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Abstract 

A Bayesian-based model for lexical decision, REM-LD, 
is fit to data from a novel version of a signal-to-respond 
paradigm. REM-LD calculates the odds that a test item is 
a word, by accumulating likelihood ratios for each 
lexical entry in a small neighborhood of similar words. 
The new model predicts the time course of observed 
effects of nonword lexicality, word frequency and 
repetition priming. It can also make qualitative 
predictions for the response time distributions in tasks 
with subject paced responding. 

Introduction 
It is generally assumed that the understanding of the 
skill of reading should be based in part on an 
understanding of the storage and retrieval of words. 
These processes are often studied through the use of the 
lexical decision task, requiring  participants to 
distinguish words (e.g., CHAIR and FUME) from 
nonwords (e.g., GREACH and ANSU). In tasks in 
which accuracy is near ceiling, three critical findings 
are seen in the response times: (1) The word frequency 
effect. Words that occur regularly in natural language 
(high frequency or HF words such as CHAIR) are 
classified correctly faster than words that occur 
relatively rarely (low frequency or LF words such as 
FUME). (2) The repetition priming effect. Prior 
exposure to a word leads to faster correct classifications 
for that word on a second presentation. This increase in 
performance is particularly pronounced for LF words 
(e.g., FUME benefits more from prior exposure than 
CHAIR). (3) The nonword lexicality effect. Nonwords 
that look like words (e.g. GREACH) take longer to be 
classified correctly than nonwords that are relatively 
dissimilar to words (e.g. ANSU). In this article1, we use 
a new variant of a signal-to-respond procedure that 
produces findings in the accuracy domain that mimic 
those listed above for response times.  We will fit a new 
Bayesian model, REM-LD, to the data. The advantage 

                                                           
1 More details and related research can be found in 
Wagenmakers (2001). 

of the signal-to-respond technique is that it allows one 
to track the time course of processing, obtaining 
multiple data points for each stimulus category while 
reducing concerns about higher order task strategies 
and speed-accuracy trade-off’s.  We will also present 
some preliminary work on predicting response time 
distributions in the lexical decision task with subject 
paced responding.  

Experimental Data 
The signal-to-respond paradigm has occasionally been 
applied to lexical decision (Antos, 1979; Hintzman & 
Curran, 1997). We used our new version of the signal-
to-respond paradigm to  replicate and extend 
Experiment 2 from Hintzman and Curran (1997). 

Method 
We used four types of stimuli: (1) 168 HF words, each 
occurring more than 30 times per million according to 
the CELEX lexical database (Burnage, 1998) (2) 168 
LF words, each occurring 1 or 2 times per million (3) 
168 pronounceable nonwords created by replacing one 
letter of an existing word (e.g., GREACH created from 
PREACH) (4) 168 pronounceable nonwords differing 
by at least two letters from any word (e.g., ANSU; this 
condition was absent in the Hintzman and Curran 
study). The first three stimulus categories were matched 
on neighborhood structure (i.e., a neighbor is a word 
differing from another word in one letter, so TIED is a 
neighbor of LIED); These categories had the same 
summed logarithmic word frequency of the neighbors. 
Stimuli were presented twice to study how prior 
exposure affects performance. To control for practice 
effects and shifts in response criteria, we presented 
stimuli in blocks of 48 trials, half of which were stimuli 
that were encountered in the previous block, half of 
which were new. For the first block, half of the items 
were filler items and half were stimuli that would be 
repeated in the next block. Each block contained 24 
words and 24 nonwords. Subjects were required to 
respond at six different lags: 350, 400, 450, 500, 550, 
and 600 ms. The appropriate lag was indicated to the 



subject by means of three tones (see Figure 1a). The 
tones were equidistant in time, and the onset of the third 
and last tone coincided with the onset of the stimulus. 
The subject had to respond at the fourth imaginary tone. 
We adopted this procedure in the hope that it would 
produce less interference than the presentation of a tone 
during processing. After each trial, subjects received 
feedback concerning the accuracy and latency of their 
response relative to the desired latency. 

Results and Discussion 
Forty-three students at Indiana University participated. 
we excluded 14 participants from the analyses because 
of extremely bad performance or bad timing.  More 
specifically, subjects were excluded when their overall 
logarithmic d’ was less than 1.0 and/or their average 
response latency was off by more than 50 ms from the 
required response latency. Figure 1b and 1c show the 
distribution of response times for a subject with good 
and bad timing, respectively. All response latencies 
were grouped into six bins for each subjects separately, 
the first bin containing the 16.7% slowest responses, 
and so forth. Next, the accuracy data from each bin 
were averaged over subjects. Other analyses such as 
binning by actual response latency or analyzing 
accuracy data by lag yielded similar results. The results 
can be seen in Figure 2. Performance for HF words is 
better than for LF words, and performance for 
nonwords that differ from any word in two letters (i.e., 
NW2) is better than for nonwords that differ from a 
word in one letter (i.e., NW1). Repeated stimuli 
(indicated by open symbols) are more likely to be 
classified as ‘word’ than new stimuli (indicated by the 
filled symbols), an effect larger for LF words than for 

HF words. As expected, performance increases 
dramatically with processing time, except perhaps for 
new LF words. This lack of increase could either be due 
to a very slow retrieval process for LF words, or to the 
possibility that some subjects might be uncertain 
concerning the lexicality of some LF words. One might 
argue that the gain in performance for repeated LF 
words reflects a retrieval of the feedback given on the 
earlier presentation (‘I remember this stimulus is 
supposed to be a word’). However such a memory 
process would lead to improved performance for 
repeated nonwords (‘I remember this stimulus is a 
nonword’), whereas the data show a decrease in 
performance for repeated nonwords. The hypothesis 
that repetition priming involves two distinct processes 
(i.e., familiarity and recollection) will be elaborated 
upon in the Discussion. Overall, the data consistently 
show effects of processing time, nonword lexicality, 
word frequency and repetition priming. 

The REM-LD Model 
The REM-LD model is similar to the REM model for 
episodic recognition (Shiffrin & Steyvers, 1997). In 
episodic recognition, participants have to distinguish 
‘old’ words (i.e., words that were presented in a 
previous study list) from ‘new’ words. The REM-LD 
model is an application of the REM model to the lexical 
decision task. In the REM-LD model, we will make the 
following assumptions.  

(1) Words and nonwords can be represented by 
vectors of feature values. We assume that these features 
arbitrarily represent attributes such as orthography and 
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Figure 1. (a) the signal-to-respond procedure. (b)
response time distributions for a participant with good
timing and (c) for a participant with bad timing.
Matching line-colors indicate correspondence between
lag (vertical line) and response distribution.     
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Figure 2. Results of the signal-to-respond lexical
decision experiment. The observed data is indicated by
the symbols while the REM-LD model fit is indicated
by the solid lines (stimuli presented once) and dashed
lines (stimuli presented twice).    
 



phonology. Here we represent each word by a 
collection of 30 features with values 1 to 10 randomly 
drawn from a uniform distribution.  

(2) Words have lexical entries (i.e., representations) 
in memory whereas nonwords do not. The presentation 
of the probe (i.e., the stimulus) leads to activation of n 
lexical entries that are orthographically similar to the 
probe (see Figure 3a). In a more complete model the 
value of n would probably be smaller for tests of 
dissimilar nonwords (i.e., nonwords that differ in two 
letters from any word), but for simplicity we set n=10  
for all test items and instead vary the feature similarity 
for dissimilar nonwords. In case the probe is a word, 
one of the activated lexical entries is the probe (denoted 
s-entry for ‘same’, e.g. BEG in Figure 3a). The other 
activated entries are similar but different from the probe 
(denoted d-entries for ‘different’). Note that a nonword 
can only activate lexical entries that are similar to it, 
since nonwords do not have lexical representations.  

The degree of similarity between the probe and the 
entries is determined by the probability that the same 
feature value is present in probe features as in features 
from the lexical entries. Stored s-entry features will 
match the probe features with probability β1; stored d-
entry features will match the probe features with 
probability β2, where β2 < β1. With probability 1-β, 
feature values in the entries can differ from those in the 
probe. These feature values are obtained by sampling 
randomly from the uniform feature distribution, 
enabling matches to occur by chance. In the 
experiment, the similarity between the probe and the 
lexical neighbors was equated for NW1, LF and HF 
stimuli. However, the NW2 stimuli were more 
dissimilar from their lexical neighbors because they 
differed from any word in at least two letters. 
Therefore, we set β2(NW2) < β2(NW1) = β2(LF) = 
β2(HF).  

In REM-LD we assume that word frequency is 
represented by parameter β1; the probability of a probe 
feature matching a trace feature is assumed to be higher 
for HF word probes than for LF word probes. The  
increased matching probability for HF words might 
involve various mechanisms such better matching 
context features because HF words occur in many 
different contexts. Therefore, we set β1(LF) < β1(HF). 
In sum, the β1 parameters determine the similarity or 
degree of overlap between a word probe and its 
corresponding lexical entry whereas the β2 parameters 
determine the amount of overlap between the probe and 
lexical entries that are most similar to it.   

(3) Mistakes in this task are made because the 
features in the lexical entries become only gradually 
available over time. The function α(t) gives the 
probability that a feature from a lexical entry is 
available at time t, in order to be compared with a probe 

feature. To account for the improvement in the lexical 
decision task as a result of more processing time, we 
assume that the function α(t) is monotonically 
increasing over time according to: 
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where b and t0 are parameters of rate and starting point. 
Based on Equation (1), the probability that r features 
are available in the comparison process at time t is 
given by a binomial distribution: 
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where k is the total number of features in each trace 
(always 30 here). 

(4) The decision to respond ‘word’ or ‘nonword’ is 
based on an assessment of the evidence that the 
activated set of lexical entries contains an s-entry. An 
optimal decision is based on the odds φ that the probe is 
a word rather than a nonword, given the available data 
D: φ = P(w|D) / P(nw|D) where the data consists of the 
number of matches and mismatches between the probe 
features and the features of all activated lexical entries. 
Figure 3c illustrates typical log φ distributions 
generated by word and nonword probes, also 
illustrating the fact that log φ = 0 is the optimal 
response criterion. By Bayes’ rule,  
φ = [ P(D|w)P(w) ] / [ P(D|nw)P(nw) ]. Because in our 
experiment the prior probability of the probe being a 
word, P(w), equaled the probability of the probe being a 
nonword, P(nw), we have:    
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When the probe is a word, there is an equal probability 
that any activated lexical entry is a s-entry. This can be 
used in a simple derivation (Shiffrin & Steyvers, 1997) 
that leads to:  
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Figure 3. (a) a presented letter string activates n
orthographically similar lexical entries. (b) letter
strings and lexical traces are represented by vectors.
(c) the distribution of log(φ) for two conditions. 
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where mj and qj are the number of matching and 
mismatching features respectively in the comparison of 
the lexical entry j to the probe. Note that the total 
number of features that participate in the comparison 
process is given by Equation (2). The terms sj and dj 
represent the assumptions that the lexical entry j is a s-
entry and d-entry respectively. Therefore, the odds for 
word is an average of the likelihood ratios for each of 
the lexical entries in the activated set. We can calculate 
each likelihood ratio in the following way: 
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In this equation, v is the number of distinct values from 
the uniform feature distribution (always 10 here).. The 
calculations of the system also involves the estimates 

1β̂ and 2β̂ . These system estimates are based on an 

arithmetic average of the different values that β1 and β2 
can take on in the different experimental conditions.  

(5) Prior exposure to a word primes the corresponding 
lexical entry. Therefore, the features of a repeated word 
probe will better match the features in the corresponding 
lexical entry. We model this by assuming that β1  is 
increased by a small amount ∆β for repeated word 
probes. Similarly, prior exposure to a nonword primes 
the lexical entry of the word that is most similar to it. 
Therefore, the second occurrence of the nonword string 
will lead to more matching features in the comparison of 
the repeated nonword probe and the most similar lexical 
neighbor. We model this by increasing β2 for one lexical 
entry by the amount ∆β for repeated nonword probes.   

Simulation results 
Figure 2 shows the results of a quantitative model fit of 
the REM-LD model to the observed data involving seven 
free parameters. The mean squared error (MSE) of the fit 
is 1.02e-003. The values of the seven parameters values 
found to produce the predictions  were: β1(LF)=.66, 
β1(HF)=.77, β2(NW1)=.44, β2(NW2)=.40, ∆β=.070, 
t0=339, b=0.0050. The qualitative predictions were found 
to be  relatively robust against variations in these 
parameter values. Because accuracy for HF words is 
higher than for LF words, β1(HF) was set higher than 
β1(LF) so that lexical probes would match their lexical 
entries better for HF words than LF words. Because 
NW1 nonwords are more often mistakenly judged to be 
words than NW2 nonwords, β2(NW1) was set higher than 
β2(NW2) so that a NW1 probe would activate its similar 
lexical neighbors to a greater extend than a NW2 probe. 
For both word and nonword conditions, probes that are 

repeated are classified as ‘word’ more often then probes 
encountered for the first time. The model predicts this 
because a repeated word probe primes the corresponding 
lexical entry while a repeated nonword probe leads 
primes the lexical entry of the word that it is most similar 
to. The model also predicts that the repetition priming 
effect is more pronounced for LF words than for HF 
words. This is because the average value of log φ is 
closer to zero for the LF words than for the HF words. 
Hence, an identical increase in log φ due to priming of a 

Figure 4. Predicted response time distributions for the 
lexical decision experiment. A word response is 
generated by the model at time t when the log odds 
(log φ: the current likelihood of responding “word” vs. 
“nonword”) reaches the upper boundary set arbitrarily 
at 2. Similarly, a nonword response is generated when 
log φ reaches the lower boundary set at –2. The 
middle plot shows the mean log ϕ as a function of 
time; it displays the growth of evidence over time. The 
upper and lower plots show the response time 
distributions for correct responses in the eight 
conditions of the experiment. Note that the response 
time results mirror the accuracy results: repetitions 
speed up word responses but slow down nonword 
responses.   



lexical entry will have a greater impact on performance 
for LF words than for HF words.   

Predicting Response Time Distributions 
There are various  ways to derive predictions for the 
response time distributions in the REM-LD model.  
Because the main aim of the model was to fit the 
accuracy results in the signal to respond task, we will 
only show some qualitative predictions for the response 
time distributions in the lexical decision task. We 
explored a method here that is based on diffusion 
models for response time distributions (e.g., Ratcliff, 
1978; Ratcliff, Van Zandt, & McKoon, 1999). Instead 
of forcing the model to respond at specified lags, the 
model is simulated at a fine grained time scale. As time 
progresses, more and more features in the lexicon are 
activated and participate in the comparison process. For 
words, the calculated log odds (log φ) increases on 
average to larger positive values. For nonwords, the 
calculated  log φ will increase to larger negative values. 
We predict response times  by recording the times at 
which the log φ reaches an upper boundary a (for a 
word response), or a lower boundary –b (for a nonword 
response).  The boundaries a and b were arbitrarily set 
at 2. In Figure 4, the predicted response time 
distributions are shown using the same parameters as in 
the previous simulation. Only the distributions for 
correct responses are shown. The results mirror the 
accuracy results: the conditions that lead to more 
accurate responses are also the conditions that lead to 
faster responses. For example, words that are repeated 
are responded to more accurately and faster than non-
repeated words. Similarly, nonwords that are repeated 
are responded to less accurately and slower than non-
repeated nonwords. The model also predicts that the 
response time distributions are more skewed for the 
slower conditions. Such results have been observed 
several times in the literature (e.g. Balota & Spieler 
1999). 
 

Discussion 
We have shown that a Bayesian-based model, REM-
LD, can predict lexical decision effects such as word 
frequency, repetition priming, and nonword lexicality. 
This model takes into account the similarity of 
nonwords to words, thereby keeping the system 
‘centered’ around the optimal criterion of log φ of zero. 
REM-LD can also handle the observed improvement in 
performance with processing time. In contrast to most 
extant models and empirical work in lexical decision, 
we focused on changes in accuracy over time, as seen 
in a variant of a signal-to-respond procedure. A 
Bayesian model is particularly suited toward explaining 
data from the signal-to-respond paradigm, since the 

system bases it decisions on the diagnosticity of the 
evidence, simultaneously considering the evidence for 
and against the ‘word’ response. When, early in 
processing, the evidence is noisy and supports neither 
the ‘word’ response nor the ‘nonword’ response, 
performance is at chance. Empirically, the most 
interesting finding is the decrease in performance for 
repeated nonwords. The current model assumes prior 
exposure of a nonword primes the most similar 
activated lexical entry, predicting the observed 
decrement in performance. However, Logan (1988) 
observed an increase in performance for repeated 
nonwords with subject-paced responding. This result 
might be attributed to the very short lag between 
repetitions in Logan’s experiment. Therefore, it is 
possible that the net result of repetition priming for 
nonwords is the sum of two opposing effects: (1) An 
implicit priming  component such as modeled by REM-
LD, leading subjects to give the erroneous ‘word’ 
response, and (2) A recollection component that leads 
subjects to remember the correct ‘nonword’ response. 
This recollection process might be operative when 
subjects are under less pressure to give speeded 
responses, such as in experiments in which responding 
is subject-paced (e.g., Wagenmakers, 2001).   
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