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The need to test a growing number of theories in cognitive science has led to increased interest in inferential
methods that integrate multiple data modalities. In this manuscript, we show how a method for integrating
three data modalities within a single framework provides (1) more detailed descriptions of cognitive processes
and (2) more accurate predictions of unobserved data than less integrative methods. Specifically, we show
how combining either EEG and fMRI with a behavioral model can perform substantially better than a
behavioral-data-onlymodel in both generative and predictivemodeling analyses.We then showhow a trivariate
model – amodel including EEG, fMRI, and behavioral data – outperforms bivariatemodels in both generative and
predictive modeling analyses. Together, these results suggest that within an appropriate modeling framework,
more data can be used to better constrain cognitive theory, and to generatemore accurate predictions for behav-
ioral and neural data.
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Introduction

The field of cognitive science is facedwithmany options for studying
how experimentally-derived variables are systematically related to the
dynamics underlying a cognitive process of interest. To date, much of
our understanding of cognition has been advanced by two dominant,
but non-interacting groups. The largest group, cognitive neuroscientists,
rely on statistical models to understand patterns of neural activity.
These models are typically purely data-mining techniques, and often
disregard the computational mechanisms that might detail a cognitive
process. The other group, mathematical psychologists, is strongly mo-
tived by theoretical accounts of cognitive processes, and instantiates
these theories by developing formal mathematical models of cognition.
The models often assume a system of computations and equations
intended to characterize the process assumed to take place in the
brain. To formally test their theory, mathematical psychologists rely
on their model's ability to fit behavioral data. A good fit is thought to re-
flect an accurate theory, whereas a bad fit would refute it.

Although both groups are concerned with explaining behavior, they
tend to approach the challenge from different vantage points. Thinking
Foundation grant 1358507. We
ty for helpful discussions that
in terms of Marr's (1982) levels of analysis, mathematical psychologists
tend to focus on the computational and algorithmic levels, whereas
cognitive neuroscientists focus more on the implementation level. Al-
though progress can be made by maintaining a tight focus on one
level, certain opportunities are missed. As a result of their single-level
focus, both approaches suffer from critical limitations (Love, 2015),
and these limitations have inspired researchers to combine neural and
behavioral measures in an integrative fashion. The primary payoff of
this endeavor is the localization of mechanisms assumed to underly
the computations supporting task-specific behavior within the brain.
The importance of solving the integration problemhas spawned several
entirely new statisticalmodeling approaches developed through collab-
orations between mathematical psychologists and cognitive neurosci-
entists, collectively forming a new field often referred to as “model-
based cognitive neuroscience” (e.g., Forstmann and Wagenmakers,
2015, Daw, 2011, Forstmann et al., 2011b; van Maanen et al., 2011;
Turner et al., 2013a; Mack et al., 2013; Boehm et al., 2014; Love, 2015;
Palmeri et al., 2015; Turner et al., 2015b).

So far, the field of model-based cognitive neuroscience has
established links between both structural measures such as diffusion-
weighted imaging (Forstmann et al., 2010; Turner et al., 2013a), and
functional measures such as electroencephalography (EEG; e.g., Nunez
et al., 2015), functional magnetic resonance imaging fMRI; e.g., (van
Maanen et al., 2011; Mulder et al., 2012; Summerfield & Koechlin,
2010; Bai et al., 2007; Forstmann et al., 2008; Forstmann et al., 2010;
White et al., 2014; Mack et al., 2013; Turner et al., 2015b) and
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magnetoencephalography (e.g., Amanoet al., 2006). These efforts, while
elucidating, have focused on relatingmodel parameters to onemodality
of neural measure. However, the limitations of these modalities in their
application to understanding cognition are well known. Superficially,
measures like EEG provide excellent temporal resolution with a contin-
uous read out of brain activity propagated to the scalp. These measures
are well suited for studying fine-grained details of a decision process
where many brain regions interact to perform a given task, but they
are limited by the specificity of spatial information they can provide.
On the other hand, measures like fMRI provide good spatial resolution,
but offer limited information on the temporal properties of the interest-
ing neural signature.

Given the orthogonal nature of the benefits and limitations of EEG and
fMRI, it is a natural question to ask whether these measures can be com-
bined in an effort to capitalize on the temporal and spatial resolutions pro-
videdby eachmodality. There currently exist severalmethods for “fusing”
multimodal functional neuroimaging data together, such as partial least
squares correlation (Lin et al., 2003; Martinez-Montes et al., 2004), inde-
pendent component analysis (Beckmann and Smith, 2005; Liu & Calhoun,
2007; Calhoun et al., 2006; Calhoun et al., 2009; Eichele et al., 2009;
Franco et al., 2008; Teipel et al., 2010; Xu et al., 2009; Calhoun et al.,
2011; Calhoun & Adali, 2009), structural equation modeling (Astolfi
et al., 2004; Hamandi et al., 2008), multiple regression (De Martino
et al., 2010; Eichele et al., 2005), and canonical correlation analysis
(Correa et al., 2010a; Correa et al., 2010b; Correa et al., 2008). However,
the focus of these methods is either source localization (for reviews, see
Sui et al. (2012); Dähne et al. (2015)), or relating behavioral measures
(e.g., response times) to brain data (for a review, see Krishnan et al.
(2015). While these methods have elucidated several theoretically inter-
esting questions (for reviews of applications, see Krishnan et al. (2015);
Sui et al. (2012), they are unable to directly inform cognitive models in
a quantitative fashion.

The goal of this article is to develop a statistical method for linking
neural data from EEG and fMRI to the (latent) parameters of a cognitive
model. To accomplish this, we extend the recently-proposed joint
modeling framework (Turner et al., 2013a) to multimodal functional
measures. Our method is unique because it allows a theoretical account
of the cognitive process to drive the analysis of the neural and behavior-
al measures. Furthermore, our method is holistic, putting forth a single
model to account for all aspects of our data. As we will detail below,
such a strategy provides numerous advantages on both generative and
predictive modeling fronts.

We begin by first describing the joint modeling framework and
explaining how it can be extended to multiple neural measures. We
then describe an experiment on an intertemporal choice task that was
collected for the purposes of testing the framework on imbalanced ex-
perimental designs. To provide clarity about our modeling approach,
we first describe the experimental effects present in the EEG, fMRI,
and behavioral data separately. We then illustrate some of the benefits
of the joint modeling framework by showing how a “bivariate” model
taking into account only one functional measure can be used to boost
performance of a behavioral-data-only model. In all of our analyses,
we show this boost from both a generative modeling perspective
through analyses of the estimated parameters (i.e., posterior distribu-
tions), and a predictive modeling perspective by assessing the models'
performance in a cross-validation test.We then showhow the extended
“trivariate” model that incorporates both functional neural measures
further enhances the performance of the model relative to both bivari-
atemodels and the behavioral-data-onlymodel.We closewith a discus-
sion of limitations and future directions for our approach to integrating
data from multiple modalities.

Joint modeling

Given the technical hurdles involved in simultaneous EEG/fMRI, in
this article we propose an alternative for performing EEG/fMRI
integration. Instead of obtaining the neural measures simultaneously,
our method works around potential artifacts by simply aggregating
the effects of interest across experimental contexts. That is, our method
explicitly models changes in neural activity present in EEG and fMRI by
binding these effects to changes in the behavioral data. In this way, the
behavioral data serve as a bridge connecting the two modalities to one
another, even if the EEG and fMRI datawere obtained at different points
in time for the same subject, or say EEG datawas collected for some sub-
jects and fMRI data was collected for others.

Our method builds on a recently developed joint modeling frame-
work (Turner et al., 2013a). This framework was originally proposed
as a way to integrate neural and behavioral data in one cognitive
model, but in Turner et al. only structural data were considered. Here,
we extend the original framework to functional measures and to
trivariate scenarios (i.e., including EEG, fMRI, and behavior). A typical
jointmodel consists of three components, whichwewill discuss in turn.

First, the behavioral data B are described in terms of a behavioral
model, such as the Linear Ballistic Accumulator (LBA; Brown &
Heathcote, 2008) model or classic signal detection theory model (Green
& Swets, 1966). Importantly, the behavioral model consists of a set of
model parameters θ, which are of lower dimensionality than the full be-
havioral data set B. For example, in the SDTmodel, θwould consist of pa-
rameters such as discriminability (d') and bias (β). Ideally, the chosen
behavioral model should consist of mechanisms that provide insight
intohow thedata arise, andhowexperimentalmanipulations predictably
affect these mechanisms (a property known as selective influence;
Heathcote et al., 2015).

Second, the neural data N are described in terms of a neural model.
The key property of the neural model is that it should consist of a set
of parameters δ that describe the important parts of the neural data N
in a way that is of significantly lower dimensionality. For example, the
neural model could describe increases in neural activity across time
through a general linear model (GLM). Alternatively, the neural model
could also be of amoremechanistic nature, describing the computations
purportedly implemented by a brain region.

Third, the lower-dimensional features of both the neural and behav-
ioral data are linked by establishing an explicit relationship between the
behavioral model parameters θ and the neural model parameters δ. Al-
though there are many types of linking functions one could use, one
particularly successful linking approach has been a hierarchical multi-
variate Gaussian distribution (Turner et al., 2013a; Turner, 2015;
Turner et al., 2015b).

The joint modeling framework extends other exploratory type ap-
proaches in model-based cognitive neuroscience (see Turner et al.
(2015a)) by formalizing these three components into a singlemodel. Fur-
thermore, fitting the joint model via Bayesian statistics allows the model
to inheritmany of the advantages of Bayesianmodeling,which have been
discussed bymany authors (e.g., Shiffrin et al., 2008; Lee&Wagenmakers,
2013). In the context of model-based cognitive neuroscience, most of
these advantages center around flexibility. First, jointmodels are agnostic
– there is no commitment to any particular behavioral model, neural
model, or linking function, and similarly, there is no commitment to any
particular behavioral (e.g., response time, accuracy, confidence) or neural
(e.g., EEG, fMRI) measurements. Second, the parameter estimates for the
behavioral model are affected by the information contained in the neural
measurements. Because this is a hierarchical Bayesianmodel, information
from the neuralmeasures first affects the neuralmodel parameters, and if
this effect is consistent across subjects (or even trials, see Turner et al.
(2015b)) it affects the parameters of the linking function. Once the linking
function has been affected, the behavioral model parameters are system-
atically altered to account for these changes. This process also goes in the
other direction, where changes in the behavioralmodel parameters affect
the neural model parameters. Third, joint models are fit to data within
one single regime instead of using separate parameter estimation stages
in an exploratory manner (e.g., Forstmann et al., 2010; Forstmann et al.,
2008; Forstmann et al., 2011a; Ho et al., 2012; van Maanen et al., 2011).
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Furthermore, joint models are unique in that they do not require elabo-
rate retraining or refitting strategies to generate predictions for either
neural or behavioral measures. Fourth, due to the Bayesian component
of the estimationprocess, jointmodels cannaturally handle sparse, imbal-
anced, or missing data structures. This aspect is extremely useful when
the number of observations that can be obtained is limited, or the cost
of obtaining neural measures is high. Given all of these advantages, joint
models seem ideally suited to tackle the problem of integrating behavior-
al, EEG, and fMRI measures into one cohesive model.

Fig. 1 depicts a graphical diagram of the models we will investigate
in this article. Graphical diagrams are useful in making variable depen-
dencies explicit by illustrating their relationship through connections in
the graph. Observable variables are represented as gray boxes (e.g., B),
whereas unknown (latent) model parameters are shown as empty cir-
cles (e.g., θ). Although all of the parameters influence one another
when fitting the model to data, only explicit dependencies among vari-
ables in the graph are represented by the arrows. So, for example, the
graphical diagram shows that the behavioral data B is a function of the
behavioral model parameters θ, which are functions of other model pa-
rametersΩ known as hyperparameters. The orange plate represents the
behavioral data/model, the green plate represents the EEG data/model,
and the blue plate represents the fMRI data/model. All of themodels we
will use in the present article can be represented via some combination
of the plates in Fig. 1. In previous work (Turner et al., 2013a), we made
the connection between a singlemodality of neural data and the behav-
ioral data explicit. So, for example, the orange plate was connected to
the green plate. In the present article, the goal is to formally extend
this framework to two modalities of neural data, namely fMRI and
EEG. Themotivation for our endeavor is clear: by combining the tempo-
ral resolution of EEG with the spatial resolution of fMRI, the link be-
tween multiple measures of cognition (i.e., EEG, fMRI, and behavior)
can be better understood.

We begin by describing our three experiments, specifically detailing
the imbalance of our task design.We reiterate the basic patterns present
in our data, some of which have been detailed extensively for other pur-
poses (Rodriguez et al., 2014; Rodriguez et al., 2015b; Rodriguez et al.,
2015a). To better illustrate some of the advantages joint modeling pro-
vides, we begin our analyses by applying bivariate joint models to each
data modality separately. In the final section, we apply a trivariate joint
model to the full (imbalanced) data set and highlight many of the ad-
vantages that are realized when EEG, fMRI, and behavioral data are
fused. In each joint modeling application, we evaluate the model from
a generative and predictive perspective, showing that not only do
Fig. 1.Graphical diagram ofmodels presented in the text. Observable data are represented
as gray boxes, whereas unknown (latent) variables are represented as empty circles. The
orange plate represents the behavioral data/model, the green plate represents the EEG
data/model, and the blue plate represents the fMRI data/model.
joint models help in the interpretation of our data, but they also im-
prove the predictive performance of the behavioral model.

Materials and methods

In total, we conducted three separate intertemporal choice experi-
ments, collecting data on three important variables: behavior, EEG,
and fMRI. However, because we originally had no intention of integrat-
ing these three measures simultaneously, some experiments only
targeted two of the threemeasures. The structure of our data is illustrat-
ed in Fig. 2. In all, we have 54 subjects (rows) and three measures (col-
umns). Thefirst experiment consisted of 23 subjectswho provided both
behavioral and EEG data. In this case, the fMRI data can be thought of as
“missing”, and this arrangement is illustrated in Fig. 2with red cells. The
second experiment also consisted of 23 subjects, but these subjects pro-
vided both behavioral and fMRI data, and no EEG data (again illustrated
by red blocks in Fig. 2). The final experiment consisted of 8 subjectswho
provided both EEG and fMRI data in two separate conditions (randomly
counterbalanced). For each of these conditions, we also collected behav-
ioral data, and this structure is illustrated in Fig. 2 as striped cells. In the
modeling results below, it was useful to withhold some elements of the
data selectively as a test of the model's generalizability. These withheld
data are illustrated in Fig. 2 as orange cells.

Data collection

Subjects
Sixty-one healthy adults participated in this study (32 females, ages

19–46 years, median 24 years). All subjects gave written informed con-
sent. Stanford University's Institutional Review Board approved the
study. Two subjects were excluded because their behavior did not
allow us to estimate reliable temporal discounting parameters. Another
Fig. 2.Designmatrix for the trivariatemodel simulation. Our data consist of behavior, EEG,
and fMRI measures (columns) for different combinations of subjects (rows). The red cells
represent observations that were not recorded, the orange cells represent observations
that were withheld from the model in various simulation studies (see text for details),
and striped cells represent dual-purpose observations (i.e., we collected behavioral mea-
sures during both fMRI and EEG sessions).
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five subjects were excluded because of data collection problems. Data
from a total of fifty-four subjects were analyzed (30 females, ages 19–
46 years, median 25 years).

Temporal discounting model and task design
The first two experiments were conducted over two sessions,

whereas the third experiment consisted of three sessions. The purpose
of the first session was to estimate each individual's discount rate using
a hyperbolic discounting model. In the first experiment (n=23), the
second session consisted of an electroencephalography (EEG) experi-
ment. In the second experiment (n=23), the second session consisted
of a functional magnetic resonance imaging (fMRI) experiment. In the
third experiment (n=8), subjects performed in both the EEG and
fMRI experiments in sessions separated by one week. The purpose of
the one week lag was to reduce any practice effect that might occur,
while assuming only small deviations in the temporal discounting be-
havior (Kirby, 2009). In the first session, we began by estimating each
individual's discount rate, exactly as in the first two experiments. How-
ever, during the third session, we assumed that this discount rate was
equivalent to what had been estimated one week prior. The task for
the first session used a staircase procedure tomeasure each individual's
discount rate k, assuming a hyperbolic discounting function

VD ¼ r
1þ kt

ð1Þ

where VD is the subjective value of the delayed reward, r is themon-
etary amount offered, and t is the delay. The staircase procedure re-
quired participants to select between a delayed reward (of r dollars
available at delay t) and a fixed immediate reward of $10 (VI). For any
choice, indifference between the immediate and delayed options im-
plies a discount rate of k=(r−VI)(VIt)−1. We refer to this implied
equivalence point as keq; our procedure amounted to varying keq sys-
tematically until indifference was reached. Specifically, we began with
keq=0.02. If the subject chose the delayed reward, keq decreased by a
step size of 0.01 for the next trial. Otherwise, keq increased by the
same amount. Every time the subject choses both a delayed and an im-
mediate offerwithinfive consecutive trials, the step sizewas reduced by
5%. Participants completed 60 trials of this procedure. We placed no
limits on the response time, and presented both offers on the screen,
as “$10 now” on the left side, and “$r in t days” on the right.

After completing the first session, we fit a softmax decision function
to participants' choices. We assumed that the likelihood of choosing the
delayed reward was given by

PD ¼ 1
1þ e−m VD−VIð Þ ; ð2Þ

where m accounts for sensitivity to changes in discounted value.
We used individually determined values of k and m to generate

choices for the second session. At every trial, t was randomly selected
from a range of 30–45 days. We then calculated and offered an amount
r that would give PD of 0.1, 0.3, 0.5, 0.7, or 0.9 (Fig. 3a–b). The EEG group
completed 30 trials at every PD level, except at PD=0.5, for which they
completed 60 trials. The fMRI group completed 40 trials at every PD
level, except at PD=0.5, for which they completed 80 trials. Non-
uniform trial distributions as a function of PD were introduced to allow
us to study the effects of choice difficulty on EEG and fMRI measures,
with equal numbers of trials at each difficulty level. The results of
these analyses have been reported elsewhere (Rodriguez et al., 2014;
Rodriguez et al., 2015b; Rodriguez et al., 2015a). Trial types were ran-
domized and counterbalanced over two blocks for the EEG group and
over four blocks for the fMRI group. We also counterbalanced the map-
ping between choices and button presses for every subject. During the
first half of the second session, approximately half of subjects (17 in
EEG, 15 in fMRI) indicated choices of the delayed reward by pressing a
button with their left index finger and immediate choices by pressing
a different button with their right index finger. The other subjects indi-
cated their choices by the inverse left-right mapping. All subjects
switched the initial response mapping during the second half of the
session.

We used a sequential presentation of delay and amount during the
second session (Fig. 3c). The rationale for this sequential presentation
has been explained elsewhere (Rodriguez et al., 2014; Rodriguez et al.,
2015b). We report RT as measured from the onset of the decision peri-
od, 1000ms into the trial. The duration of the decision period was fixed
at 4000 ms. When subjects made choices in less than 4000 ms the
amount information disappeared and the screen remained blank until
4000 ms elapsed. Trial length was thus fixed at 5000 ms. We discarded
any trial in which a response was made in less than 200 ms or fell out-
side of the decision period. To optimize experimental time and separa-
bility of neural signals across trials for both groups, we introduced a
long inter-trial-interval (ITI) for the fMRI sessions (between 4 and
10 s), and a shorter ITI for the EEG sessions (100–350 ms). In exchange
for participation subjects received $10 cash for the EEG session or $20
for the fMRI session, plus an additional amount, determined by their
choice in a randomly selected trial.

EEG data was collected using a 128 channel Geodesic Sensor Net
(Electrical Geodesics, Inc., Eugene OR, USA), with a 500 Hz sampling
rate, using the vertex as reference. During pre-processing, we re-
referenced to the average reference, epoched trials from −1500 to
+6500 ms around the onset of delay presentation, baseline corrected
trials using the average from 0 to 5000 ms, and band-pass filtered the
data at 0.5–200 Hz. Trials were visually inspected and rejected if exces-
sive artifacts were present. Normally occurring artifacts were rejected
using an independent component analysis algorithm from the EEGLab
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toolbox (Delorme & Makeig, 2004). Epochs were then transformed to
current source density (CSD) using the CSD toolbox (Kayser & Tenke,
2006).

fMRI data was collected using a GE Discovery MR750 Scanner. fMRI
analyses were conducted on gradient echo T2*-weighted echoplanar
functional images with BOLD-sensitive contrast (42 transverse slices;
TR, 2000 ms; TE, 30 ms; 2.9 mm isotropic voxels). Slices had no gap be-
tween them andwere acquired in interleaved order. The slice planewas
manually aligned to the anterior–posterior commissure line. The total
number of volumes collected per subject varied depending on random
inter-trial intervals. The first 8 s (4 volumes) of data contained no stim-
uli and were discarded to allow for T1 equilibration. In addition to func-
tional data, we collected whole-brain, high-resolution T1-weighted
anatomical structural scans (0.9 mm isotropic voxels). Image analyses
were performed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/).
During pre-processing, we first performed slice-timing correction, and
realigned functional volumes to the first volume. Next, we co-
registered the anatomical volume to the realigned functional scans,
and performed a segmentation of grey andwhitematter on the anatom-
ical scan. Segmented images were then used to estimate non-linear
Montreal Neurological Institute (MNI) normalization parameters for
each subject's brain. Normalization parameters estimated from seg-
mented images were used to normalize functional images into MNI
space. Finally, normalized functional images were smoothed using a
Gaussian kernel of 8 mm full-width at half-maximum.

Description of the data

To provide some rationale about the specific assumptions we made
in developing our models, we will briefly discuss the primary details
of the behavioral and neural data, as well as a “folding” process we
used to make a seamless connection from brain to behavior.

Behavioral data
The behavioral data consisted of choice response time measures on

each trial, and the aggregate of these measures is illustrated in Fig. 4.
We illustrate the choice response times by plotting the response time
distributions for the immediate option (i.e., $10 now; I) on the negative
x-axis, and the response time distributions for the delayed option
(i.e., $X in Y days; D) on the positive x-axis. Plotting the distributions
in this way allows us to assess the relative choice probabilities by com-
paring the heights of the two distributions. Fig. 4 shows these response
time distributions for each of the PD values: PD=0.1, 0.3, 0.5, 0.7, and
0.9, left to right, respectively. The figure shows that at low values of
PD, the probability of choosing the immediate option is high, and as PD
increases, so does the probability of choosing the delayed option. This
indicates that our hyperbolic discounting model captured the choice
process well enough to show a behavioral effect within the experimen-
tal manipulation.

Given the linear relationship to PD and symmetric properties of the
neurophysiological measures reported below, it was convenient to
PD = 0.1 PD = 0.3 PD 
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Fig. 4. Summary of behavioral data from the experiment. Moving from left to right, each histo
probability of delayed reward PD arranged in increasing order. Response times corresponding
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fold our data symmetrically around PD=0.5. The folding process creat-
ed three new experimental variables: V1 consisting of data from PD=
{0.1,0.9}, V2 consisting of data from PD={0.3,0.7}, and V3 which was
equivalent to data from the previous PD=0.5 condition. To elaborate,
we recoded immediate-option decisions in the PD=0.1 condition and
delayed-option decisions in the PD=0.9 condition to a variable called
“subjectively high valued” (SHV), and delayed-option decisions in the
PD=0.1 condition and immediate-option decisions in the PD=0.9 con-
dition to a variable called “subjectively low valued” (SLV). The same
mapping was applied to the PD=0.3 and PD=0.7 conditions, but no
mapping was necessary for the PD=0.5 condition. The top row of
Fig. 5 shows the response time distributions for the variables V1 (first
column), V2 (second column), and V2 (third column), where SLV
choices are shown on the left and SHV choices are shown on the right.
The figure shows that as the levels of V increase, preference of the SHV
option decreases until indifference in condition V3. In addition to a rela-
tionship between response probability and condition, the top-right
panel of Fig. 5 shows a violin plot of the response time distributions
for each condition, collapsed across response probability. The white
dots on each violin plot represent the median response time, whereas
the green dot represents the mean response time. The figure shows
that the response times increase from V1 to V2, and from V2 to V3, but
to a lesser degree.

In previous work (Rodriguez et al., 2014), we modeled the (unfold-
ed) intertemporal choice data within a sequential sampling framework,
using the Linear Ballistic Accumulator (LBA; Brown & Heathcote, 2008)
model to explain this choice behavior. In Rodriguez et al. (2014), we fit a
variety of different models positing different theoretical accounts of
how the choice process should change across values of PD in order to
best capture the behavior. We compared these models on the basis of
conventional model fit statistics, taking into account model complexity
and fit, and found that the bestmodel allowed both a drift rate and non-
decision timeparameter to vary as a function of PD values. In subsequent
analyses, we found justification for these choices by comparing the drift
rate parameters across the levels of PD, and concluded that the drift rate
was systematically related (i.e., sigmoidally) to PD across subjects. Fur-
thermore, this relationship was symmetric about PD=0.5. For the non-
decision time parameter, we did not find any substantive relationship
with PD, but did find relationships with the median response time in
each PD condition. Our conclusion was that the nondecision time pa-
rameter was not systematically related to PD, but that the nondecision
time parameter afforded us a level of flexibility that enhanced the
model's fit to the data.

Given that the best-fitting LBA model from our previous work rele-
gated the systematic effects of PD to the drift rate, when folding the
data, we maintained a symmetric relationship between drift rate and
value condition. We also allowed the nondecision time to vary across
value conditions. To parallel the neural model we describe below, we
reparameterized the model such that a “base” drift rate accounted for
the choice response times in Condition V3, a parameter η(1) additively
shifted the model's drift rate between Condition V3 to V2, and another
= 0.5 PD = 0.7 PD = 0.9
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Fig. 5. Summary of behavioral data from the experiment. The top rowshows the choice response timedistributions for the threenew conditionsV1 (first column),V2 (second column), and
V3 (third column) after the folding process (see main text). The response times corresponding to the subjectively low-valued option (SLV) are shown on the negative x-axis, whereas the
response times corresponding to the subjectively high-valued option (SHV) are shown on the positive x-axis. The fourth column shows a violin plot of the response times collapsed across
the response choice for each condition, with the green line/dots representing the mean, and the white dots representing the median. The bottom row shows predictions from the LBA
model for each condition (corresponding to the top row) according to three different sets of shift parameters in the drift rate, illustrated in the fourth column.
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parameter η(2) additively shifted the model's drift rate between Condi-
tion V3 to V1. Although Appendix A contains all of themathematical de-
tails of our implementation, the basic equations of our drift rate
parameterization for the subjectively high valued option are

μV3 ¼ logit−1 νð Þ;
μV2 ¼ logit−1 ν þ η 1ð Þ

� �
; and

μV1 ¼ logit−1 ν þ η 2ð Þ
� �

;

where μk is the drift rate for the subjectively high valued option in
condition k, and v represents the “base” drift rate. This drift rate
reparameterization is mathematically equivalent to our previous ac-
count (Rodriguez et al., 2014), although this new formulation of the
nondecision time component in our model has two fewer parameters.

To illustrate how the LBA model accounts for the folded data, we
simulated themodel – described in Appendix A – for three different set-
tings of the shift parameters for each of the three value conditions,
shown in the bottom row of Fig. 5. The settings of the shift parameters
are represented in the bottom-right panel of Fig. 5, where the x-axis cor-
responds to η(2) (i.e., the shift from V3 to V1), and the y-axis corresponds
to the η(1) (i.e., the shift from V3 to V2). The first parameter setting – il-
lustrated by the black dot in the bottom right panel of Fig. 5 –was (0, 0).
This setting produces no change in drift rate across any of the value con-
ditions. The first, second, and third columns show the predicted choice
response time distributions from the LBA model (black lines) for the
value conditions V1, V2, and V3, respectively. Here, because no change
in drift rate occurred, the model makes equivalent predictions across
value conditions. Other parameter settings are more interesting. For ex-
ample, the red dot in the bottom-right panel of Fig. 5 shows the model
predictions under the setting (η(2),η(1))=(1.5,0.5). Moving from V3
(third column) to V2 (second column), we see a marked increase in
the probability of endorsing the SHV option. This change is produced
by the 0.5 unit increase (i.e., on the logit scale) in the drift rate for the
SHV option. Moving from V3 (third column) to V1 (first column), we
see an even larger increase in the probability of endorsing the SHV op-
tion. Again, this increase follows directly from the value of η(2)=1.5.
The third parameter setting produces response time distributions that
are similar to the second parameter setting, but themagnitude of the ef-
fect is in the opposite order with respect to value conditions. These pre-
dictions are not in linewithwhat the pattern present in the data, shown
in the top row of Fig. 5, whereas the simulation produced from the
second parameter setting does closely match the empirical data. In
interpreting the parameter values in subsequent sections, we should
keep in mind that in general, parameters falling in this lower triangular
area are more reflective of the pattern in the observed data than are pa-
rameters in the upper triangular area.

Neural data
Our neural data consisted of both EEG and fMRI recordings. In a pre-

vious analysis (Rodriguez et al., 2015a), we first identified the elements
of the EEG data that were significantly related to PD. Fig. 6a shows a to-
pographic plot of the GLM analysis relating EEG activity by electrode to
the levels of PD. The strongest relationship was observed at an area of
the scalp that roughly corresponds to the dorsal medial frontal cortex
(dmFC), and these electrodes are illustrated in Fig. 6a with white circles
(i.e., electrodes E5, E6, E11, and E12). Following this result, we investi-
gated the temporal properties of this signature by plotting the average
EEG signal for each of the levels of V, shown in Fig. 6b. This analysis re-
vealed a key timewindowwhere the average EEG signal was differenti-
ated across the levels of V ranging from 300 to 850 ms, illustrated by
dashed vertical lines. Fig. 6c, 6d, and 6e show the average EEG signal
for the four electrodes in Fig. 6a in the 300–850 ms time window for
V1, V2, and V3, respectively, color coded according to the key on the
right hand side. The figures show that as V increases, the average EEG
signal decreases. Having identified the key spatial and temporal aspects
of the neural signal, we can then use these results to facilitate our joint
behavioral–neural analyses belowby reducing the dimensionality of the
neural data. Specifically, the single-trial EEG data observed at the four
electrode locations in Fig. 6a and in the time window 300–850 ms
were used as input into the models below.

A similar procedure was used to identify the key neural signature in
the fMRI data (Rodriguez et al., 2015b). The first analysis investigated
which brain regions were linearly related to the levels of V through a
GLM analysis. Fig. 6f shows that the dmFC was significantly related to
V across subjects, a finding that is consistent with our EEG analysis in
the top row (Rodriguez et al., 2015a). Having identified this area, we es-
timated single-trial βs for the neural activity in the dmFC by fitting a
general linear model to the blood oxygenation level dependent
(BOLD) responses. Each GLM specified the onsets of the delay presenta-
tion and the subjects' response in every trial, plus the onset of the
amount presentation for a single trial. Events in all three onset regres-
sors were modeled as impulse delta functions and convolved with the
canonical hemodynamic response function (HRF). In addition, the



Fig. 6. Summary of neural data from the experiment. (a) Topographic plot of the test value statistics relating EEG activity to the levels of PD in a GLM analysis. The electrodes with the
strongest relationship are represented with white circles. (b) Mean stimulus-locked event-related potential (ERP) for the three value conditions: V1 (blue line), V2 (black line), and V3
(red line). The time window used in the analysis was from 300 to 850 ms, which is indicated by the dashed vertical lines. (c, d, e) Topographic plots of the average EEG signal in the
four electrodes shown in (a) during the time window in (b), for each of the three value conditions: V1 (c), V2 (d), and V3 (e). These trial-by-trial EEG values were used in the
modeling applications below. (f) Axial view of the brain region (i.e., the dmFC) found to significantly correlate with value condition. (g) Average of the single-trial beta estimates for
each value condition, based on a GLM analysis of dmFC activity during the decision period. (h, i, j) Similar information in Panel g, but illustrated in the dmFC, and separated across the
three value conditions: V1 (h), V2 (i), and V3 (j). These trial-by-trial β values were used in the modeling applications below.
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model included six regressors corresponding to the motion parameters
estimated during data preprocessing and constants to account for the
mean activity within each of the four sessions over which the data
were collected. Fig. 6g shows the average of the single-trial βs in V1
(blue),V2 (black), and V3 (red), and this average activity is also illustrat-
ed in the brain on the same axial slice given in Fig. 6f for V1 (h), V2 (i),
and V3 (j). Collectively, Figures g–j show that as the levels of V increase,
activation of the dmFC increases, an effect that is opposite in direction to
our EEG data. In our analyses below, we will use the single-trial β esti-
mates in the dmFC as input to our joint behavioral–neural model.

A bivariate joint model of value accumulation

Our ultimate goal is to demonstrate that a trivariate joint model can
be useful in modeling EEG and fMRI data from a descriptive and predic-
tive perspective. However, to show that this is a useful extension, we
must also demonstrate that the trivariate model provides something
beyond bivariate joint models (Turner et al., 2013a). Furthermore, it
might be useful to first show some of the advantages a bivariate joint
model provides through two pedagogical examples. Hence, we begin
our analyses by examining the extent to which each of the neural mea-
sures are related to the latent parameters of the behavioral model. To
accomplish this, we constructed a joint model that simultaneously cap-
tures the effects present in the choice response time data and the neural
recordings. Because we are only examining two sets of variables
(i.e., behavior and EEGmeasures), wewill refer to this model as a bivar-
iate jointmodel. Fig. 1 illustrates the Trivariatemodel that subsumes the
bivariate model presented in this section; that is, in this section we are
only concerned with relating the behavioral data (orange plate) to ei-
ther the EEG data (green plate; first analysis) or the fMRI data (blue
plate; second analysis). We will now conceptually summarize each of
the three components of the bivariate model, and refer the interested
reader to Appendices A and B for the formal details.

Details of the model

The jointmodeling approach is particularlywell-suited for situations
in which the measures of interest can be described independently of
one another, and the research goal is to infer and constrain the model
parameters describing each of these measures (see Turner et al.
(2015a)), for a survey of different statistical strategies for linking neural
and behavioral measures). These independent “submodels” are then
linked together, comprising an entirely new model with different – al-
beit similar – properties of its constituent parts. Furthermore, the
linking process inherently changes the submodels, due to the added
constraint provided by the additional measures. That is, data from one
submodel affects the parameter estimates of the other submodel, and
vice versa. Perhaps more interesting is that the full model is fit to the
full data set in one setting, so elaborate retraining techniques are not
necessary in generating flexible predictions (e.g., for missing data).
The bivariate jointmodel can be described in three parts: (1) the neural
submodel which succinctly describes the important statistical proper-
ties of the neural data, (2) the behavioral submodel consisting of latent
model parameters assumed to produce an observer's set of choice re-
sponse time data, and (3) a linking structure that binds the two
submodels together. We will discuss each of these pieces of the model
in turn.

The neural submodel

Thefirst piece of the bivariate jointmodel is the neural submodel de-
scribing the neural data. The choice of a neural submodel is an impor-
tant one, but in our experience, the most important factor in this
choice is reducing the neural data to a (smaller) set of neural model pa-
rameters. The neural submodel can be generative, expressing how the
neural data arise from a theoretically-oriented process (e.g., Manning
et al., 2014; Friston et al., 2003; Gershman et al., 2011), or statistical, de-
scribing the statistical properties of the neural data without theoretical
considerations (e.g., Norman et al., 2006). One effective strategy within
the jointmodeling framework for functional data is to average the trial-
to-trial neural signal across an important time window in the decision
process (e.g., Turner et al., 2015b). This procedure allows one to easily
justify choices of the linking function via the central limit theorem. Spe-
cifically, averaging the neural data produces a random variable that is
Gaussian in distribution, making multivariate Gaussian linking func-
tions both justified and convenient (see Appendix B for details).

Our data consist of two neural measures – EEG and fMRI – and so to
examine the modality-specific relationships present in each neural
measure, wewill use the bivariate jointmodel in two separate analyses:
one that includes behavior and only EEG data, and one that includes be-
havior and only fMRI data. As discussed above, Fig. 6 illustrates the EEG
data from the experiment. Panel a shows the group average across value
conditions in the critical time period. To reduce the dimensionality of
our data, we focused on the four electrodes centered over dorsal medial



103B.M. Turner et al. / NeuroImage 128 (2016) 96–115
frontal cortex (dmFC), which are represented in Panel a aswhite circles.
Panel b shows the average stimulus-locked EEG signal for each value
condition across time, where the critical time period is marked by the
dashed vertical lines. Panels c, d, and e show the average topography
for each electrode in the same window, but separated according to
value condition (i.e., V1, V2, and V3, respectively). We used the single-
trial measures of EEG activity as input to the model on a particular
trial; hence, for a particular subject on a particular trial, our neuralmea-
sures were a vector consisting of four values: the time-averaged EEG
signal amplitude between 300 and 850 ms for each of the four elec-
trodes represented in Panel a of Fig. 6.

We used a similar strategy for the fMRI data. Panel f in Fig. 6
shows the t-statistic obtained for linear trend across value conditions
(a statistic that we had previously obtained in Rodriguez et al.
(2015b)). This GLM analysis identified the dmFC as a key brain area
in the deliberation of intertemporal choices, which motivated its
use in the analyses in this article. Having identified the dmFC in
this group analysis, we could then establish single-trial β estimates
of dmFC activation. Next, we can group these single-trial values ac-
cording to the value condition. Panel g shows these average beta es-
timates across value conditions in a bar graph, whereas Panels h, i,
and j show these same average values in the identified dmFC area
in Panel f, to be consistent with the top row of Fig. 6. We used the
single-trial β estimates of dmFC activity as input to the bivariate
joint model. Compared to the EEG data, our fMRI data are more
sparse (i.e., consisting of a single value rather than four values).

As described in Appendix B, the bivariate joint model uses a param-
eter to capture themean neural (i.e., either EEG or fMRI) signal in the V3
condition, where the choice options have approximately the same sub-
jective value, as well as additive parameters that capture the change in
themean neural signal from value condition V3 to V2, and from V3 to V1.
At the individual subject level, these parameters are called δj

(1)
, and δj

(2)
,

respectively, for Subject j. However, at the group level, they are referred
to as δμ(1), and δμ(2). These parameters are important because they are
linked to parameters in the behavioralmodel that capture an analogous
additive effect in the behavioral data. We will use these parameters in-
terchangeably in the analyses that follow to describe differences in the
EEG signal or β values across conditions.
The behavioral submodel
To characterize the behavioral data, we used the Linear Ballistic Ac-

cumulator (LBA; Brown & Heathcote, 2008) model. While the technical
details of themodel are described in Appendix A, the concept of the LBA
model is similar to all other sequential sampling models of choice re-
sponse time (e.g., Ratcliff, 1978; Usher & McClelland, 2001; Shadlen &
Newsome, 2001; Busemeyer & Townsend, 1993). The model assumes
that, upon presentation of a stimulus, a competition ensues among the
choice alternatives to gather evidence sequentially, leading to a thresh-
old amount of evidence. In the LBAmodel, this accumulation process oc-
curs ballistically and independently for each choice alternative. Once
one of the alternatives gathers enough evidence to reach a threshold,
a choice is made by the observer to correspond to the winning accumu-
lator. Rodriguez et al. (2014) showed that the LBA model provided an
explanation of decision-making behavior in intertemporal choice that
facilitated an understanding of how reward and delay information si-
multaneously mapped to choice probabilities and response times.

In our model, the parameters of greatest interest are the parameters
that correspond to the rate of evidence accumulation (i.e., the “drift
rate” parameters) across value conditions. As described in Appendix A
(see also Fig. 5), our model uses a parameter to capture the base drift
rate in the V3 condition, where the options are equally preferable, as
well as parameters that capture the additive shift in the drift rate from
V3 to V2, and fromV3 to V1. At the individual subject level, these param-
eters are called ηj

(1)
, and ηj

(2)
, respectively, for Subject j. However, at the

group level, they are referred to as ημ(1), and ημ(2).
The linking structure
The final component of themodel simply links the parameters of the

neural and behavioral submodels together. To accomplish this, we ex-
ploit the Gaussian properties of our neural submodel, and directly con-
nect the parameters δμ(1), δμ(2), ημ(1), and ημ(2) by way of a multivariate
Gaussian distribution (i.e., Eq. (B.1)). The consequence of the linking
function is a formal association between the shift parameters in the
neural and behavioral setting. Specifically, if themodel learns that larger
changes in δ(2) are accompanied by larger changes in the drift rates η(2),
then for a new subject, themodel will predict changes in the behavioral
data that are proportional to the changes observed in theneural data be-
tween conditions V3 and V1. The multivariate Gaussian distribution is
convenient because it provides clear interpretations for the parameters
of interest. Namely, the variance–covariancematrix can be transformed
into a correlationmatrix that carries with it a quantification of themag-
nitude and direction of the relationship between pairs of model param-
eters. This is particularly useful in our analyses because it directly
informs us about the type of associations that exist between the param-
eters of the neural and the behavioral submodels.

Application to EEG data

The first analysis only considers the effects of adding EEG data to the
analysis of behavioral data. To examine this, we focus on the first 23
subjects in our data (i.e., the first 23 rows shown in Fig. 2). These sub-
jects will be used again in the Trivariate Joint Model analysis below.
We did not use the last eight subjects (i.e., Subjects 47–54) in our exper-
iment, even though they did provide EEG data in one condition.

Results
We present our results in two parts. First, we discuss our results

from a generative modeling perspective, by evaluating the relative
merits of our modeling approach through an examination of the poste-
rior distributions. To do this, we compared the parameter estimates of
the jointmodel, which takes into account both the neural and behavior-
al data, to the parameter estimates of a behavioral-data-only model,
which is effectively the behavioral submodel of the bivariate joint
model discussed above. Such a comparison allows us to evaluate the
magnitude of the constraint that the neural data provide on the behav-
ioralmodel (cf. Turner (2015); Cassey et al. (2015)). Second, we discuss
our results from a predictive modeling perspective, where we use out-
of-sample predictions to assess the generalizability of the bivariate
jointmodel relative to the behavioral-data-onlymodel. Such an analysis
allows us to assess the importance of the neural data in making predic-
tions about behavioral data, and avoid problems of interpretation that
are associated with overfitting (Wilson et al., 2015).

Generative model analysis. A central theme in the joint modeling frame-
work is that the neural data should guide the behavioralmodel in the in-
ference process. Ideally, the joint model would identify a statistical
pattern in the neural data that resembles the mechanism(s) assumed
by the behavioral model. Due to the particular assumptions of our
linking function, if a statistically similar (i.e., correlated) mechanism to
the behavioral model is found in the neural data, the amount of infor-
mation inferred about the latent variable from the full data set will in-
crease, which can affect both the mean and variance of the posterior
distribution (Turner, 2015). Both of these posterior properties are im-
portant because they can affect the accuracy of the predictions about
new data. One way to examine the amount of information gained
from the neural data is to compare the parameter estimates obtained
from fitting a behavioral-data-only model to the behavioral data to the
estimates obtained from fitting the bivariate joint model to the behav-
ioral and neural data. Differences in the estimates of the behavioral
model parameters are attributable to information from the neural data
that has propagated upward through the hyperparameters, and down-
ward to the behavioral submodel parameters.



D
en

si
ty

−3 −1 0 1 2 3 4

0.
0

0.
4

0.
8

1.
2

−3 −1 0 1 2 3 4

0.
0

0.
4

0.
8

1.
2

Behavioral Model
Bivariate Joint Model

η1
(1) η1

(2)

Fig. 7. Comparison of the value effect parameters η1
(1)

(left panel), and η1
(2)

(right panel)
obtained from the behavioral-data-only model (orange) and the bivariate joint model
(green) for the withheld subject in the EEG experiment.

104 B.M. Turner et al. / NeuroImage 128 (2016) 96–115
As discussed above, the key parameters in our analysis are the pa-
rameters that capture the additive effects of evidence accumulation
across value conditions. Because our model assumes a structural rela-
tionship from subject-to-subject, the important parameters to examine
are ηj(1) and ηj(2). To examine the effects of such a linking structure, one
strategy is to selectively withhold and reveal some aspects of the neural
data from themodel. To implement this, we arbitrarily removed the be-
havioral data for Subject 1 before either model was fit, but still modeled
Subject 1's parameters in the fitting routine. We did not withhold the
neural data for Subject 1 because these data will have no influence on
the parameters of the behavioral-data-only model (but they will influ-
ence the parameters of the bivariate joint model). When fitting the
behavioral-data-only model to these data, the resulting parameter esti-
mates are akin to a prior predictive distribution. However, when fitting
the bivariate joint model to data, the resulting parameter estimates are
still the prior predictive distribution, but importantly, they are now a
conditional prior predictive distribution because the parameters of the
neural submodel are estimable. The resulting predictive distributions
can then be used to make predictions about data across all value condi-
tions in the experiment.

We first fit the behavioral-data-only (i.e., a hierarchical LBA) model
to the behavioral data, and then fit the bivariate joint model to the full
data. The algorithmic details of our fitting procedure are outlined in
Appendix B. Fig. 7 shows the estimated posterior distributions for the
parameters η1

(1) (left), and η1
(2) (right) for Subject 1. In both panels, the

orange histograms correspond to the estimated parameters for the
behavioral-data-only model, whereas the green histograms correspond
to the bivariate joint model. Recall that η1

(1) and η1
(2) represent the in-

crease in the drift rate from the V1 (i.e., the most difficult) condition
to V2 and V3, respectively. Increases in the drift rate from one condition
to another reflect increases in the subject's propensity to choose the re-
sponse that is subjectively larger in value. Hence, we should expect to
see increasingly positive values for η1

(1) and η1
(2) such that η1

(2)Nη1
(1)

(Rodriguez et al., 2014). However, we should keep in mind that this in-
tuition is derived from group-level analyses, and does not necessarily
describe the data for each individual subject. Furthermore, the posterior
distributions in Fig. 7 have not been estimated from behavioral data. In-
stead, they represent the model's ability to generalize the information
contained in the remaining 22 subjects in the data subset.1

Fig. 7 shows that for both models, the prediction for η1
(1) is centered

on zero, whereas for η1
(2), the posteriors are shifted slightly upward. This

indicates that bothmodelswere capable of using reasonably sparse data
(i.e., just 22 subjects) to generalize predictions for a subject whose data
were not observed in a way that is reflective of our previous behavioral
analyses on a full data set (consisting of 46 subjects; Rodriguez et al.,
2014). However, the important question was whether the bivariate
joint model was more sensitive to the effects of value condition due to
its ability to exploit the information in the neural signal. To answer
this, we only need to compare the orange and green posterior predic-
tions in both panels. Visually, it is clear that the green histograms have
less variance, and the locations of the green and orange histograms
are approximately equal. For η1(1), the means are 0.393 and 0.437 and
the standard deviations are 1.005 and 0.500 for the behavioral-data-
only and the bivariate joint model, respectively. For η1

(2), the means
are 1.068 and 0.946 and the standard deviations are 1.147 and 0.628
for the behavioral-data-only and the bivariate jointmodel, respectively.
We can also evaluate themodels' predictions for the probability that η1

(1)

and η1
(2) are greater than zero. The behavioral-data-only model predicts

that p(η1(1)N0)=0.657 and p(η1
(2)

N0)=0.828, whereas p(η1
(1)

N0)=
0.819 and p(η1

(2)N0)=0.937 for the bivariate joint model. This suggests
that the relative generalizability to patterns across conditions is greater
in the bivariate joint model, although it is worth emphasizing that this
generalization may not result in better predictions for behavioral data.
1 For the bivariate joint model, if you count Subject 1, who only had neural data, then
the posteriors reflect a generalization from 23 subjects.
To address that question, we will use predictive modeling techniques
in the next section.

Another generativemodeling analysis would be to inspect the corre-
lation parameters between the neural and behavioral submodels. In the
bivariate models, two correlation parameters exist that describe the re-
lationship between the additive shift parameters in the neural and be-
havioral submodels. Specifically, the parameter ρ1 describes, across
subjects, the degree to which ηj

(1) is related to δj
(1) for all j, and the pa-

rameter ρ2 describes, across subjects, the degree to which ηj
(2) is related

to δj
(2). Hence, the parameters ρ1 and ρ2 describe how much the effects

present in the neural and behavioral data from conditions V2 to V3 and
from V1 to V3, respectively. Fig. 8 shows the estimated posterior distri-
butions for the hyper correlation parameters ρ1 (left panel), and ρ2
(right panel). Fig. 8 shows that ρ1 is centered near zero, whereas ρ2 is
centered on positive values. Hence, the posterior estimate of ρ2 suggests
that the additive effects that give rise to higher drift rates in conditionV1
are correlated with the additive effects of the EEG signal. Hence, across
subjects, increases in the EEG signal in condition V1 relative to condition
V3 are predictive of higher drift rates in condition V3 (see also Fig. 7).

Predictive modeling analysis. We also evaluated the generalizability of
our results by performing a leave-one-out cross-validation analysis for
both models. Although we could have performed a similar analysis on
the EEG data, we chose to focus our attention on predicting behavioral
data because we felt it was the more likely application of our modeling
framework (but see the Trivariate modeling section for predictions of
neural data). To do this, we first hid the behavioral data for a single sub-
ject (but left the EEG data intact), then fit both the bivariate joint model
and the behavioral-data-only model to the remaining data. The fitting
process allowed us to estimate the posterior distribution of the model
parameters, fromwhichwe generated predictions about the behavioral
data – a distribution known as the posterior predictive distribution
(PPD) – for each model. These predictions were made “out of sample”,
meaning that the data that was being predicted was not revealed to
the model. Importantly, when generating predictions for behavioral
data, the model was told which condition to make a prediction for, but
was not told anything about the behavioral data themselves. The final
step was to evaluate the likelihood of the (hidden) data under the
PPD, which gave us a distribution of likelihood values. We took theme-
dian of these distributions for each model and plotted them against one
another in Fig. 9. Fig. 9 compares the (log) likelihood values for each
subject in our data. A better model fit is acquired by having a higher
(log) likelihood value. The green region in Fig. 9 represents areas
where the bivariate joint model outperforms the behavioral-only
model, whereas the orange region in Fig. 9 represents areas where the
behavioral-only model outperforms the bivariate joint model. Fig. 9
shows that for 19 of the 23 subjects in our data, the bivariate joint
model outperforms the behavioral-data-only model.
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each panel, a reference line is plotted to indicate zero correlation.
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Summary
In this first analysis, we found that the bivariate jointmodelwas able

to generalize predictions to drift rate parameters better than a
behavioral-data-only model. We found that these generalizations had
similar expected values, but had considerably less variance and were
better aligned with the patterns we already expected to see from previ-
ous experience with subsets of these data (Rodriguez et al., 2014). We
then assessed whether or not this additional constraint was actually a
good thing by cycling the models through a standard leave-one-out
cross-validation test. We found that for 19 out of the 23 subjects in
the EEG data subset, the bivariate joint model outperformed the
behavioral-data-only model. A large part of this predictive power
comes from the enhanced reliability of the model parameters. Having
less variance associated with each parameter facilitates performance
on cross-validation tests, as we have shown on predictions for single-
trial model parameters (Turner et al., 2015b). Taken together, these re-
sults suggest that the neural data do indeed provide more insight to
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Fig. 9. Predictive performance of the joint and behavioral models on the EEG dataset. Each
node in the graph represents themodels' performance for the subject indicated,where the
performance for the joint model is represented on the y-axis and the performance for the
behavioral-data-only model is represented on the x-axis. Nodes located in the green re-
gion indicate that the performance for the bivariate joint model was better than the be-
havioral-data-only model. In total, the bivariate joint model performed best for 19 of the
23 subjects.
decision making in a way that facilitates prediction of behavioral data.
Despite these promisingfindings, it remains anopenquestion ofwheth-
er this generalization ability works for other measures, such as fMRI.

Application to fMRI data

Our second analysis only considers the effects of adding fMRI data to
the analysis of behavioral data. To examine this, we focus on the second
23 subjects in our data (i.e., rows 24–46 in Fig. 2). These subjects will
also be used in the trivariate joint model analysis below. We did not
use the data from the last eight subjects (i.e., Subjects 47–54) in our
experiment, even though they did provide fMRI data in one condition.

Results
We present our results in an analogous manner as in the EEG appli-

cation above. First, we present our generative modeling analysis by
evaluating the models' ability to generalize the patterns in the data to
new subjects where behavioral data are not observed. We then inspect
the estimated posterior distributions for the correlation parameters re-
lating the additive shifts in the neural and behavioralmeasures. Second,
we perform another cross-validation test to assess themodels’ ability to
predict behavioral data.

Generative model analysis.We assessed the benefits of the bivariate joint
model relative to the behavioral-data-only model in an analogous way
as in the EEG application above. Specifically, wewithheld the behavioral
data for Subject 24, but did not withhold Subject 24's neural data. We
then estimated parameters from the full hierarchical model, and specif-
ically Subject 24. To accomplish this, we first fit the behavioral-data-
only (i.e., a hierarchical LBA) model to the behavioral data, and then
fit the bivariate joint model to the full data. The algorithmic details of
our model-fitting approach were equivalent to the EEG application
above (also see Appendix B).

Fig. 10 shows the resulting posterior distributions for Subject 24's
main behavioral effect parameters: η24

(1) (left panel) and η24
(1) (right

panel). In both panels, predictions from the bivariate joint model are
shown as blue histograms, whereas predictions from the behavioral-
data-only model are shown as orange histograms. Fig. 10 shows that
while the parameter η24

(1) is centered on zero, the parameter η24
(2) has a

slightly positive effect, suggesting that as the subjective values of the
two alternatives become more dissimilar, the drift rate for the subjec-
tively higher valued alternative increases. Comparing across models,
we see that visually both models produce posteriors with similar ex-
pected values, the posteriors are again substantially different. For η24

(1),
the means are 0.340 and 0.329 and the standard deviations are 0.999
and 0.512 for the behavioral-data-only and the bivariate jointmodel, re-
spectively. For η24

(2), themeans are 1.132 and 1.277 and the standard de-
viations are 1.166 and 0.693 for the behavioral-data-only and the
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bivariate joint model, respectively. We can also quantitatively evaluate
the models' generalizations for the probability that η24

(1) and η24
(2) are

greater than zero. The behavioral-data-only model predicts that
p(η24

(1)N0)=0.638 and p(η24
(2)N0)=0.836, whereas p(η24

(1)N0)=0.747
and p(η24

(2)N0)=0.967 for the bivariate joint model. Similar to the EEG
application above, these results suggest that the bivariate joint model
is better able to generalize patterns in the data due to its ability to
capture the influence of neural data on the behavioral submodel. In
the predictive analysis section below, we will evaluate whether or not
this added constraint is a good thing when predicting behavioral data.

As a final generativemodel evaluation,we can also examine the pos-
terior distributions of the parameters controlling the degree of correla-
tion between the additive effect parameters in the neural and
behavioral submodels. Fig. 11 shows the correlation parameters ρ1
(left panel), and ρ2 (right panel). In the model, ρ1 controls the degree
of correlation between the shift in drift rate parameter ηj

(1) and the
shift in the average single-trial beta values δj

(1), whereas ρ2 controls
this same shift in drift rate parameter ηj

(2) and the shift in the average
single-trial values δj

(2). Importantly, these correlations are assessed
across subjects, so for anynewsubject,we can condition on one shift pa-
rameter to generate predictions for the other (e.g., see Fig. 10. Fig. 11
shows that the estimated correlation parameter ρ1 is centered at zero,
reflecting that the information in the neural and behavioral submodel
parameters is not strongly related across subjects. However, the
estimated posterior distribution for the correlation parameter ρ2 is cen-
tered on negative values off of zero, reflecting shared information be-
tween the submodel parameters.

Predictive modeling analysis. In the predictive modeling analysis, we
used the same procedure described above in the EEG application to
carry out a cross-validation test. We first removed the behavioral data
for a single subject worth of data. Next, we fit both the bivariate joint
model and the behavioral-data-only model to the remaining data set.
Third, we generated predictions for thewithheld behavioral data. Final-
ly, we evaluated the log likelihood of the withheld data under each pre-
dictive distribution and compared the log likelihood values across
models. Fig. 12 shows this comparison. The figure shows that the bivar-
iate jointmodel obtained a higher log likelihood value for each of the 23
subjects' data.

Summary. Similar to the EEG application above, we find that the model
predictions for the effects of the behavioral data are in line with our in-
tuition derived from the group data. The shifted effect parameters
across the neural and behavioral submodels were strongly correlated
between Conditions V1 and V3. The effects present from Condition V3
to V2 were not as pronounced as those observed from Conditions V3
to V1. Together these results suggest that there is shared information
between the neural and behavioral measures in this condition, leading
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Fig. 11. Estimated posterior distributions for the hyper correlation parameters relating the
additive shift parameters in the neural and behavioral submodels across the V3 and V2
conditions (left panel), and the V3 and V1 conditions for the fMRI data. In each panel, a
reference line is plotted to indicate zero correlation.
to greater constraint on the behavioral submodel parameters (see
Fig. 11). We then evaluated the utility of this additional constraint via
a leave-one-out cross-validation study. We again find that the predic-
tions of the bivariate joint model were appreciably better than the
behavioral-data-only model.

These analyses have established the unimodal utility of the neural
data in both the EEG and fMRImeasures. Both analyses produced better
constraint of the behavioral submodel, and more importantly, this con-
straint lead to more accurate predictions about the behavioral data.
However, the question remains as to whether or not the integration of
behavior and all neuralmeasures can improve onwhat could be obtain-
ed in separate bivariate joint model analyses. In the next section we
evaluate this question by extending our bivariate joint model to all
threemeasures simultaneously – amodel that we refer to as a trivariate
joint model.

A trivariate joint model of value accumulation

To fit the data, we extended the bivariate joint model used in the
previous sections by simply combining the neural submodels presented
in the bivariate EEG and bivariate fMRI models above. This creates a
model illustrated in Fig. 1 that captures behavior, EEG, and fMRI data
in one cohesive structure. The technical details of this extension are pre-
sented in Appendix C.

Results

Similar to the bivariate applications to EEG and fMRI data above, we
performed both generative and predictive modeling analyses. In addi-
tion, in the predictive modeling section below, we show how the
trivariatemodel can be used to generate predictions for neural data con-
ditioned on behavior. We present these analyses in turn.

Generative model analysis
Our generative analysis was similar to the bivariate applications

above. In our first analysis, we focused on the effects of the neural
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data on the shift parameters η(1) and η(2) in the behavioral submodel.
Unlike our bivariate applications above, we now have two neural mea-
sures we can consider adding to the model, creating four different
models to test. The first model only considers the behavioral data, the
second model considers only the behavioral and EEG data, the third
model considers only the behavioral and fMRI data, and the fourth
model considers the behavioral, EEG, and fMRI data, as in Fig. 1. For
illustration purposes, we again withheld the behavioral data for one
subject – Subject 53 – to compare and contrast each model's
predictions.2 In the predictive modeling analysis section below, we
will use an extension of this technique in a cross-validation test.
Although we withheld Subject 53's behavioral data, the EEG and fMRI
data were left intact. Because some of these models are unable to use
all components of the neural data, each model's ability to generalize
to a new subject's behavioral data depends on the reliability of the us-
able neural data.

We fit each of the four models using the methods described in the
appendices. Fig. 13 shows the resulting posterior distributions for Sub-
ject 53's main behavioral effect parameters: η53

(1) (left panel) and η53
(2)

(right panel). In both panels, predictions from the behavioral-data-
only, bivariate EEG, bivariate fMRI, and trivariate models are shown as
orange, green, blue and red densities, respectively. Fig. 13 shows that
both η53

(1) and η53
(2) are centered on positive values, with η53

(2) being larger
than η53

(2). These results are consistent with the previous bivariate joint
model analyses above. Comparing across models, we see that while all
models produce posteriors with similar expected values, the dispersion
of those posteriors differs substantially. Namely, the behavioral-data-
only model has the widest variance, the bivariate EEG and fMRI models
have similar and slightly less variance, and the trivariate model has the
smallest variance. We will evaluate whether this pattern in variances
across models leads to better predictions of the behavioral data in the
predictive modeling analysis section below.

We can also quantitatively evaluate the models' generalizations for
the probability that η53

(1) and η53
(2) are greater than zero. The behavioral-

data-only model predicts that p(η53
(1)N0)=0.666 and p(η53

(2)N0)=
0.874. The bivariate EEG model predicts that p(η53

(1)N0)=0.766 and
p(η53

(2)N0)=0.950. The bivariate fMRI model predicts that p(η53
(1)N0)=

0.796 and p(η53
(2)N0)=0.929. Finally, the trivariate model predicts that

p(η53
(1)N0)=0.839 and p(η53

(2)N0)=0.970. The basic pattern is consis-
tent with the pattern of variance above: the models whose posteriors
have less variance predict greater probabilities that the η parameter is
greater than zero. Furthermore, the behavioral-data-only and the bivar-
iatemodels predict greater probabilities that η is greater than zero com-
pared to the bivariate analyses above, suggesting that the additional
data is consistent with the subsets considered in the above sections.

The dominant factor contributing to the pattern of predictions ob-
served in Fig. 13 is the variance–covariance matrix ∑ linking neural
and behavioral model parameters. Recall that each shift effect uses a
separate variance-covariance matrix, such that Σ(1) corresponds to the
differences between conditions V2 and V3, and Σ(2) corresponds to the
differences between conditions V1 and V3. In addition, each model's
use of ∑ varies by the type of neural measure. Specifically, the
behavioral-data-only model does not use any neural data, and so it
does not use a variance-covariance matrix at all. The bivariate EEG and
fMRI models do capture the effects of the shifts between conditions,
2 Unlike the bivariate modeling applications above, the trivariate modeling analyses
must deal with a sparsity issue in the number of subjects providing all three measures
(i.e., behavioral, EEG, and fMRI). For this reason, Subject 53 was not chosen arbitrarily,
but was instead selected on the basis of having the fewest number of trials. Specifically, af-
ter data preprocessing, Subject 53provided 240 observations of joint behavior and EEGda-
ta, but only 98 observations of joint behavior and fMRI data, whereas the other 7 subjects
provided (on average) 226.14 and 239.71 trials, respectively. This choicemakes use of the
most amount of data, but should have little impact on the results. For example, choosing
another subject might weaken the correlation observed between EEG and fMRI, but only
proportional to the difference between the number of data points for this hypothetical
subject and the number of data points for Subject 53, which is on average 127.85 trials.
but in a way that is unique to the type of neural measure used. Hence,
the two ∑ matrices will be different across the two bivariate models.
Finally, the trivariate model has larger∑matrices to capture the asso-
ciations between behavioral, EEG, and fMRI data sources. At the outset,
we might expect the trivariate model's ∑ matrix to resemble compo-
nents of the bivariate models with corresponding parts. For example,
the bivariate EEG model should have a ∑ matrix that is similar to the
components of the trivariate model that capture the correlations be-
tween behavior and EEG data. To examine this, we can separate out
the effect parameters within ∑ of the trivariate model, and compare
them to similar effect parameters within ∑ in the bivariate joint
models.

Fig. 14 shows the important components of the Σ matrices for the
Conditions V2 and V1 (Σ(1); top row), and for the Conditions V3 and
V1 (Σ(2); bottom row). Each column represents the corresponding cor-
relation parameters relating the three measures: behavioral and EEG
model parameters (left column), behavioral and fMRI model parame-
ters (middle column), and EEG and fMRI model parameters (right col-
umn). The estimated correlation parameters for each of the three joint
models are illustrated with histograms of different colors: bivariate
EEG as green, bivariate fMRI as blue, and the trivariate model as red.
Fig. 14 shows that components of the bivariate models do closely align
with the corresponding components of the trivariate model; however,
the variance of the estimate posterior distribution for the trivariate
model is smaller, especially for the Σ(2) matrix. Akin to the other com-
parisons of behavioral-data-only and jointmodels above, this additional
constraint comes fromhaving additionalmeasures in themodel that are
correlated. The right column of Fig. 14 shows that the additive shift pa-
rameters in the EEG and fMRI data are uncorrelated across Conditions
V2 and V3, but strongly negatively correlated across Conditions V1 and
V3. Although this relationship is something that wemight have logically
deduced from two separate bivariatemodel analyses, only the trivariate
model is able to use this information to provide statistical constraint in
generating predictions for new data.

Predictive modeling analysis
We again performed a leave-one-out cross-validation test to assess

the models' ability to generate predictions for behavioral data. To ac-
complish this, we focused on the eight subjects who provided both
EEG and fMRI measures, so that the bivariate and trivariate models
could be directly compared. First, we removed all data for one subject
(e.g., Subject 47). Second, we fit all four models to the remaining 53
subjects' data. Third, we generate predictions for the withheld subject's
behavioral data, conditional on some aspect of the neural data. For ex-
ample, the bivariate EEGmodel only takes EEG data as an input, where-
as the trivariate model can take both EEG and fMRI data as inputs.
Finally, we examined the models' predictive accuracy by calculating
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the (log) likelihood of the withheld subject's data from the estimated
posterior distributions via Monte Carlo procedure (Robert & Casella,
2004). Specifically, we integrated over the posterior distributions to nu-
merically estimate the probability that any given observation for a par-
ticular subject was best predicted by a particular model. In the end, we
arrived at an estimate of the probability that a particular subject’s data
was best captured by each model, a value that summed to one across
models. Fig. 15 shows a ternary plot of these probabilities for the eight
subjects in our data. In the figure, we removed the behavioral-data-
onlymodel from consideration because (1)we have already established
the bivariate model's ability to out predict the behavioral-data-only
model, and (2) in this analysis, it performed the worse of the four
models.
Fig. 15. Results of the cross-validation test on the behavioral data from the last eight
subjects of the experiment. The three vertices of the ternary plot each designate areas
favoring one type of joint model: bivariate EEG (red; bottom left), bivariate fMRI (green;
bottom right), and the trivariate model (blue; top). Reference lines are plotted to reflect
points of indifference between the models. The nodes correspond to each of the eight
subjects in the EEG/fMRI condition (i.e., Subjects 47–54). For each of the subjects, the
trivariate model made the most accurate predictions.
The reference lines in Fig. 15 designate the areas best predicted by a
particular model. In addition, the color values illustrate the graded na-
ture of the model selection process. The trivariate model is represented
as blue, the bivariate EEGmodel is represented as red, and the bivariate
fMRI model is represented as green. The nodes in the graph mark the
probability of a given model, conditional on the behavioral data. The
figure shows that for each of the subjects in our data, the trivariate
model provides the best predictions than any of the other three models
(although the behavioral-data-only model is not shown).

Generalizations for neural data. Although Fig. 15 shows the trivariate
model's predictive abilities for behavioral data relative to the bivariate
models, there are other predictive tests we could have performed. As a
final test of the utility of our trivariate model, we assessed the model’s
ability to predict neural data on the basis of behavioral data. To do
this, we refit the trivariate model to the full data set, but withheld the
neural data for two randomly selected subjects: Subject 4 from the
EEG experiment, and Subject 33 from the fMRI experiment. This with-
holding strategy is again illustrated by the orange blocks in Fig. 2. We
then generated predictions for the EEG data of Subject 4, and the fMRI
data for Subject 33, on the basis of the behavioral data.

Fig. 16 shows the predictions for the EEG data made for Subject 4.
Panel a shows the PPDs for the difference between value conditions
V1 and V3 (x-axis) against the difference between value conditions V2
and V3 (y-axis). Samples of the joint PPD are represented with shaded
blue dots to show the relative density across the parameter space.
Panel a also shows some summary statistics of Subject 4's EEG data,
reflected in the “+” symbol: the mean along each dimension is located
at the center, and one standard deviation of the PPD along each dimen-
sion is represented as the length of the line (i.e., the horizontal line cor-
responds to the x-axis, and the vertical line corresponds to the y-axis).
For comparison, the mean of the PPD is represented as the open circle.
Plotting the PPD in this way allows us to interpret the relative differ-
ences in activation predicted by the model between the two value con-
ditions. From our previous analyses (also see Fig. 6), we might expect
the model to predict that raw activation in the EEG signal would be
highest in V1, and lowest in V3, implying that the differences between
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Fig. 16. Posterior predictive distributions (PPDs) for the withheld EEG data of Subject 4. Panel a shows the full PPD for the difference between value conditions V1 and V3 (x-axis) against
the difference between value conditions V2 and V3 (y-axis). The “+” symbol illustrates summary statistics of Subject 4's EEG data: the center designates the mean along each dimension
(i.e., the x and y axes), and one standard deviation of the data is represented as the length of the line (i.e., the horizontal line corresponds to the x-axis, and the vertical line corresponds to
the y-axis). The mean of the PPD from themodel is represented as the filled circle. Reference lines are used to designate important areas relating differences between conditions (see text
for details). Panel b illustrates these predictions on the scalp: the means of the PPDs are shown in the first column whereas Subject 4's data are shown in the second column. The topo-
graphic plots are colored coded according to the key on the far right side.
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V1 and V3would be positive and larger than the differences between V2
and V3. Given this intuition, we would expect the largest density of the
PPD to be on the gray triangle in Panel a. The PPD, having been centered
relative to Condition V3, places more density on positive values in both
the x and ydirections. Further, in theupper right quadrant of Panel a, the
PPD has greater density in the half-quadrant representing values where
V1–V3 is higher than V2–V3. Importantly, the model's predictions are
also consistent with Subject 4's data in that both the filled circle and
the “+” symbol fall in the gray area in Panel a.

Panel b shows how these predictions appear on the scalp. The first
column shows the mean of the PPD (represented as the filled circle in
Panel a) in the V2–V3 (top) and V1–V3 (bottom) conditions. The second
column shows Subject 4's withheld data in the same conditions. In each
scalp topography plot, activation is color coded according to the key on
the right side. Comparing across panels, we conclude that the model's
predictions are entirely consistent with the withheld subject's data.

A parallel analysis was performed for thewithheld fMRI data of Sub-
ject 33. Similar to Fig. 16, Fig. 17a shows the PPD for the difference be-
tween value conditions V1 and V3 (x-axis) against the difference
between value conditionsV1 andV2 (y-axis). Summary statistics of Sub-
ject 33's fMRI data are plotted in Panel a of Fig. 17 in the sameway they
were plotted in Panel a of Fig. 16. Given our previous analyses,wewould
expect the opposite pattern of predictions from the EEG predictions
above. That is, we would expect the activation to be the highest in Con-
dition V3, and the lowest in Condition V1, implying that the predictions
for V1–V3 would be negative, and more negative than the predictions
for V2–V3. Hence, we should expect a high density of themodel predic-
tions, and the withheld data to fall in the gray half-quadrant illustrated
in Panel a. Fig. 17 confirms this prediction and shows that the predic-
tions from the trivariate model are indeed consistent with thewithheld
data.

Panel b shows the average model predictions from Panel a (left col-
umn) beside Subject 33'swithheld fMRI data. The degree of activation in
the dmFC is color coded according to the key on the far right side. Fig. 17
shows that the model predicts that the difference in activation in the
dmFC between value conditions V2 and V3 is smaller in magnitude
than the difference in activation between value conditions V1 and V3.
These predictions are in line with thewithheld data, which further sug-
gests that the trivariate model uses the inferred relationships between
neural activity and the behavioral model to generalize accurately to
new subjects.
Discussion

In this article, we have shown how the joint modeling framework
(Turner et al., 2013a) can be extended to solve the more difficult chal-
lenge of integrating multiple neurophysiological measures with a be-
havioral model. Our results suggest that bivariate models, having
either EEG or fMRI, can outperform behavioral-data-only models, and
trivariate models, having both EEG and fMRI, can outperform bivariate
models. The reason for this pattern of results is due to (1) the interrela-
tionships among the three variables, and (2) the trivariate model’s abil-
ity to learn the important patterns in the data to facilitate better
generalization. While our results certainly support our method for
multi-variate extensions, there are a number of important limitations
and benefits meriting further discussion.

Reliance on preprocessing methodology

To date, all applications of our joint modeling framework rely on
some preprocessing of the neural signal as a way to reduce the dimen-
sionality of these measures. For example, in our processing of the EEG
data above, we first computed the average EEG signal for each value
condition and visually inspected these curves across time. We then
chose a window of time where the EEG signal showed the most differ-
entiation between the three value conditions. This time window repre-
sented the period of time we suspected would be the most interesting
from a cognitive perspective, but this procedure leaves much to be de-
sired. First, it averages the wave form over time, and second, it averages
over only four electrodes out of many. One could easily imagine the
analyses performed here with improvements to the neural submodel
such as decomposing the neural signal into its temporal and spatial as-
pects. Futurework should endeavor to establish stronger data reduction
techniques that are model driven, such as those used by topographic
factor analysis (Manning et al., 2014; Gershman et al., 2011).

Generalization depends on the value of conditioned variables

Our bivariate and trivariate generative modeling analyses showed
that adding neural measures constrains our knowledge about behavioral
model parameters (see Figs. 7, 10, and 13). In these analyses, constraint
was observed through the additional precision (i.e., having less variance)
in the posterior estimates, and importantly, this additional constraint
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Fig. 17. Posterior predictive distributions (PPDs) for thewithheld fMRI data of Subject 33. Panel a shows the full PPD for the difference between value conditionsV1 and V3 (x-axis) against
the difference between value conditions V2 and V3 (y-axis). The “+” symbol illustrates summary statistics of Subject 33's fMRI data: the center designates themean along each dimension
(i.e., the x and y axes), and one standard deviation of the data is represented as the length of the line (i.e., the horizontal line corresponds to the x-axis, and the vertical line corresponds to
the y-axis). Themean of the PPD from themodel is represented as thefilled circle. Reference lines are used to designate important areas relating the variables across conditions (see text for
details). Panel b illustrates these predictions in the brain: themean of the PPDs are shown in the first columnwhereas Subject 33's data are shown in the second column. In each axial slice,
the degree of activation is colored coded according to the key on the far right side.

110 B.M. Turner et al. / NeuroImage 128 (2016) 96–115
facilitated more accurate predictions about withheld behavioral data.
The additional constraint depends on a few important factors. First, con-
sider the case of two arbitrary random variables (θ,δ) that have a joint
multivariate normal distribution, as in the bivariate joint models pre-
sented above, where θ are the linked behavioral submodel parameters,
and δ are the linked neural submodel parameters. When provided with
neural data, the neural model parameters δ become estimable, allowing
our model to infer an estimate for δ that comes from both the prior
and the likelihood. In our modeling framework, having information
about δ informs our understanding about θ. Recall that the distribution
of (θ,δ) for all subjects depends on the hyper mean ϕ and the hyper var-
iance–covariance matrix ∑. If we partition these hyperparameters ac-
cording to what they correspond to in the behavioral and neural
submodels, we obtain the following division:

ϕ ¼ ϕ1 ϕ2½ �⊤

Σ ¼ Σ11 Σ12
Σ21 Σ22

� �
:

Here, parameters ϕ1 and Σ11 correspond to behavioral submodel pa-
rameters θ, whereas parameters ϕ2 and Σ22 correspond to neural
submodel parameters δ. Given the properties of our linking function, if
we know that δ equals a specific value, say δ=δ⁎, then the distribution
of θ conditional on δ is

θjδ ¼ δ� � N ϕ�;Σ�� �
;

where

ϕ� ¼ ϕ1 þ Σ12Σ
−1
22 δ�−ϕ2ð Þ

Σ� ¼ Σ11−Σ12Σ
−1
22 Σ21:

The important result is that the variance of the conditional distribu-
tion is reduced, specifically it is reduced by Σ12Σ22

−1Σ21. While this
amount does not depend on the specific value of δ⁎, it clearly depends
on δ’s variability. Furthermore, as the correlation between the neural
and behavioral data approaches zero, the joint model reduces to a uni-
variate model, such that ϕ⁎=ϕ1 and Σ⁎=Σ11. The gain of this from a
modeling standpoint is that the constraint applied to both θ and δ be-
comes negligible, and the model effectively learns to ignore the neural
data in its estimate of θ. Finally, the mean of the conditional estimate
for θ does depend on δ⁎, which suggests that the influence and
constraint provided by the neural data will vary from one subject to an-
other, and this variation is explained by the properties of that subject’s
neural data relative to the group. Specifically, as a subject’s neural data
become more unlike the group data (i.e., as δ⁎−ϕ2 increases), the con-
straint applied to the conditional distribution (θ |δ=δ⁎) increases.
These results could have implications for a joint model's performance,
and might explain why for some subjects, a joint model performed
worse than a behavioral-data-only model (e.g., see Fig. 7).

The shrinkage paradox

In the hierarchicalmodels presented in this article, we assumed a hi-
erarchical structure that captured both subject-specific and group-
specific effects. One of the major benefits of hierarchical modeling is
the “borrowing” of information from one subject (i.e., the lower level
of the hierarchy) to another. This happens because the parameters for
any given subject are informed by that subject's data, but the pattern
of subject-specific parameters is informed through the estimation of
group-level parameters. While this may seem like a bottom-up process,
it is actually also top-down. For example, when a new subject is added
to the data, themodel can already generate predictions for that subject's
data on the basis of the other subjects in the data set. In this way, the es-
timation of subject-specific parameters in a hierarchical model consists
of a mixture of two quantities: (1) the information learned about the
subject from the subject's own data, and (2) what the model predicts
for the subject's parameters given the other subjects in the data set. In
statistical terms, these quantities are known as the likelihood function
and the prior predictive distribution, respectively.

For the types of experimentswe typically see in psychology andneu-
roscience, the prior predictive distribution can be quite sparse, having
density in regions of the parameter space that are not informative for
a specific subject. However, as the number of observations increase,
the model's reliance on the prior predictive distribution diminishes be-
cause the likelihood function begins to dominate what we know about
this individual. Said another way, the influence of the likelihood is pro-
portional to the number of observations for that subject. In an analogous
way, the influence of the prior predictive distribution is proportional to
the number of subjects in the extant data set.Withmany subjects in the
set, the prior predictive distribution will be more reflective of the aver-
age subject-to-subject patterns in the set.
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The tradeoff dynamics between the prior predictive distribution and
the likelihood function are important because they have a direct effect
on a model's predictive accuracy. Consider a new subject who has just
been added to a small (e.g., 20 subjects) set of data. Further suppose
that the data for this subject are relatively sparse, consisting of only a
few observations. If the first 20 subjects had been fit hierarchically, the
model's prediction for the parameters of this new subject would pri-
marily be generated from the prior predictive density as a result of
this subject's sparse data. However, if we had estimated the new
subject's parameters independently of the hierarchical model, the pa-
rameter estimates would only consist of the information in the data
themselves, and would not have the information conveyed by the hier-
archical model. If we then compared the estimates of this subject's pa-
rameters obtained from the hierarchical model to those obtained
independently, we should expect some differences. A typical pattern
of results is that the independently-obtained estimates are more ex-
treme – meaning they depart from the group average – than the esti-
mates put forth by the hierarchical model (Rouder & Lu, 2005; Rouder
et al., 2005). This phenomenon is known as “shrinkage”, and is some-
times regarded as a disadvantage of hierarchical modeling.

Shrinkage can be explained simply as a model’s tendency to hedge
its bets. If we know very little about a new subject, but we know a lot
about what subjects typically look like, it would make sense to make
predictions about a subject that reflect our most informed base of
knowledge. Statistically speaking, this is actually the optimal behavior
(Gelman et al., 2004; Christensen et al., 2011). Despite this, it can hap-
pen for some subjects that the predictions are inaccurate because they
are more reflective of group statistics than subject specific statistics.
Models are especially susceptible to these errors when data are
completely withheld. For example, in the trivariate modeling section
we generate predictions for neural data on the basis of behavioral data
alone. The predictions about neural data were based on three things:
(1) the behavioral data for those subjects, (2) the prior predictive
knowledge about the neural model parameters, and (3) the prior pre-
dictive knowledge of the relationship between behavioral and neural
model parameters. None of these three things contribute to the likeli-
hood function for the neural model parameters, and as a result, the
model generates predictions that are reflective of the group statistics.
This was not a problem in our prediction for EEG data (see Fig. 16),
but for the fMRI data, the predictions for the relative changes in BOLD
activity across conditions were not as extreme as they should have
been. In Fig. 17, this is illustrated in Panel a by the distance of the “+”
symbol from the point (0,0) relative to the filled circle. The interpreta-
tion is that themodel made less extreme predictions thanwhat was ob-
served in the data. While these predictions are still accurate, it may not
generally be the case, and it is important to keep the concept of shrink-
age in mind when evaluating the predictive accuracy of joint models.

Contrasts with data fusion methods

Combining EEG and fMRImeasurements is a difficult, but fruitful en-
deavor. EEG measures have excellent temporal resolution, but have
rather limited spatial information, whereas fMRI measures provide
good spatial resolution, but lack good temporal resolution. Hence, com-
bining both measures to understand brain function would capitalize on
the benefits of each modality, potentially providing new insight to old
questions. In addition to themethods of data fusion discussed in the in-
troduction, another method attempting to combine these measures is
through simultaneous recordings, where a subject performs a task in
an MRI scanner while wearing an EEG net. This approach has yielded
new methods for obtaining temporal components that can be associat-
ed with clusters of activation determined by fMRI that contribute to the
generation of the electrical signal (seeHuster et al. (2013), for a review),
but does suffer from complications due to artifacts produced from the
simultaneous methodology (e.g., Mulert & Lemieux, 2009; Ullsperger
& Debener, 2010; Cottereau et al., 2015). By contrast, the method we
have proposed here focuses on linking parameters of a cognitive
model to both behavior and multiple brain measures. The method pro-
posed here could also be used with simultaneous data collection, but it
need not be, obviating the difficulties of collecting high-qualtiy EEG data
inside the scanner. However, our method is not without its own limita-
tions. Specifically, ourmethod assumes the same basic cognitive process
underlies thedecisionmakingbehavior observed in eachof these exper-
imental conditions, and that changes across experimental conditions
manifests in the neural data in similar ways. There is some evidence
that the context of experimental settings influences decision making
behavior. (Van Maanen et al., 2015) asked subjects to perform the
three tasks in two separate conditions, one condition was performed
in an fMRI scanner and the other was not. They then analyzed the be-
havioral data using the LBA model, and compared the parameter esti-
mates across the two conditions for all three experiments. In two of
the experiments, the nondecision time parameter was larger in the
fMRI condition reflecting slower motor movements, and in one of
these experiments, the degree of attentional focus was less in the fMRI
condition. Although not reported (but see Rodriguez et al. (2014)), we
performed a similar analysis comparing parameter estimates across
EEG and fMRI blocks in our data. Our model comparisons were not as
extensive as in Van Maanen et al. (2015), but we found only marginal
differences between the two modalities, and felt assured that our as-
sumptions about the decision making behavior across conditions were
justified. We speculated that the differences between our analysis and
Van Maanen et al.'s analysis may be due to the subjective nature of
the decision process used in our task. Regardless, future research
using the joint modeling approach described here will need to properly
scrutinize the difference in the decision making behavior across condi-
tions. That is not to say that the decision making behavior needs to be
identical across experimental conditions. Context-dependent effects
like those observed in Van Maanen et al. (2015) can still be accommo-
dated using our joint modeling approach, but may require additional
theoretical overhead in the instantiation of the behavioral (or neural)
submodel.
Neural data as a means for model selection

In this article, we have only considered a single behavioral
(sub)model to capture the behavioral data. However, the extent to
which neural data correlatewithmodel parameters is highly contingent
on the fidelity of the model itself. One of the primary benefits of this
modeling approach is that it is not committed to any particular
submodel for either the neural or behavioral data. This lack of commit-
mentmanifests as a strength: one can choose a submodel on the basis of
convenience (e.g., mathematical tractability), theoretical endorsement,
or simply personal preference. Being able to easily switch between dif-
ferent models also allows for a direct model comparison by way of fit
statistics, and prediction performance – a feature of joint modeling
that is similar in spirit to other integrative cognitive model comparison
methods (Purcell et al., 2010; Mack et al., 2013).

We have speculated elsewhere how using the jointmodeling frame-
work can be used to facilitate a more elaborated model comparison
analysis on the basis of neural data (cf. Turner (2015)). For example,
Turner (2015) showed how tractography measures between the
presupplementary motor area and the striatum could be used to better
constrain model predictions for new subjects when behavioral data are
withheld. Using the same neural measure, Turner (2015) showed how
the LBA model and a reduced drift diffusion model compared in fits to
both the neural and behavioral data. Ultimately, the LBA model
outperformed the reduced drift diffusion model. While we speculate
that neural data can provide greater constraint and benchmark tests of
cognitive theory, future analyses are needed to better address the inter-
play of neuroscience and model selection (but see Purcell et al. (2010);
Mack et al. (2013); Ditterich (2010)).
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Fig. A.18. Our Linear Ballistic Accumulator model for intertemporal choice. Following the
presentation of a stimulus and some non-decision time τ, information accumulates
ballistically for each alternative. The accumulation processes for both the immediate
(left panel) and the delayed (right panel) reward alternatives are independent. Once
enough evidence b has been accumulated, a decision is made that corresponds to the
accumulator that reaches the threshold first. The model assumes trial-to-trial variation
in both starting point and drift rate.

112 B.M. Turner et al. / NeuroImage 128 (2016) 96–115
Toward a common theoretical framework

Inmanyways, the typical experimental design in cognitive neurosci-
ence is similar to those of experimental psychology. First, an experiment
is designed with at least two conditions. We then collect data to fill up
the cell blocks in our experimental design. Finally, we perform a statis-
tical test to compare the distribution of data across the cell blocks. Such
a procedure can tell uswhich brain regions/areas are sensitive to the ex-
perimentalmanipulation, and even themagnitude of the sensitivity, but
this procedure can say nothing aboutwhy these regions change activity
from a mechanistic point of view. Furthermore, while this analytic pro-
cedure is essential in statistically testing experimental manipulations
within a study, it can sometimes be difficult to aggregate acrossmultiple
studies, especiallywhen these studies use different types of neuralmea-
sures, such as EEG and fMRI. We see this as a limitation, stemming di-
rectly from a lack of commitment to a particular theoretical
framework. Our joint modeling approach attempts to resolve this limi-
tation. By using a cognitive model, which ostensibly instantiates a cog-
nitive theory, we are better postured to interpret neural function
through the lens of a cognitive model. In addition, the joint modeling
framework allows for seamless integration across multiple studies, mo-
dalities, and even imbalanced experimental designs (see, e.g., Fig. 2).

Conclusions

In this article, we have described amethod for integrating EEG, fMRI,
and behavioral data into one cognitive model. The model assumes the
presence of different submodels that capture the modality-specific ef-
fects of interest. Important parameters describing changes across exper-
imental conditions are then linked together to facilitate communication
acrossmodalities in the data set. Our approach hasmany advantages, in
particular, it is amenable to imbalanced experimental designs including
different modalities, and different numbers of subjects per modality.
Our method is also well suited for generating predictions for new
data, withheld data, or missing data for anymodality of interest. Finally,
our approach centers on the instantiation of a particular mechanistic
cognitive theory, allowing us to interpret brain data through the lens
of a cognitive model, and provide a unifying theoretical framework for
multi-modal measures of cognition.

Appendix A. Technical details of the behavioral model

While the basic idea of our hierarchical LBAmodel for intertemporal
choice was presented in Rodriguez et al. (2014) (also see Turner et al.
(2013b)), some of the core assumptions of the model have been
changed to facilitate a comparison between the behavioral model and
the joint models used in the subsequent sections.

Fig. A.18 provides an illustrative diagram of our LBA model of
intertemporal choice. To provide a formal description of the model,
we denote the RT on the ith trial for the jth subject in the vth value con-
dition as RTi , j ,v∈(0,∞), and the corresponding choice as Ci , j ,v where
Ci ,j ,v∈{I,D}. I and D are the immediate and delayed rewards respective-
ly. The model assumes that evidence for I and D is accumulated inde-
pendently in separate accumulators. For a given trial, both
accumulators begin with some choice bias, which is provided as inde-
pendent amounts of starting point evidence {aI,aD}, sampled from a
common uniform distribution U½0;Aj�, where Aj is the upper bound of
the starting point for Subject j. Evidence then increases through time
at rates {dI,dD}, which are sampled from independent normal distribu-
tions with means {μ v , I , j,μ v ,D , j}. Mean accumulation rates vary across
value conditions (i.e., the first index) and subjects (i.e., the third
index), whereas the standard deviation σj is the same for both immedi-
ate (I) and delayed (D) alternatives, but varies across subjects. There-
fore, dI � Nðμv;I; j;σ jÞ and dD � Nðμv;D; j;σ jÞ . Each accumulator
gathers evidence ballistically until the point at which one accumulator
reaches the response threshold bj. The observed response time is the
sum of the decision time plus some extra time τj attributed to non-
comparison and selection processes, such as temporal discounting and
motor execution. Letting {aI,aD}=ai ,j ,v and {dI,dD}=di ,j ,v, the response
time on Trial i for Subject j is given by

RTi; j;v ¼ min
I;Df g

bj−ai; j;v
di; j;v

� 	
þ τ j; ðA:1Þ

and the choice Ci ,j ,v corresponds to the accumulator that reached the
response threshold bj first. The model provides a closed-form and joint
account of response time and choice probability across value conditions
by specifying “defective”probability density functions (PDFs) for I andD
in terms of the parameters just described (see Brown and Heathcote
(2008), for details).

We made two reparameterization choices from our previous appli-
cation of the model (Rodriguez et al., 2014) to facilitate the hierarchical
estimation procedure (see below). The first involved modeling the
upper boundary of the starting point Aj in terms of the response bound-
ary bj. The starting point parameter Aj is bounded by 0 and bj, and this
parameter-specific boundary can result in poor estimation efficiency
in our sampling procedure. Consequently, we chose to model the pro-
portion of the upper starting point boundary parameter to the response
threshold parameter by estimating

α j ¼ Aj=bj:

The parameter αj is still bounded by 0 and 1, and so in the specifica-
tion of the model below, we will use the logit transformation to put αj

on a space that has infinite support (i.e., αj∈(−∞,∞)), which will im-
prove the accuracy of our estimated posteriors.

Following our folding process described in the methods, our data
consisted of three response time distributions, one for each of the
value conditions V (see Fig. 5). Our second reparametrization involved
the drift rate parameters for these response time distributions. Of con-
siderable importance was the difference in the accumulation rates for
the most likely alternative (given our experimental manipulation)
across these value conditions. To model this effect, we introduced the
parameters ηj

(1), and ηj
(2) to capture the difference in the rates of

accumulation from the V3 condition to the V2, and from the V3 condi-
tion to the V1 condition, respectively. Formally, we set

μV3;SHV ; j ¼ logit−1 ν j
� �

;

μV2;SHV ; j ¼ logit−1 ν j þ η 1ð Þ
j

� �
; and

μV1;SHV ; j ¼ logit−1 ν j þ η 2ð Þ
j

� �
;
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where logit−1(x) represents the inverse logit transformation of x, νj
is the “equipreference” drift rate parameter for Subject j, and “SHV” is
the subjectively higher valued option. To satisfy scaling conditions of
the model, we imposed a constraint such that the drift rates sum to
one across each of the value conditions, namely that in condition V,
the following should hold:

μV ;SHV; j þ μV ;SLV ; j ¼ 1:

We estimated LBA model parameters using a hierarchical Bayesian
procedure (see Rodriguez et al. (2014); Turner et al. (2013b), for de-
tails). To construct the hierarchical model, we must first make assump-
tions about the distributions of subject-specific parameters. To do this,
we first transformed the parameters so that they had continuous, infi-
nite support (i.e., can take on any real value). In our case, for parameters
bounded by zero, we applied a log transformation, and for parameters
bounded by zero and one, we applied a logit transformation. Following
these transformations, we specified the following priors for the subject-
specific parameters:

ν j � N νμ ;νσ
� �

;

η 1ð Þ
j � N η 1ð Þ

μ ; η 1ð Þ
σ

� �
;

η 2ð Þ
j � N η 2ð Þ

μ ; η 2ð Þ
σ

� �
;

log σ j
� � � N σμ ;σσ

� �
;

log τ kð Þ
j

� �
� N τ kð Þ

μ ; τ kð Þ
σ

� �
;

logit α j
� � � N αμ ;ασ

� �
; and

log bj
� � � N bμ ; bσ

� �
;

where k∈{1,2,3} represents the three different folded value condi-
tions, as described above. The nondecision time parameter τj was
allowed to vary across value conditions because previous modeling
results showed that this choice provided the best fit to the data
(Rodriguez et al., 2014).

Finally, we complete our model by specifying priors for the
hyperparameters. Given the assumptions of normality for the subject-
specific parameters, we can establish a conjugate relationship between
the prior and posterior distributions at the hyper level. To do this, we
specified the following priors for the group-level means:

νμ � Nð0:5;0:8Þ;
ηð1Þμ � Nð0;100Þ;
ηð2Þμ � Nð0;100Þ;
σμ � Nð0:5;0:8Þ;
τðkÞμ � Nð0:75;0:8Þ;
αμ � Nð1:5;0:8Þ; and
bμ � Nð1:5;0:8Þ;
and the following priors for the group-level standard deviations,

νσ � Γ−1ð4;10Þ;
ηð1Þσ � Γ−1ð4;10Þ;
ηð2Þσ � Γ−1ð4;10Þ;
σσ � Γ−1ð4;10Þ;
τðkÞσ � Γ−1ð4;10Þ;
ασ � Γ−1ð4;10Þ; and
bσ � Γ−1ð4;10Þ;
where Γ−1(a,b) denotes the inverse gamma distribution with shape

parameter a, and scale parameter b. This particular choice of a and b for
the priors produces a skewed distribution placing weight on appropri-
ate ranges of the parameters. Specifically, when a=4 and b=10, the
prior has an approximate 95% credible set of (1.14, 9.05), and an expect-
ed value of 3.32. These choices reflect our a priori beliefs: we did not
expect the between-subject variability to be less that 1, and felt that
larger values would become increasingly less likely to account for
these data.

While our prior selections were informed by other similar model-
ing applications (see, e.g., Rodriguez et al., 2014; Turner et al.,
2013b), we remained somewhat conservative in our choices to
avoid undue parameter constraint, because the model structure
was considerably different from prior research using the hierarchical
version of the LBA model.

Appendix B. Technical details of the bivariate joint model

The joint model used in both the EEG and fMRI analyses was equiv-
alent, although both the neural and behavioral data changed. Where
possible, we kept the behavioral portion of the joint model equal to
the behavioral-data-only model, described above. However, given the
joint structure of some components of themodel, themodels are not ex-
actly equivalent in the way they capture the data.

We begin by discussing the neural portion of the joint model. We
first processed the neural data to provide a single-trial measure of neu-
ral activity for each individual subject (see themain text for details).We
denote the neural data on the ith trial for the jth subject in the vth value
condition as Ni ,j ,v. Because we folded the data, v∈{1,2,3}, where v=3
when PD={0.5}, v=2 when PD={0.3,0.7}, and v=1 when PD=
{0.1,0.9}. Because the neural data for each trial is an average, by the cen-
tral limit theorem, each Ni ,j ,v is normally distributed. For the v=3 con-
dition, the parameter ϵj captures the mean neural activation. Similar to
the η parameters in the behavioral model, we modeled the difference
in neural activation across value conditions by introducing the variables
δj
(1) and δj

(2) for the v=2 and v=1 value conditions, respectively. We
also capture the variability in neural activation with the parameter ζj,
which was constrained to be the same across each value condition. For-
mally,we assume theneural data for the jth subject in the vth value con-
dition arise from the following distributions:

Ni; j;3 � N ϵ j; ζ j

� �
;

Ni; j;2 � N ϵ j þ δ 1ð Þ
j ; ζ j

� �
; and

Ni; j;1 � N ϵ j þ δ 2ð Þ
j ; ζ j

� �
:

For each subject, we then assumed the following priors for ϵj and ζj:

ϵ j � N ϵμ ; ϵσ
� �

; and

log ζ j

� �
� N ζμ ; ζσ

� �
:

For the group-level parameters, we specified the following priors for
the group-level means:

ϵμ � N 0;10ð Þ; and
ζμ � N 0;10ð Þ; ðB:1Þ

and the following priors for the group-level standard deviations

ϵσ � Γ−1ð7;90Þ; and
ζσ � Γ−1ð7;90Þ:
The principle behind jointmodeling is to use both neural and behav-

ioral data to enforce constraint on a particular cognitive theory (Turner
et al., 2013a; Turner, 2015). In ourmodeling application, wewish to use
the neural signature across value conditions to constrain the differences
in the rate of accumulation across these value conditions. Following this
motivation, we specify a link between the parameters δj

(1) and ηj
(1), as

well as between the parameters δj(2) and ηj(2), by specifying

δ 1ð Þ
j ; η 1ð Þ

j

� �
� N 2 ϕ 1ð Þ;Σ 1ð Þ� �

; and

δ 2ð Þ
j ; η 2ð Þ

j

� �
� N 2 ϕ 2ð Þ;Σ 2ð Þ� �

;

whereN pða; bÞrepresents themultivariate normal distribution of di-
mension p with mean vector a and variance–covariance matrix b. Note
that ϕ(k)=[δμ(k),ημ(k)], where ημ(k) is the critical behavioral model group-
level parameter by which we draw a comparison to the behavioral-
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data-only model (see Figs. 7 and 10). Specifying the structure in this
way is equivalent to the following specification:

δ 1ð Þ
j ;η 1ð Þ

j ; δ 2ð Þ
j ;η 2ð Þ

j

� �
� N 4 ϕ�;Σ�� �

;

where

ϕ� ¼ ϕ 1ð Þ;ϕ 2ð Þ
h i⊤

¼ δ 1ð Þ
μ ;η 1ð Þ

μ ; δ 2ð Þ
μ ; η 2ð Þ

μ

h i⊤

Σ� ¼ Σ 1ð Þ 0
0 Σ 2ð Þ

� �
¼

δ 1ð Þ
σ

� �2
δ 1ð Þ
σ η 1ð Þ

σ ρ1 0 0

δ 1ð Þ
σ η 1ð Þ

σ ρ1 η 1ð Þ
σ

� �2
0 0

0 0 δ 2ð Þ
σ

� �2
δ 2ð Þ
σ η 2ð Þ

σ ρ2

0 0 δ 2ð Þ
σ η 2ð Þ

σ ρ2 η 2ð Þ
σ

� �2

2
666666664

3
777777775

where ρ1 and ρ2 are correlation parameters. However, aswewill see
below, with the appropriate selections for the prior distributions, one
can establish a conjugate relationship between the prior and posterior
ofϕ(k) andΣ(k),making the estimationmore efficient via Gibbs sampling
(Robert and Casella, 2004; Gelman et al., 2004). With the exception of
ηj
(1) and ηj

(2), all other parameter specifications for the behavioral
submodel were equivalent to the behavioral-data-only model present-
ed above.

The final step in constructing the joint model is to specify priors for
the hyperparameters ϕ(k) and Σ(k) for k∈{1,2}. Following Turner et al.
(2015b), we specified a joint prior on ϕ(k) and Σ(k) so that

p ϕ kð Þ;Σ kð Þ� �
¼ p ϕ kð ÞjΣ kð Þ� �

p Σ kð Þ� �
;

where

ϕ kð ÞjΣ kð Þ � N 2 μ0; s
−1
0 Σ kð Þ� �

; and

Σ kð Þ � W−1 Φ;d0ð Þ;

whereW−1ða; bÞ denotes the inverse Wishart distribution with dis-
persionmatrix a and degrees of freedom b. We set d0 equal to the num-
ber of linked parameters plus two (i.e., d0=2+2=4),Φ is the identity
matrix (i.e., a matrix containing ones on the diagonal, and zeros on the
off diagonal) of dimension (2×2), s0=1/10, and μ0 is a vector contain-
ing two zeros. These choices were made to establish a conjugate rela-
tionship between the prior and posterior, so that analytic expressions
could be derived for the conditional distributions of ϕ(k) and Σ(k),
while still specifying uninformative priors.

When estimating the joint posterior distribution of the bivariate
model parameters, we used a combination of Gibbs sampling for the
group-level (Gelman et al., 2004), and differential evolution with Mar-
kov chain Monte Carlo for the subject-level (DE-MCMC; Turner et al.,
2013b). For the subject level estimates, we used 24 chains, and obtained
10,000 samples after a burn-in period of 10,000 samples. Thus, our esti-
mates of the joint posterior distributions are based on 240,024 samples.
The burn-in period allowed us to converge quickly to the high-density
regions of the posterior distribution, while the rest of the samples
allowed us to improve the reliability of the estimates. Convergence
and overall fidelity of the chains were assessed through visual inspec-
tion and the coda package in R (Plummer et al., 2006).

Appendix C. Technical details of the trivariate joint model

Where possible, the specification of the trivariate model was equiv-
alent to the bivariate model above. The important difference between
these two models is the additional data structure, with the trivariate
model containing both EEG and fMRI. Using the notation in Fig. 1, we
denote the EEG data as Ei , j ,v, and the fMRI data as Fi , j ,v. In the model,
we super script the parameters ϵj, ζj, δj(1), and δj(2) with an F for the
fMRI data and an E for the EEG data. Hence, we assume the neural
data arise from the following distributions:

Fi; j;3 � N ϵ Fð Þ
j ; ζ Fð Þ

j

� �
;

Fi; j;2 � N ϵ Fð Þ
j þ δ 1; Fð Þ

j ; ζ Fð Þ
j

� �
;

Fi; j;1 � N ϵ Fð Þ
j þ δ 2; Fð Þ

j ; ζ Fð Þ
j

� �
;

Ei; j;3 � N ϵ Eð Þ
j ; ζ Eð Þ

j

� �
;

Ei; j;2 � N ϵ Eð Þ
j þ δ 1;Eð Þ

j ; ζ Eð Þ
j

� �
; and

Ei; j;1 � N ϵ Eð Þ
j þ δ 2;Eð Þ

j ; ζ Eð Þ
j

� �
:

The prior structure on ϵj
(E), ϵj

(F), ζj
(E), and ζj

(F) for the trivariate model
were identical to the prior structure on ϵj and ζj in the bivariate model
above. However, in the trivariate model, the linking procedure relating
neural and behavioral submodels is slightly different. Namely, we
assume

δ 1;Fð Þ
j ; δ 1;Eð Þ

j ;η 1ð Þ
j

� �
� N 3 ϕ 1ð Þ;Σ 1ð Þ� �

; and

δ 2;Fð Þ
j ; δ 2;Eð Þ

j ;η 2ð Þ
j

� �
� N 3 ϕ 2ð Þ;Σ 2ð Þ� �

:

The prior structure on ϕ and Σ in the trivariate model is identical to
the prior structure in the bivariate model above, with the following
exceptions: d0=3+2=5, Φ is the identity matrix of dimension
(3×3), and μ0 is a vector containing three zeros.

When estimating the joint posterior distribution of the trivariate
model parameters, we ran our sampling algorithm with 24 chains for
20,000 samples after a burnin period of 10,000 samples, and then
thinned the samples by retaining every other iteration. This process
helped to reduce autocorrelation in the chains, which we suspected
would arise due to the high dimensionality of themodel. Hence, the es-
timates of the posterior distribution of the trivariate model were also
based on 240,024 samples, to maintain consistency with the bivariate
models. Convergence and overall fidelity of the chains were assessed
through visual inspection and the coda package in R (Plummer et al.,
2006).
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