closely parallels the formal struc-

ture of Internet search. In this task, we showed people a letter of

the alphabet (the query) and asked them to say the first word

beginning with that letter that came to mind. By using a query

that was either true or false of each item in memory, we aimed to

mimic the problem solved by Internet search engines, which

retrieve all pages containing the set of search terms, and thus to

obtain a direct estimate of the prominence of different words in

human memory. In memory research, such a task is used to

measure fluency—the ease with which people retrieve different

facts. This particular task is used to measure letter fluency or

verbal fluency in neuropsychology, and has been applied in

the diagnosis of a variety of neurological and neuropsychiatric

disorders (e.g., Lezak, 1995). However, in the standard use of

this task, the interest is in the number of words that can be

produced in a given time period, whereas we intended to dis-

cover which words were more likely to be produced than others.

Our goal was to determine whether people’s responses in this

fluency task were better predicted by PageRank or by more

conventional predictors—word frequency and associate fre-

Fig. 1. Parallels between the problems faced by search engines and
human memory. Internet search and retrieval from memory both involve
finding the items relevant to a query from within a large network of in-
terconnected pieces of information. In the case of Internet search (a), the
items to be retrieved are Web pages connected by hyperlinks. When items
are retrieved from a semantic network (b), the items are words or con-
cepts connected by associative links.

1A similar insight in the context of bibliometrics motivated the development
of essentially the same method for measuring the importance of publications
linked by citations (Geller, 1978; Pinski & Narin, 1976).

2In general, an eigenvector x of a matrix M satisfies the equation lx 5 Mx,
where l is the eigenvalue associated with x (Strang, 1988). Equation 1 iden-
tifies p as an eigenvector of M with eigenvalue 1. This is guaranteed to be the
eigenvector with greatest eigenvalue because M is a stochastic matrix, with
Pn

i¼1

Mij ¼ 1, and thus has no eigenvalues greater than 1. For simplicity, all of the

mathematical results reported in this article assume that M has only one
eigenvalue equal to 1. The PageRank algorithm can be modified when this
assumption is violated (Brin & Page, 1998), and a similar correction can extend
the results we state here to the general case.
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quency. Word frequency is viewed as a cause of fluency (e.g.,

Balota & Spieler, 1999; Plaut, McClelland, Seidenberg, &

Patterson, 1996; Seidenberg & McClelland, 1989; see also

Adelman, Brown, & Quesada, 2006) and is used to set the prior

probability of items in rational models (Anderson, 1990; D.

Norris, 2006). Associate frequency was computed from the same

data as PageRank, differing only in the assumption that all cues

should be given equal weight. These two measures thus con-

stitute strong alternatives to compare with PageRank.

METHOD

Fifty members of the Brown University community (30 female,

20 male) participated in the experiment. Their ages ranged from

18 to 75 years, with a mean of 24.6 years and a standard devi-

ation of 13.2 years.

Twenty-one letters of the alphabet (the low-frequency letters

K, Q, X, Y, and Z being excluded) were printed individually on 3�
5 cards in 56-point Times New Roman font. The cards were

shuffled, face down, and each subject was told that he or she

would be shown letters of the alphabet one after the other and

should produce the first word beginning with each letter that

came to mind. The experimenter then turned the cards up one

by one until the subject had responded to the entire set. The

experimenter wrote down the words produced by the subject.

This procedure was performed twice with each subject.

RESULTS

PageRank and associate frequency were calculated using a

semantic network constructed from the word-association norms

of Nelson, McEvoy, and Schreiber (1998). The norms list all

words named at least twice as an associate of each of 5,018

words. From these norms, we constructed a directed graph in

which each word was a node, with links to its associates. We then

applied the PageRank algorithm to this graph and also calcu-

lated the associate frequency for each word. Finally, we recorded

from Kucera and Francis (1967) the word frequency for each of

the words appearing in the norms.

PageRank, associate frequency, and word frequency all define

a ranking of the words that people could produce in our task. We

used the responses of our subjects to evaluate these predictors.

Responses that did not begin with the appropriate letter were

omitted, as were instances of repetition of a word by a single

subject, as these words could have been produced as a result of

memory for the previous trial. The number of times each word

was produced was then summed over all subjects. Table 1 shows

the most popular responses for seven of the letters. For evalu-

ating the predictors, we removed words that were produced only

once. This is a standard procedure used to control outliers in

tasks generating spontaneous productions, such as word-asso-

ciation tasks (including that of Nelson et al., 1998). Finally, we

omitted all responses that did not appear in the word-association

norms of Nelson et al., as PageRank and associate frequency

were restricted to these words. The result was a set of 1,017

responses.

Our analysis focused on the ranks that the predictors as-

signed to the human responses. We identified all words in the

norms that began with each letter and then ordered those words

by each predictor, assigning a rank of 1 to the highest-scoring

word and lower rank (i.e., a higher number) as the score de-

creased. Table 1 shows some of these ranks. Because the total

number of words in the norms varied across letters (from 648 for

S to 50 for J), we reduced these ranks to percentages of the set of

possible responses for each letter before aggregating across

letters. The distribution of ranks was heavily skewed, so we

compared the predictors using medians and nonparametric

tests. The median percentile ranks for the different predictors

are shown in Table 2. Figure 2 presents the proportion of human

responses produced as a function of percentile rank. PageRank

outperformed both associate frequency and word frequency as a

predictor of fluency, assigning lower ranks to 59.42% and

81.97%, respectively, of the human responses given different

ranks by the different predictors (both ps < .0001 by binomial

test).

We performed several additional analyses in an attempt to

gain insight into the relatively poor performance of word

frequency as a predictor. First, we used word frequencies from a

larger corpus—the Touchstone Applied Science Associates

(TASA) corpus used by Landauer and Dumais (1997)—which

improved predictions, although not enough for word frequency

to compete with PageRank or associate frequency. Second, we

looked at performance within restricted sets of words. Although

the words used in our analyses were all produced as associates in

the word-association task of Nelson et al. (1998), they varied in

part of speech and concreteness. From Table 1, it is apparent

that people’s responses in the fluency task were biased toward

concrete nouns, whereas word frequency does not take part of

speech or concreteness into account. We repeated our analysis

using two subsets of the words from the norms. The first sub-

set consisted of all words identified as nouns and possessing

concreteness ratings in the MRC Psycholinguistic Database

(Wilson, 1988). This reduced the total number of words to 2,128,

and the total number of responses matching these words to 753.

This restriction controlled for part of speech, but still left

differences in concreteness among the words favored by the

predictors; the mean concreteness ratings averaged over the

distributions over words implied by PageRank, associate fre-

quency, and word frequency from the Kucera and Francis (1967)

and TASA corpora were 496.93, 490.32, 421.24, and 433.65,

respectively (on a scale from 100 to 700). To address this issue,

we also analyzed a more reduced subset of words: nouns with

concreteness ratings greater than or equal to the median. This

second subset included 1,068 words matching 526 human re-

sponses and had mean concreteness ratings of 584.70, 583.93,
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574.73, and 577.31, respectively. PageRank still consistently

outperformed the other predictors for these two restricted sub-

sets of words, as shown in Table 2 and Figure 2.

Finally, although PageRank is typically computed purely from

link structure, the word-association norms also provided us with

information about the probability with which associates were

TABLE 1

Human Subjects’ Responses in the Fluency Task and Rankings Given by the Predictors

Beginning letter

A B C D P S T

Human responses

Apple (25) Boy (11) Cat (26) Dog (19) People (5) Snake (11) Tea (5)

Alphabet (7) Bat (6) Car (8) Dad (16) Penguin (3) Stop (4) Television (5)

Ant (6) Banana (5) Cool (3) Door (5) Pizza (3) Saw (2) Time (4)

Aardvark (3) Balloon (4) Card (2) Down (4) Play (3) Sea (2) Tree (4)

Ace (2) Book (4) Class (2) Dark (3) Pop (3) Sex (2) Table (3)

Ambulance (2) Baby (3) Coke (2) Dumb (3) Puppy (3) Silly (2) Tall (3)

Animal (2) Ball (2) Cookie (2) Day (2) Piano (2) Sister (2) Tank (3)

Absence (1) Barn (2) Crack (2) Devil (2) Pie (2) Sit (2) Telephone (3)

Acrobat (1) Bear (2) Cross (2) Dinosaur (2) Pig (2) Slither (2) Town (3)

Act (1) Beef (2) Cut (2) Do (2) Power (2) South (2) Train (3)

PageRank

Animal (2) Big (0) Cold (0) Dog (19) Pretty (0) Small (1) Time (4)

Away (0) Bad (1) Car (8) Dark (3) People (5) Sad (1) Tall (3)

Air (0) Boy (11) Cat (26) Drink (1) Paper (0) School (0) Talk (1)

Alone (0) Black (0) Color (0) Down (4) Pain (0) Sun (2) Tree (4)

Apple (25) Beautiful (0) Clothes (0) Death (1) Puppy (3) Smile (0) Tired (0)

Arm (0) Blue (2) Child (1) Door (5) Person (1) Stop (4) Tiny (0)

Ache (0) Book (4) Cute (0) Day (2) Play (3) Soft (1) Thin (0)

Answer (1) Body (0) Clean (0) Dirty (0) Place (1) Sex (2) Top (1)

Apartment (0) Bright (0) Close (0) Dirt (0) Party (0) Sky (0) Together (0)

Alcohol (0) Baby (3) Cry (0) Dead (0) Pen (0) Sleep (0) Train (3)

Associate frequency

Animal (2) Bad (1) Car (8) Dog (19) Paper (0) School (0) Time (4)

Air (0) Book (4) Clothes (0) Death (1) Pain (0) Small (1) Tree (4)

Army (0) Black (0) Cold (0) Drink (1) People (5) Sex (2) Talk (1)

Away (0) Big (0) Clean (0) Dirty (0) Person (1) Sad (1) Together (0)

Anger (0) Baby (3) Child (1) Dark (3) Play (3) Soft (1) Test (1)

Answer (1) Ball (2) Class (2) Down (4) Party (0) Stop (4) Television (5)

Art (0) Body (0) Church (0) Dirt (0) Pretty (0) Smell (0) Think (0)

Apple (25) Bird (0) Cut (2) Dead (0) Problem (0) Strong (0) Top (1)

Alcohol (0) Break (0) Color (0) Dance (0) Police (1) Smart (0) Teacher (0)

Arm (0) Boring (0) Cat (26) Danger (1) Place (1) Sick (0) Take (0)

Word frequency

A (0) Be (1) Can (0) Do (2) People (5) She (0) There (0)

All (0) Before (0) Come (0) Down (4) Place (1) Some (0) Than (0)

After (1) Back (0) Course (0) Day (2) Part (0) State (1) Time (4)

Another (0) Because (0) City (0) Development (0) Public (1) Still (0) Two (1)

Against (0) Between (0) Case (0) Done (1) Put (2) See (0) Through (0)

Again (0) Being (0) Children (0) Different (0) Point (0) Same (0) Take (0)

American (0) Better (0) Church (0) Door (5) Program (0) Since (0) Three (0)

Around (0) Business (0) Country (0) Death (1) President (0) Small (1) Thought (0)

Always (0) Become (0) Certain (0) Department (0) Present (0) Say (1) Think (0)

Away (0) Big (0) Company (0) Dark (3) Possible (0) School (0) Thing (0)

Note. This table provides a selective list, showing only 10 items for each letter. In the sections of the table corresponding to the three predictors, the order of the
words in each column reflects the rankings given by the predictor indicated. Numbers in parentheses are frequencies in the human responses. Only responses
that were produced at least twice were used in the comparison of models, as a means of controlling for outliers.
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produced. We defined a matrix M that used these probabilities,

rather than assuming that outgoing links were selected uni-

formly at random. The PageRank algorithm could still be ap-

plied to this matrix, although the result no longer had a simple

interpretation as the first eigenvector of the matrix, as people

commonly produced associates outside the set covered by the

norms (an equivalent issue arises with Web pages that create

‘‘dangling links’’ to other Web pages that do not link back into

the target set; Page et al., 1998). We also computed a ‘‘weighted’’

measure of associate frequency, adding the probabilities with

which people produced each word as an associate (i.e., taking

p 5 M1). The weighted measures produced an improvement for

both PageRank and associate frequency when results for all

words were compared, as shown in Table 2 and Figure 2, and

reduced the difference between these two predictors slightly,

with PageRank assigning lower ranks to 54.82% of human re-

sponses ( p < .005 by binomial test).

DISCUSSION

The results of our experiment indicate that PageRank, computed

from a semantic network, is a good predictor of human responses

in a fluency task. Specifically, PageRank outperformed two

measures of the prominence of words in memory: word frequency

and associate frequency. These results suggest that the Page-

Rank of a word could be used in place of these measures when

designing or modeling memory experiments, providing a new

way to predict the prominence of items in memory from word-

association data. If one assumes that the semantic network used

to generate these predictions accurately captures the underlying

representation, these results also support our hypothesis that

human memory and Internet search engines might solve their

shared problem in similar ways. In the remainder of this article,

we identify some connections to existing cognitive models, de-

scribe some simple mechanisms that could produce a corre-

spondence between PageRank and human memory, and clarify

the relationship between our analysis and the approaches taken

in rational models of memory.

Connections to Other Cognitive Models

The ideas behind PageRank are simple and appealing, so it is

perhaps not surprising that there are at least two instances of

similar cognitive models. First, Sloman, Love, and Ahn (1998)

independently proposed using a method equivalent to PageRank

to measure the centrality of features to concepts.3 For Sloman

et al., each entry in the vector p indicates the centrality of a

particular feature, and each entry in the matrix M encodes the

extent to which a given feature depends on another in a par-

ticular concept (e.g., the fact that robins have feathers depends

on the fact that robins fly). The recursive model defined in

Equation 1 provided good predictions of human judgments of

feature centrality. Second, Steyvers, Shiffrin, and Nelson (2004)

found that the distances between words in ‘‘word association

spaces,’’ constructed from word-association norms, predict hu-

man performance on a range of memory tasks. The dimensions of

these word-association spaces correspond to the first few

eigenvectors of the matrix giving the probability with which

people named each word as an associate of another word—the

weighted matrix M defined in our Results section. The first di-

mension of such a space thus corresponds closely to the

weighted form of PageRank, with the only difference between

these two measures resulting from the fact that PageRank also

takes into account dangling links (Page et al., 1998).

Psychological Mechanisms That Might Produce the

Correspondence With PageRank

Our observation of a correspondence between human memory

and PageRank minimally provides an improved method for

predicting the prominence of items in memory from word-as-

sociation data. However, our results could potentially be ex-

plained as the result of some simple psychological mechanisms.

Much research on semantic networks assumes that activation

spreads from node to node along associative links (e.g., An-

derson, 1983; Collins & Loftus, 1975). Let the vector x(t) denote

the activation of a set of nodes at time t. If we assume that each

node spreads its activation equally over the nodes to which it has

links (guaranteeing that the total amount of activation in the

system is conserved), and that the activation of a node at time t 1

1 is determined by a decayed version of its activation at time t

and the sum of its inputs, we obtain

xðtþ1Þ ¼ axðtÞ þ ð1� aÞMxðtÞ; ð2Þ

where a is a decay constant and M is the matrix defined in the

introduction. The vector p defined by Equation 1 is the equi-

TABLE 2

Median Percentile Ranks Assigned to the Human Responses by

Different Predictors

Predictor
All

words
Nouns
only

Concrete
nouns only

PageRank 8.33a 8.16b 13.33c

Associate frequency 10.00 14.77 17.54

Word frequency: KF 29.09 36.54 33.33

Word frequency: TASA 18.99 22.51 21.64

Weighted PageRank 7.14 8.57b 13.33c

Weighted associate frequency 8.24a 12.93 16.67

Note. All pair-wise differences within each column are statistically significant
at p < .01 (two-sided paired Wilcoxon signed rank tests), except as indicated
by superscripts: ap 5 .051, bp 5 .023, and cp 5 .852. KF 5 word frequencies
from Kucera and Francis (1967); TASA 5 word frequencies from Landauer
and Dumais (1997).

3We thank Josh Tenenbaum for pointing out this connection.
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librium state of this system for any a less than 1, and x(t) will

converge to this state as t approaches infinity (Hirsch & Smale,

1974). Thus, the resting state of the semantic network would be

one in which nodes receive activation in proportion to their

PageRank. If higher activation results in a higher probability of

retrieval, we should expect to see an effect of PageRank in

human memory.

A similar argument applies to another simple model of our

task. In attempting to account for the structure of people’s

‘‘Trayne of Thoughts,’’ Hobbes (1651/1998) suggested that one

might move from notion to notion along paths of association.

More formally, one might imagine that the particular words and

concepts that are at the forefront of one’s mind are produced by a

random walk on a semantic network, with the transition from one

node to another being made by choosing a link uniformly at

random. This process defines a Markov chain, in which the state

space is the nodes of the graph and the probability of moving

between states is summarized in the matrix M, which is known as

the transition matrix. Regardless of a Markov chain’s initial

state, the probability that it is in a particular state converges to a

fixed distribution (known as the stationary distribution) as the

number of transitions increases (e.g., J.R. Norris, 1997). The

stationary distribution of a Markov chain is a distribution that is

invariant to multiplication by the transition matrix, meaning that

taking a transition does not affect the probability of being in a

particular state. This definition identifies the stationary distri-

bution as the vector p that satisfies Equation 1, normalized so

that
Pn

i¼1

pi ¼ 1. Consequently, the stationary distribution of a

random walk on a semantic network will assign each node

probability proportional to its PageRank. Equivalently, the

PageRank of a Web page is the number of times it will be visited

by a ‘‘random surfer’’ who clicks on links at random (Brin &

Page, 1998; Page et al., 1998).

These properties of Markov chains have two implications for

present purposes. First, the probability that a subject thinks of a

particular word at a given moment will be proportional to the

PageRank of that word, assuming that he or she has been

thinking for long enough for the Markov chain to have converged

to its stationary distribution. Second, if a subject then proceeds

to search his or her memory by randomly following associative

links until the subject finds a word that matches a query, the

probability of selecting a particular word will be proportional to

its PageRank, because the stationary distribution is invariant to

Fig. 2. Proportion of human responses correctly identified by each of three predictors, as a function of percentile rank.
Curves closer to the top right-hand corner indicate better performance, and the percentile rank at which the proportion is .5
is the median reported in Table 2. The three predictors tested were PageRank, associate frequency, and word frequency from
Kucera and Francis (1967; KF). PageRank and associate frequency were computed with two different methods: weighted
(bottom row) and unweighted (top row). From left to right, results are shown for all words, nouns only, and nouns with
concreteness scores greater than or equal to the median.
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further transitions. The optimal solution to the retrieval problem

is to return the item with the highest PageRank, and a random

walk on a semantic network approximates this solution by re-

turning an item with probability proportional to its PageRank.

This will be a good approximation when the distribution of

PageRank is dominated by a few items with very high scores.

Relationship to Rational Models of Memory

Anderson’s (1990; Anderson & Milson, 1989) rational model of

memory formulates the problem of retrieval as one of statistical

inference in which a set of hypotheses (which item in memory is

needed) is evaluated in the light of data (the query). Such a

problem can be solved by applying Bayes’ rule. We can encode

the probability with which a particular item h is likely to be

needed in general with a prior probability distribution P(h). If we

use d to denote the data provided by a query, we want to find the

posterior probability distribution P(h|d). Bayes’ rule indicates

that

Pðh j dÞ ¼ Pðd j hÞPðhÞ
P

h02 H

Pðd j h0ÞPðh0Þ ; ð3Þ

where the likelihood P(d|h) indicates the probability that we

would have observed d if h were the item needed, and H is the

set of all hypotheses—in this case, one for each piece of infor-

mation. The posterior distribution gives the probability that each

item was the one sought in the query, and the optimal solution to

the retrieval problem is to return pieces of information in de-

creasing order of their posterior probability.

Our approach to the problem of retrieval is entirely consistent

with this Bayesian framework. In the case of Internet search, the

items are Web pages, and the query is a string of words. Most

search engines make the simplifying assumption that the likeli-

hood P(d|h) is constant for all Web pages that contain the words in

the query and zero otherwise. Under this assumption, the optimal

solution to the retrieval problem reduces to identifying all pages

containing the query and ordering them by their prior probability.

Thus, PageRank can be considered an estimate of the prior

probability that a particular item is likely to be needed. The idea

that this probability can be estimated from the links between items

is complementary to the approach that has been taken in rational

models of memory, which have emphasized the pattern of past

usage as a source of these estimates (Anderson, 1990; Anderson &

Milson, 1989; Anderson & Schooler, 1991; Schooler & Anderson,

1997). Priors based on link structures can be used to answer other

kinds of queries—for example, a search may be for an associate of

a word rather than a word beginning with a particular letter—by

using a more sophisticated form for the likelihood P(d|h). The

models introduced by Anderson and his colleagues provide an

account of how the likelihood should be computed for different

kinds of items (see also Griffiths et al., 2007).

CONCLUSION

The relationship between PageRank and fluency reported in this

article suggests that the analogy between computer-based so-

lutions to information retrieval problems and human memory

may be worth pursuing further. In particular, our approach in-

dicates how one can obtain novel models of human memory by

studying the properties of successful information-retrieval sys-

tems, such as Internet search engines. Establishing this corre-

spondence is important not just for the hypotheses about human

cognition that may result, but as a path toward developing better

search engines. For example, our discussion of the relationship

between rational models of memory and Internet search high-

lights two areas in which human memory research might extend

the capacities of search engines: by providing an account of how

to go beyond simple matching of the words contained in a query

when defining the probability of that query given a Web page,

and by indicating how information about past usage can be

combined with link structure. These problems are actively being

explored in computer science, but the parallels between Internet

search and human memory suggest that one might be equally

likely to find good solutions by studying the mind.
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