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a b s t r a c t

When required to predict sequential events, such as random coin
tosses or basketball free throws, people reliably use inappropriate
strategies, such as inferring temporal structure when none is pres-
ent. We investigate the ability of observers to predict sequential
events in dynamically changing environments, where there is an
opportunity to detect true temporal structure. In two experiments
we demonstrate that participants often make correct statistical
decisions when asked to infer the hidden state of the data generat-
ing process. However, when asked to make predictions about
future outcomes, accuracy decreased even though normatively cor-
rect responses in the two tasks were identical. A particle filter
model accounts for all data, describing performance in terms of a
plausible psychological process. By varying the number of parti-
cles, and the prior belief about the probability of a change occur-
ring in the data generating process, we were able to model most
of the observed individual differences.

! 2008 Elsevier Inc. All rights reserved.

1. Introduction

Many real-world environments involve complex changes over time, where behavior that was pre-
viously adaptive becomes maladaptive. These dynamic environments require a rapid response to
change. For example, stock analysts need to quickly detect changes in the market in order to adjust
investment strategies, and coaches need to track changes in a player’s performance in order to adjust
team strategy. Reliable change detection requires accurate interpretation of sequential dependencies
in the observed data. Research on decision making in probabilistic environments has often called into
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question our ability to correctly interpret sequential events. When required to predict random events,
such as coin tosses, people reliably use inappropriate strategies, such as the famous ‘‘Gambler’s
Fallacy” identified by Kahneman and Tversky (1973, 1979)—if a fair coin is tossed several times, people
often believe that a tail becomes more likely after a long run of heads (see also Burns & Corpus, 2004;
Sundali & Croson, 2006). The error of reasoning that underlies the Gambler’s Fallacy is the perception
of probabilistic regularities in a sequence where no such regularities are present, because the se-
quence is in fact truly random. Such perceptions might arise because real-world environments rarely
produce truly random sequences—often there really is statistical information in the sequence of
events. This suggests that the Gambler’s Fallacy could simply be the result of people projecting their
experience of real-world environments onto laboratory tasks.

Related work in dynamical systems research using response time tasks paints a complementary
picture. When the optimal strategy in a task is to provide a series of independent and identically
distributed responses, people often perform sub-optimally. Long-range autocorrelations have been
observed, where responses depend on earlier events that occurred quite a long time previously
(e.g., Gilden, 2001; Thornton & Gilden, 2005; Van Orden, Holden, & Turvey, 2003, 2005), although
not all authors agree on the meaning of the phenomena (e.g., Farrell, Wagenmakers, & Ratcliff,
2006; Wagenmakers, Farrell, & Ratcliff, 2004, 2005). The same criticism applies to dynamical systems
research as to the Gambler’s Fallacy—tasks requiring long sequences of stationary and conditionally
random responses have questionable ecological validity.

Even with real-world environments, people often observe statistical regularities where no such
regularities might be present (e.g., Albright, 1993; Gilovich, Vallone, & Tversky, 1985). For example,
when a basketball player makes several successes in a row, observers readily conclude that the
player’s underlying skill level has temporarily increased; that the player has a ‘‘hot hand”. Observers
make these conclusions even when the data are more consistent with random fluctuations than with
underlying changes in skill level. A problem with the hot hand phenomenon is the statistical interpre-
tation of the results. The uncontrolled nature of batting averages and basketball successes make the
true state of the underlying process impossible to know. Even after detailed statistical analyses of data
from many games, statisticians are still unsure whether a ‘‘hot hand” phenomenon actually exists in
the data (Adams, 1992; Chatterjee, Yilmaz, Habibullah, & Laudato, 2000; Kass & Raftery, 1995; Larkey,
Smith, & Kadane, 1989). This confusion makes it difficult to draw meaningful conclusions about the
rationality of people’s judgments.

We investigate the ability of observers to track changes in dynamic environments. In contrast to
research on the hot hand phenomenon, we use controlled dynamic environments where we know ex-
actly how the statistical sequence was produced and at what time points the changes occurred. This
knowledge allows us to improve on prior hot hand research because we know the true (but hidden)
state of the world, and we can assess observers’ rationality against this benchmark. The dynamic task
environment also allows us to advance on prior Gambler’s Fallacy research. In a typical Gambler’s Fal-
lacy experiment, observers are asked for predictions about a string of independent observations. The
optimal response is to make predictions that are also sequentially independent, leaving just one op-
tion for observers to display sub-optimality: by inducing greater-than-zero sequential dependence
in their predictions. With this constraint, any variability between observers forces sub-optimality to
be observed in the average. In contrast, our dynamic environment includes changes in the hidden state
at some trials but not others, which induces sequential dependence between observations. This can
lead to sub-optimality in two distinct ways; observers can believe there are either more or fewer
sequential dependencies than actually exist. When an observer detects more change points than really
exist, they may behave sub-optimally because they react to perceived changes in the underlying envi-
ronment that do not exist (e.g., a basketball coach who is prone to seeing hot hands where none are
present). Conversely, when an observer detects too few change points, they may fail to adapt to short-
lived changes in the environment. This tradeoff between detecting too few and too many change
points has often been ignored in previous studies of change detection, which mostly assumed an off-
line experiment where the task is to identify change points in a complete set of data that were ob-
served earlier (see, e.g., Chinnis & Peterson, 1968, 1970; Massey & Wu, 2005; Robinson, 1964).
However, real-world examples are invariably online: data arrive sequentially, and a detection response
is required as soon as possible after a change point passes, before all the data have been observed. On-
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line change detection is also important in clinical settings, for instance in identifying dorsolateral fron-
tal lobe damage. The widely used Wisconsin Card Sorting Task (Berg, 1948) screens patients according
to how often they make perseverative errors—that is, how often they fail to detect a change in the task
environment, and continue to apply an outdated and sub-optimal strategy. Animal researchers have
studied similar behavior in rats (e.g., Gallistel, Mark, King, & Latham, 2001). Rats take some time to
detect and adjust to unsignaled changes in reinforcement schedules, but eventually return to proba-
bility matching behavior.

We develop a particle filter model as a psychologically plausible model for online change detection.
Particle filters are Monte Carlo techniques for the estimation of the hidden state of a dynamically
evolving system (see Doucet, de Freitas, & Gordon, 2001) and have recently been proposed as a general
class of psychological models (Daw & Courville, 2007; Sanborn, Griffiths, & Navarro, 2006). They are
attractive as models of human decision making because they require quite simple calculations, and
do not require a long memory for past observations. Even with these limitations, particle filter models
approach the statistically optimal treatment of the data when endowed with a sufficiently large num-
ber of particles—that is, the distribution of particles approaches the Bayesian posterior distribution
across hidden states, conditional on all prior observations. In addition, by limiting the number of par-
ticles, the particle filter is able to mimic sub-optimal behavior observed in various tasks such as cat-
egorization (e.g., Sanborn et al.). Most interestingly, particle filters allow us to investigate what may be
termed ‘‘conditionally optimal” models, in which statistically optimal algorithms are applied to incor-
rect initial assumptions. Such models help us to address the question of exactly where the sub-opti-
mality in human information processing arises.

Using a simple change detection environment, we gather data from two experiments and compare
participants’ performance to predictions from a model based on particle filtering. The data reveal
interesting trends, including the tradeoff between detecting too many and too few change points,
and the model analyses shed light on how this tradeoff may operate. The model analyses also reveal
that many participants behave in a ‘‘conditionally optimal” manner: data appear as if these partici-
pants apply rational statistical processes, but use incorrect estimates of certain environmental param-
eters. The close-to-optimal behavior of our participants stands in contrast to prior research on the
fallibility of human decision making. We hypothesized that people have difficulties when they are
asked for predictions about the future (as in gambling research, for example). Experiment 2 investi-
gates the differences between predictions about the future vs. inferences about the past state of the
environment. We observed a surprisingly large difference between these kinds of responses, and we
use the particle filter model to provide a natural explanation for this difference.

1.1. Change detection environments

In our experiments, random numbers are presented to an observer, one number at a time. After
each new value is presented, the observer is required to respond, either with an inference about
the mean value of the process that is currently generating data, or with a prediction for the next
value. Fig. 1 illustrates the particular set of distributions we used in our experiments, along with
some example stimuli and two sets of example responses. Each stimulus was sampled from one of
four normal distributions, all with the same standard deviation but with different means, shown
by the four densities labeled ‘‘A” through to ‘‘D” in the upper right corner of Fig. 1. The 16 crosses
below these distributions show 16 example stimuli, and the labels of the distributions from which
they arose are shown just to the right of the stimuli; we call these the hidden states because these
are unobservable to the participants in our experiments. The five uppermost stimuli were gener-
ated from distribution A. Most of these fall close to the mean of distribution A, but there are ran-
dom fluctuations—for example, the third stimulus is close to the mean of distribution B. After the
first five stimuli, the hidden state switches, and three new stimuli are produced from distribution
B. The process continues with six stimuli then produced from distribution D and finally two from
distribution A again.

There were two different kinds of questions that we asked participants. In the prediction condi-
tion, we asked about the future, requiring participants to predict where the next stimulus would
fall. Participants made this response by clicking the mouse in one of four regions, defined by
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the crossover points of the four distributions and illustrated in Fig. 1 by the shaded rectangles in
the lower left corner. Some example predictions for two participants (S1 and S2) are shown on the
far right of Fig. 1. These data illustrate some general trends that will become important later—for
example, the third stimulus is quite close to distribution B, and this causes both participants to
predict that the next stimulus will fall in the corresponding region. The other kind of question
we asked participants was about the past, which we call an inference response. In this condition,
after each stimulus we asked the participants which distribution they think had generated it. In
other words, with the inference task, we require participants to identify the hidden state of the
generating process. Two example sets of responses are also shown for the inference task on the
right side of Fig. 1.

We generated stimuli for the experiments using a hidden Markov model observed through a filter-
ing distribution. On each trial, an observation was sampled randomly from one of four normal distri-
butions depending on the hidden state. After every trial there was a probability a that the hidden state
would change to one of the other three states, selected at random. The exact value of a was varied
depending on the experimental condition. When a is small, most observations are sampled from
the same distribution, requiring few change detections from the participant. With a large a, rapid fluc-
tuations in the hidden states are possible, requiring participants to carefully interpret the changes in
observed stimulus values. More formally, let the hidden state zi represent which of the four generating
distributions (labeled A, B, C, D in Fig. 1) was used to generate the stimulus used for trial i. We used the
following algorithm to generate observable stimuli yi for trials i = 1, . . . ,T where T is the total number
of trials:

(I) Set z0 to a random sample from {A, B, C, D}.
(II) Repeat for trials i = 1, . . . ,T.

1. Set zi = zi!1.
2. Sample x uniformly from [0,1].
3. If (x < a) replace zi with a random sample from {A, B, C, D}/zi!1.
4. Sample stimulus yi from a normal distribution with standard deviation r and mean lzi.
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Fig. 1. An illustration of the change detection paradigm. Each stimulus is sampled from one of four normal distributions, but the
selection of the hidden state (generating distribution) is not observed by the participant. At each timestep, there is a small
probability that the hidden state is switched to a new distribution. Example data for two participants are shown on the right for
two different tasks; an inference task where the goal is to identify the hidden state for the last stimulus, and a prediction task
where the goal is to predict the most likely region where the next stimulus will appear. See text for additional details.
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For all experiments and model simulations, we chose mean values for the four distributions (lj) of
{.2, .4, .6, .8} and set r = .1 in order to have some overlap in the generating distributions and to insure
that almost observations fall on the unit interval.

1.2. A particle filter model

Our task involved tracking the hidden state of an underlying process whose visible outputs are
perturbed by noise. This is an important problem in many statistical and computational applications,
commonly called the ‘‘filtering problem”, in which particle filters have had great success. Particle
filter models are a type of sequential Monte Carlo integration, and are the real-time (or online) ana-
logs of standard Markov chain Monte Carlo integration methods (see, e.g., Doucet et al., 2001; Pitt &
Shepard, 1999). For statistical analysis, the central advantages of particle filter models are their sim-
ple and efficient computational properties, and that they can be made to approximate the Bayesian
solution for some problems, without the intractable integration problems that often arise in Markov
chain Monte Carlo methods. Particle filters also make good candidates for psychological models be-
cause they can perform almost optimally, in the sense that they can arbitrarily closely approximate
the posterior distribution over hidden states of the system, even though the required computations
are simple enough to be plausible as a psychological process. The first application of particle filters
to psychological data was by Sanborn et al. (2006), who showed that a particle filter model for
categorization was able to capture both ideal observer as well as sub-optimal behavior simply by
varying the number of particles. Particle filters also have similarities to existing, but less formal,
models of cognition that have enjoyed considerable support, such as Kahneman and Tversky’s
(1982) ‘‘simulation heuristic”. There are many methods for sampling from particle filter models
(see, e.g., Doucet, Andrieu, & Godsill, 2000). We develop a model for the change detection task based
on the method of direct simulation, which is the simplest of all particle filter methods and does not
make unreasonable demands on the observer. The mathematical details of this algorithm are set out
in Appendix A, but we provide an intuitive description in the following text, and an illustrative
example in Fig. 2.

The observer begins with some number of particles, say P. Each particle represents a single hypoth-
esis about the hidden state of a dynamically evolving system. In our task environment, a particle rep-
resents a single hypothesis for which distribution is currently generating observed stimuli. An initial
set of particles for a P = 8 system is shown on the top row of the right hand side of Fig. 2. These initial
particles have randomly distributed guesses—for example, three particles guess that the generating
distribution is B, one particle that the distribution is D and so on. The first observation is generated
from distribution C, and is illustrated by the uppermost cross on the shaded rectangle. After this
observation, the particles are updated such that particles consistent with the observation are kept
(or even multiplied) and those that are inconsistent are rejected. The first observation is most consis-
tent with distribution C, but also somewhat consistent with B and D. This causes the two initial
particles that hypothesized distribution A to be rejected—no arrows show these particles continuing
to the next trial. After updating, only particles consistent with distributions B, C and D remain. The
second observation (also drawn from distribution C) is most consistent with distributions C and D.
This time, the update operation rejects the three particles from distribution B because they are incon-
sistent with the data. This process continues and the ensemble of P particles evolves over trials, and
tracks the hidden state as it moves, illustrated by the histograms on the right side of Fig. 2. These
show that the distribution of particles tracks the true hidden state (shown on the far left of the
figure).

The particle filter model has two parameters that affect its performance, the number of particles (P)
and an estimate of the frequency of changes in the generating process ðâÞ. The number of particles im-
poses a processing limitation, and affects the overall level of task performance: more particles lead to
better performance, and in the limit of infinitely many particles the distribution of particles over states
converges to the posterior distribution over states, conditional on all previous observations (it is in this
sense that the model is optimal). It may at first seem psychologically implausible that an observer
could maintain, say, 25 separate hypotheses about the state of the hidden process (i.e., a model with
P = 25 particles). However, the information carried by those 25 particles is no more than the four
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counts of how many particles are associated with each of the four possible hidden states (A, B, C and
D). Instead of thinking of the number of particles as a number of independent hypotheses, one might
more plausibly consider it as the resolution with which the distribution over states is calculated.

The second quantity that affects the model’s performance is an estimate for the value of a, which
represents the observer’s belief about how often the hidden state changes—we will call this estimate
â. This parameter is used when particles are updated after each observation. When each particle is up-
dated, it is transformed in a way that mimics changes in the hidden state: with probability â, the par-
ticle will change its state to one of the three other hidden states (selected at random), or will remain
unchanged with probability 1! â. A statistically optimal model would use the true value of â ¼ a, but
our participants cannot reasonably have known this. Even more fundamentally, our participants could
not reasonably have known that we kept a fixed at a constant value on every trial. We incorporated
into the model an assumption that leads to the Gambler’s Fallacy, a belief that a change is more likely
occur as more time passes without a change. In the actual task environment, this probability (a) is
constant across time but we assume that observers are drawing inferences about a different environ-
ment where this is not the case. The model thus incorporates a Gambler’s Fallacy, but only relative to
task environments where the change probability is constant (or zero). In the model, each particle car-
ries with it its own imperfect estimate â. This estimate begins at â ¼ 0 when the particle is created
(i.e., when it first changes to a new hidden state) and increases to â ¼ 1 as the particle ages. Specifi-
cally, when a particle is k trials old we set â ¼ 1! e!rk where r is a rate parameter that measures how
quickly the observer believes the hidden state of the system changes. Appendix A shows the model
predictions as a function of both â and the number of particles P. In our first experiment, we investi-
gated the sensitivity of participants to changes in the true value of a. We examine how responses
change when a is manipulated, and whether the observed response differences imply changes in
the observers’ underlying beliefs about the evolution of the hidden states (i.e., whether observers
change their beliefs, â in response to changes in a).
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Fig. 2. Illustrative example of the particle filter algorithm.

54 S.D. Brown, M. Steyvers / Cognitive Psychology 58 (2009) 49–67



Author's personal copy

2. Experiment 1—Manipulating change frequency

In Experiment 1, we investigated the ability of participants to track the hidden state of a dynam-
ically changing environment. After displaying each stimulus, we asked participants which of the four
distributions was most likely to have generated that observation. We tested participants on this infer-
ence task only (the prediction task will be investigated in Experiment 2). We assessed performance in
this task under three conditions, in which there was either a low, medium or high change probability
(i.e., a value). We were interested to know whether participants were able to track changes in the hid-
den state and whether they were sensitive to the changes in the rate at which those changes occurred.
Also, this experiment allowed us to investigate individual differences in the accuracy of change detec-
tion as well as the number of changes detected. We hypothesized there would be substantial differ-
ences in individual ability, with some individuals detecting too few or too many changes, leading to
sub-optimal performance.

2.1. Methods

One hundred and three undergraduates from the University of California, Irvine, participated in
Experiment 1. We generated stimuli using the algorithm described above, and illustrated these using
a ‘‘tomato processing factory” in which cans of tomatoes were produced from one of four horizontally-
separated ‘‘production pipes” at the top of the screen (to view a working example of the experiment,
visit http://psiexp.ss.uci.edu/). The locations of these four pipes correspond to the mean values of four
distributions that generate the stimuli. Using simple animations, tomato cans were produced one at a
time from one of the four pipes. After each new stimulus appeared, all other stimuli on screen were
moved downwards to make room, simulating a conveyor belt. No more than 15 stimuli were ever vis-
ible on screen at any time, with the lowest one falling off screen. There were four response buttons at
the top of the screen, one above each pipe. Participants used these buttons to indicate their responses
to the inference questions (‘‘Which pipe generated the most recent stimulus?”). The experiment began
with the participant reading through instructions that described the generating process and the ran-
dom movement of the cans. After this, the first cans rolled out of the machine with all elements of the
task visible. This ‘‘familiarization phase” lasted for 10 stimuli at the beginning of each block. The par-
ticipant’s task at this time was trivial, as they could directly observe which pipe had generated the
most recent stimulus (the ‘‘hidden” state). The familiarization phase allowed us to identify and ex-
clude participants who failed to pay attention. It also made the participants more familiar with the
idea of inferring which pipe generated the stimuli, and illustrated that the stimuli did not always fall
nearest to the pipe that had generated them. After 10 familiarization trials, a curtain covered the
machinery that generated the stimuli, beginning the 40 trials of the decision phase. During this phase,
the participant’s task remained unchanged, but became more difficult since the hidden state was truly
hidden: the only information available to the participant was the final location of the stimulus.

Participants completed one short practice block followed by 12 full blocks divided into four blocks
in each of three conditions. The three conditions were defined by the frequency of changes in the hid-
den state: a = 8%, a = 16% and a = 32%. The pipe used to generate each stimulus was either a repeat of
the pipe used for the previous trial (with probability 1 ! a) or a new pipe drawn randomly from the
other three possibilities (with probability a). All four blocks of each condition occurred consecutively,
but the order of the three conditions was counterbalanced across participants. We constrained the
pseudo-random stimulus sequences to ensure that there was at least one change in the generating dis-
tribution during each familiarization phase. Importantly, we used the same stimulus sequence for cor-
responding blocks for all participants to reduce variability in comparisons across participants.

2.2. Results

The two central attributes of participants’ responses were their accuracy (i.e., how often they cor-
rectly inferred which distribution had produced the data), and their variability; these measures are
summarized in the left and right columns of Fig. 3, respectively. Participants averaged about 70% cor-
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rect responses, with a tendency for accuracy to decrease with increases in the proportion of changes in
the hidden state (a). We summarized response variability by calculating the proportion of trials on
which the participant provided a different response than they had provided for the previous trial,
which provides a measure of how often the participant changed their belief about the hidden state.
The histograms for response variability (right column of Fig. 3) show that variability increased as
the proportion of changes in the hidden state increased. On average, participants made 11 response
changes per block during the low frequency (a = 8%) condition, rising to 13 changes per block in the
medium frequency (a = 16%) condition and 16 changes per block in the high frequency (a = 32%)
condition.

Fig. 4 compares accuracy and response variability on a within-subjects basis, separately for the
three conditions: low, medium and high a. Each participant is represented by a black dot in each of
the three panels (the gray areas are predictions from the particle filter model, discussed next). The
upper boundary of the accuracy data forms an inverted-U shape for all three conditions. This in-
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verted-U shape illustrates the tradeoff between subjects who were too quick to detect changes and
those who were too cautions.

Our participants demonstrated increased response variability and decreased accuracy across the
three conditions, as the frequency changes in the generating process (a) increased. This may suggest
that participants were appropriately reactive to the experimental manipulation, but the situation may
be more complicated. Increasing the frequency of changes in the generating process also increases the
variability in the data, and so naturally leads to greater response variability. Put another way, even if
participants were completely insensitive to the experimental manipulation of a, they would still ex-
hibit increased response variability with increased a, just by virtue of tracking the (more variable)
stimuli. The interesting question is whether participants demonstrated enough extra response vari-
ability to suggest they were sensitive to the experimental manipulation of a. This question can only
be answered by model-based analyses.

2.2.1. Particle filter model analyses
The particle filter model maintains a set of particles that represent a distribution of beliefs about

which of the four processes is currently being used to generate data—see, e.g., the histograms on
the extreme right of Fig. 2. In Experiment 1, participants were forced to give just one response, not
a distribution. This constraint is included in the model in the statistically optimal manner, by having
the model return themode of the particle distribution as its inference about the most likely generating
distribution. This response is optimal in the sense that, if the particle distribution is an accurate
approximation to the posterior distribution over hidden states, given the observed stimuli, then the
mode will be the most likely state. Of course, given that we endowed the model with incorrect
assumptions about the probability of change (recall that a was actually constant, but the model rep-
resented it as increasing with age) the model’s predictions are only conditionally optimal. We use two
different approaches to assess the model. We first take a global approach, in which we evaluate the
model’s predictions for all possible parameter settings, and compare the range of behaviors produced
by the model with participants’ behavior. Following that, we take a focused approach by estimating
model parameters for each participant, and investigating the effects of the experimental manipula-
tions on the parameter estimates.

The gray circles in Fig. 4 illustrate the entire range of behavior that can be predicted by the particle
filter model when given the same stimuli as our participants.1 We varied the number of particles from
P = 1 to P = 1000 (predicted accuracy reached asymptote around P = 250) and we varied the rate at
which a was assumed to change with particle age on a fine grid between r = 0 and r = 1. The model
captures the observed variability in participant behavior in this task in two ways. Firstly, the model
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Fig. 4. Accuracy vs. response variability (the proportion of trials on which the participant changed their response). From left to
right, the panels show data from the three conditions of Experiment 1: low, medium and high probabilities of a change (a) in the
hidden state. Black dots show data, the gray dots shows predictions from the particle filter model, under all possible parameter
values.

1 There is some random variability in the model predictions shown in Fig. 4, because of the finite sequence of data used—just
four blocks of 50 trials for each condition, as seen by our participants.
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successfully predicts data that were actually observed—almost all data fall inside the range of model
predictions. Secondly, the model does not predict data that are wildly different from those that were
observed—the gray circles do not generally fall very far from the data. The model also captures the
important qualitative trends in Fig. 4, including the decreased accuracy and increased variability with
increasing change probability (r). The upper boundary of the gray shading illustrates the conditionally
optimal performance level that can be achieved for all different estimates of r (with large P). Even
though the accuracy of the participants decreases as they detect too many and too few changes, the
accuracy of many participants remains close to the top border of the gray shading. This indicates that
many participants could be characterized as operating in a conditionally optimal manner: that is, opti-
mal except that they held inaccurate ideas about a.

The model analyses provide insight into the question of whether our participants were sensitive to
the experimental manipulation of a. We used the particle filter model to generate maximum-likeli-
hood estimates of the parameters (P and â), separately for each participant. Estimating parameters
using a particle filter model is a non-trivial problem for which various techniques exist, but none
are completely satisfactory (e.g., Hürzeler & Künsch, 2001). We used a simple method based on our
data summary graph (Fig. 4) but we also tried more sophisticated methods, with broadly similar re-
sults (see Appendix B for details). We constrained the parameter estimates to a single, fixed value
of P for all three conditions for each participant, but allowed three independent values of r for the
three experimental conditions, reflecting the experimental manipulation of change rate. The parame-
ter estimates revealed that participants were indeed sensitive to manipulations of the underlying fre-
quency of changes in the data generating process. Fig. 5 shows histograms of the r estimates across
participants, separately for the three experimental conditions. The r estimates were smallest in the
a = 8% condition (mean r = .18), increasing for the a = 16% condition (mean r = .21) and the a = 32%
condition (mean r = .28). The estimated number of particles for each participant ranged from P = 1
to P = 400 with a mean of P = 56.

2.3. Discussion

The remarkable finding from Experiment 1 was that many participants performed in a condition-
ally optimal manner—that is, they behaved as if they applied statistically optimal calculations to the
data, although based on an incorrect assumption about the rate of changes in the hidden state of the
system. The reader may wonder why many of our participants performed so well, when data from
other paradigms reliably demonstrate the fallibility of human decision making. Our dynamic data gen-
erating process may be similar to ‘‘real world” environments than static (i.i.d.) processes, resulting in
better performance. A second feature that separates our paradigm from others is the question posed to
participants. We asked our observers to identify which of the four stimulus distributions generated
the most recent stimulus. This question asks about the past, requiring participants to make inferences
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Fig. 5. Estimates of the r parameter from the particle filter model. The estimates increase as the true value (a) increases from 8%
to 32%.
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about prior states of the world using existing data. Most other analyses of human decision making ask
instead about the future, requiring participants to make predictions about the outcomes of gambles,
for example (e.g., see Kahneman & Tversky, 1973). It is possible that people treat questions about
the past and about the future very differently, even when there is no statistical reason to do so. Sim-
ilarly, Jones and Pashler (2007) have shown that making predictions about the future is not an espe-
cially privileged task. Indeed, they found that when similar questions were asked about the future
(predictions) and the past (‘‘retrodictions”), participants never performed better when making predic-
tions than retrodictions. As an additional benefit, Experiment 2 also allows us to gather support for the
way in which we included the Gambler’s Fallacy belief in our particle filter model—this mechanism
allows the model to accommodate a complicated pattern of results regarding response runs and alter-
nations in Experiment 2, with no parameter adjustments.

3. Experiment 2—Past and future

Performance in Experiment 1 was very good when compared with classic findings from the liter-
ature, which detail the many flaws in human decision making. Experiment 2 was designed to test a
hypothesis that may explain this difference. In classic decision making paradigms, participants are al-
most always asked to make predictions about the future—for example, to place bets on gambles. In
Experiment 1, we asked participants about the past instead, by asking them to infer what underlying
distribution had generated an observation that they had already seen. Experiment 2 uses the same
paradigm, and even the same stimuli, to compare performance on predictions about the future with
inferences about the past.

3.1. Methods

Another (different) 63 undergraduates participated in Experiment 2, which was very similar to
Experiment 1. In Experiment 2 we used the same frequency for changes in the hidden state through-
out the experiment, an a = 10% chance of change on each trial. Once again we used 12 blocks of 50
trials, but this time they were divided into two conditions with six blocks each—all six blocks for each
condition always occurred consecutively, with the order of the two conditions counterbalanced be-
tween subjects. The ‘‘inference” condition was identical to Experiment 1—the observer was asked
about the past (‘‘Which distribution generated the most recent stimulus?”). In the six blocks of the
‘‘prediction” condition, we required responses about the future instead (‘‘Where will the next stimulus
fall?”). Participants made their prediction responses by clicking the mouse in one of four regions of the
output space. These response regions corresponded to the most likely stimulus locations from the four
distributions, as shown by the shaded rectangles in the lower left of Fig. 1.

We used exactly the same pseudo-random sequence of hidden states and stimulus locations for the
inference and prediction conditions. Given the same stimuli, the inference and prediction questions
are mathematically identical,2 and there was no statistical reason to give different responses in the
two conditions (the best possible prediction for the next stimulus is just the region corresponding
to the distribution that generated the last stimulus). This property allowed us to compare past and fu-
ture responses directly, attributing any changes in behavior to task instruction only. The sequences
were long enough (300 random normal deviates) that it seemed unlikely participants would be able
to remember the sequence from the previous block.

3.2. Experiment 2—Results

We first illustrate some raw data, and then move on to data summaries and model-based analyses.
Fig. 6 shows data from three representative participants in the fifth block of both the inference task

2 As long as a < .75, the distribution most likely to generate the next observation is whichever distribution generated the previous
observation. The likelihood function for the next observation is a mixture of the four distributions, with mixing probabilities given
by â and 1! â, but the mode of this distribution will be unchanged as long as â < :75.
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and the prediction task. The top rows use gray shading to illustrate the generating distributions (1. . .4
from black to white) for the 40 decision-phase trials. The second-to-top rows use the same shading to
show where the stimuli actually fell: note that the stimuli were identical for the inference and predic-
tion blocks. The three lowest rows show responses from three representative participants (S1, S2 and
S3) using the same shading system.

Fig. 6 illustrates data from three participants who performed the task quite well. At trial number
32, the hidden state at the top of the figure changes from #1 (black) to #2 (dark gray). The three par-
ticipants all changed their responses appropriately, around two trials later. Participants were also
responsive to outliers. For example, hidden state #1 was used from trial 10 until trial 32, but several
outlying stimuli were randomly produced. Two of these outliers occurred together on trials 24 and 25,
and two of the three representative participants briefly changed their responses about the generating
distribution around trial number 26.

For the three representative participants in Fig. 6, responses were less variable in the inference task
than the prediction task—there are more response changes on the right side of Fig. 6 than the left. This
was surprising, given that there was no statistical reason to give different responses under the two
conditions. We further investigated the extra response variability in the prediction task by plotting
data summaries for all participants, similarly to Experiment 1. Fig. 7 graphs accuracy vs. response var-
iability, in the same format as used for Fig. 4. Data from the inference task were very similar to those
from Experiment 1, which was to be expected given that the procedure was almost identical. Accuracy
was lower in the prediction task. This was also unsurprising, as the prediction task was more difficult
than the inference task: an accurate response required not only knowing which distribution will gen-
erate the next observation, but also being lucky enough to have that observation fall within the re-
sponse region associated with its distribution. However, there was no reason to expect differences
in response variability. The stimulus sequence used in the two tasks was identical, so the best strategy
in the prediction task was to replicate responses from the inference task. Nevertheless, Fig. 7 shows
that responses were more variable in the prediction task than the inference task.

The within-subject differences between inference and prediction tasks are shown more clearly in
Fig. 8. The left panel graphs each participant’s accuracy in the prediction task against their accuracy
in the inference task. All data lie below the diagonal (y = x), indicating that accuracy was always lower
in the prediction than inference condition. The center panel shows a similar analysis for response var-
iability. Most participants (48 out of 63) made more variable responses during the prediction task than
the inference task: on average, participants made 15 response changes per block during the future task
compared with 11 per block during the past task. The right hand panel most directly illustrates the
needless sub-optimality of participants in the prediction task. This graph shows the accuracy of re-
sponses in the prediction task, compared with how accurate those same participants would have been,
had they simply re-produced the exact sequence of responses they gave for the inference task. Out of

Inference Task
Hidden State

Nearest Distribution

10 20 30 40 50
Trial Number

Distribution 1
Distribution 2
Distribution 3
Distribution 4

S3

S2

S1

Prediction Task

10 20 30 40 50

Fig. 6. Stimuli and data from one block of the inference task (left side) and one block the prediction task (right side). The top
rows show the hidden state on each trial, represented by different shading—see legend. The next row shows which production
distribution was closest to the randomly-displaced observation. The three lower rows show responses from three participants.
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the 63 participants, 46 of them (73%) would have been more accurate in the prediction phase if they
had re-produced their responses from the inference phase.

3.2.1. Model analyses
There were striking differences in both accuracy and response variability between our prediction

and inference conditions. The particle filter model, as outlined so far, only describes performance in
the inference condition, characterizing this performance as statistically optimal, conditional on an
incorrect assumption about the frequency of changes in the hidden state. In our analysis of data from
Experiment 2, we impute powerful support for this model because it successfully accounts for the sur-
prising differences between inference and prediction conditions with no modifications whatsoever—
the data patterns arise as natural consequences of the model architecture.

Recall that the particle filter model produces an estimate of the posterior probabilities of the hid-
den states, represented as a distribution of particles across the states. To maintain (conditional) sta-
tistical optimality, responses to inference questions were given by the mode of the particle
distribution, in both Experiment 1 and the inference condition of Experiment 2. We continued this
theme to model responses in the prediction condition, generating responses from the particle distri-
bution in the statistically optimal manner. Prediction questions effectively ask the observer about the
hidden state one trial ahead in the future. The optimal response in this case is to evolve the particles
one trial further into the future and respond with the mode of that evolved distribution. Evolving par-
ticles one step into the future means simply running the usual algorithm that updates the particles
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after each observation, but without having the observation itself. In detail, step #3 of the algorithm as
specified in Appendix A is replaced by one that accepts all proposed particles, rather than just those
that are consistent with the new observation. The particles from the evolved distribution are thus
identical copies of the existing particles, except that each particle has a chance of changing to one
of the other generating distributions, with probability 1 ! e!rk, where r is the estimate of change rate
and k is the age of the particle (in trials). These new particles represent the best prediction for the state
of the system one trial into the future, given no observed data. This procedure adds response variabil-
ity, especially when there are low numbers of particles, because the new particles sometimes differ
from the current ones, and this response variability causes decreased task accuracy, as observed.

The gray shading in Fig. 8 shows predictions from the particle filter model, for a fine grid of values
on 1 6 P 6 1000 and 0 < r < 1. The model fits the data well, even though it has just two parameters,
fixed across task conditions. The mean estimated parameters for this model were P = 70 and r = .12.
The model successfully captures all of the behavioral patterns illustrated in Figs. 8 and 9, most impor-
tantly the decreased accuracy and increased variability in the prediction than inference condition.

3.2.2. Revisiting the Gambler’s Fallacy
When asked for predictions about the next stimulus, participants produced greater response vari-

ability than when they were asked for inferences about the last stimulus. Increased response variabil-
ity for predictions is reminiscent of the Gambler’s Fallacy—a tendency to predict changes after a run of
similar stimuli. We investigated this link by examining the effect of ‘‘streaks” of repeated stimuli on
responses (for a similar approach, see Burns & Corpus, 2004). Fig. 9 graphs the probability that the pre-
vious response will be repeated on the current trial against the length of the streak—that is, against is
the length of the current streak of outcomes. Successive outcomes were classified as the same (and the
streak classified as continuing) whenever they fell within the same one of the four output regions
shown in Fig. 1.

The analysis in Fig. 9 illustrates a qualitative difference between data from the inference and pre-
diction conditions. For short runs of similar stimuli (streak lengths of 1–4) the probability of repeating
the prior response increases as the streak length increases. This makes statistical sense, and is true in
both the inference and prediction conditions. As the streak gets longer than four trials, the probability
of repeating the prior response continues to increase in the inference condition. However, in the pre-
diction condition, this probability begins to decrease with increasing streak length. This pattern is
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Fig. 9. The probability of repeating the previous response (y-axis) against the streak length: the number of trials for which the
same outcome has been observed. Circles show averaged data, with 95% confidence intervals assuming binomially distributed
probabilities across participants.

62 S.D. Brown, M. Steyvers / Cognitive Psychology 58 (2009) 49–67



Author's personal copy

indicative of a Gambler’s Fallacy: after a sufficiently long streak of similar outcomes, participants pre-
dict an increasing probability of a change.

The solid lines in Fig. 9 show predictions from the particle filter model. These predictions were gen-
erated in the same way as the data—separately for each participant (using best-fitting parameters)
then averaged across participants. The model underpredicts the probability of repeating the prior out-
come for very short streaks, but otherwise captures the data well. Critically, the model captures the
qualitative difference between inference and prediction conditions, ascribing this difference to the
lack of observed data in the prediction condition: predictions are made about a future stimulus, that
has not yet been observed, while inferences use an existing, observed stimulus. In general, the model
predicts decreased response repetition with longer streaks because particles get older as the streak
length extends. As particles age, they have increased estimates of the underlying change probability
of the system (according to 1 ! e!rk), so when new particles are generated they are more likely to dif-
fer from the old ones as streak length increases. This means that the mode of the new particles be-
comes more likely to differ from the mode of the old particles as their ages increase, leading to the
observed drop in response repetition with increased run length. The same pattern does not occur in
the inference condition because there new particles are constrained by the observed data—new par-
ticles that differ from the old particles are unlikely to survive because they provide a poor match to the
observed stimulus.

4. General discussion

4.1. Links with prior work

Modern Monte Carlo techniques provide a natural way to model inference in probabilistic environ-
ments, including many decision making tasks commonly used in psychological research. Standard
Markov chain Monte Carlo (MCMC) methods, and the newer sequential Monte Carlo (SMC) methods,
are both useful solutions to some of the associated computational problems, and variants of each have
been proposed as psychological models (e.g., Brown & Steyvers, 2005; Sanborn et al., 2006). While
both MCMC and SMC are equally appropriate analyses from a statistical viewpoint, it seems that
SMC methods such as particle filters have several advantages as models of human cognition. Firstly,
SMC algorithms place lighter and more plausible computational demands on the observer. SMC meth-
ods do not require the observer to keep a memory for a long chain of previous events. A related advan-
tage for SMC methods is their ease of application to online experiments—when observations arrive
sequentially, and a response is required after each observation. SMC methods are naturally designed
for such sequential paradigms, and employ quite simple incremental update algorithms between
observations. In contrast, many of the standard MCMC approaches require extensive re-calculation be-
tween each observation, making them computationally inefficient and untenable as psychological pro-
cess mechanisms.

A final advantage of SMC approaches to cognitive modeling is the ability to model both optimal and
sub-optimal behavior within the same framework. Standard Bayesian approaches to statistical infer-
ence based on MCMC naturally provide optimal performance, under the assumption of accurate
knowledge of the problem structure. When endowed with a large number of particles, the particle fil-
ter models provide the same optimality as the MCMC techniques, but they can also accommodate sub-
optimal behavior, when the number of particles is small. Both approaches allow investigation of inter-
esting questions of conditional optimality. That is, when behavior is observed to be sub-optimal, it is
interesting to ask what causes the decreased performance. Models such as ours make very specific
predictions. For example, our model makes the strong assertion that all the observer’s computations
are statistically optimal, with one exception—an incorrect assumption about the rate of changes in
hidden state of the system.

Animal research has shown that rats and pigeons, at least, are able to rapidly detect changes in
reinforcement schedules and then to adjust their behavior in an almost-optimal manner (e.g., Gallistel
et al., 2001). Such optimality is surprising and raises questions about the mechanisms that underlie
performance. Daw and Courville (2007) proposed that particle filters are a plausible mechanism for
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change detection in animals, and further suggest that particle filter models are able to capture individ-
ual participant behavior. Estes (1984) and Massey and Wu (2005) examined related paradigms with
human observers, as in our experiments. In both cases, participants were reactive to changes in envi-
ronmental parameters, but performed sub-optimally due to delays in detecting changes. Our research
extends this work in two important ways. Firstly, Massey and Wu used only one change in the obser-
vations for each block, whereas we allowed many. This difference is important, because participants
do not have to manage the complex tradeoff between detecting too many and too few changes—the
number of changes is already known. Secondly, we extend prior work through our particle filter anal-
yses, which allow us to address previously intractable questions. For example, in Experiment 1 we
were able to show that participants were reactive to second-order changes in the task environ-
ment—changes in the frequency of changes.

5. Conclusions

As in our prior work (Brown & Steyvers, 2005; Brown, Steyvers, & Hemmer, 2007), we have shown
that people manage a complex tradeoff between over- and under-reactivity when detecting changes in
random sequences, with implications for real-world decision making and process monitoring applica-
tions. Experiment 1 demonstrated that many participants were able to perform a change detection
and inference task in a conditionally optimal manner. In Experiment 2 we found that response accu-
racy decreased dramatically when participants were asked to make predictions about the future rather
than giving inferences about the past. The decreased accuracy was characterized by the introduction of
sequential dependencies in response sequences, with run length effects similar to those observed in
traditional Gambler’s Fallacy research. Nevertheless, the data were well described by the same condi-
tionally optimal model as before. These results suggest that well-known and robust phenomena such
as the Gambler’s Fallacy may be absent, or at least much reduced, if questions are phrased to avoid the
making of predictions.

Previously (Steyvers & Brown, 2005), we have modeled change detection processes using statisti-
cally optimal but psychologically implausible Bayesian inference algorithms. Here, we have shown
that a particle filter model can give a good account of all our data. The particle filter model can be
smoothly adjusted between very poor performance to statistically optimal performance. Many of
our participants operated as if they were conditionally optimal observers (with a large number of par-
ticles), using optimal operations applied to an incorrect idea about the frequency of changes in the
hidden state. The particle filter analyses also suggested a natural explanation for the difference in per-
formance between prediction and inference task.
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Appendix A

A.1. Particle filter based on direct simulation

Let U and u be the uniform and normal density functions, respectively. Suppose that there are K
hidden states, P particles, and that the observation on trial i, say yi is normal with standard deviation
r and mean lj, where j is the hidden state. The algorithm is initialized on trial i = 0 with particles
u0 = {u0,1,u0,2, . . . ,u0,P}, where each element is one of the integers 1, . . . ,K. Each particle also carries with
it an ‘‘age” initially set to zero: a0 = {a0,1,a0,2, . . . ,a0,P}, with a0,i = 0. Let r be a parameter governing the
expected rate of changes in the hidden state. Then on each trial i set a counter p = 0 and then repeat
the following:
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1. Sample z randomly from {ui,1,ui,2, ,. . . ,ui,P}.
2. Sample x1 % U[0,1]. If x1 < (1 ! e!rk), where k is the age of the sample particle (ai,p) then generate a

new particle by sampling z % {1,2, ,. . . ,K}/{z} and setting ai,p = 0. Otherwise, keep the old particle
(z = ui,p) and increment its age ai,p = ai,p + 1.

3. Sample x2 % U[0,1]. If [u(yi|lz,r) > x2] then p = p + 1 and ui,p = z.
4. If p = P stop, else return to 1.

This method of direct simulation mimics the data generation process, but creates an evolving set of
particles that approximates the desired posterior distribution.

Fig. A1 shows how these two parameters affect task accuracy (y-axis) and response variability (x-
axis, the proportion of trials on which the predicted response changes from the previous trial). Each of
the three lines shows model predictions for a different number of particles, P = 2, 6 and 150. As ex-
pected, increasing the number of particles leads to improved accuracy. Each line sweeps out a range
of values corresponding to different values of r in the range zero to one. A very small value of r rep-
resents the belief that the hidden state of the system does not change very often, so the â estimate
associated with each particle increases very slowly from zero towards one as the particle ages. This
leads to very few predicted changes in the model’s responses, giving points on the left hand side of
the graph. These points also have poor predicted accuracy, regardless of how many particles are used.
A small value of r causes decreased performance because it governs how new particles are generated
from old ones. Just as in the data, particles remain the same from trial to trial, except for a probability
â of changing to one of the other three locations. Similarly, a large estimate of r instantiates the belief
that the hidden state changes very rapidly, which causes the model to predict very large response var-
iability, which also causes poor accuracy.

Appendix B

B.1. Parameter estimation details

We explored two ways to calculate parameter estimates, both of which produced quite similar re-
sults. In the main text we report results only from the simpler method, which is both easier to com-
municate and more robust. The simpler method involved the comparison of critical summaries of the
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data with similar summaries calculated from model predictions. In Experiment 1, each subject’s data
was characterized by overall accuracy and by the proportion of response changes (separately for three
experimental conditions). We calculated these quantities also for predictions from the particle filter
model, for many different parameter settings. Then, the best-fitting parameters for a subject were cal-
culated by finding those parameters that produced the closest match between the predicted and ob-
served quantities. This has the effect of choosing those parameters that produced the closest match
between the observed and predicted positions in Fig. 4 (in the sense of Euclidean distances). We used
an analogous approach for Experiment 2, but we included two lots of data summaries for each partic-
ipant, corresponding to Figs. 7 and 8.

We also calculated parameter estimates using a more complicated method, similar to maximum-
likelihood estimation. Maximum-likelihood estimation using particle filters can be computationally
difficult (see, e.g., Cappé, Doucet, Lavielle, & Moulines, 1999). In particular, the probability of an ob-
served sequence of responses under a predicted sequence of responses is almost always zero, as there
is almost always at least one trial with a mismatch between observation and prediction. For all com-
binations of P and r parameter values in a fine grid on 1 6 P 6 1000 and 0 < r < 1, we generated a com-
plete set of responses for each of 200 pseudo-subjects. We then calculated the mean likelihood of the
human responses over all pseudo-subjects separately for each parameter vector, and chose those
parameter estimates that maximized the likelihood of the observed data separately for each partici-
pant. We solved the log-zero problem by setting the probability of each response equal to the fre-
quency of particles for that response, plus a smoothing amount (5%), and normalizing. We then
used a Luce choice rule (with unit temperature) to transform these frequencies to response
probabilities.

References

Adams, R. M. (1992). The ‘‘hot hand” revisited: Successful basketball shooting as a function of intershot interval. Perceptual and
Motor Skills, 74, 934.

Albright, S. C. (1993). A statistical analysis of hitting streaks in baseball. Journal of the American Statistical Association, 88,
1175–1183.

Berg, E. A. (1948). A simple objective technique for measuring flexibility in thinking. Journal of General Psychology, 39, 15–22.
Brown, S. D., & Steyvers, M. (2005). The dynamics of experimentally induced criterion shifts. Journal of Experimental Psychology:

Learning, Memory and Cognition, 31, 587–599.
Brown, S. D., Steyvers, M., & Hemmer, P. (2007). Modeling experimentally induced strategy shifts. Psychological Science, 20(1),

40–46.
Burns, B. D., & Corpus, B. (2004). Randomness and inductions from streaks: Gambler’s Fallacy” versus ‘‘hot hand”. Psychonomic

Bulletin & Review, 11, 179–184.
Cappé, O., Doucet, A., Lavielle, M., & Moulines, E. (1999). Simulation-based methods for blind maximum-likelihood filter

identification. Signal Processing, 73(1–2), 3–25.
Chatterjee, S., Yilmaz, M. R., Habibullah, M., & Laudato, M. (2000). An approximate entropy test for randomness. Communications

in Statistics: Theory and Methods, 29(3), 655–675.
Chinnis, J. O., & Peterson, C. R. (1968). Inference about a nonstationary process. Journal of Experimental Psychology, 77, 620–625.
Chinnis, J. O., & Peterson, C. R. (1970). Nonstationary processes and conservative interference. Journal of Experimental Psychology,

84, 248–251.
Daw, N. D., & Courville, A. C. (2007). The rat as particle filter. Advances in Neural Information Processing, 20, 369–376.
Doucet, A., de Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo methods in practice. New York: Springer.
Doucet, A., Andrieu, C., & Godsill, S. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and

Computing, 10(3), 197–208.
Estes, W. K. (1984). Global and local control of choice behavior by cyclically varying outcome probabilities. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 10(2), 258–270.
Farrell, S., Wagenmakers, E.-J., & Ratcliff, R. (2006). 1/f noise in human cognition: Is it ubiquitous, and what does it mean?

Psychonomic Bulletin & Review, 13, 737–741.
Gallistel, C. R., Mark, T., King, A., & Latham, P. E. (2001). The rat approximates an ideal detector of changes in rates of reward:

Implications for the law of effect. Journal of Experimental Psychology: Animal Behavior Processes, 27, 354–372.
Gilden, D. L. (2001). Cognitive emissions of 1/f noise. Psychological Review, 108, 33–56.
Gilovich, T., Vallone, R., & Tversky, A. (1985). The hot hand in basketball: On the misperception of random sequences. Cognitive

Psychology, 17, 295–314.
Hürzeler, M., & Künsch, H. R. (2001). Approximating and maximizing the likelihood for a general state-space model. In A. Doucet

& N. De Freitas (Eds.), Sequential Monte Carlo methods in practice. New York: Springer.
Jones, J., & Pashler, H. (2007). Is the mind inherently forward-looking? Comparing prediction and retrodiction. Psychonomic

Bulletin & Review, 14, 295–300.
Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological Review, 80, 237–251.
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 263–291.

66 S.D. Brown, M. Steyvers / Cognitive Psychology 58 (2009) 49–67



Author's personal copy

Kahneman, D., & Tversky, A. (1982). The simulation heuristic. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under
uncertainty: Heuristics and biases (pp. 201–208). New York: Cambridge University Press.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.
Larkey, P. D., Smith, R. A., & Kadane, J. B. (1989). It’s okay to believe in the hot hand. Chance, 2(4), 22–30.
Massey, C., & Wu, G. (2005). Detecting regime shifts: The causes of under- and overreaction. Management Science, 51(6),

932–947.
Pitt, M. K., & Shepard, N. (1999). Filtering via simulation: Auxiliary particle filters. Journal of the American Statistical Association,

94(446), 590–599.
Robinson, G. H. (1964). Continuous estimation of a time-varying probability. Ergonomics, 7, 7–21.
Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2006). A more rational model of categorization. In Proceedings of the 28th annual

conference of the cognitive science society.
Sundali, J. J., & Croson, R. (2006). Biases in casino betting: The hot hand and the gambler’s Fallacy. Judgment and Decision Making,

1, 1–12.
Steyvers, M., & Brown, S. D. (2005). Prediction and change detection. Advances in Neural Information Processing Systems, 18,

1281–1288.
Thornton, T. L., & Gilden, D. L. (2005). Provenance of correlations in psychological data. Psychonomic Bulletin & Review, 12,

409–441.
Van Orden, G. C., Holden, J. G., & Turvey, M. T. (2003). Self-organization of cognitive performance. Journal of Experimental

Psychology: General, 132, 331–350.
Van Orden, G. C., Holden, J. G., & Turvey, M. T. (2005). Human cognition and 1/f scaling. Journal of Experimental Psychology:

General, 134, 117–123.
Wagenmakers, E.-J., Farrell, S., & Ratcliff, R. (2004). Estimation and interpretation of 1/fa noise in human cognition. Psychonomic

Bulletin & Review, 11, 579–615.
Wagenmakers, E.-J., Farrell, S., & Ratcliff, R. (2005). Human cognition and a pile of sand: A discussion on serial correlations and

self-organized criticality. Journal of Experimental Psychology: General, 134, 108–116.

S.D. Brown, M. Steyvers / Cognitive Psychology 58 (2009) 49–67 67


