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Abstract

Statistical topic models provide a general data-driven framework for automated discovery of

high-level knowledge from large collections of text documents. Although topic models can poten-

tially discover a broad range of themes in a data set, the interpretability of the learned topics is not

always ideal. Human-defined concepts, however, tend to be semantically richer due to careful selec-

tion of words that define the concepts, but they may not span the themes in a data set exhaustively. In

this study, we review a new probabilistic framework for combining a hierarchy of human-defined

semantic concepts with a statistical topic model to seek the best of both worlds. Results indicate that

this combination leads to systematic improvements in generalization performance as well as enabling

new techniques for inferring and visualizing the content of a document.

Keywords: Topic model; Concept-topic model; Hierarchical concept-topic model; Concepts; Back-

ground knowledge; Human-defined knowledge; Data-driven learning; Bayesian models

1. Introduction

Many recent computational approaches to semantic cognition and statistical natural lan-

guage processing operate on a purely data-driven basis. These models can extract useful

information merely on the basis of statistical information contained in large text collections.

From a machine-learning perspective, such models are attractive because they allow for a

rapid analysis and understanding of new collections of text without significant human cod-

ing or annotation effort (e.g., Newman, Chemudugunta, Smyth, & Steyvers, 2006). From a

cognitive science perspective, these models are attractive because they show that many find-

ings related to semantic cognition can be explained by simple statistical learning processes.
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Such learning processes can account for many empirical findings in areas such as language

acquisition (Newport & Aslin, 2004; Newport, Hauser, Spaepen, & Aslin, 2004), multi-

modal language learning (Yu, Ballard, & Aslin, 2005), object perception (Fiser & Aslin,

2005), and eye movements (Najemnik & Geisler, 2005).

In this research, we start with the assumption that much of our semantic representations

can be acquired from experience in the form of large text collections, given appropriate

statistical learning machinery. However, we also assume that building in some structure and

prior knowledge might be required to create suitable representations. It has been shown

recently how data-driven learning approaches can be combined with structured representa-

tions such as hierarchies, graphs, trees, and rules to create powerful new learning models

(Chater & Manning, 2006; Kemp & Tenenbaum, 2008). In our research, we show how

structured background knowledge and statistical learning processes can be combined. The

combination of prior knowledge and novel information gained from experience raises two

broad theoretical questions. First, how can prior knowledge facilitate the acquisition of new

knowledge? We will investigate the circumstances under which prior knowledge can signifi-

cantly help in learning semantic representations. Second, how can new knowledge be used

to make changes in our background knowledge? We will demonstrate how corpus-driven

learning processes can be used to identify gaps in an existing semantic representation.

1.1. Data-driven learning approaches

There are a variety of unsupervised approaches for extracting semantic representations

from large text collections that do not rely on background knowledge. In the context of a

general ‘‘bag-of-words’’ framework, each document is represented by a vector that contains

counts of the number of times each term (i.e., word or word combination) appears in the

document. One general approach is to apply dimensionality reduction algorithms to repre-

sent the high-dimensional term vectors in a low-dimensional space. The dimensionality

reduction can involve nonlinear projection methods such as self-organizing maps (Kohonen

et al., 2000; Lagus, Honkela, Kaski, & Kohonen, 1999) or linear projection methods such as

latent semantic analysis (LSA; Landauer & Dumais, 1997; Landauer, Foltz, & Laham,

1998). As a result of the dimensionality reduction, neighboring points in the semantic space

often represent words or documents with similar contextual usages or meaning. These repre-

sentations have been shown to model human knowledge in a variety of cognitive tasks

(Landauer & Dumais, 1997) and educational assessment applications (Foltz, Gilliam, &

Kendall, 2000). Other recent models in cognitive science have focused on alternative

unsupervised methods to extract semantic representations at the sentence or document level

(e.g., Dennis, 2004; Jones & Mewhort, 2007).

In a probabilistic framework, a variety of clustering techniques have been developed

that characterize each document by a single latent cluster or topic (e.g., Cutting, Karger,

Pedersen, & Tukey, 1992; McCallum, Nigam, & Ungar, 2000; Popescul, Ungar, Flake,

Lawrence, & Giles, 2000). Through unsupervised learning, these clusters can be learned

automatically and give broad information about the content of documents. The drawback of

the one-to-one mapping between documents and clusters is that documents that cover a
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diverse set of topics can only be represented by a single cluster leading to problems in inter-

pretation (e.g., Newman et al., 2006).

A more flexible unsupervised framework, known as statistical topic modeling, allows

each document to be represented by multiple topics (Blei, Ng, & Jordan, 2003; Buntine &

Jakulin, 2004; Griffiths & Steyvers, 2004; Griffiths, Steyvers, & Tenenbaum, 2007;

Hofmann, 1999; Steyvers & Griffiths, 2007). The basic concept underlying topic modeling

is that each document is composed of a probability distribution over topics, where each topic

represents a probability distribution over words. The topic–document and topic–word distri-

butions are learned automatically from the data and provide information about the semantic

themes covered in each document and the words associated with each semantic theme. The

underlying statistical framework of topic modeling enables a variety of interesting exten-

sions to be developed in a systematic manner, such as author-topic models (Steyvers,

Smyth, Rosen-Zvi, & Griffiths, 2004), correlated topics (Blei & Lafferty, 2006), hierarchical

topic models (Blei, Griffiths, Jordan, & Tenenbaum, 2003; Li, Blei, & McCallum, 2007;

Teh, Jordan, Beal, & Blei, 2006), time-dependent topics (Wang, Blei, & Heckerman, 2008)

and models that combine topics and syntax (Griffiths, Steyvers, Blei, & Tenenbaum, 2005),

as well as image features and text (Blei & Jordan, 2003). Topic models have also been use-

ful as cognitive models to explain human associations, gist extraction, and memory errors

(Griffiths et al., 2007).

One of the drawbacks of a purely data-driven learning process, such as topic modeling, is

that the resulting representations can require some effort to interpret. As an illustrative

example of the information learned by topic models, Fig. 1 (top row) shows five examples

of topics that were derived from the TASA corpus, a collection of over 37,000 text passages

from educational materials (e.g., language and arts, social studies, health, sciences) collected

by Touchstone Applied Science Associates (TASA; see Landauer et al., 1998). The figure

shows the 15 words that have the highest probability under each topic. Each number corre-

sponds to the probability that a word is generated conditioned on a learned topic. It is often

easier to interpret topics relative to other representations such as document clusters in clus-

ter models or latent dimensions in latent semantic analysis (e.g., Newman et al., 2006). The

words in the topics in the top row of Fig. 1 appear to relate to colors, gases, and the atmo-

sphere, American presidents, European countries in World War II, and Japan and World

War II, respectively. However, because topics are defined by probability distributions over

words and have no simple names or definitions that can explain their content, an interpreta-

tion of the content of a topic often requires a subjective analysis of the connections between

the high-probability words in a topic. This subjective process can lead to different outcomes

depending on which individual is doing the analysis. Some progress has been made to auto-

mate the labeling of topics (Mei, Shen, & Zhai, 2007), but it remains to be seen how easily

accessible such statistical representations are to human users.

Even with these techniques, topic interpretability remains an issue when faced with small

noisy data sets. Data-driven learning models require large amounts of data in order to obtain

accurate and useful representations, and such data might not always be available. In addi-

tion, because the model tunes itself to the dominant semantic themes in a corpus, it might

not accurately represent outlier documents. Although such models might be able to tell that
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a document falls outside the scope of representative semantic themes, it is difficult to iden-

tify the content that is covered by such documents. Therefore, in the absence of a large

repository of relevant background documents to build topic models, it can be difficult to get

interpretable and effective representations.

1.2. Human-defined semantic representations

An entirely different approach to constructing semantic representations is to rely on

human knowledge and judgment. Considerable effort has gone into developing human-

defined knowledge databases that characterize commonsense and lexical knowledge in

humans. Such knowledge is created by trained experts in projects such as Cyc (Lenat &

Guha, 1989; Panton et al., 2006), WordNet (Fellbaum, 1998; Miller, 1990), and Roget’s the-

saurus (Roget, 1911) or by untrained volunteers in projects such as ConceptNet (Havasi,

Speer, & Alonso, 2007). Similarly, in cognitive science, many behavioral experiments have

elicited detailed knowledge from many college students about semantic associations

(Nelson, McEvoy, & Schreiber, 1998) and concepts and features (McRae, Cree, Seidenberg,

& McNorgan, 2005; Ruts et al., 2004). Such human-defined representations can serve as

proxies for mental representations.

word prob. word prob. word prob. word prob. word prob.
red 0.202 oxygen 0.136 president 0.129 france 0.071 war 0.201

blue 0.099 carbon 0.097 roosevelt 0.032 french 0.069 japanese 0.035
green 0.096 dioxide 0.050 congress 0.030 europe 0.051 japan 0.035
yellow 0.073 air 0.046 johnson 0.026 germany 0.043 II 0.035
white 0.048 ramona 0.037 office 0.021 german 0.041 american 0.030
color 0.048 gas 0.036 wilson 0.021 countries 0.030 peace 0.029

bright 0.030 nitrogen 0.030 nixon 0.020 britain 0.024 civil 0.019
colors 0.029 gases 0.026 reagan 0.018 italy 0.019 end 0.016

orange 0.027 atmosphere 0.020 kennedy 0.018 western 0.019 wars 0.014
brown 0.027 hydrogen 0.020 carter 0.017 european 0.019 treaty 0.013

pink 0.017 water 0.016 presidents 0.012 british 0.016 fought 0.012
look 0.017 respiraion 0.014 administration 0.012 war 0.015 fighting 0.012

black 0.016 process 0.014 presidential 0.011 germans 0.013 military 0.012
purple 0.015 beezus 0.012 white 0.011 country 0.012 ended 0.011
cross 0.011 breathe 0.011 budget 0.010 nations 0.012 forces 0.011

COUNTRY NAMESCHEMICAL ELEMENTS

russia
italy

alaska
australia

crusade
warlike
warring

peacetime

india
spain

canada
japan

germany
egyptregent

dynastic
gubernatorial

vp
mp

america
england
france
china

mexicopresidency
dynasty

sovereign
chancellor
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governorshipsodium
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aluminum
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calcium
uranium
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greenish
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tactics
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red
green
blue
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orange
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campaign
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warfare
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LEADERS OF NATIONAL AND 
REGIONAL GOVERNMENTS

war
WAR

peace

mercury
nitrogen

president
governor

presidential
ruler

Fig. 1. Examples of five topics (out of 300) extracted from the TASA corpus (top row). The closest correspond-

ing concepts from the CALD knowledge base (bottom row). The most likely words in each topic along with the

matching word in the concept are highlighted. The column ‘‘prob’’ for each topic refers to the probability of

each word in that topic.
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To highlight the difference between learned topics and human-defined knowledge, we

will show some examples of human-defined concepts that were created by lexicographers as

part of the Cambridge Advanced Learner’s Dictionary (CALD). In contrast to other taxono-

mies such as WordNet (Fellbaum, 1998; Miller, 1995), CALD groups words primarily

according to semantic topics with the topics hierarchically organized. In addition, CALD

provides names for each concept that are helpful for visualization purposes. CALD consists

of 2,183 semantic concepts with each concept consisting of a set of words and a name that

describes the concept. Fig. 1 (bottom row) shows an example of CALD concepts that resem-

ble the meaning of the learned topics in the top row of Fig. 1. Each concept is illustrated

with the name of the concept (shown on top) and a subset of 15 words that are part of the

concept. Apart from alphabetical order, there is no natural way to order words within a con-

cept. To better summarize the sometimes large number of words in each concept, we

ordered the words by word frequency in the TASA corpus.

A comparison between learned topics and human-defined CALD concepts in Fig. 1

reveals some interesting differences: The words in each topic are associated with probabili-

ties that indicate how likely each word is to be found in a context of that topic, which is

quite useful to get a fine-grained indication about the relevance of a word to a topic. In con-

trast, CALD concepts do not provide any information about the prominence, frequency, or

representativeness of the words in each concept—either a word is present or it is absent in a

concept.

A clear advantage of concepts is that they are often more interpretable than learned topics

by virtue of having a name (or small number of words) that describes the concept, providing

concepts more precise coverage compared to topics. For example, the first topic on colors

includes words that are not color words (e.g., bright and look), whereas a color concept will

restrict itself to just color words. Concepts can also have broader coverage relative to topics

because all words are considered as candidates and not just words occurring in a particular

corpus. For example, the concept on chemical elements lists all chemical elements (as

known by the lexicographer), whereas a learned topic might focus more on the high-fre-

quency chemical elements. Also, a learned topic could omit certain elements altogether

because they did not occur in the corpus.

Although there are many advantages of human-defined knowledge databases, a major

drawback is that they require extensive manual involvement and are time consuming to

build and update given new emerging information. For some applications such as analyzing

and summarizing text collections, no suitable knowledge database might even be available

that has a suitable coverage of the domain. In contrast, data-driven topics can be tuned to

themes in a corpus and can easily discover and summarize the dominant semantic themes

for a wide variety of text collections.

1.3. Combining human-defined knowledge and data-driven learning approaches

Clearly, representations based on either a purely data-driven approach or human-defined

knowledge have limitations. In this article, we will review some of our recent work that

combines human-defined concepts with statistical data-driven approaches to learning
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semantic representations (Chemudugunta, Holloway, Smyth, & Steyvers, 2008; Chem-

udugunta, Smyth, & Steyvers, 2008a, 2008b). The objective is to combine these approaches

with the goal of taking advantage of the best features of both approaches. When there

are few documents to learn from, these hybrid models are primarily driven by human-

defined concepts. When trained on large document collections, data-driven topics can fill in

gaps in the human-defined concepts. From a machine-learning perspective, automatically

identifying such gaps can lead to a variety of useful applications where we update existing

representations without requiring extensive human effort in discovering new emerging

themes. From a cognitive science perspective, the hybrid model leads to novel ways of think-

ing about semantic representations. Instead of assuming that such representations are purely

the result of data-driven learning processes, they might be a combination of preexisting

knowledge and new knowledge extracted from a collection of text. We make no theoretical

claims about the source of the prior knowledge. Although it is likely that such prior knowl-

edge is itself acquired by experience, we do not attempt to explain how this is learned from

experience.

The plan for the rest of the study is as follows. In Section 2, we review the basic princi-

ples of topic models and then describe the concept–topic model that combines concepts and

topics into a single probabilistic model. We also describe the hierarchical concept–topic

model which takes advantage of known hierarchical structure among concepts. Section 3

describes the text corpus and concept data set that we used to conduct our experiments.

Section 4 describes a series of experiments that evaluate the predictive performance of a

number of different models, showing for example that prior knowledge of concept words

and concept relations can lead to better topic-based language models. In Section 5, we

discuss a number of examples that illustrate how documents can be tagged at the word level

with human-defined concepts. In Section 6, we discuss the type of information that is

learned by topics but not captured by concepts. In Section 7, we show how the concept–

topic model can automatically find appropriate concepts for novel words. In the final

sections, we conclude the study with a brief discussion of related research, future directions,

and final comments.

2. Concept–topic models

A clear advantage of an unsupervised learning approach such as topic modeling is that

the model can be tuned to the themes of the particular document collection it is trained on.

In addition, the probabilistic model that underlies the topic model allows one to automati-

cally tag each word in a document with the topic most likely to have generated it. On the

contrary, human-defined concepts such as the CALD knowledge base have much broader

coverage of English words and include useful names of concepts that clarify the set of words

that could be included in the concept, and aid in interpretability.

In this section, we will describe concept–topic and hierarchical concept–topic models that

combine data-driven topics and human-defined concepts (Chemudugunta et al., 2008b,

2008c). We begin with a brief review of topic models.
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2.1. Topic model

The topic model (or latent Dirichlet allocation [LDA] model; Blei et al., 2003) is a statis-

tical learning technique for extracting a set of topics that describe a collection of documents.

A topic t is represented by a multinomial distribution over the V unique word types in the

corpus, /ðtÞ ¼ ½uðtÞ1 ; :::;u
ðtÞ
V �, where uðtÞw ¼ pðwjtÞ and 1 £ w £ V. Therefore, a topic can be

viewed as a V-sided die and generating n word tokens from a topic is akin to throwing the

topic-specific die n times. There are a total of T topics and a document d is represented as a

multinomial distribution over those T topics, hðdÞ ¼ ½hðdÞ1 ; :::; hðdÞT �, where hðdÞt ¼ pðtjdÞ and

1 £ t £ T. The variables u and h indicate which words are important for which topic and

which topics are important for a particular document, respectively.

Generating a word token for a document d involves first selecting a topic t from the docu-

ment–topic distribution h(d) and then selecting a word from the corresponding topic distribu-

tion u (t). This process is repeated for each word token in the document. Let z be the random

variable that represents the topic indices sampled from h(d). We write p(zi = t|d) as the prob-

ability that the tth topic was sampled for the ith word token (in document d) and p(wi|zi = t)
as the probability of word wi under topic t. The model specifies the following conditional

probability of the ith word token in a document:

pðwijdÞ ¼
XT
t¼1

pðwijzi ¼ tÞpðzi ¼ tjdÞ ð1Þ

In the LDA model, Dirichlet priors are placed on both u and h, to smooth the word–topic

and topic–document distributions (for a description of Dirichlet priors, see Steyvers &

Griffiths, 2007; Gelman, Carlin, Stern, & Rubin, 2003). In many applications, a symmetric

Dirichlet density with single hyperparameters a and b are used for h and u, respectively.

For all the topic models in this research, we will use a symmetric Dirichlet prior for u using

a single hyperparameter b. For the topic–document distributions h, we will use an asymmet-

ric Dirichlet prior h, with a vector a containing hyperparameter values for every topic (and

concept for concept–topic models). An asymmetric prior is useful when some concepts (or

topics) are expressed in many or just a few documents across the collection. With an asym-

metric prior, more skewed marginal distributions over h can be obtained to express rare or

frequent topics (or concepts).

The sequential process of first picking a topic from a topic distribution, and then picking

a word token from a distribution over word types associated with that topic can be formal-

ized as follows:

1. For each topic t 2 1; :::;Tf g, select a word distribution /ðtÞ � Dirichlet bð Þ
2. For each document d 2 1; :::;Df g

(a) Select a distribution over topics hðdÞ � Dirichlet að Þ
(b) For each word position i in document d

(i) Select a topic zi � Discrete hðdÞ
� �

(ii) Generate a word token from topic zi, wi � Discrete /ðziÞ
� �
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This generative process can be summarized by the graphical model shown in Fig. 2A. In

the graphical notation, shaded and unshaded variables indicate observed and latent (i.e.,

unobserved) variables, respectively, and the arrows indicate the conditional dependencies

between variables. The plates (the boxes in the figure) refer to repetitions of sampling steps

with the variable in the right corner referring to the number of samples. For example, the

inner plate over z and w illustrates the repeated sampling of topics and words until Nd word

tokens have been generated for document d. The plate surrounding h illustrates the sampling

of a distribution over topics for each document d for a total of D documents. The plate sur-

rounding u illustrates the repeated sampling of distributions over word types for each topic

until T topics have been generated.

Given the words in a corpus, the inference problem involves estimating the word–topic

distributions u, the topic–document distributions h, and the topic assignments z of

individual words to topics. These distributions can be learned in a completely unsupervised
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Fig. 2. Graphical models for the topic model (A), the concept–topic model (B), and the hierarchical concept–

topic model (C).
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manner without any prior knowledge about topics or which topics are covered by which

documents. One efficient technique for obtaining estimates of these distributions is through

collapsed Gibbs sampling (Griffiths & Steyvers, 2004). Steyvers and Griffiths (2007) pres-

ent a tutorial introduction to topic models that discusses collapsed Gibbs sampling. The

main idea of collapsed Gibbs sampling is that inference is performed only on z, the assign-

ments of word tokens to topics. The remaining latent variables h and u are integrated out

(‘‘collapsed’’). Words are initially assigned randomly to topics and the algorithm then

iterates through each word in the corpus and samples a topic assignment given the topic

assignments of all other words in the corpus. This process is repeated until a steady state is

reached and the topic assignments are then used to estimate the word–topic and topic–

document distributions. The vector a that contains the hyperparameter values for every topic

(and concept for concept–topic models, see below) is updated using a process involving

fixed-point update equations (Minka, 2000; Wallach, 2006). See Appendix A of Chem-

udugunta et al. (2008b) for more details.

To summarize, the topic model provides several pieces of information that are useful for

understanding documents. The topic–document distributions indicate the important topics in

each document. The word–topic distributions indicate which words are important for which

topic (e.g., the top row of Fig. 1 shows some example word–topic distributions estimated

for the TASA corpus). Finally, the probabilistic assignments zi of word tokens to topics are

useful for tagging purposes, providing information about the role each word is playing in a

specific document context and helping to disambiguate multiple meanings of a word (e.g.,

Griffiths et al., 2007).

2.2. Concept–topic model

The concept–topic model is a simple extension to the topic model where we add C con-

cepts to the T topics of the topic model resulting in an effective set of T + C word distribu-

tions for each document. We assume that each of the C concepts (such as the CALD

concepts in Fig. 1) are represented as a set of words. Therefore, these human-defined con-

cepts only give us a membership function over words—either a word is a member of the

concept or it is not. One straightforward way to incorporate concepts into the topic modeling

framework is to convert them to probability distributions over their associated word sets. In

the concept–topic model, we will treat each concept c as a multinomial distribution

wðcÞ ¼ ½wðcÞ1 ; :::;w
ðcÞ
V �, where wðcÞw ¼ pðwjcÞ and 1 £ w £ V. Importantly, each word type that

is not part of the concept will have zero probability, that is, wðcÞw = 0 for w =2 c. Of course,

there are no direct observations available about the probabilities of word types within a con-

cept, but we can use a model similar to the topic model to estimate these probabilities from

corpus data. Therefore, the concept–topic model is simply an extension of the topic model

where we have a number of learned topics as well as constrained topics where nonzero prob-

ability can only be given to words in human-defined concepts.

In the concept–topic model, the conditional probability of the ith word token wi in a

document d is
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pðwijdÞ ¼
XT
t¼1

pðwijzi ¼ tÞpðzi ¼ tjdÞþ
XCþT
t¼Tþ1

pðwijzi ¼ tÞpðzi ¼ tjdÞ; ð2Þ

where the indices 1 £ t £ T refer to all topics and indices T + 1 £ t £ T + C refer to all con-

cepts. In this generative process, an index zi is sampled from the distribution over topics and

concepts for the particular document. If zi £ T, a word token is sampled from topic zi, and if

T + 1 £ zi £ T + C, a word token is sampled from concept zi ) T among word types associ-

ated with the concept. The topic model can be viewed as a special case of the concept–topic

model when there are no concepts present, that is, when C = 0. At the other extreme of this

model where T = 0, the model relies entirely on predefined concepts.

To specify the complete generative model, let /ðtÞ ¼ ½uðtÞ1 ; :::;u
ðtÞ
V �, where uðtÞw ¼ pðwjtÞ

and 1 £ w £ V, refer to the multinomial distribution over word types for topic t when

1 £ t £ T, and let WðcÞ ¼ ½wðcÞ1 ; :::;w
ðcÞ
V �, where wðcÞw ¼ pðwjcÞ and 1 £ w £ V refer to the

multinomial distribution over word types for concept c = t–T when T + 1 £ t £ T + C. As

with the topic model, we place Dirichlet priors on the multinomial variables h, u, and w,

with corresponding hyperparameters a, b/, and bw.

The complete generative process can be described as follows:

1. For each topic t 2 1; :::;Tf g, select a word distribution /ðtÞ � Dirichlet b/

� �
2. For each concept c 2 1; :::;Cf g, select a word distribution wðcÞ � Dirichlet bw

� �
3. For each document d 2 1; :::;Df g

(a) Select a distribution over topics and concepts hðdÞ � Dirichlet að Þ
(b) For each word position i in document d

(i) Select a component zi � Discrete hðdÞ
� �

(ii) If zi £ T, generate a word token from topic zi, wi � Discrete /ðziÞ
� �

; other-

wise, generate a word token from concept ci = zi - T, wi � Discrete wðciÞ
� �

Note that in Step 2, the sampling of words for a concept is constrained to only the words

that are members of the human-defined concept. Fig. 2B shows the corresponding graphical

model. All the latent variables in the model can be inferred through collapsed Gibbs sam-

pling in a similar manner to the topic model (see Chemudugunta et al., 2008b for details).

We note that even though we are partially relying on humans to define the word–concept

memberships, we still apply purely unsupervised algorithms to estimate the latent variables

in the model. This is in contrast to a supervised learning approach where the human-defined

knowledge is used as a target for prediction. Here, the human-defined knowledge is only

used as a constraint on the probability distributions that can be learned for each concept.

We also note that the concept–topic model is not the only way to incorporate semantic

concepts. For example, we could use the concept–word associations to build informative

priors for the topic model and then allow the inference algorithm to learn word probabilities

for all words (for each concept), given the prior and the data. We chose the restricted vocab-

ulary approach to exploit the sparsity in the concept–word associations (topics are distribu-

tions over all the words in the vocabulary but concepts are restricted to just their sets of

associated words, which are much smaller than the full vocabulary). This sparsity at the
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word level allows us to easily perform inference with tens of thousands of concepts on large

document collections.

A general motivation for the concept–topic approach is that there might be topics present

in a corpus that are not represented in the concept set (but that can be learned). Similarly,

there may be concepts that are either missing from the text corpus or are rare enough that

they are not found in the data-driven topics of the topic model. The marriage of concepts

and topics provides a simple way to augment concepts with topics and has the flexibility to

mix and match topics and concepts to describe a document.

2.3. Hierarchical concept–topic model

Although the concept–topic model provides a simple way to combine concepts and top-

ics, it does not take into account any hierarchical structure the concepts might have. For

example, CALD concepts are arranged in a hierarchy that starts with the concept everything

which splits into 17 concepts at the second level (e.g., science, society, general ⁄ abstract,

communication). The hierarchy has up to seven levels with each level specifying more

specific concepts.

In this section, we describe a hierarchical concept–topic model that incorporates hierar-

chical structure of a concept set. Similar to the concept–topic model described in the previ-

ous section, there are T topics and C concepts. However, as opposed to the flat organization

of the concepts in the concept–topic model, we now utilize the hierarchical organization of

concepts when sampling words from concepts. Before we formally describe the model, we

illustrate the basic idea in Fig. 3. Each topic and concept is associated with a ‘‘bag of

words’’ that represents a multinomial distribution over word types. In the generative pro-

cess, word tokens can be generated from the concept part of the model by sampling a path

from the root of the concept tree to some distribution over word types associated with the

concept (left box in Fig. 3). Alternatively, word tokens can be generated through the topic

part of the model (right box). The dashed and dotted lines show examples of two word

tokens sampled through the hierarchical concept part of the model and the topic part of the

model, respectively. For the first word token, the option ‘‘topic’’ is sampled at the root node,

Topic 1 is then sampled, and then a word token is sampled from the multinomial over words

associated with Topic 1. For the second word token, the option ‘‘concept’’ is sampled at the

root node, then the option science is sampled as a child of the concept everything, the word

distribution for science is then selected, and a word from this distribution is sampled. Each

transition in the hierarchical part of the model has an associated probability and the transi-

tion probabilities are document dependent—some paths are more likely in context of some

documents. For example, in physics and chemistry documents, one might expect all transi-

tions toward the science concept to be elevated but differentiated between the transitions

toward the physics and chemistry concepts.

To preview what information is learned by the model, we need to distinguish between

variables learned at the word, document, and corpus levels. At the word level, the model

learns the assignments of topics or concepts to word tokens. These assignments can be

directly used for tagging purposes and word–sense disambiguation. At the document level,
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the model learns both topic probabilities and concept–transition probabilities in the concept

tree. The latter information is useful because it allows a hierarchical representation of

document content. At the document level, the model also learns the switch probability that a

word is generated through the topic or concept route. The adaptive nature of the switch

probability allows the model to flexibly adapt to different documents. Documents that

contain material that has poor concept coverage will have a high probability of switching to

the topic route. At the corpus level, the model learns the probabilities of the word–topic and

word–concept distributions. The word–topic distributions are useful to learn which semantic

themes beyond those covered in the concepts are needed to explain the content of the whole

document collections. The word–concept distributions are useful to learn which words are

important for each concept. Finally, at the corpus level, the model also learns the hyperpa-

rameters for each transition in the concept tree. The learned hyperparameters allow the

model to make certain paths more prominent across all documents. For example, if a docu-

ment collection includes many documents on science, the path toward the science concept

could be made more likely (a priori).

Our approach is related to the hierarchical pachinko allocation model 2 (HPAM 2) as

described by Mimno, Li, and McCallum (2007). In the HPAM 2 model, topics are arranged

EVERYTHING

SCIENCE SOCIETY

PHYSICS CHEMISTRY

Concept or topic?

TOPIC 1 TOPIC 2

Fig. 3. An illustration of the hierarchical concept–topic model.
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in a three-level hierarchy with root, super-topics, and subtopics at Levels 1, 2, and 3, respec-

tively, and words are generated by traversing the topic hierarchy and exiting at a specific

level and node. In our model, we use a similar mechanism for word generation via the con-

cept route. There is additional machinery in our model to incorporate the data-driven topics

(in addition to the hierarchy of concepts) and a switching mechanism to choose the word

generation process via the concept route or the topic route.

To give a formal description of model, for each document d, we introduce a ‘‘switch’’

distribution p(x|d) that determines if a word should be generated via the topic route or the

concept route. Every word token wi in the corpus is associated with a binary switch variable

xi. If xi = 0, the previously described standard topic mechanism is used to generate the word.

That is, we first select a topic t from a document-specific mixture of topics h(d) and generate

a word token from the word distribution associated with topic t. If xi = 1, we generate the

word token from one of the C concepts in the concept tree. To do that, we associate with

each concept node c in the concept tree a document-specific multinomial distribution with

dimensionality equal to Nc + 1, where Nc is the number of children of the concept node c.

This distribution allows us to traverse the concept tree and exit at any of the C nodes in the

tree—given that we are at a concept node c, there are Nc child concepts to choose from and

an additional option to choose an ‘‘exit’’ child to exit the concept tree at concept node c.

We start our walk through the concept tree at the root node and select a child node from one

of its children. We repeat this process until we reach an exit node and a word token is gener-

ated from the parent of the exit node. Note that for a concept tree with C nodes, there are

exactly C distinct ways to select a path and exit the tree, as there is only one parent for each

concept node, and thus, one path to each of the C concepts.

In the hierarchical concept–topic model, a document is represented as a weighted combi-

nation of mixtures of T topics and C paths through the concept tree and the conditional prob-

ability of the ith word token in document d is given by

pðwijdÞ ¼ pðxi ¼ 0jdÞ
XT
t¼1

pðwijzi ¼ tÞpðzi ¼ tjdÞ

þ pðxi ¼ 1jdÞ
XTþC

c¼Tþ1
pðwijzi ¼ cÞ pðexitjc; dÞpðcjparentðcÞ; dÞ� � �pðrootjdÞ½ �

ð3Þ

The sequential process to generate a document collection with D documents under the

hierarchical concept–topic model is as follows:

1. For each topic t 2 1; :::;Tf g, select a word distribution /ðtÞ � Dirichlet b/

� �
2. For each concept c 2 1; :::;Cf g, select a word distribution wðcÞ � Dirichlet bw

� �
3. For each document d 2 1; :::;Df g

(a) Select a switch distribution nðdÞ � Beta cð Þ
(b) Select a distribution over topics hðdÞ � Dirichlet að Þ
(c) For each concept c 2 1; :::;Cf g

i. Select a distribution over children of c, fðcdÞ � Dirichlet sðcÞ
� �
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(d) For each word position i in document d
(i) Select a binary switch xi � Bernoulli nðdÞ

� �
(ii) If xi = 0

(A) Select a topic zi � Discrete hðdÞ
� �

(B) Generate a word from topic zi, wi � Discrete /ðziÞ
� �

(iii) Otherwise, create a path starting at the root concept node, k1 ¼ 1
(A) Select a child node kj; kjþ1 � DiscreteðfðkjdÞÞ, and increment j. Repeat

until kjþ1is an exit node

(B) Generate a word from concept ci ¼ kj, wi � Discrete wðciÞ
� �

. Set

zi = ci + T

where u(t), w(c), bu, and bw are analogous to the corresponding symbols in the concept–topic

model described in the previous section. The variable n(d), where n(d) = p(x|d), represents

the switch distribution and h(d), where h(d) = p(t|d) represents the distribution over topics for

document d. The variable f(cd)represents the multinomial distribution over children of

concept node c for document d (this has dimensionality Nc + 1 to account for the additional

‘‘exit’’ child). The hyperparameters c, a, and s(c) are the parameters of the priors on n(d),

h(d), and f(cd), respectively. Note that a, as in the previous topic and concept–topic models,

is a vector with hyperparameter values for each topic. Similarly, s(c)is a vector of hyper-

parameters values, to allow for different a priori probabilities of traversing the concept-tree.

This allows the model to tune itself to different corpora and make it more likely to sample a

path toward the science concept in a corpus of scientific documents. Fig. 2C shows the cor-

responding graphical model. The generative process above is quite flexible and can handle

any directed-acyclic concept graph (for any nontree, there would be more than one way of

reaching each concept, leading to increased complexity in the inference process). The model

cannot, however, handle cycles in the concept structure as the walk of the concept graph

starting at the root node is not guaranteed to terminate at an exit node.

In the hierarchical concept–topic model, the only observed information is the set of words

in each document, the word–concept memberships, and the tree structure of the concepts.

All remaining variables are latent and are inferred through a collapsed Gibbs sampling pro-

cedure. Details about this procedure are described by Chemudugunta et al. (2008b).

3. Text and concept data

The experiments for all our simulations are based on the TASA corpus (Landauer &

Dumais, 1997) consisting of D = 37,651 documents with passages excerpted from educa-

tional texts used in curricula from the first year of school to the first year of college. The

documents are divided into nine different educational genres. We focus here on a subset of

TASA documents classified as science, consisting of D = 5,356 documents. As mentioned

previously, CALD consists of 2,183 semantic concepts. CALD groups words primarily

according to semantic concepts with the concepts hierarchically organized. The hierarchy

starts with the concept everything which splits into 17 concepts at the second level (e.g.,
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science, society, general ⁄ abstract, communication). The hierarchy has up to seven levels,

with each interior node splitting into a median of seven children nodes. The concepts vary

in the number of the words with a median of 54 word types and a maximum of 3,074. Each

word can be a member of multiple concepts, especially if the word has multiple senses. We

created two vocabularies. One is a W = 21,072 word vocabulary based on the intersection
between the vocabularies of TASA and CALD. We also created a vocabulary of

W = 142,010 words based on the union of TASA and CALD vocabularies. For both vocabu-

laries, all stop words and infrequent words were removed.

4. Tagging documents

One application of concept models is to tag unlabeled documents with human-defined

concepts. The tagging process involves assigning likely concepts to each word in a docu-

ment, depending on the context of the document. The document content can then be summa-

rized by the probability distribution over concepts that reveal the dominant semantic

themes. Because the concept models assign concepts at the word level, the results can be

aggregated in many ways, allowing for document summaries at multiple levels of granular-

ity. For example, tagging can be performed on snippets of text, individual sections of a doc-

ument, whole documents, or even collections of documents. For all of our tagging

examples, we used the intersection vocabulary (the results are qualitatively similar using the

union vocabulary).

4.1. Tagging with the concept–topic model

As an illustration of how the model can be used to quickly summarize a document, Fig. 4

shows the CALD concept assignments to individual words in a TASA document. We used

the concept–topic model with concepts only (T = 0). The four most likely concepts are

listed for this document. For each concept, the estimated probability distribution over words

is shown next to the concept (note that these estimates are over the whole corpus and are not

document specific). For example, for the concept of chemical elements, the word oxygen is

more likely than the word chlorine. The probability of words in concepts is not just influ-

enced by number of tokens across the whole corpus but also by the number of concepts that

contain the word type and the relative probability between concepts in each document. The

model has estimated that in the conceptual context of chemical elements, the word oxygen is

more likely than the word chlorine. This conditional salience is useful for evaluating the

relative importance of words to specific concepts, going beyond the logical set definitions

provided by the human lexicographers who developed the concepts.

In the document, words assigned to the four most likely concepts are tagged with letters

a–d (and color coded if viewing in color). The words assigned to any other concept are

tagged with ‘‘o’’ and words outside the vocabulary are not tagged. In the concept–topic

model, the distributions over concepts within a document are highly skewed such that the

probability mass is distributed over only a small number of concepts. In the example
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document, the four most likely concepts cover about 50% of all words in the document.

Fig. 4 illustrates that the model correctly disambiguates between words that have several

conceptual interpretations. For example, the word charged has many different meanings and

appears in 20 CALD concepts. In the example document, this word is assigned to the physics

concept, which is a reasonable interpretation in this document context (the word charged
does not appear in the list of words associated with the concept physics because its probabil-

ity falls below the threshold for visualization). Similarly, the ambiguous words current and

flow are correctly assigned to the electricity concept.

4.2. Tagging with the hierarchical concept–topic model

One of the advantages of the hierarchical concept–topic model is that the hierarchical

relations between concepts can be used to enhance the visualization of documents. Fig. 5

shows the result of inferring the hierarchical concept mixture for an individual TASA docu-

ment using CALD concept sets. For the hierarchy visualization, we selected the seven con-

cepts with the highest probability and included all ancestors of these concepts when

visualizing the tree (we selected seven concepts to tradeoff informativeness and complexity

of the display). The ancestors that were not part of the top seven concepts are visualized

with dashed ovals. The CALD subtree highlights the specific semantic themes of birth,

breathing, and stopping breathing along with the more general themes of science and

medicine. This illustration shows that the model is able to give interpretable results for an

individual document at multiple levels of granularity.

At a higher level of granularity, the hierarchical concept–topic model can also summarize

sets of documents. Across documents, the model learns the hyperparameters associated with

tag P(c|d) Concept P(w|c)
a 0.1702 PHYSICS electrons (0.2767) electron (0.1367) radia on (0.0899) protons (0.0723) ions (0.0532)

radioac ve (0.0476) proton (0.0282)
b 0.1325 CHEMICAL ELEMENTS oxygen (0.3023) hydrogen (0.1871) carbon (0.0710) nitrogen (0.0670) sodium (0.0562) sulfur

(0.0414) chlorine (0.0398)
c 0.0959 ATOMS, MOLECULES, AND

SUB-ATOMIC PARTICLES
atoms (0.3009) molecules (0.2965) atom (0.2291) molecule (0.1085) ions (0.0262) isotopes
(0.0135) ion (0.0105) isotope (0.0069)

d 0.0924 ELECTRICITY AND ELECTRONICS electricity (0.2464) electric (0.2291) electrical (0.1082) current (0.0882) flow (0.0448)
magne sm (0.0329)

o 0.5091 OTHER

The hydrogenb ionsa immediatelyo a acho themselves to watero moleculesc to formo combina onso calledo hydronium ionsa. The chlorineb

ionsa also associateo with watero moleculesc and become hydrated. Ordinarilyo, the posi veo hydronium ionsa and the nega veo chlorineb

ionsa wandero about freelyo in the solu ono in all direc onso. However, when the electroly c cello is connectedo to a ba eryo, the anoded

becomes posi velyo chargeda and the cathoded becomes nega velyo chargeda. The posi velyo chargeda hydronium ionsa are then a ractedo

toward the cathoded and the nega velyo chargeda chlorineb ionsa are a ractedo toward the anoded. The flowd of currentd insideo the cello

therefore consists of posi veo hydronium ionsa flowingd in one direc ono and nega veo chlorineb ionsa flowingd in the oppositeo direc ono.
When the hydronium ionsa reacho the cathoded, which has an excesso of electronsa, each takeso one electrona from it and thus neutralizeso

the posi velyo chargeda hydrogenb iona a achedo to it. The hydrogenb ionsa thus become hydrogenb atomsc and are releasedo into the
solu ono. Here they pairo up to formo hydrogenb moleculesc which graduallyo come out of the solu ono as bubbleso of hydrogenb gaso. When
the chlorineb ionsa reacho the anoded, which has a shortageo of electronsa, they giveo up their extrao electronsa and become neutrala chlorineb

atomsc. These pairo up to formo chlorineb moleculesc which graduallyo come out of the solu ono as bubbleso of chlorineb gaso. The behavioro

of hydrochloric acido solu ono is typicalo of all electrolyteso. In generalo, when acidso, baseso, and saltso are dissolvedo in watero, many of their
moleculesc breako up into posi velyo and nega velyo chargeda ionsa which are freeo to moveo in the solu ono.

Fig. 4. Illustrative example of tagging a document excerpt using the concept–topic model with concepts from CALD.
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the transitions from concept nodes to the children of concept nodes. These hyperparameters

determine how likely it is (a priori) for the model to generate a document along the path to

the physics and chemistry concepts (for example). Fig. 6 shows the 20 highest probability

concepts for a random subset of 200 TASA documents from the science genre. For each

concept, the name of the concept is shown in all caps. The visualization also includes the

ancestor nodes (shown in dashed ovals) to complete the path to the root node. The numbers

in Fig. 6 represent the marginal probability for the concept. The marginal probability is

computed based on the product of probabilities along the path of reaching the node as well

as the probability of exiting at the node, marginalized (averaged) across all documents:

pðcÞ /
X
d

pðexitjc; dÞpðcjparentðcÞ; dÞ� � �pðrootjdÞ½ �: ð4Þ

Many of the most likely concepts as inferred by the model relate to specific science

concepts (e.g., geography, astronomy, chemistry, etc.). These concepts all also fall under

the general science concept, which is also one of the most likely concepts for this document

collection. Therefore, the model is able to summarize the semantic themes in a set of

documents at multiple levels of granularity.

In the original CALD concept set, each concept consists of a set of words and no knowl-

edge is provided about the prominence, frequency, or representativeness of words within the

concept. In the hierarchical concept–topic model, for each concept, a distribution over

words is inferred that is tuned to the specific collection of documents. For example, for the

concept astronomy, the word planet receives much higher probability than the word Saturn
or equinox, all of which are members of the concept. These differences in word probabilities

The postnatal period of development lasts from birth until death and can
be divided into a neonatal period, infancy, childhood, adolescence,
adulthood, and senescence. The neonatal period, which extends from
birth to the end of the first four weeks, begins very abruptly at birth.
Physiological adjustments must be made quickly, because the newborn
must suddenly do for itself those things that the mother body has been
doing for it. Thus, the newborn must carry on respiration, obtain nutrients,
digest nutrients, excrete wastes, regulate body temperature, and so forth.
However, its most immediate need is to obtain oxygen and excrete carbon
dioxide, so its first breath is critical. The first breath must be particularly
forceful, because the newborn lungs are collapsed, and the airways are
small and offer considerable resistance to air movement. Also, surface
tension tends to hold the moist membranes of the lungs together.
Fortunately, the lungs of a full term fetus secrete surfactant, which
reduces surface tension, and after the first powerful breath begins to
expand the lungs, breathing becomes easier. It is not clear whether the
first breath is stimulated by one or several factors. Those that may be
involved include an increasing level of carbon dioxide, a decreasing ph, low
oxygen concentration, a drop in body temperature and mechanical
stimulation that occurs during and after the birth process. Prior to birth,
the fetus depends primarily on glucose and fatty acids obtained from the
mother blood as energy sources

(A) (B)
.11160
ROOT

.07608
SCIENCE

.02433
MOVEMENT

AND LOCATION

.00203
ANIMAL AND

PLANT BIOLOGY

.03859
CHEMISTRY

.00118
MEDICINE

.06017
OBSTETRICS
(PREGNANCY

AND BIRTH)

.00014
ANIMAL

PHYSIOLOGY

.06003
BIRTH

.03935
BREATHING

AND STOPPING
BREATHING

Fig. 5. Example of a single TASA document from the science genre (A). The seven-most probable concepts

inferred by the hierarchical concept–topic model for this document using the CALD concepts (B). The dashed

concepts are ancestor concepts of the top seven concepts that were included for visualization purposes.
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highlight the ability of the model to adapt to variations in word usage across document

collections.

5. Generalization performance

In the previous section, the tagging illustrations provided a qualitative assessment of

concept–topic models. To get a more quantitative evaluation, we assess the performance of

the topic model, concept–topic model, and the hierarchical concept–topic model by evaluat-

ing their capability to explain new documents that the model has not been trained on. The

idea is that models that are trained on documents of a certain genre should generalize to

new documents from the same genre. One formal way to assess generalization performance

is through perplexity. Perplexity is a quantitative measure for comparing language models

(Brown, deSouza, Mercer, Della Pietra, & Lai, 1992) and is widely used to compare the

predictive performance of topic models (e.g., Blei et al., 2003; Wallach et al., 2009).

Although perplexity does not directly measure aspects of a model such as interpretability or

coverage, it is nonetheless a useful general predictive metric for assessing the quality of a

topic model.

Perplexity is equivalent to the inverse of the geometric mean of the likelihood of holdout

data. The perplexity of a collection of test documents given the training set is defined as:

.10427
ROOT

.01149
SCIENCE

.02236
LIFE, DEATH

AND THE
LIVING WORLD

.01182
USING THE MIND

.01061
MOVEMENT

AND LOCATION

.00464
COMMUNICATION

.00216
FARMING

AND FORESTRY

.00961
CHEMISTRY

.00670
THE EARTH AND
OUTER SPACE

.00355
MEASURES AND

QUANTITIES

.00228
PHYSICS

.00417
TECHNOLOGY

.00109
ANIMAL FARMING

.00364
ASTRONOMY

.00587
ELECTRICITY

.00571
CHEMICAL
ELEMENTS

.00128
GEOGRAPHY

.00382
WEATHER

AND CLIMATE

.00635
ATOMS, MOLECULES

AND SUB-ATOMIC
PARTICLES

.00343
THE STATE
OF MATTER

.00391
CHEMISTRY -

GENERAL WORDS

.00109
SEAS, RIVERS
AND WATER

.00330
ANIMAL FOOD

.00492
ELECTRICITY

AND ELECTRONICS

.00511
FLOODS, TIDES
AND CURRENTS

Fig. 6. Visualization of the marginal concept distributions from the hierarchical concept–topic model learned on

science documents using CALD concepts. The 20 most likely concepts are shown, including the five ancestor

nodes (shown in dashed ovals) needed to complete the path to the root node.
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PerpðwtestjDtrainÞ ¼ exp �
PDtest

d¼1 log p wdjDtrainð ÞPDtest

d¼1 Nd

 !
ð5Þ

where wtest is the set of word tokens in the test documents, wd is the set of word tokens in

document d of the test set, Dtrain is the training set, and Nd is the number of word tokens in

document d. Lower perplexity scores indicate that the model’s predicted distribution of

heldout data is closer to the true distribution.

The experiments in this section are again based on the TASA data set. We train the mod-

els on a random subset of 90% of documents classified as science, creating a training set of

D = 4,820 documents. By training the models, we obtain estimates for the word–topic distri-

butions, topic–document distributions, the assignments of word tokens to topics and con-

cepts, as well as the hyperparameters on the topic–document distributions (for all models,

asymmetric Dirichlet priors were used for the document-specific topic distributions). Note

that in all reported simulations, we used the intersection vocabulary (the results are qualita-

tively similar using the union vocabulary).

We then evaluate generalization performance on the remaining documents in the science

genre and also on a subset of documents classified as social studies. By testing on science

and social studies documents, we evaluate the models’ ability to generalize either within the

same genre or between genres. For each test document, we used a random 50% of words of

the document to estimate document-specific distributions and measure perplexity on the

remaining 50% of words using the estimated distributions. More details about the perplexity

computation are provided in Appendix B of Chemudugunta et al. (2008b).

5.1. Perplexity comparison across models

We compare the perplexity of the topic model (TM), concept–topic model (CTM), and

the hierarchical concept–topic model (HCTM) trained on document sets from the science

genre of the TASA collection and using concepts from CALD. Fig. 7A, B shows the per-

plexity of TM, CTM, and HCTM as a function of the number of data-driven topics T. Panel

(a) shows the results when the model is trained and tested on science documents. Panel (b)

shows the results when the model is trained on science documents and tested on social stud-

ies documents. The point T = 0 indicates that there are no topics used in the model. The

results clearly indicate that incorporating concepts greatly improves the perplexity of the

models (lower perplexity indicates better predictive performance). Both CTM and HCTM

outperform TM, which does not rely on human-defined concepts. The results also show that

human-defined concepts by themselves (i.e., the perplexity obtained when the number

of learned topics T = 0) are not sufficient to get the best generalization performance—

additional learned topics that are tuned to the specific content of the document collection are

needed for optimal performance (around 100–300 learned topics). One important point to

note is that the improved performance by the concept models is not due to the high number

of word distributions T + C, compared with the topic model that utilizes only T topics. In

fact, even with T = 2,000 topics, TM does not improve its perplexity and even shows signs

of deterioration in quality.
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We next look at the effect of varying the amount of training data for all models. Fig. 7C

shows the results when the model is trained and tested on science documents. Fig. 7D shows

the results when the model is trained on science documents and tested on social studies doc-

uments. When there is very little training data (e.g., up to 500 documents), both concept–

topic models significantly outperform the topic model. Because learned topics in TM are

entirely data driven, there is not enough statistical information to build accurate representa-

tions on the basis of just a few hundred documents (in the extreme case where there is no

training data available, topics of TM will just be uniform distributions and prediction will

be at chance). In the regime of little training data, however, the concept models can leverage

the human-defined concepts, providing a priori structure to the learning algorithm.
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Fig. 7. Comparing perplexity for topic model, concept–topic model, and the hierarchical concept–topic model

as a function of number of topics (A–B) and percentage of training documents (C–D). Panels (A) and (C) show

the results when the model is trained and tested on documents from the science genre. Panels (B) and (D) show

the results when the model is trained on documents from the science genre, but tested on documents from the

social studies genre.
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Of the two concept models, HCTM outperforms CTM when little training data are avail-

able (see Fig. 7A,B) or when the model generalizes to documents from a different genre

(see Fig. 7B,D). HCTM and CTM rely on the same set of human-defined concepts, but

HCTM also imposes hierarchical constraints on these concepts. For example, the concept

model needs no documents to learn that physics and chemistry are related concepts since

this knowledge is already built in. Therefore, if a document appears to be about physics, the

model predicts with small probability that chemistry words can appear in the document.

These a priori concept relations are clearly useful when little data are available but are rela-

tively less beneficial with larger amounts of training data. In this scenario, the concepts and

topics can be fine-tuned to the data and the difference in performance between flat concept–

topic representations and hierarchical concept representations are less pronounced. When

generalizing to new kinds of documents (e.g., when training on science documents and test-

ing on social studies documents), the hierarchical concept–topic model outperforms the con-

cept–topic model regardless of the amount of training data. In this case, the learned

knowledge is less useful and the a priori structure in the hierarchical relations between

concepts provides necessary constraints on the inference process.

6. Relation between learned topics and concepts

Both the concept–topic and hierarchical concept–topic models allow for a combination of

concepts and learned topics. These learned topics are useful to identify different gaps in the

existing concept sets and capture semantic themes beyond those covered in the concepts.

Such learned topics will depend on the background corpus. To get a better understanding of

the kind of information captured by these models, we applied the concept–topic model to

the TASA documents in the science genre. We set the number of learned topics T = 50. In

one simulation, we ran the model using the union vocabulary that combines words from the

TASA corpus and CALD concepts. Importantly, the union vocabulary includes words that

are not part of CALD. Because the model gives zero probability for such words under any

concepts, these words have to be modeled by the learned topics. Fig. 8A shows examples of

topics learned by the model. The words not covered by CALD are shown in bold. The

learned topics clearly capture many of the words in the corpus that are not part of CALD,

including names of people (Darwin), technical words (axon), but also some words such as

later and easiest that one would expect to be present in a thesaurus. Note that the reason

words such as later and easiest are excluded in CALD is not because CALD lists only root

word forms (related word forms are encoded in the database). These words appear to be

genuine omissions in CALD that the concept–topic model handled by learned topics.

We also ran a simulation with the concept–topic model using the intersection vocabulary

that includes words only present in both the TASA corpus and CALD database. Fig. 8B

shows some example topics learned by the model. By definition, all words shown in these

topics are members of some concepts so the concept–topic model is able to explain these

words by first selecting a concept and then a word from a concept. These learned topics

focus on word correlations that are not currently captured by the concepts. For example, the
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first two words in the left-most topic, universe and galaxy, are clearly related but are not

members of the same concept. Similarly, hypothesis and scientific as well as pollution and

chemicals are word pairs that are not members of the same concept but often co-occur in

documents. The learned topics can be used to capture such correlations.

7. Expanding existing concepts with new words

One of the biggest disadvantages of utilizing human-defined knowledge databases is the

large amount of manual effort involved to build and update the knowledge database. For

(A)

word prob. word prob. word prob. word prob.
         darwin 0.049          newton 0.084            axon 0.012       paleozoic 0.071
        charles 0.024         galileo 0.027         fulcrum 0.011        mesozoic 0.069
      evolution 0.012           isaac 0.018       dendrites 0.010        carbonyl 0.051
            son 0.006           later 0.013    permanganate 0.008     precambrian 0.043

      galapagos 0.006         newtons 0.010   acetylcholine 0.007        cenozoic 0.041
        lamarck 0.006        inertial 0.008           axons 0.007        cambrian 0.030
         beagle 0.004    permanganate 0.007           nadph 0.005   thermonuclear 0.024
        england 0.003         fleming 0.006 parasympathetic 0.005        aldehyde 0.019
        flytrap 0.003   straight-line 0.006       riverwood 0.005      quaternary 0.019

        malthus 0.003         huygens 0.004         easiest 0.004           aldol 0.019
        wallace 0.003         italian 0.004      inhibitory 0.004         ketones 0.016
         alfred 0.003       newtonian 0.004          cutter 0.004           alvin 0.015

     geological 0.003       alexander 0.004       effectors 0.004           quats 0.013
        jacques 0.003        tabletop 0.004       energized 0.004        coatings 0.012

          later 0.003     rectilinear 0.003         parkman 0.004    flood-hazard 0.012

(B)

word prob. word prob. word prob. word prob.
       universe 0.094      hypothesis 0.145           acres 0.023       pollution 0.148
         galaxy 0.075      scientific 0.063          farmer 0.019      pollutants 0.053
       galaxies 0.062       scientist 0.043        swirling 0.008             era 0.034
          milky 0.039      hypotheses 0.041       cornfield 0.007       chemicals 0.029

         nebula 0.015        educated 0.011         plowing 0.007           large 0.020
         cosmic 0.013       suggested 0.010        ranchers 0.006       factories 0.018

       billions 0.011         outcome 0.009        differed 0.005            smog 0.018
         spiral 0.007        suggests 0.008  well-preserved 0.005        polluted 0.013

   interstellar 0.007        verified 0.007   energetically 0.004     automobiles 0.013
      resembles 0.006           wrong 0.007        feasible 0.004         fulcrum 0.011
      acquiring 0.005     suggestions 0.005    interlocking 0.004          sulfur 0.011
        nebulae 0.005       duplicate 0.005        splinter 0.004         amounts 0.011
       galactic 0.004       incorrect 0.005        tumbling 0.004           unfit 0.010
         static 0.004        searches 0.005     bewildering 0.003         dumping 0.009

     accustomed 0.003         suggest 0.004        buttocks 0.003           areas 0.009

Fig. 8. Examples of learned topics for the CTM model. Panel (A) illustrates a simulation using the union vocab-

ulary that includes words that are part of the TASA corpus but are not part of the CALD vocabulary (these words

are shown in bold). Panel (B) illustrated topics from a simulation on the intersection vocabulary that only

includes words present in both TASA and CALD.

M. Steyvers et al. ⁄ Topics in Cognitive Science 3 (2011) 39



example, the lexicographers of the CALD database have to continually update the concepts

to include words that have changed meaning or to insert entirely new concepts. In addition,

the CALD database has to be checked for human errors, which might be difficult to detect

manually. One way to test the utility of the concept model is to see whether it can automati-

cally identify omissions within human-defined concepts, that is, words that should be in a

concept but have been omitted. In the previous section, we showed how such words can

become part of learned topics. In this section, we tested whether a concept–topic model

could learn to expand existing concepts with new words that appear to have been omitted

from concepts.

In our simulation approach, we removed selected words from the CALD concepts

and tested how well a concept–topic model could use the TASA corpus to identify

which concept they should be associated with. We only evaluate the concept–topic

model with no learned topics (i.e., T = 0) on this concept recovery task (we expect that

the hierarchical concept–topic model gives similar results). As a baseline method, we

could compare the model against a number of existing models such as LDA or LSA.

For simplicity, we focus here on LSA. We computed the singular value decomposition

of the document word co-occurrence matrix for the TASA corpus and projected the

terms onto N-dimensional concept space. Given a test word, we return a ranking of the

concepts determined by the average distance from the test word to the m closest words

in the concept. Distance is measured using cosine similarity. We experimented with dif-

ferent values of N and m, and report our results for N = 150 and m = 5 (results were

relatively insensitive to the exact values used).

We compiled a list of 152 terms from the corpus where each term was a member of only

one concept. The concept had to be well represented by the corpus, that is, at least 60% of

the words in the concept were present in the corpus. Furthermore, the term had to be a sig-

nificant member of the concept, that is, the term had the highest frequency in the corpus

among all the terms in the same human-defined concept. In the concept–topic model, if a

word is not included in the set of concepts to begin with, the model will be unaware of it. So

for the purposes of this experiment, we ‘‘removed’’ a word by placing it in all 2,183 concept

sets—in effect this tells the model that the word exists but gives the model no clue about

which concept it belongs to. After training the model, we can simply count how often a

word is assigned to a particular concept (via the z assignments) to produce a ranked list of

concepts given a word.

Fig. 9 shows an example of the rankings returned by the concept–topic model for three

test words. For each removed word, the figure shows the top five ranked concepts. We label

each concept with one of four letters: M(atch) indicates a match to the target concept,

P(arent) indicates a concept on the path from the root concept to the target concept, C(hild)

indicates a concept in the subtree rooted at the target concept, and O(ther). In the example,

the model is able to rank the target concept as the first or second ranked concept but even

the highly ranked mismatching concepts are often quite reasonable target concepts. For

example, the word soot has strong associations with the concept cleaning and tidying places

and things, as well as dirt untidiness, which are semantically related to the word soot, but

which did not originally contain the removed word.
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Note that the concept–topic model is also able to identify multiple meanings for a given

word. For example, the word directions can refer to north, south, east and west (koints of

the kompass) as well as a set of instructions (places and locations). Also note that many

words in the CALD concepts are classified according to their definition (e.g., soot is a prod-

uct of combustion) rather than their descriptive qualities (e.g., soot causes dirtiness and soot

is an environmental issue).

Table 1 shows the overall results for the concept–topic model and latent semantic analy-

sis. The table shows the probability that a concept is ranked in the top K returned concepts

(precision), as a target concept, parent concept, or child concept. The results show that the

concept–topic model outperforms the latent semantic analysis approach in this concept-

recovery task. The concept–topic model is often able to rank the target concept (out of

2,183 concepts) in the top 10 or 20. For both the concept–topic models and the latent seman-

tic analysis approach, the parent or child of the target concept also often appear (more than

expected by chance) in the top 10 or 20 concepts, indicating that these models are able to

recover more specific as well as more general concepts related to the novel word.

8. Discussion

Although most of the earlier work on topic modeling is purely data driven, in that

no human knowledge is used in learning the topic model, there are some exceptions.

Boyd-Graber, Blei, and Zhu (2007) develop a topic modeling framework that combines

stpecnoCdeknaRdroWdevomeR

soot 
(O) CLEANING AND TIDYING PLACES AND THINGS
(M) PRODUCTS OF COMBUSTION
(O) DIRT AND UNTIDINESS
(O) BUILDINGS: NAMES AND TYPES OF
(O) ENVIRONMENTAL ISSUES

insects
(C) INSECTS
(M) INSECT NAMES
(O) SOCIETY
(O) IMPROVING FERTILITY AND PEST CONTROL
(P) PLANTS AND ANIMALS

directions 
(M) PLACES AND LOCATIONS
(O) EMITTING AND CASTING LIGHT
(O) POINTS OF THE COMPASS
(O) SPORTS, GAMES AND PASTIMES
(O) PAYING ATTENTION AND BEING CAREFUL

(M = match; C = child; P = parent; O = other)

Fig. 9. Example of rankings by concept–topic model in word recovery task.
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human-derived linguistic knowledge using unsupervised topic models for the purpose of

word–sense disambiguation. Andrzejewski, Zhu, and Craven (2009) recently introduced an

iterative topic modeling process where a human can inspect the topics and specify which

words should have high probability in a topic and which words should not appear together

in a topic. By replacing the multinomial distribution over words in a topic with a Dirichlet

forest prior, the knowledge expressed by a human can be taken into account in the next iter-

ation of the topic modeling process. Wei and Croft (2007) use manually built topics using

documents and categories from the Open Directory Project for information retrieval. The

manual topics are built by aggregating documents for selected categories and obtaining

probability distributions by normalizing the word counts of the associated documents.

Topic modeling has also been used for finding mappings between ontology pairs

(Spiliopoulos, Vouros, & Karkaletsis, 2007). The work of Ifrim and Weikum (2006) and

Bundschus, Dejori, Yu, Tresp, and Kriegel (2008) combines topics and concepts for the

purposes of text classification. Our framework is somewhat more general in that we not only

improve the quality of making predictions on text data by using prior human concepts but

also are able to make inferences in the reverse direction about concept words and concept

hierarchies given data. In addition, our concept–topic models do not require labeled data.

Although topic modeling has also been used to semi-automatically build taxonomies from

data (e.g., Dietz & Stewart, 2006; Zavitsanos, Paliouras, Vouros, & Petridis, 2007), these

approaches do not make use of existing ontologies.

There is also a significant amount of prior work on using data to help with ontology

construction, evaluation, and document tagging, such as learning ontologies from text

data (e.g., Maedche & Staab, 2001), methodologies for evaluating how well ontologies

are matched to specific text corpora (Alani & Brewster, 2006; Brewster, Alani,

Dasmahapatra, & Wilks, 2004), and systems for tagging documents with semantic con-

cepts using word-level matching techniques (Dill et al., 2003). Our work is broader in

scope in that we propose general-purpose probabilistic models that combine concepts

and topics within a single framework, allowing us to use the data to make inferences

about how documents and concepts are related (for example). It should be noted that in

the work reviewed in this paper, we do not explicitly investigate techniques for modi-

fying an ontology in a data-driven manner (e.g., adding ⁄ deleting words from concepts

Table 1

Precision results for the concept-recovery task

LSA Concept–Topic

Top 10 concepts

Target .45 .55

Parent .22 .15

Child .05 .04

Top 20 concepts

Target .53 .57

Parent .30 .26

Child .05 .05
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or relationships among concepts)—however, the framework we propose could certainly

be used as a basis for exploring such ideas.

There are several potentially useful directions in which the hierarchical concept–topic

model can be extended. One interesting extension to try is to substitute the Dirichlet prior

on the concepts with a Dirichlet process prior, where each concept will now have a poten-

tially infinite number of children, a finite number of which are observed at any given

instance (e.g., Teh et al., 2006). When we do a random walk through the concept hierarchy

to generate a word, we now have an additional option to create a child topic and generate a

word from that topic. There would be no need for the switching mechanism as data-driven

topics are now part of the concept hierarchy. Such a model would allow us to add new topics

to an existing concept set hierarchy and could potentially be useful in building a recom-

mender system for updating concept ontologies.

An alternative direction to pursue would be to introduce additional machinery in the gen-

erative model to handle different aspects of transitions through the concept hierarchy. In

HCTM, we currently learn one set of path correlations for the entire corpus (captured by the

Dirichlet parameters s in HCTM). It would be interesting to introduce another latent vari-

able to model multiple path correlations. Under this extension, documents from different

genres can learn different path correlations (similar to the work of Boyd-Graber et al.,

2007). For example, scientific documents could prefer to utilize paths involving scientific

concepts, and humanities concepts could prefer to utilize a different set of path correlations

when they are modeled together. A model of this type would also be able to make use of

class labels of documents if available.

9. Conclusions

We have proposed a probabilistic framework for combining data-driven topics and

semantically rich human-defined concepts. We first introduced the concept–topic model, a

straightforward extension of the topic model, to utilize human-defined semantic concepts in

the topic modeling framework. The model represents documents as a mixture of topics and

concepts, thereby allowing us to describe documents using the semantically rich concepts.

We further extended this model with the hierarchical concept–topic model where we incor-

porate the concept hierarchy into the generative model by modeling the parent–child

relationship in the concept hierarchy.

Our experimental results show that the semantic concepts significantly improve the qual-

ity of the resulting models. Modeling concepts and their associated hierarchies appears to be

particularly useful when there are limited training data—the hierarchical concept–topic

model has the best predictive performance overall in this regime. We view the current set of

models as a starting point for exploring more expressive generative models that can poten-

tially have wide-ranging applications, particularly in areas of document modeling and tag-

ging, ontology modeling and refining, and information retrieval.

In addition, these models are useful to expand the current cognitive science framework to

characterize human learning of semantic information. Many existing models in cognitive
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science explain how a human learner extracts semantic information from only a single

source of information: statistical co-occurrence information between words and documents.

The current set of models suggests that the learning process in such models can be enhanced

when additional background information is available. For example, a human learner might

already be familiar with certain concepts (and the relations between concepts) and the expo-

sure to (new) statistical information such as word–document co-occurrences serves to refine

existing concepts or perhaps learn new ones.
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